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Abstract

In recent years, the field of natural language processing (NLP) has witnessed remark-
able advancements driven by the development of large language models (LLMs).
Various techniques, such as instruction tuning, have emerged as crucial approaches,
enhancing LLMs’ adaptability to new tasks guided by instructional prompts. Mean-
while, the phenomenon of memorization within LLMs has garnered considerable
attention. In this work, we delve into memorization within LLMs during supervised
fine-tuning on human demonstrations and find a distinct pattern marked by initial
memorization growth followed by stabilization, with different degrees of memo-
rization observed across various tasks. An intriguing observation is the increase
in validation perplexity, typically indicative of overfitting, does not result in lower
generation quality. We probe deeper by examining the entropy derived from LLM’s
output probabilities, uncovering a consistent trend of decreasing entropy throughout
training under both nucleus sampling and teacher forcing scenarios. This implies
growing confidence within the LLM in generating output, while such output may de-
viate from the expected ground truth. Building upon our investigation, we propose
a novel Memorization-Based Curriculum (MBC) learning approach. We leverage
likelihood as a proxy for measuring memorization and employ it to construct a data
distribution for sampling instances with replacement during supervised fine-tuning,
emphasizing data with lower degrees of memorization. Evaluations using GPT-4
as a judge demonstrate the effectiveness of MBC in fine-tuning LLMs on human
demonstrations.

1 Introduction

Large language models (LLMs), such as PaLM [1] and Llama 2 [2], have brought significant progress
in various tasks and applications during recent years. These models are typically pre-trained on
massive text corpora, imbuing them with the capacity to predict the next token with unprecedented
accuracy. Consequently, LLMs acquire versatile and general-purpose language representations that
can be effectively applied to a wide spectrum of language understanding and generation tasks [3]. To
harness this immense potential for transfer learning, various techniques have emerged to align LLM
outputs with specific task requirements. Notably, Supervised Fine-Tuning on human demonstrations
(which hereon we refer to as SFT) has emerged as a pivotal approach, involving the fine-tuning of
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LLMs on diverse tasks that are characterized by demonstrations of human performance in carrying
out these tasks [4]. This technique has proven to be particularly effective in enhancing the adaptability
of LLMs, enabling them to excel at previously unseen tasks.
Besides, the phenomenon of memorization has emerged as a significant focal point within the field
of LLMs as it relates to privacy and generalization, as underscored by prior research work [5, 6, 7].
These work have highlighted the inherent ability of LLMs to inadvertently memorize portions of their
training data, potentially encompassing sensitive information, such as phone numbers and usernames
[5, 8, 9]. Beyond the utilization of memorization for crafting attacks aimed at coercing LLMs into
revealing training data, empirical investigations have also delved into the various factors that influence
the memorization tendencies of LLMs during both pre-training and fine-tuning phases. Factors such
as model sizes, learning rates and data duplication have been studied on this front [10, 7, 11]. Despite
these efforts, the challenge of harnessing memorization to improve the training of LLMs on new data
still remains an open frontier.
In this work, we focus on memorization within LLMs during the SFT process. To initiate our study,
we perform an empirical analysis, using opt-iml-30B [12]. This analysis entails a quantification of
memorization dynamics observed within the LLM during the course of SFT. Our findings reveal a
discernible pattern characterized by an initial upsurge in memorization of training records, followed
by a subsequent stabilization phase. Furthermore, our investigation uncovers the LLM’s different
propensity for memorization across various tasks (e.g., classification, summarization, QA, etc.).
Additionally, in the course of SFT we observe increasing validation perplexity (going up to 40),
which at training time would be interpreted as an indication of overfitting and loss of fluency at
generation time. However, we observe that this increase corresponds to no negative change in the
quality of LLM’s generations. This observation aligns with the findings reported in [13]. Delving
deeper into this phenomenon, we examine the entropy derived from the LLM’s output probabilities.
Our analysis reveals a consistent trend of decreasing entropy throughout the training process, under
both nucleus sampling [14] and teacher forcing scenarios. This decrease in entropy implies that
the LLM is progressively gaining confidence in its own generation throughout the course of SFT,
even when its outputs diverge from the “ground truth” in the validation set (which are also human
demonstrations). Given the open-ended nature of the vast majority of the tasks and the corresponding
human demonstrations, these divergent outputs, while distinct from the ground truth, often remain
valid. Consequently, the observed increase in validation perplexity may be attributed to this divergence,
while the overall quality of generations in fact improves.
Building upon our investigation of memorization during the SFT process, we introduce a novel
curriculum of introducing training records to LLMs during SFT. Given that the principal objective of
SFT revolves around acquiring proficiency in understanding and following instructions, we posit that
encouraging the LLM to focus on data it is less familiar with, as quantified by memorization, can
prove beneficial. To realize this, we adopt perplexity as an approximation for measuring the model’s
memorization for each training record at regular intervals during SFT. Subsequently, instead of the
typical uniform sampling without replacement of training records in SFT, we employ the perplexity
values to construct a data distribution from which training records are sampled with replacement.
This sampling strategy aims to guide the model to learn more from data that it has not memorized
well, thereby enhancing its adaptability and performance. We call this approach Memorization-
Based Curriculum (MBC) learning. To assess the efficacy of the proposed training record sampling
strategy during SFT, we conduct an extensive evaluation by employing GPT-4 as a judge in pairwise
comparisons between the outputs generated by two models: one trained with MBC and another by the
common uniform sampling without replacement. The results demonstrate the superior performance
achieved by the proposed training strategy.
Our contributions can be summarized as follows:

