
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review at the ICLR 2025 Workshop on Representational Alignment (Re-Align)

UNDERSTANDING TASK REPRESENTATIONS IN NEU-
RAL NETWORKS VIA BAYESIAN ABLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural networks are powerful tools for cognitive modeling due to their flexibility
and emergent properties. However, interpreting their learned representations re-
mains challenging due to their sub-symbolic semantics. In this work, we introduce
a novel probabilistic framework for interpreting latent task representations in neu-
ral networks. Inspired by Bayesian inference, our approach defines a distribution
over representational units to infer their causal contributions to task performance.
Using ideas from information theory, we propose a suite of tools and metrics to
illuminate key model properties, including representational distributedness, man-
ifold complexity, and polysemanticity.

Neural networks have long been used as tools for understanding human cognition (Rumelhart et al.,
1986), from minimalist architectures with just 12 learnable weights (Cohen et al., 1990) applied to
cognitive control in the Stroop task (Stroop, 1935), to large-scale language models such as GPT-3
(Achiam et al., 2023) with 175 billion parameters that exhibit human-like cognitive biases and irreg-
ularities (Binz & Schulz, 2023; Binz et al., 2024; Lampinen et al., 2024; Webb et al., 2023). As these
models grow increasingly complex, however, their underlying representations and processes become
more opaque, with mechanistic interpretation restricted to simpler architectures such as linear net-
works (Saxe et al., 2019) and attention-only transformers (Olsson et al., 2022). This challenge is
particularly pronounced in interpreting latent representations of tasks, especially as language models
approach limitless capacity for learning tasks and domains described in natural language (Bubeck
et al., 2023; Yu et al., 2023).

In this work, we present a method for exploring task representations using neural ablations to ob-
serve the downstream effects on task performance. We define an ablation mask as a binary vector
that indicates which representational units to lesion these units by setting their activation values to
0. While traditional ablation studies investigate P (correct | task, mask), thereby assessing how task
performance changes when specific representational units of a model are ablated, our approach in-
stead applies a Bayesian perspective, computing an ablation mask distribution (AMD) to infer which
units are most likely to have been used to produce correct responses for a given task, expressed as
P (mask | task, correct). That is, we compute the distribution over possible masks, conditioned on
correct task performance. If a specific set of units is crucial for the task, the probability of masking
them given success will be low. The ablation mask distribution captures higher-order interactions
and complex manifold structures by modeling full statistical dependencies. Thus, our method inter-
prets models without imposing architectural assumptions or constraints.

Beyond the interpretation of individual unit roles, measures that summarize and quantify distribu-
tional properties facilitate the quantification of broader structure. For instance, entropy measures
the concentration of the mask distribution, revealing how localized or distributed a representation
is for a given task. This enables exploration of global phenomena within a unified framework for
interpreting both micro-level unit functions and macro-level patterns.

We begin by defining the distribution over ablation masks and its relationship to the model’s task per-
formance. Next, we demonstrate our approach by applying it to the Integrated Semantics and Con-
trol (ISC) model (Giallanza et al., 2024), a simple feed-forward multitask neural network trained on
human-rated semantic data designed to investigate emergent semantic cognition in context-switching
scenarios. We selected the ISC model for its alignment with human responses on measures such as
context similarity and for its architectural simplicity, which facilitates the application and validation
of novel methods. Using this model, we first analyze the exact AMD to characterize key represen-
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Figure 1: ISC Model. Number of units shown in parentheses. Sigmoid activation function is applied
after each linear layer.

tational properties, including distributedness, manifold complexity, task representational similarity,
and task polysemanticity through reverse inference. We then introduce an approximation method
that reduces the computational cost of estimating the full AMD. Finally, we discuss the limitations
of our method and outline potential directions for future work.

1 METHODS

1.1 INTEGRATED SEMANTICS AND CONTROL (ISC) MODEL

The Integrated Semantics and Control (ISC) model (Figure 1) is trained on the Leuven Concepts
Database (De Deyne & Storms, 2008; Ruts et al., 2004; Storms, 2001), a human-rated semantics
dataset containing 2,896 features for 350 animals. These features are grouped into 36 distinct fea-
ture classes based on the taxonomy proposed by Wu & Barsalou (2009). The model is trained to
simultaneously predict the features of a particular animal (item input) and also a subset of its features
within a particular feature class (task input). For instance, giving the model the animal “elephant”
and the “category” feature class would produce positive outputs only for features relevant to an
elephant’s category, e.g. “is an animal”.

