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Abstract

Despite the recent successes of large, pretrained neural language models (LLMs),
comparatively little is known about the representations of linguistic structure they
learn during pretraining, which can lead to unexpected behaviors in response to
prompt variation or distribution shift. To better understand these models and be-
haviors, we introduce a general model analysis framework to study LLMs with
respect to their representation and use of human-interpretable linguistic properties.
Our framework, CALM (Competence-based Analysis of Language Models), is
designed to investigate LLM competence in the context of specific tasks by inter-
vening on models’ internal representations of different linguistic properties using
causal probing, and measuring models’ alignment under these interventions with a
given ground-truth causal model of the task. We also develop a new approach for
performing causal probing interventions using gradient-based adversarial attacks,
which can target a broader range of properties and representations than prior tech-
niques. Finally, we carry out a case study of CALM using these interventions to
analyze and compare LLM competence across a variety of lexical inference tasks,
showing that CALM can be used to explain behaviors across these tasks.

1 Introduction
The rise of large, pretrained neural language models (LLMs) has led to rapid progress in a wide
variety of natural language processing tasks [11, 17, 22]. However, these models can also be quite
sensitive to minor changes in input prompts [24, 49, 48] and fail to generalize outside their training
or fine-tuning distribution [77, 82]. It is usually unclear where these limitations come from, as LLM
task performance is typically studied using only “black box” behavioral analysis where limitations
can only be detected if they are adequately represented in evaluation datasets, which cannot cover
every potentially relevant limitation using a finite dataset [58, 69]. Thus, a deeper understanding of
how these models can perform as well as they usually do while exhibiting unexpected limitations is
critical for ensuring robust, trustworthy, and socially-responsible LLM-enabled applications [68, 39,
87, 6], and constitutes a key question in the basic science of LLM interpretation and analysis [6, 2].

We approach this question in terms of competence, drawing on the traditional competence-
performance distinction in linguistic theory to motivate the study of LLMs in terms of their underlying
representation of language. We define LLM competence in the context a given linguistic task as the
alignment between the ground-truth causal structure of the task and the LLM’s latent representation
of the task’s structure, measured by intervening on the LLM’s representation of task-causal versus
spurious properties and observing how its behavior changes in response. Models leveraging causal
representations to perform a task generalize better under distribution shift than those that do not
[55, 3, 13], meaning that more competent LLMs are also expected to exhibit greater robustness to
distribution shift.

While the representations of causal or spurious properties are not directly observable, we take
inspiration from causal probing, which intervenes on LLMs’ representations of latent properties
using causal interventions to study how these representations contribute to their behavior [23, 38].
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We introduce a general model interpretation and analysis framework, CALM (for Competence-based
Analysis of Language Models), to study and measure LLM competence using causal probing. While
CALM can be instantiated using a variety of existing causal probing interventions (e.g., [61, 59, 60,
67, 5]), we develop a new methodology for intervening on LLM representations, Gradient-Based
Interventions (GBIs), which use white-box adversarial attacks against supervised probes to modify
LLM embedding representations. GBIs are the first causal probing technique that allow one to study
models’ use of arbitrarily-encoded feature representations, enabling the investigation of new questions
in language model interpretation. We carry out a case study of CALM using GBIs to intervene on
two well-studied LLMs in order to measure and compare their competence across 14 lexical inference
tasks, showing that CALM can indeed explain important patterns in behavior across these tasks by
distinguishing between models’ use of causal versus spurious properties.

2 Competence-based Analysis of Language Models
2.1 Linguistic Competence

Linguistic competence is generally understood as the ability to utilize one’s knowledge of a language
in producing and understanding utterances in that language, and is typically defined in contrast with
linguistic performance, which is speakers’ use of language in practice considered independently
of the underlying knowledge that supports it [47].1 Given a linguistic task, we may understand
competence in terms of the underlying linguistic knowledge that one draws upon to perform the
task. If fluent human speakers rely on (implicit or explicit) knowledge of the same set of linguistic
properties to perform a given task, then we may understand their performance of this task as being
causally determined by these properties, and invariant to other properties. For example, if we consider
the two utterances “the chicken crosses the road” and “the chickens cross the road”, the grammatical
number of the subject (i.e., singular and plural, respectively) determines whether the verb “(to) cross”
should be conjugated as “crosses” or “cross”. As English (root) verb conjugation always depends
on the grammatical number of the subject, grammatical number may be regarded as having a causal
role in the task of English verb conjugation, so we may understand fluent English speakers’ mental
representation of verb tense as having a causal role in their behavior.