• We conduct an investigation into the memorization dynamics of LLMs during SFT and
identify training records from various tasks that LLMs find easy and hard to memorize.

• We observe a noteworthy phenomenon where increasing validation perplexity during training
(the SFT process) corresponds to little change in LLM’s generation fluency. To shed light
on this phenomenon, we delve into the entropy of LLM’s output probability and present
evidence that this phenomenon could be explained by the increasing “confidence” of the
model in its generations during SFT.
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• We introduce a simple but effective Memorization-Based Curriculum (MBC) learning
approach, which prioritizes training records with low memorization through sampling with
replacement.

• We evaluate our proposed training strategy, employing GPT-4 as a judge. The experimental
results confirm the efficacy of our training strategy.

2 Memorization During Supervised Fine-Tuning

2.1 Memorization Measurement

The assessment of memorization in LLMs generally falls into two categories: black-box and white-box
methods, depending on whether access to the model’s internal information is permitted. Black-
box memorization evaluations primarily focus on generation scenarios, assessing LLMs from the
perspective of generating training data. These evaluations are often driven by privacy concerns
and necessitate the use of prompts involving the model’s training data. In line with this approach,
𝑘-eidetic memorization has been introduced to gauge whether a given string 𝑠 can be extracted and
if it appears in at most 𝑘 instances within the training examples [5]. Furthermore, the notion of
𝑘-memorized strings is defined as those strings that LLMs are capable of generating when prompted
with a context comprising 𝑘 tokens from the training data [9]. In contrast, white-box methodologies
typically leverage the predictions or internal information of LLMs in order to assess memorization.
One option is counterfactual memorization, which follows the original definition of memorization in
machine learning [15]. It quantifies memorization by measuring the difference in LLM predictions
when a target data instance is included or excluded [16]. Furthermore, influence functions have been
employed as an approximation to gauge memorization [17], and membership inference has been
proposed as a reference-based attack for memorization assessment [6]. However, it is worth noting
that these metrics tend to be computationally demanding, often necessitating either the training of
multiple models or the computation of Hessian matrices. Hence we turn to the exact memorization
metric, as it offers computational efficiency while still providing a robust measure of memorization
[10]:

𝑀(𝑓 ) =
∑

(𝑥,𝑦)∈𝐶 1{argmax(𝑓 (𝑥)) = 𝑦}
|𝐶|

, (1)

where 𝑓 is the LLM we want to measure memorization of, 1{.} is the indicator function, 𝐶 denotes
a set of contexts consisting of a list of tuples (𝑥, 𝑦) where 𝑥 is an input context and 𝑦 is the index
of the ground truth token. By this definition, we treat a context 𝑐 = (𝑥, 𝑦) ∈ 𝐶 as memorized if
argmax(𝑓 (𝑥)) = 𝑦, and the overall metric can be interpreted as the measurement of how often the
argmax of the LLM’s prediction matches the indices of the ground truth tokens.