We adopt the architecture described by Giallanza et al. (2024). The inputs—item (animal) and task
(feature class)—are represented as one-hot vectors (i.e. a vector of 0s with a single 1), which are
mapped to separate embedding spaces: the context-independent representation layer and the task
representation layer. The context-independent layer is used to directly predict all features of the
animal. It also provides input to the context-dependent layer, along with the task representation,
which together form the context-dependent representation. Notably, the task representation—which
we apply our ablations to—modulates the context-independent representations by effectively direct-
ing the network’s attention to the features of the input that are most relevant to the specified task.
This context-dependent representation is then used to predict the set of features specified by the task
input. We also introduce a null-task during training, represented by a zero-vector embedding and a
zero-vector target output, which effectively encourages the model to learn strongly negative output
biases and more structured embeddings across the 36 feature classes.

In this paper, we apply our method to the task representation layer of the ISC model. Although
using a model with an explicit task representation might seem to limit the validity and generality
of an approach designed to be applicable even to models without such representations, this choice
serves a critical purpose. Starting with a model that has clearly defined task representations allows us
to rigorously evaluate a novel approach in a controlled environment, where the model’s properties
are well understood. By first validating the approach in this setting, we aim to establish a firm
foundation for extending these tools to more complex or opaque models, where task representations
may not be explicitly defined, to provide new insights in less transparently interpretable systems.
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1.2 ABLATION MASK DISTRIBUTION

We define the ablation mask distribution (AMD) P (mask | task, correct) as a conditional distribution
over binary vectors that mask representational units of a neural network. If the mask value is 0, the
representational unit is replaced with zero; if the value is 1, the unit is left unchanged.

In our experiments, we apply these masks to the task representation layer of the ISC model, multi-
plying the binary mask vector m ∈ {0, 1}d element-wise by the post-activation values of the task
representation units h ∈ (0, 1)d, where h follows a sigmoid activation function. We measure model
performance conditioned on a task and an ablation mask, P (correct | task,mask), by applying the
mask and taking the feature predictions for all 350 animals. A prediction is mapped to true if the
predicted feature likelihood is ≥ 0.5 and false otherwise. Each prediction is compared against
the target value in the data to determine whether or not it is correct.

Given the highly skewed distribution of positive and negative feature values in the dataset, we esti-
mate task-mask performance using the geometric mean of the model’s sensitivity and specificity:

P (correct | task,mask) =
√
P (correct | task,mask, target = 1)︸ ︷︷ ︸

sensitivity

×
√
P (correct | task,mask, target = 0)︸ ︷︷ ︸

specificity
The inclusion of the null-task described above, which encourages the model to predict 0 for all fea-
tures, and the geometric mean, which ensures balanced evaluation of positive and negative features,
results in a 0% “chance” accuracy on all feature classes.

For brevity, we denote the ablation mask as m, the task as t, and the correctness indicator as c.
Using this notation, the correctness probability serves as the basis for defining the ablation mask
distribution with Bayes’ rule:

P (m | t, c) = P (t | m, c)P (m | c)∑
m′ P (t | m′, c)P (m′ | c)

This distribution over ablation masks identifies the subset of causally relevant units that allow the
model to successfully perform a specific task, offering a principled framework for interpreting the
functional contributions of representational units within neural networks.

While the Bayesian formulation of the correctness metric is mathematically valid, its separation
between high and low performance can lead to a posterior distribution that is too flat to be useful
in practice. For instance, in a task with a baseline accuracy of 50%, a “failure” mask that reduces
performance to chance would be sampled roughly half as frequently as a “success” mask achieving
95% accuracy. This distribution can result in an unbalanced exploration of mask space, potentially
making it harder to interpret the functional contributions of different units.

One possible approach to amplify the signal would be to model task performance as a binomial dis-
tribution with n independent trials, where each trial corresponds to an individual input-output pair.
However, this formulation breaks down for large n (1,013,600 in our model) where the likelihood
becomes extremely peaked, causing a few masks that achieve near-perfect performance to receive
equal probabilities (1/k, where k is the number of such masks) while all other masks are driven to
0. This sharpness effectively collapses the range of possible outcomes and reduces the ability to
distinguish between masks with subtle differences in performance.