In this work, we focus on lexicosemantic competence, the ability to utilize knowledge of word
meaning relationships in performing tasks such as lexical inference [46, 47]. While the study of
human competence has a rich history in linguistics [15, 43, 50, 66, 46, 47], there is currently no
generally accepted framework for studying LLM competence [45, 53], a gap which we aim to address
in this work.

2.2 CALM Framework

In order to make the study of competence tractable in the context of LLMs, we introduce the
CALM (Competence-based Analysis of Language Models) framework, which describes an LLM’s
competence with respect to a given linguistic task in terms of its latent representation of the causal
structure of the task.

Task Structure Formally, given supervised task T ∼ P (X ,Y) where the goal is to correctly predict
y ∈ Y given x ∈ X , and a collection of latent properties Z = {Zj}mj=1 that are (potentially) involved
in generating x, we formulate the causal structure of T in terms of the data-generating process

x ∼ Pr(x|Zc,Ze), y ∼ P (y|Zc) (1)
where Z may be decomposed into Z = Zc ∪ Ze,Zc ∩ Ze = ∅, where Zc contains all causal
properties that determine y, and Ze are the remaining (environmental) properties that may be
involved in generating x (cf. [34]). However, there may be an unobserved confounder S that produces
spurious correlations between y and Ze, which, if leveraged by language model M in the course
of predicting ŷ, can lead to unexpected failures on T when the spurious association is broken [54].
The structural causal model (SCM)2 of this data-generating process is visualized on the left side of
Figure 1.

1There has been significant debate in linguistics and the philosophy of language regarding the precise
definition and nature of competence [43, 50, 66, 47]. However, the formalization of competence provided in
this work is sufficiently general to incorporate most notions of competence, which may be flexibly specified by
instantiating CALM in different ways.

2Note that an SCM is a directed acyclic graph where each node represents a variable and directed edges
indicate causal dependencies – see [9] for a brief overview.
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Figure 1: Structural causal model (SCM) of task
T ’s data-generating process and how it may be
performed by model M . Shaded and white nodes
denote observed and unobserved variables, re-
spectively. In CALM, the goal is to determine
which representations Zj = zj are causally im-
plicated in M ’s predictions ŷ.

Figure 2: SCM of a competent English speaker
on the hypernym prediction task. Shaded and
white nodes denote observed and unobserved
variables, respectively.

For instance, suppose a speaker wants to communicate that orangutans are a genus of primate. She
might say “orangutans are primates” or “orangutans, a genus of apes, are primates”. In both cases, the
conjugation of the root verb would be “are” because the task of English verb conjugation (denoted
TVC) is invariant to whether the subject is complemented by an appositive phrase like “a genus of
apes”, and this phrase does not change the grammatical number of the subject “orangutans”. Thus, if
we define ZNS as the grammatical number of the subject, and ZAP as the presence of an appositive
phrase modifying the subject, then ZNS ∈ Zc and zAP ∈ Ze for TVC. However, if we instead consider
the task TH of predicting hypernyms – for example, predicting y in “orangutans are ys”, where y =
“primate” and y = “ape” would both be correct answers – then ZNS ∈ Ze (e.g., the same answers
will be correct if the question is instead posed as “an orangutan is a y”), and the hypernymy relation
ZH is instead be the causal property ZH ∈ Zc, with the corresponding SCM visualized in Figure 2.

Internal Representation Our main concern is measuring how attributable an LLM M ’s behavior
in a given task T is to its representation of various properties Z = {Z1, ..., Zm}, and how these
properties correspond to the causal structure of the task. If M respects the data-generating process of
T , then its behavior should be attributable only to causal properties Z ∈ Zc (and not to environmental
properties Z ∈ Ze), in which case we say that M is competent with respect to T (see Figure 2).
We study model M ’s use of each property Zj ∈ Z by performing causal interventions do(Zj) on
its representation of Zj in the course of performing task T , and measure the impact that these
interventions have on its predictions.

