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ABSTRACT

We consider the generalization of the Michelson contrast for positive operators
of countably decomposable W *-algebras and prove its properties. In addition,
we study how the inequalities characterizing traces interplay with the Michelson
contrasts of operator variables.

Also, we developed a torch code for simulation modeling code to Monte-Carlo
type I von Neumann algebras.

Let A denote some Banach *-algebras; then, A%, AT are its self-adjoint and positive parts, respec-
tively. A* is the conjugate space of continuous linear functionals. If A is von Neumann algebra,
then A, denotes its predual space. Additionally, A}, A** are the positive cones in A, and A*,
respectively. Tr denotes the canonical trace of M, (C). By C(H) and B(H) we denote the ideal of
compact operators and the algebra of bounded operators, respectively.

1 PRELIMINARIES

From the work (16)) we know.
Let A = B(H), then the center €(B(H)) of B(H) is equal to C1. Let us consider the function
x
A@w) = inf {[1= %[} forz e B(m)*,
(z) nf 1 or x (H)

which illustrates how far the element z is from the central elements. If z = 1, then A(1) = 0
(A=1)and A(0) = 1.
Proposition 1 Let z be positive operator (x € B(H)™T), then A(z) < 1.

Proposition 2 Let x be positive non-invertible (singular) operator, then
A(z) = 1.
Corollary 1 Let x be positive compact operator, then A(x) = 1.

Theorem 1 Let v be invertible positive operator (x € B(H)™1), with the inverse x =1, then

g 1 1 [

A =
@) = a1

(D

Corollary 2 Let x € B(H)" be invertible element with the inverse element x=1 € B(H), then
Ax) < 1.

Corollary 3 Let the sequence x,, from B(H )™ that converges to element 0 # x € B(H)™ in terms
of norm,
lim A(z,) = A(z),

n

ie. A: (B(H)T\ {0},] - ]) = [0,1] is a continuous function.

Corollary 4 [f the sequence of operators is converging to a non-singular (invertible) operator, then
the sequence contains not more than a finite quantity of non-invertible operators.
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Corollary 5 For any x in B(H)™ the following properties

1.
2) = sup(o(z)) — inf(o(x))
A) = (o) + o ()’
2.
Ar) = sup o(z) ’ B xH .
supo(z) + inf o(z) ||l
hold.

The first equality states that the A is indeed the Michelson contrast.

Theorem 2 Let 2,y € B(H)™, then A(z + y) < max{A(z), A(y)}.

2 COMPUTATIONAL EXPERIMENTS

We conducted additional computational experiments on the inequalities violations for the higher
dimensions compared to (16).

2.1 GARDNER’S INEQUALITY INSPIRED SIMULATION

In 1979 L.T. Gardner showed the inequality |o(X)| < ¢(|X|) characterizes traces in C*-algebras
among all functionals, i.e.

Theorem 3 ((6), Theorem 1) The finite traces on a C*-algebra A are precisely those (positive)
linear functionals p on A which satisfy |p(x)| < o(|x|) forall x € A.

If ¢ is a tracial functional on the C*-algebra A, then the Gardner exponent shows the result for all
elements of X € A and, conversely, if for all X € A is a Gardner quality indicator and ¢ is a
positive functional, this functional is tracial.

Let M be a von Neumann algebra, the normal strongly semifinite weight ¢ ensures that for any
-finite projections P € M, the Gardner equivalent ( |¢(X)| < ¢(]X|)) result for all X = PX, P,
where X € M, then the weight is a trace.

In case if A = M, (C), we have that for ¢ := Tr(A-) the inequality must be violated for some
X € M,,(C), i.r. exists X € M(R) such that | Tr(AX)| — Tr(A4]|X]) > 0.
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Figure 1: The scatter plots above are visualising results of simulations with z = A(X), y = A(Y),
with X € M,(R),Y € M,(R),||X]| = ||[Y|| = 1 and z = |Tr(XY)| — Tr(|X||Y|). The left
column is a 3D scatter plot, the middle column is a plot of z vs. x and the right column is z vs. y.
The rows correspond for 2, 3, 4 and 5-dimensional simulations respectively.

2.2 QUANTUM JENSEN-SHANNON DIVERGENCE
Let X, Y € M} (R) and Tr(X) = Tr(Y) = 1.

We call S(X) := —Tr(X log,(X)) the von Neumann entropy, where log,(X) is understood in the
terms of functional calculus.

We define ) )
QJSD(X,Y):=8 (§(X + Y)) —3 (S(X)+ S(Y))

following the [(29), (30),(31)].
In the following computational experiment we compare the Michelson Contrast A(XY") of the

product of density matrices X and Y with the \/QJSD(X,Y).

We see the tendency that if we increase the dimension it seems that the following type inequalities

Ax A(XY]) < V/QISD(X,Y) < B x A(|XY])

occur. It seems logical since we know (26) where authors state the equivalence between
Jensen—Shannon divergence and Michelson contrast for a continuous commutative distributions.

2.3 Li EQUALITY VIOLATION

From (18) we now that if A € M (R) and Tr(|AX A|) = Tr(A4|X|A) for all X € M:%(R) then A
is central.
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Figure 2: The scatter plots above are visualising results of simulations with = A(|XY]), y =

QJDS(X,Y), with X, Y € M/ (R), TrX = TrY = 1. The upper row corresponds to 2, 3 and
4-dimensional simulations, the middle row corresponds to 5, 6 and 7-dimensional simulations and
the last row corresponds to 8, 9 and 10-dimensional simulations.

0.000.250.500.751.00

0.000.250.500.751.00

0.000.250.500.751.00

0.000.250.500.751.00

10 Lo
08 0.8
0.6 0.6
04 0.4
0.2 0.2
0.0 0.0

000 025 050 075 L0o 000 025 050 075 100
10 Lo
0.8 o 0.8
0.6 0.6
0.4 0.4
0.2 0.2
a.0 0.0

000 025 050 075 100 Q.00 025 050 075 LOO

L0 ®

0.8
0.6
0.4
02
0.0

000 025 050 075 1.00 0.00 025 050 0.75 100
1.0 P - 1.0
o8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.0 0.0

00 025 050 0.75 100

025 050 075 1.00

0.

Figure 3: The scatter plots above are visualising results of simulations with x = A(|X|), y = A(Y),
with X € M:%(R),Y € M (R), || X| = ||Y] = 1and z = Tr(Y|X|Y)| — Tr(|[Y XY|). The left
column is a 3D scatter plot, the middle column is a plot of z vs. x and the right column is z vs. y.
The rows correspond for 2, 3, 4 and 5-dimensional simulations respectively.
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3 LIMIT SIMULATION

The purely new results are obtained on the limits of sums of positive operators.

Let X1,...X, € M/ (R). Consider a sequence A (> , X;). We know, that
A (% Zﬁzl Xk) =A (22:1 Xk).
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Figure 4: The upper left plot corresponds to 2-dimensional case, upper right to 3-dim, lefter bottom
is 4-dim and righter bottom 5-dim.

We see that for the higher dimensions — the higher is the limit of the Michelson contrast of its sum.
Yet, in any version it seems to be converging.
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