Instead, we convert accuracy measures into odds-ratios, which amplify performance differences, so
that a mask with 95% accuracy is sampled approximately 20 times more often than one with 50%
accuracy. This aligns naturally with the sigmoid nonlinearity inherent in the model, given by

σ(x) =
1

1 + e−x
x = log

(
p

1− p

)
.

The sigmoid function serves as the inverse of the log-odds transformation, mapping log-odds into
probabilities. Focusing on the odds-ratio thus measures the impact of the mask on the input to the
sigmoid.

Assuming a uniform prior over the ablation masks, the distribution of the mask given the task and
correctness is expressed as:

P (m | t, c) = Z−1 P (c | t,m)

1− P (c | t,m)
,

3
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where Z−1 is a normalization factor ensuring that the distribution integrates to 1.

We find that the odds-ratio modification aligns with other measures describing model representation
and behavior better than using the standard Bayesian formulation (see SI).

2 ANALYSES

One central advantage of the ablation mask distribution is its ability to distinguish between causally
relevant and merely incidental activations of representational units. In this section, we apply a suite
of information-theoretic measures to quantify key properties of the task representations, including
the distributedness of task representations and their manifold complexity, the degree of task polyse-
manticity, and task representational similarity. All analyses were performed on 10 separately trained
instances of the ISC-model.

2.1 ENTROPY

We begin our analyses by considering the entropy H(m | t, c) of the ablation mask distribution,
which measures the diversity of masks that are sufficient to perform well on a task.

H(m | t, c) = −
∑
m

P (m | t, c) · logP (m | t, c)

To illustrate this relationship, consider three types of task representation units: (1) units that are
necessary for task performance, (2) units that interfere with task performance, and (3) units that are
irrelevant to the task. For example, suppose a task representation unit h1 must remain near 1 for the
model to perform well on the task, and ablating this unit (setting it to 0) reduces task performance
to chance. In this case, the marginal probability P (h1 | t) would be near 1. If a representation unit
h2 interferes with the task, such that its activation reduces task performance to chance, its marginal
probability P (h2 | t) would be near 0. In both cases, h1 and h2 favor a specific mask value (1 and
0 respectively), thereby increasing the concentration of the ablation mask distribution. Conversely,
if a unit h3 does not significantly affect task outcomes whether or not it is ablated, its marginal
probability P (h3 | t) would be near 0.5 and decrease the concentration of the distribution. Thus,
tasks that depend on a few specific representational units will permit more diverse representational
patterns, resulting in higher entropy.

Similarly, the entropy of an individual representational unit hi reflects how strongly the model
depends on the particular unit’s value. To compute this, we start with the marginal probability
P (mi | t, c), which represents the likelihood of the unit hi being active (not ablated) during suc-
cessful task performance:

P (mi | t, c) =
∑
m

mi · P (m | t, c).

The marginal entropy H(mi | t, c), which is bounded between 0 and 1, is defined as
H = −p log p− (1− p) log(1− p).

where p = P (mi | t, c).

2.1.1 UNIT IMPORTANCE AND REPRESENTATIONAL DISTRIBUTEDNESS

We measure the model’s reliance on the representational unit hi using 1−H(mi | t, c) (where H is
bounded between 0 and 1), which we refer to as unit importance. While this measure is correlated
(r = 0.661) with the actual representational unit’s value hi(t), its deviation indicates when the
representational unit is not strictly necessary for the model to perform well on the task. As shown in
Figure 2a, while unit importance generally increases with hi(t), a large number of representational
units reflect low importance despite high activation values.

Tasks with more distributed representations rely on a greater number of representational units with
high importance, whereas more localized representations concentrate importance on only a few
units. Thus, marginal entropy also provides a way to measure the effective representational dis-
tributedness of a task across the d representational units. We quantify this by summing across all d
representational units: d −

∑
H(mi | t, c). Naturally, this relates to the L1-norm of the activation

values (
∑

|hi(t)|, r = 0.922).
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Figure 2: (a) Task representation unit values hi(t) and their importance 1 − H(mi | t, c). (b)
Correlation between task representation metrics and task acquisition order along different accuracy
thresholds.

2.1.2 MANIFOLD COMPLEXITY

The joint entropy H(m | t, c) captures the full statistical dependencies between representational
units, offering a more holistic view than the marginal entropy sum

∑
H(mi | t, c), though possibly

at the cost of interpretability. Comparing these two entropic measures allows us to quantify the
information contained in higher-order dependencies, expressed as a normalized entropy drop:

∆H = 1− H(m | t, c)∑
i H(mi | t, c)

.