Measuring Competence We evaluate the competence of M with respect to task T ∼ P (X ,Y) in
terms of its relationship with a competence graph GT , which we define as a structural causal model
(SCM) of T with nodes corresponding to each latent variables Zj ∈ Z and an additional node for
outputs y ∈ Y and directed edges denoting causal dependencies between these variables. That is, the
set of causal properties Zc defined by GT is the set of all properties Zj ∈ Z such that there is an edge
or path from Zj to y.

To study the extent to which M ’s behavior is determined by causal versus spurious dependencies in
GT , we examine whether M and GT make the same predictions under interventions do(z), where
setting z = {zj}mj=1 is the set of values Zj = zj taken by each corresponding latent variable
Zj ∈ Z. For example, consider an instance (x,y) ∼ TH of the hypernym prediction task TH where
input x =“orangutans are ys” and ground-truth output y =“primate”. Here, the values taken by
z would be ZH = 1, ZNS = 1 (where 1 indicates the presence of hypernymy and a plural noun
subject, respectively), and we might define an alternative z′ where ZH = 0, ZNS = 1, under which
a competent model’s prediction would be expected to change with the causal variable ZH (i.e.,
M(x|do(z′)) ̸= M(x)).

The alignment of M with GT is measured in terms of the similarity S of their predictions under
interventions do(z) given input x ∼ P (X ), and can be computed using a given similarity metric
S : Y,Y → [0, 1] (e.g., equality, n-gram overlap, cosine similarity, etc.) depending on the SCM GT
and output space Y . That is, we define CT (M |GT ) as M ’s competence with respect to task T as a
function of its alignment with corresponding task SCM GT under interventions do(z) measured by
similarity metric S, as follows:

CT (M |GT ) = Ex,z∼P (X ,val(Z))S
(
M(x|do(z)),GT (x|do(z))

)
(2)
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Figure 3: Gradient-Based Interventions. Input tokens x = (x1, ..., x|x|) are passed through layers
L = 1, ..., l, where embedding hl

i (encoding the value Z = z) is extracted from layer l and given
to gZ as input. Next, the embedding is modified by gradient-based attacks on gZ to encode the
counterfactual value Z = z′, then fed back into subsequent layers L = l + 1, ..., |L| and language
modeling head fLM to obtain the intervened predictions M(x|do(Z = z′)).

This CT (M |GT ) metric (bounded by [0, 1]) is an adaptation of the Interchange Intervention Accuracy
(IIA) metric [29, 27] to the context of causal probing, where instance-level interventions are replaced
with concept-level interventions enabled by the gradient-based intervention methodology we introduce
in Section 3. (See Appendix C.1 for a detailed comparison of our competence metric with IIA.)

Causal Probing A key technical challenge in implementing CALM (and causal probing more
generally) is designing an algorithm to perform causal interventions do(Z) that maximally damage
the representation of a property Z while otherwise minimally damaging representations of other
properties Z ′ [14, 59] (see Appendix A.1). For example, amnesic probing [23] uses the INLP
algorithm [61] to produce interventions gZ that remove all information that is linearly predictive of
property Z from a pre-computed set of embedding representations H, showing that BERT makes
variable use of parts-of-speech, syntactic dependencies, and named-entity types in performing masked
language modeling. However, Elazar et al. [23] also found that, when INLP is used to remove BERT’s
representation of these properties in early layers, it is often able to “recover” this representation in
later layers, which is likely due to BERT encoding these properties nonlinearly; and later work has
found that the same “recoverability” problem persists even when linear information removal methods
like INLP are kernelized [59]. Thus, it is necessary to develop interventions that do not require
restrictive assumptions about the structure of LLMs’ representations (e.g., linearity), a problem which
we aim to solve in the following section.