2.2 Quantifying Memorization During Supervised Fine-Tuning

We perform our experiments on opt-iml-30B [12] and fine-tune it on a proprietary set of single turn
general-purpose human demonstration data. The dataset is a set of 10, 000 single-turn dialogues
between a human and an assistant, and each dialogue is labeled with a task category such as Open
Ended QA. More details on the distribution of instances are provided in Appendix A.
Throughout the SFT, we maintain periodic checkpoints at every 5000 steps. To examine the extent
of memorization exhibited by the LLM during SFT, we calculate exact memorization of all training
records for all checkpoints. For each training record, we separately measure the memorization of the
complete dialogue (the human instruction and the assistant response) and the assistant response only.
The results of our experiments are depicted in Figure 1. These results reveal that the LLM rapidly
memorizes the training data during the initial stages of SFT, with this memorization trend gradually
decelerating as the training progresses. This analysis also shows that the degree of memorization of
only assistant responses given the human instructions is higher than that of both human instructions
and assistant responses (as seen in Figure 1); which is expected.
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Figure 1: The memorization of LLM during su-
pervised fine-tuning.

Figure 2: The instance-level memorization for
all training data LLM during supervised fine-
tuning.

2.3 Instance-Level Memorization Dynamics

Motivated by the concept of Data Maps [18], we extend our investigation to instance-level mem-
orization dynamics during SFT. Specifically, we first calculate the memorization of each training
record at various checkpoints throughout the training process, then derive both the mean and variance
of memorization values across all checkpoints. These values are depicted in Figure 2 where each
dot corresponds to one training record and axes 𝑥 and 𝑦 represent variance and mean of the exact
memorization metric, respectively. From the figure, we observe a prominent clustering of instances
in the upper-left corner. This specific clustering is indicative of instances characterized by high
mean memorization values and low variance. Due to this consistent and robust memorization trend
throughout the training process, these training records could be considered as easy-to-memorize. Upon
closer examination, we observe that these instances predominantly pertain to relatively straightforward
question-answering tasks, often involving factual knowledge. Conversely, in the bottom-left corner,
we identify a subset of instances marked by both low variance and low mean memorization values.
This subset is noteworthy for its consistently low memorization levels during the entirety of the
SFT process, hence they can be considered as hard-to-memorize. These instances predominantly
align with more complex natural language generation tasks, such as summarization, as well as chal-
lenging question-answering scenarios that necessitate intricate reasoning abilities. We show some
easy-to-memorize and hard-to-memorize examples in Appendix B.

2.4 Memorization vs Generalization

In assessing the performance of a trained LLM, one primary objective is to evaluate its generalization
ability to unseen data. To achieve this, we follow [6] to use validation perplexity and calculate
perplexity based on a held-out validation set across all saved checkpoints. We show the results in
Figure 3. An obvious trend observed during training is the general increase in validation perplexity,
typically associated with overfitting and, consequently, is expected to demonstrate diminished model
performance. However, upon conducting a thorough manual inspection of the outputs generated by
various intermediate checkpoints, it becomes apparent that there exists little discrepancy among them
in terms of the generation quality which for pre-trained LLMs is highly and inversely correlated with
validation perplexity. This intriguing finding is congruent with the results reported in [13], where
the authors conducted a comprehensive evaluation by enlisting ChatGPT as a judge to assess the
generation quality of intermediate models exhibiting increasing validation perplexity. The outcomes
of this evaluation indicate a positive correlation between increasing validation perplexity and enhanced
generation quality. This correlation raises a fundamental question: Why does the increase of validation
perplexity coincide with improved generation quality?
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Figure 3: The validation perplexity of LLM during supervised fine-tuning.
Checkpoints Nucleus Sampling Teacher Forcing
5000 step 0.3610 0.7675
45000 step 0.1670 0.3638

Table 1: The entropy of LLM’s output probability at the first and last checkpoints under two scenarios.