The value of ∆H represents the proportion of entropy attributed to higher-order dependencies, pro-
viding a measure of the manifold complexity of task representations.

In the ISC model, we observe an average entropic reduction of ∆H = 4.62%, indicating that
task representations are predominantly modular. This suggests minimal reliance on higher-order
interdependencies among units, which may be expected for a simple feed-forward network designed
for semantic cognition tasks.

2.1.3 TASK DIFFERENTIATION

Although the entropic measures operationalize causal relevance and distributedness in theory, empir-
ical validation is challenging in the absence of ground-truth metrics. Consequently, we compared the
entropic measures to a proxy measure that may reflect how the model structures its representations.

We hypothesized that causal relevance and distributedness of the task representation units would
be related to how the model differentiates its representations during training. Specifically, we
posited that the null-task, represented by a zero-vector embedding and target output, would lead
tasks learned earlier during training differentiate themselves from the zero-vector by raising the rep-
resentational unit values further away from 0. Conversely, tasks learned later would require fewer
units as they incrementally diverge from established representations.

To test this hypothesis, we recorded the order in which the accuracy first rose above 0% for each
task, which corresponds to the initial accuracy for all tasks due to the presence of the null-task.
We then compared this rank metric to the two entropic measures and the L1-norm of each task
representation using Spearman’s rank-order correlation. Consistent with our hypothesis, we found
a high absolute correlation between the order that the model learned each task and the two entropy
measures (r = 0.708 for joint entropy, r = 0.746 for marginal entropy). Despite its relatively high
correlation with entropy, the L1-norm had only a moderate correlation of r = 0.573 with the task
acquisition order. This indicates that the ablation masks’ capacity to distinguish between causally
relevant and merely incidental representational values may allow them to capture model properties
more accurately. Moreover, when we compared the correlation using various accuracy thresholds

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review at the ICLR 2025 Workshop on Representational Alignment (Re-Align)

as shown in Figure 2b, we found that the absolute correlation begins to drop around an accuracy
threshold of 15%, suggesting that the entropic measures are sensitive to how the model initially
allocates representational units but less to how it refines their values during training.

2.2 MUTUAL INFORMATION, REVERSE INFERENCE, AND POLYSEMANTICITY

We now consider how the ablation mask distribution (AMD) can be used to address the reverse
inference problem of identifying the task from the representational unit activations. That is, beyond
evaluating whether a representational unit hi contains sufficient information to decode the task,
we ask whether hi is causally involved in encoding the task. By leveraging the ablation mask
distribution, we isolate hi’s necessity for task performance, distinguishing incidental activations
from task-relevant contributions and quantifying how its influence is distributed across multiple
tasks. This conditional probability is given by:

P (t | m, c) =
P (m | t, c) · P (t | c)∑
t′ P (m | t′, c) · P (t′ | c)

Marginalizing over individual units gives the probability of a task given the activation state of unit:

P (t | mi, c) =

∑
m′ m′

i · P (t | m′, c) · P (m′, c)∑
t′,m′ m′

i · P (t′ | m′, c) · P (m′, c)

where m′
i is the value of the ith bit in mask m′.

Using the conditional task distribution, we compute the mutual information by measuring the reduc-
tion in entropy, which we normalize for interpretability:

In(t,m | c) = 1− H(t | m, c)

H(t | c)
, In(t,mi | c) = 1− H(t | mi, c)

H(t | c)

The entropy of the task distribution conditioned on unit activation provides a measure of task pol-
ysemanticity. As an example, consider a representational unit that encodes exactly one task t′, so
that P (t′ | mi, c) = 1 and 0 for all other tasks. In this case, the resulting entropy H(t′ | mi, c)
and the normalized mutual information In(t

′,mi | c) are 0 and 1 respectively. Conversely, a unit
that provides no task information when considered independently, so that P (t | mi, c) = P (t), will
result in In(t,mi | c) = 0. Thus, In provides a bounded measure of a unit’s task specificity, ranging
from 0 for no predictive information to 1 for complete task determinism.