3 Gradient-Based Interventions
Our goal in developing gradient-based interventions (GBIs) as a causal probing technique is to enable
interventions over arbitrarily-encoded LLM representations. GBIs allow users to flexibly specify
the class of representations they wish to target, expanding the scope of causal probing to arbitrarily-
encoded properties. We take inspiration from Kos, Fischer, and Song [35], who developed a technique
to perturb latent representations using gradient-based adversarial attacks.3 They begin by training
probe gZ : h 7→ z to predict image class z ∈ Z from latent representations h = fenc(x) of images x,
where fenc is the encoder of a VAE-GAN [37] trained on an unsupervised image reconstruction task
(i.e., fdec(fenc(x)) = x̂ ≈ x, for decoder fdec and reconstructed image x̂ approximating x). Next,
gradient-based attacks like FGSM [30] and PGD [44] are performed against gZ in order to minimally
manipulate h such that it resembles encoded representations of target image class Z = z′ (where
z′ ̸= z, the original image class), yielding perturbed representation h′. Finally, h and h′ are each fed
into the VAE decoder to reconstruct corresponding output images x̂ and x̂′ (respectively), where x̂
resembles input image class Z = z and x̂′ resembles target class Z = z′.

We reformulate this approach in the context of causal probing as visualized in Figure 3, treating layers
L = 1, ..., l as the encoder and layers L = l + 1, ..., |L| (composed with language modeling head
fLM) as the decoder, allowing us to target representations of property Z across embeddings hl

i of
token xi ∈ x in layer l. We train gZ to predict Z from a set of such hl

i, then attack gZ using FGSM

3Notably, Tucker, Qian, and Levy [75] developed a similar methodology without explicit use of such attacks
(see Section 6).
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and PGD to intervene on hl
i (representing the original value Z = z), producing hl′

i (representing
the counterfactual value Z = z′). Finally, we replace hl

i with hl′

i in the LLMs’ forward pass from
layers L = l+ 1, ..., |L|, simulating the intervention do(Z = z′), and observe the impact on its word
predictions M(x|do(Z = z′)). (See Appendix B.3 for further details.)

Benefits and Drawbacks The key advantage of gradient-based interventions (GBIs) as a causal
probing methodology is that they may be applied to any differentiable probe. For example, if we
are investigating the hypothesis that M ’s representation of Z is captured by a linear subspace of
representations in a given layer (cf. [76]), then we may train a linear probe and various nonlinear
probes on representations and observe whether GBIs against the linear probe have a comparable
impact to those against the nonlinear probes. Alternatively, if we believe that a probe’s architecture
should mirror the architecture of the model it is probing (as argued by [57]), we may implement
probes as such. Finally, where previous intervention methodologies for causal probing have focused
on nullifying interventions that remove the representation of the target property Z [61, 59, 60, 67, 5],
GBIs allow one to perform targeted interventions that set LLMs’ representations to counterfactual
values do(Z = z′), effectively simulating the model’s behavior under counterfactual inputs, which
may be useful for predicting behaviors under various distribution shifts (see Appendix C.1). However,
the benefits associated with GBIs do come with some important limitations, as we discuss in
Appendix A.1.

4 Experiments
Our primary goal in the following experiments is to develop and test an experimental implementation
of CALM using GBIs in the context of comparatively small, well-studied models and tasks in order to
validate whether CALM can explain behavioral findings of earlier work in this simplified environment.
(We motivate this choice in greater detail in Appendix A.2.) Thus, we begin by examining BERT
[21] and RoBERTa [41],4 two language models which have already been extensively studied in the
context of probing [63, 61, 42, 23, 38].

Tasks We use the collection of 14 lexical inference tasks included in the ConceptNet [70] subset of
LAMA [56], each of which are formulated as a collection of cloze prompts [40]. For example, the
LAMA “IsA” task contains ∼2K hypernym prompts corresponding to the “IsA” ConceptNet relation
(including, e.g., “A laser is a [MASK] which creates coherent light”, where the task is to predict that
the [MASK] token should be replaced with “device”, a hypernym of “laser”), with the remaining 13
LAMA ConceptNet tasks corresponding to other lexical relations such as “PartOf”, “HasProperty”,
and “CapableOf”. (See Appendix B.1 for additional details.)

