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ABSTRACT

We consider the generalization of the Michelson contrast for positive operators
of countably decomposable W ∗-algebras and prove its properties. In addition,
we study how the inequalities characterizing traces interplay with the Michelson
contrasts of operator variables.
Also, we developed a torch code for simulation modeling code to Monte-Carlo
type I von Neumann algebras.

Let A denote some Banach ∗-algebras; then, Asa,A+ are its self-adjoint and positive parts, respec-
tively. A∗ is the conjugate space of continuous linear functionals. If A is von Neumann algebra,
then A∗ denotes its predual space. Additionally, A+

∗ , A∗+ are the positive cones in A∗ and A∗,
respectively. Tr denotes the canonical trace of Mn(C). By C(H) and B(H) we denote the ideal of
compact operators and the algebra of bounded operators, respectively.

1 PRELIMINARIES

From the work (16) we know.

Let A = B(H), then the center C(B(H)) of B(H) is equal to C1. Let us consider the function

∆(x) = inf
A∈R+

{∥∥∥1− x

A

∥∥∥} for x ∈ B(H)+,

which illustrates how far the element x is from the central elements. If x = 1, then ∆(1) = 0
(A = 1) and ∆(0) = 1.

Proposition 1 Let x be positive operator (x ∈ B(H)+), then ∆(x) ≤ 1.

Proposition 2 Let x be positive non-invertible (singular) operator, then

∆(x) = 1.

Corollary 1 Let x be positive compact operator, then ∆(x) = 1.

Theorem 1 Let x be invertible positive operator (x ∈ B(H)+), with the inverse x−1, then

∆(x) =
∥x∥∥x−1∥ − 1

∥x∥∥x−1∥+ 1
. (1)

Corollary 2 Let x ∈ B(H)+ be invertible element with the inverse element x−1 ∈ B(H), then
∆(x) < 1.

Corollary 3 Let the sequence xn from B(H)+ that converges to element 0 ̸= x ∈ B(H)+ in terms
of norm,

lim
n

∆(xn) = ∆(x),

i.e. ∆ : (B(H)+ \ {0}, ∥ · ∥) 7→ [0, 1] is a continuous function.

Corollary 4 If the sequence of operators is converging to a non-singular (invertible) operator, then
the sequence contains not more than a finite quantity of non-invertible operators.
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Corollary 5 For any x in B(H)+ the following properties

1.

∆(x) =
sup(σ(x))− inf(σ(x))

sup(σ(x)) + inf(σ(x))
;

2.

∆(x) =
supσ(x)

supσ(x) + inf σ(x)

∥∥∥∥1− x

∥x∥

∥∥∥∥ .
hold.

The first equality states that the ∆ is indeed the Michelson contrast.

Theorem 2 Let x, y ∈ B(H)+, then ∆(x+ y) ≤ max{∆(x),∆(y)}.

2 COMPUTATIONAL EXPERIMENTS

We conducted additional computational experiments on the inequalities violations for the higher
dimensions compared to (16).

2.1 GARDNER’S INEQUALITY INSPIRED SIMULATION

In 1979 L.T. Gardner showed the inequality |φ(X)| ≤ φ(|X|) characterizes traces in C∗-algebras
among all functionals, i.e.

Theorem 3 ((6), Theorem 1) The finite traces on a C∗-algebra A are precisely those (positive)
linear functionals φ on A which satisfy |φ(x)| ≤ φ(|x|) for all x ∈ A.

If φ is a tracial functional on the C∗-algebra A, then the Gardner exponent shows the result for all
elements of X ∈ A and, conversely, if for all X ∈ A is a Gardner quality indicator and φ is a
positive functional, this functional is tracial.

Let M be a von Neumann algebra, the normal strongly semifinite weight φ ensures that for any
φ-finite projections P ∈ M, the Gardner equivalent ( |φ(X)| ≤ φ(|X|)) result for all X = PX0P ,
where X0 ∈ M, then the weight is a trace.

In case if A = Mn(C), we have that for φ := Tr(A·) the inequality must be violated for some
X ∈ Mn(C), i.r. exists X ∈ M(R) such that |Tr(AX)| − Tr(A|X|) > 0.
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Figure 1: The scatter plots above are visualising results of simulations with x = ∆(X), y = ∆(Y ),
with X ∈ Mn(R), Y ∈ Mn(R), ∥X∥ = ∥Y ∥ = 1 and z = |Tr(XY )| − Tr(|X||Y |). The left
column is a 3D scatter plot, the middle column is a plot of z vs. x and the right column is z vs. y.
The rows correspond for 2, 3, 4 and 5-dimensional simulations respectively.

2.2 QUANTUM JENSEN-SHANNON DIVERGENCE

Let X, Y ∈ M+
n (R) and Tr(X) = Tr(Y ) = 1.

We call S(X) := −Tr(X log2(X)) the von Neumann entropy, where log2(X) is understood in the
terms of functional calculus.

We define

QJSD(X,Y ) := S

(
1

2
(X + Y )

)
− 1

2
(S(X) + S(Y ))

following the [(29), (30),(31)].

In the following computational experiment we compare the Michelson Contrast ∆(XY ) of the
product of density matrices X and Y with the

√
QJSD(X,Y ).

We see the tendency that if we increase the dimension it seems that the following type inequalities

A×∆(|XY |) ≤
√

QJSD(X,Y ) ≤ B ×∆(|XY |)

occur. It seems logical since we know (26) where authors state the equivalence between
Jensen–Shannon divergence and Michelson contrast for a continuous commutative distributions.

2.3 L1 EQUALITY VIOLATION

From (18) we now that if A ∈ M+
n (R) and Tr(|AXA|) = Tr(A|X|A) for all X ∈ Msa

n (R) then A
is central.
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Figure 2: The scatter plots above are visualising results of simulations with x = ∆(|XY |), y =√
QJDS(X,Y ), with X, Y ∈ M+

n (R),TrX = TrY = 1. The upper row corresponds to 2, 3 and
4-dimensional simulations, the middle row corresponds to 5, 6 and 7-dimensional simulations and
the last row corresponds to 8, 9 and 10-dimensional simulations.

Figure 3: The scatter plots above are visualising results of simulations with x = ∆(|X|), y = ∆(Y ),
with X ∈ Msa

n (R), Y ∈ M+
n (R), ∥X∥ = ∥Y ∥ = 1 and z = Tr(Y |X|Y )| − Tr(|Y XY |). The left

column is a 3D scatter plot, the middle column is a plot of z vs. x and the right column is z vs. y.
The rows correspond for 2, 3, 4 and 5-dimensional simulations respectively.
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3 LIMIT SIMULATION

The purely new results are obtained on the limits of sums of positive operators.

Let X1, . . . Xn ∈ M+
n (R). Consider a sequence ∆

(
1
n

∑n
k=1 Xk

)
. We know, that

∆
(
1
n

∑n
k=1 Xk

)
= ∆(

∑n
k=1 Xk).

Figure 4: The upper left plot corresponds to 2-dimensional case, upper right to 3-dim, lefter bottom
is 4-dim and righter bottom 5-dim.

We see that for the higher dimensions – the higher is the limit of the Michelson contrast of its sum.
Yet, in any version it seems to be converging.
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