We compare the difference between the two measures computed on the full mask distributions and
on the marginal unit distributions. As shown in Figure 3, we find that individual units share very little
mutual information with tasks when considered independently, reducing entropy by about 4.21% in
most cases. In contrast, ablation masks are significantly more informative, reducing uncertainty
by an average of 82.6%. This suggests that the representational units individually encode little
information about particular tasks, and that the model relies on ensembles of representational units
– that is, distributed representations.
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Figure 3: Percentage of normalized mutual information captured by the full ablation mask distri-
bution, P (t | m), and by marginal unit distributions, P (t | mi). Each point represents a different
model seed in ‘Full’ (10 total) or a combination of model seeds and representational units (240 total)
in ‘Marginal’.

2.3 TASK SIMILARITY

Thus far, we have focused on measures targeted at understanding individual task representations. In
this section, we extend our analysis to compare the similarity between task representations. Because
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the ablation mask distributions reflect causal relevance and higher-order dependencies between rep-
resentational units, they capture relationships that vector-based measures, such as cosine or Eu-
clidean distance, may overlook. For example, under cosine or Euclidean distance, the vector [1,1]
would be considered further from [0,0] than [0,1], even if the second dimension is not meaningfully
used by the model. To compare the task similarities using the ablation mask distributions, we turn
to two distance measures well-suited for comparing probability distributions: KL-divergence and
Wasserstein distance.

The KL-divergence DKL(P∥Q) is a widely-used measure in information theory for quantifying the
difference between two probability distributions by capturing the amount of information lost when
approximating one distribution (Q) with another (P ):

DKL(P∥Q) =
∑
x

P (x) log
P (x)

Q(x)
.

However, because DKL(P∥Q) is inherently asymmetric, we use the symmetrized KL-divergence
DS

KL(P∥Q) which combines DKL(P∥Q) and DKL(Q∥P ) into a bidirectional measure:

DS
KL(P∥Q) =

1

2
DKL(P∥Q) +

1

2
DKL(Q∥P ).

We also consider the Wasserstein distance W (P,Q), which quantifies the minimal cost of trans-
forming one mask distribution into another:

W (P,Q) = inf
γ∈Γ(P,Q)

E(x,y)∼γ [d(x, y)],

where Γ(P,Q) is the set of joint distributions (couplings) with marginals P and Q, and d(x, y) is
the Hamming distance between mask configurations x and y, i.e., the number of 1’s or 0’s that need
to be flipped to transform one mask into another.

A key difference between KL-divergence and Wasserstein distance is that the latter is informed by
the distance metric (Hamming distance) while KL-divergence is not. For example, if two distribu-
tions agree on all but two masks, the KL-divergence between them will depend only on the differing
amounts of mass placed on these masks. Wasserstein distance is sensitive to this difference in mass,
and also to the Hamming distance between the masks. In particular, the Wasserstein distance will
be greater if the two masks share fewer bits in common, whereas the KL-divergence is not sensitive
to this.

To contextualize these probabilistic measures, we compare them to more conventional vector-based
metrics: cosine similarity and Euclidean distance. While cosine similarity and Euclidean distance
do not account for higher-order dependencies or causal relevance, they are reasonable points of com-
parison as they are used widely in assessing the similarity of vector-based representations, both in
neural networks and empirical neural data (Kriegeskorte et al., 2008). Furthermore, they are useful
in the evaluating representations in the ISC model, given the relative simplicity of its representational
manifold as evidenced by the low entropy drop ∆H . Additionally, we introduce a non-parametric
measure of task similarity that we refer to as mask-performance correlation (MPC), which com-
pares the correlation between the accuracies of two tasks when the same mask is applied. This
measure provides a direct link between ablation masks and task performance without incorporating
the importance weighting involved in probabilistic measures computed over the posterior distribu-
tion. Specifically, MPC measures correlation using P (c|t,m) without further weighting, whereas
the AMD metrics weight the distances by P (m|c, t)
To compare the various measures, we conduct a representational similarity analysis (RSA)
(Kriegeskorte et al., 2008), computing the absolute Spearman correlation between metrics across
task pairs (Figure 4). KL-divergence and Wasserstein distance exhibit strong correlation (r = 0.73),
highlighting their shared reliance on posterior mask distributions. The especially high correlation
(r = 0.89) between Wasserstein distance and cosine similarity and suggests that the probabilistic
framework preserves much of the structural information captured by traditional similarity metrics.
Both measures align with intuitive similarities between certains tasks, such as between ‘lexical ex-
pressions’ and ‘synonyms’, or between ‘related actions’ and ‘external features’. In contrast, MPC
exhibits a relatively weak correlation with other measures. For instance, its correlation with co-
sine similarity drops to r = 0.50, suggesting that posterior weighting is important for preserving
representational fidelity, beyond merely considering the outcome of performance for each task.
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Figure 4: Spearman correlation between similarity measures.