To explore the answer to this question, we look into the mean entropy of the LLM’s output probabilities
on the validation set, focusing on the initial and final checkpoints under two distinct generation
scenarios, namely nucleus sampling [14] and teacher forcing. Nucleus sampling represents the
generation scenario during inference, while teacher forcing is employed to gauge alignment with
the ground truth. The results of this analysis are presented in Table 1. Notably, we observe that
the entropy under nucleus sampling consistently remains lower than the entropy under the teacher
forcing scenario. Furthermore, the entropy values exhibit a diminishing trend from the beginning
of training to the end. Note that most of the training and validation records for SFT are human
demonstrations of various open-ended tasks which means that there is no single right response for a
given prompt in these human demonstrations. The results in Table 1 show that the likelihood of the
LLM generating the exact sequence of responses as in the validation set decreases during the SFT
process. This phenomenon may be interpreted as an indication of the LLM’s increasing confidence in
its own generations, even though its output may deviate from the “ground truth”, which in this case
are human-created responses to some open-ended tasks. As a result, validation perplexity may not
be reliable enough as a metric in evaluating and selecting model checkpoints during SFT, and other
metrics that truly evaluate the performance of LLMs are required for this purpose.

3 Memorization-Based Curriculum (MBC) Learning

Building upon our exploration of LLMs’ memorization patterns during SFT, our next objective is to
devise an efficient approach to harness LLM’s memorization for enhancing the training process and
attaining better performance. We seek to utilize the varying degrees of memorization exhibited by
LLMs across different data records during training, thus encouraging the model to allocate distinct
levels of attention to different data records. Our motivation stems from the observation of human
learning paradigms, where the acquisition of new knowledge often heavily relies on pre-existing
knowledge and typically starts from the knowledge that individuals are more familiar with [19].
Guided by this insight, we posit that, in the context of SFT, a substantial portion of the training
data may not constitute entirely new information for LLMs, such as factual knowledge in question-
answering tasks, despite being unseen during the model’s training. We propose to quantify such kind
of familiarity with data through the concept of memorization, wherein a high degree of memorization
suggests that LLMs possess a robust understanding of the data, while low memorization indicates the
need for LLMs to focus more on these data records during the SFT process.
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We design a new training strategy grounded in curriculum learning principles, which leverages the
concept of memorization in sampling training batches during SFT. Specifically, at every 𝑘 training
steps, we perform the calculation of LLM’s memorization of the entire training dataset. Based on the
memorization values of training records, we create a multinomial discrete probability distribution
where the probability associated with each training record is inversely proportional to its memorization
value. During SFT, training batches are sampled with replacement from this distribution. We use
perplexity as a proxy for measuring LLM’s memorization of training records, rather than relying on
exact memorization. The rationale behind this decision lies in the strong correlation between these
two metrics, both of which are substantially dependent on LLM’s output probabilities. In this context,
lower perplexity values correspond to higher memorization levels, whereas higher perplexity values
signify lower memorization. We refer to this approach in creating training batches during SFT as
Memorization-Based Curriculum (MBC) Learning and the overall training strategy of MBC is shown
in Algorithm 1.