Using these task datasets allow us to test how the representation of each relation is used across
all other tasks. In the context of a single task Tj , intervening on a model’s representation of the
task-causal relation Zj allows us to measure the extent to which its predictions are attributable to its
representation of the causal property Zc = {Zj} (where a large impact indicates competence). On the
other hand, intervening on the representations of the other 13 lexical relations Zk ∈ Ze allows us (in
the aggregate) to measure how much the model is performing task Tj by leveraging representations
of general, non-causal lexical information (where a large impact indicates incompetence).5

Experimentally Measuring Competence Given LLM M and task T , measuring the empirical com-
petence ĈT (M |GT ) of M given GT requires us to specify an experimental model E = (Z,GT , S),
where Z is a set of properties, GT is a competence graph for task T , and S is a scoring function
that compares the predictions of M and GT . Given that each task Ti is defined by a single causal
lexical relation Zi (i.e., Zci = {Zi}), we model settings z as a collection of values Zj = zj taken
by each property Zj in the context of a specific task instance (x,y) ∼ Ti, where Zj = 1 if i = j
(i.e., where the property Zj is the causal property for the task Ti) or Zj = 0 otherwise. That is,
for each instance (x,y) ∼ Ti, the corresponding setting z is a one-hot vector whose i-th element
zi = 1. We may specify GTi

in a similar manner: for task Ti ∼ P (X ,Y), outputs y ∈ Y are causally
dependent on the property Zi and invariant to other concepts Zj , j ̸= i., meaning that the only
direct parent node of y in GTi

is Zi. Finally, as we are dealing with masked language models whose
output space Y for each task consists only of single tokens in M ’s vocabulary VM , our experimental

4Specifically, BERT-base-uncased and RoBERTa-base [79].
5Note that this experimental formulation makes the simplifying assumption that each environmental property

is equally (un)related to the target property, which is not necessarily true; see Appendix A.3.
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Figure 4: Performance (left) and competence (right) of BERT (left bars) and RoBERTa (right
bars) for all tasks, using FGSM with ϵ = 0.1. In the competence plot, y-values are the average
competence score and error bars are the maximum and minimum competence score, as measured
over 10 experimental iterations (each with a different randomly-initialized probe gZ).

model can define the scoring function S as the overlap overlap(yi,yj) for top-k token predictions
yi = {y1, ..., yk} ⊂ VM , where overlap(·, ·) is the size of the intersection of each set of predictions
divided by the total number of predictions overlap(yi,yj) =

|yi∩yj |
k , and ĈT k denotes the empirical

competence ĈT as measured using only the top-k token predictions yi. (See Appendix C.2 for
additional details on how we compute competence in each experiment.)

Probes We implement probes gZ as a 2-layer MLP over each language model’s final hidden layer,
and train the probe on the task of classifying whether there is a particular relation Z between a
final-layer [MASK] token in the context of a cloze prompt and the final-layer object token from
the “unmasked” version of the same prompt. All reported figures are the average of 10 runs of our
experiment, using different randomly-initialized gZ each time. (See Appendix B.2 for further details.)

Interventions We implement GBIs against gZ using two gradient attack strategies, FGSM [30] and
PGD [44]. We bound the magnitude of each intervention as follows: where h is the input to gZ and
h′ is the intervened representation following a GBI, ||h− h′||∞ ≤ ϵ. For all experiments reported in
our main paper, we use FGSM with ϵ = 0.1. (See Appendix B.3 for more details and PGD results.)

5 Results
In Figure 4, we visualize the performance and competence of BERT and RoBERTa across the test
set of each LAMA ConceptNet task. Performance is measured using (0, 1)-accuracy, competence is
measured using the experimental competence metric in Equation (3), and both metrics are averaged
across the top-k predictions of each model for k ∈ [1, 10]. That is, for ground truth (x, y) and n = 10,
we compute accuracy and competence as follows:

acc(M) =
1

n

n∑
k=1

1[y ∈ top-k
ŷ

Pr
M
(ŷ|x)] and ĈT (M |GT ) =

1

n

n∑
k=1

ĈT k(M |GT )

To account for stochasticity in initializing and training probes gZ , scores are also averaged over 10
randomized experiments for each target task where the probe is randomly re-initialized each time
(resulting in different GBIs).

5.1 Analysis

Performance While their accuracies on individual tasks vary, BERT and RoBERTa have quite
similar aggregate performance: BERT outperforms RoBERTa on just over half (8/14) of the tasks,
achieving essentially equivalent performance when averaged across all tasks (0.3099 versus 0.3094).