3 APPROXIMATING THE ABLATION MASK DISTRIBUTION

While exact Bayesian inference provides a principled framework for understanding task representa-
tions, the computational cost is prohibitive for large-scale models. The number of possible ablation
masks grows exponentially with the number of representational units. Even for our small model
with a 24-dimensional task representation layer, computing the full posterior over 36 tasks requires
nearly 100 GPU-hours. Thus, exact computation becomes infeasible for larger models, necessitating
efficient approximation methods.

A popular method for approximating complex distributions in Bayesian models is Markov Chain
Monte Carlo (MCMC) (Metropolis et al., 1953). However, MCMC methods are ill-suited for ap-
proximating the AMD. First, because masks are defined over binary vectors and flipping a single
unit can cause large, though not necessarily unpredictable, changes in task performance, methods
that rely on smooth probability landscapes, such as Metropolis-Hastings and Hamiltonian Monte
Carlo (Neal, 2011), cannot explore efficiently. Second, higher-order dependencies between repre-
sentational units violate the assumptions of sequential update strategies like Gibbs sampling, causing
slow mixing (Neal, 1993). Finally, MCMC methods lack the ability to exploit semantic structure
and cannot generalize across similar masks (Neal, 2011), requiring explicit evaluation of each con-
figuration to accurately approximate the posterior.

We avoid these limitations by approximating the AMD using a generative flow network (GFlowNet)
(Bengio et al., 2021; 2023), a framework that combines generative modeling and reinforcement
learning. GFlowNets learn to efficiently sample discrete combinatorial objects by constructing them
step-by-step. The training objective for a GFlowNet is specifically to sample these objects in pro-
portion to a reward (unlike typical RL, which aims to maximize a reward).

The GFlowNet model here learns to sample trajectories that construct ablation masks. Each trajec-
tory begins with a mask of 1s, denoted as m(0) = 1, and at each step j, the current mask m(j) is
updated by either setting a bit m(j)

i to 0 or terminating the trajectory (⊤). The distribution of termi-
nal masks m(final) is proportional to the task performance measure, which we define as the reward
function:

R(m, t) =
P (c | t,m)

1− P (c | t,m)

Our GFlowNet consists of the following components (where j represents the step in the trajectory
and t denotes the task): 1. A forward policy model, P f

θ (m
(j+1) | m(j); t), which selects either a bit

to set to 0 or terminates the trajectory; 2. An auxiliary backward policy model, P b
θ (m

(j) | m(j+1); t).
We train this model with the detailed-balance objective (Bengio et al., 2023), using the termination
probability P (⊤ | m(j), t) and the reward function to compute the state flow (Deleu et al., 2022).
The objective minimizes:
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L =

(
log

R(m(j), t)

R(m(j+1), t)
+ log

Pθ(⊤ | m(j+1), t)

Pθ(⊤ | m(j), t)
+ log

P f
θ (m

(j+1) | m(j); t)

P b
θ (m

(j) | m(j+1); t)

)2

To assess how well the GFlowNet approximates the true AMD, we draw 100,000 samples from the
GFlowNet and construct an empirical sample frequency distribution. We compare this to the true
posterior using three metrics. First, we compute the Pearson correlation, which provides an intu-
itive measure of alignment but is insensitive to probability scale. Second, we compute the Jensen-
Shannon (JS) divergence (Lin, 1991), a symmetrized version of KL-divergence that remains suitable
for distributions with mismatched support—an issue inherent in approximating a 224-dimensional
space from 100,000 samples. However, JS-divergence amplifies discrepancies in low-probability
regions, potentially overstating differences. Lastly, we compute the Wasserstein distance, which
is robust to both support differences and distortions in low-probability regions. Since computing
Wasserstein distance for the full AMD is intractable, we instead estimate it by comparing against a
second 100,000-sample frequency distribution, this time drawn from the true AMD. For consistency,
we apply the same sampling-based estimation to Pearson correlation and JS-divergence.