Algorithm 1 MBC Learning for SFT
Require: Human demonstrations 𝐷, pre-trained model 𝑀 , a fixed step interval 𝑘

for every training step 𝑖 do
if 𝑖%𝑘 == 0 then

Calculate perplexity using 𝑀 for all 𝑑 ∈ 𝐷
Update distribution 𝑤 according to the calculated perplexity

Sample instances with replacement based on 𝑤 to form a batch 𝑏
Perform a training step on 𝑀 with the batch data 𝑏

Note that MBC is significantly different from the traditional sampling of batches from a uniform
distribution over the training records without replacement. In MBC there is no concept of training
epoch and one training record may appear in the same batch more than once. From one perspective
MBC could be viewed as a self-regulating process that tries to bring a balance to the memorization
level across all training records. In other words, if at a given stage of SFT the memorization value of
a training record is low, MBC increases the likelihood of that training record being sampled. Once
that record is sampled enough times that the LLM has a higher memorization of it, MBC reduces that
likelihood, in favor of other training records with lower memorization.
It should also be noted that MBC diverges from the conventional curriculum learning [20]. In the
traditional curriculum learning paradigm, the emphasis is on quantifying the difficulty levels associated
with data instances and initiating the training process with easier samples, subsequently progressing
towards more intricate ones. In contrast, MBC samples harder training records (as characterized by
low memorization) more frequently than easier ones. The more a training record is sampled, the more
it is memorized and, as a result, the less it is likely to be sampled again in future batches.

4 Experiments

4.1 Experimental Setup

We choose gpt-neo-2.7B as the pre-trained LLM [21] to conduct our experiments and perform SFT
using a proprietary dataset as detailed in Section 2.2. We chose a smaller model for these experiments
compared to our previous experiments that were done on opt-iml-30B due to the higher computational
cost of MBC that is associated with calculating perplexities. For SFT we use PyTorch [22] and
Huggingface Transformers [23] libraries. The SFT is done over 15 epochs, uses AdamW optimizer
[24], with 𝛽1 = 0.9, 𝛽2 = 0.999, and has no weight decay. With no warmup steps, we try two learning
rates, 1𝑒 − 5 and 5𝑒 − 5, and both undergo linear decay. During the inference phase, for each prompt,
we generate a single response, using nucleus sampling [14] with parameters 𝑝 = 0.9 and a temperature
of 𝜏 = 0.7. Furthermore, we apply a repetition penalty to mitigate the recurrence of previously
generated tokens, with a value of 1.2 [25]. The maximum allowable length for newly generated tokens
is constrained to 256. It is worth noting that, as previously demonstrated in Section 2.4, validation
perplexity does not exhibit a significant correlation with generation quality. Consequently, we employ
a manual selection process for identifying the best checkpoints as in [13]. This process includes the
utilization of a 50-example development set, where we manually assess and compare the outputs
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generated by different model checkpoints. Subsequently, we select the checkpoint that consistently
exhibits the highest generation quality.
We use GPT-4 to serve as a judge for conducting pairwise comparisons between the outputs generated
by two LLMs, one leverages MBC during SFT, and the other follows the conventional random
sampling method during SFT as a baseline. The evaluation process involves presenting the LLM
judge with a prompt from a validation set along with two responses, one from each of the two trained
LLMs. The GPT-4’s role is to determine which of the two responses is superior or declare a tie
between them. To mitigate the potential introduction of biases associated with using GPT-4 as a
judge, such as verbosity bias and position bias, we incorporate additional instructions, as outlined in
[26]. The specific prompt utilized for this evaluation is provided in Figure 4.

Figure 4: The prompt for pairwise comparison using GPT-4.

4.2 Experimental Results

Figure 5: The win rate of our trained model over
the baseline under different learning rates.