Competence Given our experimental model E with m = 14 tasks, consider a random baseline
language model R whose predictions always change in response to each intervention, making equal
use of all properties in each task. R would yield a competence score of C(R|GT ) =

1
m ≈ 0.0714 for

each task. Both BERT and RoBERTa score well above this threshold for all tasks, meaning that they
are much more competent than a model that does not distinguish between causal and environmental
properties. RoBERTa is consistently less competent than BERT (on 12/14 tasks), and also has lower
competence scores averaged across all tasks (0.381 vs. 0.334); but for the two tasks where RoBERTa
is more competent than BERT, it also achieves substantially higher performance. More generally,
relative performance and competence are correlated: the Spearman’s Rank correlation coefficient
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between the average difference in accuracy and average difference in performance is a moderately
strong positive correlation ρ = 0.508 with significance p = 0.064.

Explananda The performance of BERT and RoBERTa on lexical inference tasks such as hypernym
prediction has been shown to be highly variable under small changes to prompts [33, 62, 26, 24]. Our
findings offer a potential explanation for such brittle performance: BERT and RoBERTa’s partial
competence in hypernym prediction indicates that it should be possible to prompt these models in a
way that will yield high performance, but that its reliance on spurious lexical associations may lead it
to fail when these correlations are broken – e.g., by substituting singular terms for plurals [62] or
paraphrasing a prompt [24].

6 Related Work
Causal Probing Most related to our work is amnesic probing [23], as discussed in Section 2.2.
Lasri et al. [38] applied amnesic probing to study the use of grammatical number representations in
performing an English verb conjugation prompt task. As this experiment involves intervening on the
representation of a property which is causal with respect to the prompt task, it may be understood as an
informal instantiation of CALM (albeit without considering environmental properties or measuring
competence).

Gradient-based Interventions Tucker, Qian, and Levy [75] developed an approach similar to
GBIs without explicit use of gradient-based adversarial attacks. Their methodology is equivalent
to performing a targeted, unconstrained attack, where gradient updates are continually applied to
embeddings until the target probe loss saturates (irrespective of perturbation magnitude). In such
attacks, it is standard practice to constrain the magnitude of resulting perturbations [30, 44, 35],
which we do here in order to minimize the effect of “collateral damage” done by such attacks
(see Appendix B.3). Failing to impose such constraints may result in indiscriminate damage to
representations [14] (see Appendix A.1 for further discussion).

Unsupervised Probing Instead of training supervised probes to predict a pre-specified property of
interest (as we do here), an alternative approach is to train unsupervised probes such as Sparse Auto-
Encoders (SAEs; [71, 83, 19]), which learn a “dictionary” of features that can be used to sparsely
represent embeddings, and can also be used to control models’ use of these learned features [10, 72].
Unlike supervised probing, unsupervised dictionary features must be retroactively interpreted in order
to determine their relationship to a given task [20]; but given a suitable approach to interpreting such
features (see, e.g., [8, 52]) and a sufficiently reliable method for intervening on them (cf. [14]), it is
also possible to implement CALM using unsupervised probes like SAEs.

7 Conclusion
In this work, we introduced CALM, a general analysis framework that enables the study of LLMs’
linguistic competence using causal probing, including the first quantitative measure of linguistic
competence. We developed the gradient-based intervention (GBI) methodology, a novel causal
probing method that can target a far greater range of representations than previous techniques,
expanding the scope of causal probing to new questions in LLM interpretability and analysis. Finally,
we carried out a case study of CALM using GBIs, analyzing BERT and RoBERTa’s competence
across a collection of lexical inference tasks, finding that even a simple experimental model is
sufficient to explain their behavior across a variety of lexical inference tasks.

Future Work While the simplified experimental setting considered in this work is an important
first step in empirically validating our theoretical CALM framework, competence metric, and
GBI methodology, we anticipate a much broader range of future research directions and potential
applications for CALM. For instance, the CALM framework could easily be deployed to study how
various model training and fine-tuning choices impact learned representations (see Appendix D.1), or
to characterize tasks based on mutual dependency structures in order to potentially improve multitask
learning (see Appendix D.2) or predict negative interactions between tasks used for model fine-tuning
(see Appendix D.3). Finally, rather than comparing against a pre-specified ground truth task structure
GT , it is also possible to discover a causal model describing an LLM’s implicit task representation by
combining CALM with traditional causal graph discovery algorithms (see Appendix D.4).
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A Limitations
A.1 Gradient-Based Interventions