To contextualize the performance of the GFlowNet approximation, we evaluate it against two ad-
ditional distributions that serve as upper and lower comparison bounds. First, we draw a separate
set of 100,000 samples from the true AMD, which allows us to measure the expected error due to
sampling variability rather than model fit. Second, we draw 100,000 samples from a uniform dis-
tribution over all masks, which represents an uninformative prior and provides a lower bound for
the comparison metrics. Moreover, to further account for sampling variability, we bootstrap (Efron,
1979) the distribution of each metric by repeating the full evaluation procedure 200 times.

0 10 20 30
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0.5

1.0

0 10 20 30
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0.0002

0.0004
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0

1

2

Tasks

Correlation JS Divergence Wasserstein Distance

True AMD GFN Uniform

Figure 5: Comparison between the true AMD, the GFlowNet approximation, and the uniform base-
line from a single model seed. Tasks are sorted by the average metric value, and 95% bootstrapped
confidence intervals (CIs) are shown as error bars. Note that the true AMD is often visually obscured
beneath the GFlowNet curve.

As shown in Figure 5, all three metrics indicate a strong alignment between the GFlowNet approxi-
mation and the true AMD, with differences that are largely imperceptible at a glance. This suggests
that the model successfully approximates the AMD with high fidelity. However, a closer exami-
nation of the bootstrap confidence intervals reveals small but statistically significant discrepancies
between the GFlowNet and the true AMD. Across all tasks, the mean estimate from the GFlowNet
falls within the 95% confidence interval of the true AMD in 27.8% of cases for Pearson correlation,
16.7% for JS divergence, and 8.33% for Wasserstein distance. Additionally, the confidence intervals
of the GFlowNet and the true AMD overlap in 44.4% of cases for Pearson correlation, 41.7% for
JS divergence, and 13.9% for Wasserstein distance. Thus, despite requiring only ∼1% of the com-
pute needed for exact inference, the GFlowNet effectively approximates the AMD with high fidelity,
though observed discrepancies indicate room for improvement.
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4 DISCUSSION

In this paper, we have introduced a novel probabilistic framework for studying task representational
structure in neural networks. Unlike simple ablation which only evaluates downstream effects on
task performance, our approach uses a Bayesian perspective that reconstructs task representations
as posterior distributions over ablation masks, allowing for causal interpretation of task representa-
tions. This probabilistic approach facilitates the use of tools from information theory and optimal
transport, enabling a deeper exploration of task representations that is sensitive to the structure of
the representational manifold. For example, measures such as entropy and mutual information can
be used to quantify how a neural networks distributes information in complex manifolds.

Our framework has several limitations that prompt further research. First, although we introduce
metrics to quantify representational phenomena (e.g., manifold complexity and statistical depen-
dence), these abstract constructs are hard to validate and require additional theoretical and empirical
work to connect with observable phenomena in neural networks and cognitive systems. Second,
our analyses focus on a single dataset and model—the ISC model trained on the Leuven Concepts
Database. While this choice offers strong psychological relevance and interpretability in a controlled
setting, it leaves room to explore more complex architectures and diverse datasets for additional in-
sights into task representations and cross-domain generality. Finally, the complexity of approximat-
ing the AMD using a GFlowNet grows rapidly with the number of ablatable units, which translates
directly to the trajectory length, thereby making credit assignment and optimization more challeng-
ing, as is common in reinforcement learning with long episodes. Thus, applying to foundational
models with billions of parameters may still present a challenge.

In conclusion, this work introduces a probabilistic framework for understanding task representations
in neural networks, providing a principled approach to uncover causal relationships and representa-
tional complexity. While further development and scaling are needed, our approach lays a founda-
tion for future research into task representations across both natural and artificial systems. We hope
this framework inspires new insights into the principles governing learning and cognition in neural
network-based architectures.
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Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.
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A APPENDIX

B ISC MODEL

B.1 MODEL ARCHITECTURE

The ISC model receives two one-hot vectors as inputs: an item input and a task input, with 350
and 36 possible choices, respectively. These one-hot vectors are passed through separate embedding
layers, generating latent representations of 64 dimensions for the item input and 24 dimensions for
the task input, both using sigmoid activations. The embeddings are then concatenated into an 88-
dimensional vector and passed through a linear layer with sigmoid activations, reducing the dimen-
sionality to produce context-dependent representations with 64 dimensions. The model leverages
both context-independent representations (item embeddings), which represent items independently
of tasks, and context-dependent representations, which incorporate task-specific information. Both
context-independent (item embeddings) and context-dependent representations are mapped to the
output layer, which predicts 2896 feature labels using sigmoid activations.