The win rates, indicating the frequency at which
MBC approach outperforms the baseline judged
by GPT-4, are presented in Figure 5. These re-
sults illustrate the efficacy of our proposed train-
ing strategy in enhancing the generation qual-
ity of the LLM. Specifically, the win rate con-
sistently surpasses the loss rate, with a notable
contrast of 41.0% versus 26.6% for the win rate
versus loss rate when the learning rate is set at
1𝑒−5. Similarly, at a learning rate of 5𝑒−5, the
win rate stands at 48.3% in comparison to the
loss rate of 27.8%. We posit that this improve-
ment is attributable to the strategic utilization of
memorization within MBC. This approach en-
courages the LLM to pay more attention to train-
ing records that it does not “remember” well,
while often bypassing data instances that it has
already memorized. Besides, this may prevent
the LLM from learning well-memorized data,
which is probable to cause LLMs to overfit.
4.3 Quantifying Memorization Dynamics

We also employ exact memorization to assess the memorization of the training data for the trained
LLM with MBC and the baseline, as shown in Figure 6. Notably, when the learning rate is set to 5𝑒−5,
we observe an interesting phenomenon: the memorization for the baseline initially increases but
subsequently exhibits a decline, with an associated increase in training loss. We attribute this behavior
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Figure 6: The memorization dynamics observed
in the LM trained with our proposed strategy and
the baseline model across different learning rates.

Figure 7: Memorization improvements achieved
by the LM trained with MBC across various task
categories.

to the learning rate potentially being excessively high. A high learning rate can cause significant
momentum accumulation when using AdamW, which may lead to escaping local minima during
SFT. In contrast, when training the same LLM with MBC, we observe robustness to the influence
of a high learning rate, ultimately resulting in superior performance compared to the baseline. On
the other hand, when the learning rate is set to 1𝑒 − 5, the baseline exhibits the common training
trajectory characterized by a consistent reduction in training loss. However, MBC still shows higher
memorization than the baseline and the fast memorization of training data happens earlier.
Additionally, in the case that the learning rate is 1𝑒 − 5, both models exhibit similar patterns in
memorization dynamics during SFT. Initially, there is a gradual increase in memorization, followed
by a marked surge within a short time frame, and a final slowdown in memorization. This observed
pattern diverges a little from the memorization dynamics observed during SFT on the opt-iml-30B, as
shown in Section 2.2. This might be due to the size of the models or other factors that need to be
further studied. That being said, the overarching trend appears to be one of incremental memorization
that eventually stabilizes and converges.
We conduct an analysis of memorization dynamics across distinct task categories based on the SFT
of LLM trained using MBC with the learning rate 1𝑒 − 5, as illustrated in Figure 7. In this figure, the
light blue line corresponds to the memorization values calculated based on the data from the initial
saved checkpoint across different task categories, while the dark blue line represents the memorization
derived from the final checkpoint. From the figure, it becomes evident that the memorization levels
across all task categories exhibit varying degrees of improvement. Significantly, specific tasks
that were initially classified among the challenging "hard-to-memorize" categories have exhibited
remarkable improvements in memorization, eventually rising to the status of being among the more
memorized categories. For instance, the category designated as index 4 in the figure illustrates this
noteworthy transition. Moreover, the figure highlights that certain tasks (e.g., the category indexed
10) consistently maintain lower memorization compared to others throughout the training, even
when subjected to increased sampling frequency. This observation pertains particularly to tasks that
inherently present greater complexities, such as text summarization.

4.4 Sampling Frequency Comparison

To study the difference in the behavior of MBC compared to the conventional batching approach, we
have constructed the sampling frequency distribution across all of the training data, as depicted in
Figure 8. In this figure, the 𝑥-axis corresponds to all training records, while the 𝑦-axis shows the
frequency at which each individual instance has been sampled during the SFT process. With the
number of training epochs set to 15, a divergence in sampling frequency emerges when contrasting
MBC with the uniformly random without replacement approach. Specifically, under the latter approach,
all training data instances share the same frequency of sampling, 15. However, MBC results in a
significantly different sampling frequency distribution. Upon closer examination of the figure, it
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Figure 8: The sampling frequency of training data when training LM using the proposed MBC.

becomes evident that certain instances have been sampled considerably more frequently than others.
We attribute this discrepancy to the fact that certain instances are more challenging to memorize and,
hence need to be sampled more frequently during SFT.