B.2 TRAINING

The model is trained by minimizing the sum of three loss components. First, it computes the negative
log-likelihood (NLL) for all features across tasks by taking the union of all 36 feature classes for a
given item. Second, it computes the NLL for specific item-task combinations. Third, it computes the
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NLL for the null task, where the target outputs are all zeros. These three loss quantities are summed
to create a balanced learning objective that captures both task-dependent and task-independent re-
lationships. The model is trained using the Adam (Kingma, 2014) optimizer with a learning rate of
0.05 over 150 epochs, corresponding to 29,550 gradient updates with a batch size of 64 item-task
pairs.

C NUMERICAL STABILITY

To avoid −∞ and +∞ in the odds-ratio calculation, sensitivity and specificity are estimated using
the expected value of a beta distribution. This approach ensures numerical stability, especially in
cases of sparse or extreme counts. Specifically, sensitivity (P (correct | task,mask, target = 1)) and
specificity (P (correct | task,mask, target = 0)) are calculated as:

sensitivity = E[Beta(a+ 1, b+ 1)]

specificity = E[Beta(c+ 1, d+ 1)]

where a and c represent the counts of correct predictions for positive and negative targets, respec-
tively, and b and d represent the counts of incorrect predictions.

D STANDARD BAYES

As noted in the main manuscript, we find that using the standard Bayesian formulation using the
task accuracy directly to compute the posterior yields poorer results. Using Bayes’ theorem and
assuming a uniform prior over P (t,m), we have:

P (m | t, c) = P (c | t,m)∑
m′ P (c | t,m′)

We substantiate this claim by comparing how well our metrics aligns with other measures.

D.0.1 TASK DIFFERENTIATION

First, we examine the relationship between AMD entropy and task differentiation, as discussed in
the main manuscript. Unlike the odds-ratio formulation, the standard Bayesian approach based on
accuracy fails to capture the sequence in which the model begins learning each task, as shown in
Figure 6. In contrast, the odds-ratio offers a much clearer signal that closely aligns with the model’s
actual learning dynamics.

D.0.2 TASK SIMILARITY

Next, we consider the task similarity RSA, where we compare the mask-performance correlation
(MPC), symmetrized KL-divergence, and the Wasserstein distance to cosine similarity and Eu-
clidean distances. Given the expected and observed low manifold complexity of the ISC model,
cosine similarity provides a reasonable point of comparison. Using the odds-ratio formulation, we
found that the Wasserstein distance has a Spearman’s correlation of 0.89 with cosine similarity,
suggesting that the combination of the AMD using odds-ratio and a shape-sensitive measure like
Wasserstein is able to capture similar representational structure to cosine similarity.

Swapping out the odds-ratio with a standard accuracy measure P (c | t,m) to compute the AMD
yields much lower correlation between the distributional measures (MPC, KL-divergence, and
Wasserstein distance) and the vector-based measures (cosine similarity and Euclidean distance).
As shown in Figure 7, while the three distributional measures are highly correlated with each other
and the vector-based measures are also highly correlated with each other, the correlation between
distributional measures and vector-based measures is substantially weaker. Even Wasserstein dis-
tance, which had a 0.89 correlation with cosine similarity using the odds-ratio formulation, only
has a 0.66 correlation using just the accuracy. While 0.66 is not necessarily low correlation, it does
reflect a substantial drop in alignment.
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Figure 6: Spearman correlation between similarity measures.
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Figure 7: Spearman correlation between similarity measures.

E GFLOWNET

Our GFlowNet model is implemented as a multilayer perceptron (MLP) with three hidden layers,
each containing 1024 units and using the Exponential Linear Unit (ELU) (Clevert et al., 2016)
activation function. The model takes the current mask state m(j) as input and outputs a vector of
size 2d+1, which is decoded into the forward policy P f

θ (m
(j+1) | m(j); t), including the termination

probability Pθ(⊤ | m(j), t), and the backward policy P b
θ (m

(j) | m(j+1); t).
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To facilitate training, we maintain a replay buffer that stores the first 0.01 · 224 = 167, 772 masks
explored by the GFlowNet. Every 100 gradient updates, we sample 250 trajectories using off-policy
exploration, where the next state is selected uniformly at random with a 5% probability. For each
gradient update, 1000 transitions are drawn from the replay buffer, and the model parameters are
optimized using the Adam optimizer (Kingma, 2014) with a learning rate of 0.001.
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