5 Related Work

Memorization in Language Models: The inadvertent memorization phenomenon poses a well-
recognized challenge for language models, as depicted in prior research [27, 28]. This vulnerability
to memorization renders language models susceptible to extraction attacks [5, 29] and membership
inference attacks [30, 31]. It is noteworthy that great efforts have been made to address and mitigate
these vulnerabilities [32, 33]. Recent research, however, has advanced the argument that memo-
rization is not intrinsically detrimental and, in fact, can be of great significance for certain forms
of generalization, such as those encountered in question-answering tasks [34, 35, 36]. Additionally,
memorization empowers language models to encode substantial reservoirs of worldly or factual
knowledge [37, 38, 39]. Furthermore, a growing body of research is dedicated to understanding
and leveraging the fundamental properties of memorization within language models [9, 16, 10, 40].
This collective research effort contributes to a deeper understanding of the intricate dynamics of
memorization within language models. In this context, our work aligns with this research trajectory,
with a specific focus on the role of memorization in the instruction tuning of LLMs.
SFT of Language Models: Prior research has extensively explored the concept of instruction tuning
in the context of language models, revealing its potential to facilitate zero-shot task generalization
[41, 42, 43, 44]. Various attempts have aimed to enhance instruction tuning by enabling cross-lingual
generalization [45], improving label generalization capabilities [46], demonstrating the feasibility of
lifelong learning through continual learning [47], and training modular expert language models [48].
This work focuses on memorization dynamics during the process of fine-tuning a language model. In
doing so, our research not only elucidates empirical patterns of memorization within the domain of
instruction tuning but also introduces a novel approach rooted in memorization-based curriculum
learning, contributing to the enhancement of LLMs’ performance.

6 Conclusion

In this work, we first investigate the memorization within LLMs during the SFT process. Our
empirical analysis has unveiled a pattern characterized by an initial surge in memorization followed by
a subsequent stabilization, and uncovered variations in the LLM’s memorization across different tasks.
We have also observed an increase in validation perplexity corresponding to little change in the LLM’s
generation quality. To delve into this, we examine the entropy of the LLM’s output probabilities and
find a consistent trend of diminishing entropy throughout the training process, under both nucleus
sampling and teacher forcing scenarios. This result suggests that the LLM is progressively gaining
confidence in its own generations, even when its output diverges from the ground truth in human
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demonstrations. Building upon our investigation, we have introduced a simple yet effective approach
called Memorization-Based Curriculum (MBC) learning. Specifically, we measure the model’s
memorization of each instance at every 𝑘 steps during SFT and then leverage these memorization
values to construct a data distribution from which instances are sampled with replacement. This
sampling strategy is intended to guide the model to learn more from data it has not memorized well.
To rigorously assess the efficacy of our proposed training strategy, we conduct evaluations, employing
GPT-4 as a judge in pairwise comparisons between the outputs generated by two models: one trained
with MBC and another using common random sampling. The experimental results demonstrate the
superior performance achieved by the LLM trained using MBC.
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A Dataset Statistics

Category Mean Length Frequency
Open Ended Summarization 815.93 0.49%
Open Ended Extraction 450.79 0.53%
Open Ended Rewrite 441.40 0.38%
Closed Ended Summarization 319.85 6.65%
Open Ended Situational 252.65 0.03%
Open Ended Chat 165.12 7.75%
Open Ended Generation 160.35 34.75%
Closed Ended Extraction 139.44 2.67%
Open Ended Brainstorming 132.98 7.96%
Closed Ended Classification 121.92 2.03%
Open Ended Classification 119.20 3.02%
Open Ended Chain of Thought 117.94 7.40%
Closed Ended QA 109.63 9.26%
Open Ended QA 105.82 7.98%
Closed Ended Rewrite 103.03 3.67%
Open Ended Responsible AI 65.44 5.53%

Table 2: The statistics of our collected dataset.

B Easy-to-memorize and Hard-to-memorize Examples

Figure 9: easy-to-memorize examples.
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Figure 10: hard-to-memorize examples.
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