For causal probing to operate successfully – as is required to reliably deploy CALM in practice –
it is important that probes leverage the underlying model’s representation of the target property to
make predictions, rather than relying on spurious information. However, there is some evidence
that probes often leverage such spurious information [4, 36, 14]. For instance, in followup work
studying our GBI methodology alongside other causal probing methods, Canby et al. [14] find that
each method they studied (including GBIs) shows a tradeoff between its ability to manipulate the
targeted property (completeness) and the extent to which it also modifies the representation of other,
non-targeted property (selectivity). Notably, they also found that the flexibility of GBIs allows for
precise control this tradeoff by modulating the magnitude of perturbations (ϵ), an advantage that is
not shared by most other causal probing methods.
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Furthermore, while GBIs are applicable to a more general range of model representations than most
prior intervention methods (see Section 3), this generality comes with a lack of constraints on probes
(gZ); and as a result, GBIs cannot provide the strong theoretical constraints on collateral damage
as can methods like, e.g., INLP [61], which provably preserves distances between embeddings
as well as possible while completely removing the linear representation of the target property
(which also generally leads to higher selectivity in practice [14]). To minimize collateral damage
to representations, the magnitude of perturbations should be modulated via constraints on gradient
attacks against gZ (see Section 4) and experimentally validated to control the damage done to
representations (see Appendix B.3); and in the ideal case, should be calibrated to achieve the desired
tradeoff between selectivity and completeness (a novel procedure introduced in [14], a followup
work building on GBIs as initially developed in this work). Alternatively, in cases where the
structure of representations is believed to satisfy strong assumptions (e.g., being restricted to a linear
subspace; [76]) or strong upper bounds on collateral damage are required, CALM interventions can
be implemented with methods like INLP rather than GBIs.6

A.2 Simple Experimental Setting

As noted in Section 4, our primary goal in our experiments is to validate CALM by testing it in a
simplified experimental setting consisting of comparatively small, well-studied models and tasks. As
such, we need models that are just complex enough for CALM to be applicable (i.e., neural language
models that are capable of performing the tasks we consider at a nontrivial level of performance),
making BERT and RoBERTa ideal candidates; and in future work plan to scale CALM to more
complex contexts covering larger, more powerful models as they perform more difficult tasks (see
Appendix D). This is a common setting in the context of substantial recent interpretability work: first,
a theoretical framework is developed for interpreting an internal representation or mechanism and
initially tested in the context of “toy” models or tasks [25, 51, 86, 27], and subsequent work scales
these frameworks to the context of larger models “in the wild” [78, 18, 80]. Analogously, all of our
major contributions (the CALM framework, competence metric, and GBI causal probing method)
are directly scalable to much larger, more recent LLMs (e.g., [84, 7, 74, 73, 32], etc.).

A.3 Task Independence

In our experiments, we modeled the 14 LAMA ConceptNet tasks as representing fully independent
properties, which is not necessarily true – e.g., knowing that a tree is made of bark or contains leaves
tells us something about whether it is a type of plant. However, in the aggregate (with impacts
summed across 14 widely-varying lexical relation types in computing the final competence score for
each task; see Appendix C.2), it may nonetheless be appropriate to treat the relations which are not
causal with respect to a given task as collectively capturing spurious lexical associations.

B Experimental Details
B.1 Tasks

The full set of LAMA ConceptNet tasks is as follows: IsA, HasA, PartOf, HasSubEvent, MadeOf,
HasPrerequisite, MotivatedByGoal, AtLocation, CausesDesire, NotDesires, CapableOf, UsedFor,
ReceivesAction, and HasProperty. We split each task dataset into train, validation, and test sets with
a random 80%/10%/10% split. Train and validation instances are fed to each model to produce
embeddings used to train gZ and select hyperparameters, respectively; and test instances are used to
measure LLMs’ competence with respect to each task by observing how predictions change under
various interventions. In all experiments, we restrict each model M ’s output space for each task
T to the subset of vocabulary VM that occurs as a ground-truth answer y∗ for at least one instance
(x, y∗) ∼ T in the respective task dataset. This lowers the probability of false negatives in evaluation
(e.g., penalizing the model for predicting ŷ = “mammal” for “a dog is a type of y” instead of y∗ =
“animal”).

6It may also be possible to control for collateral damage by developing GBI strategies that offer more
principled protection against damage to non-targeted properties, such as adding a loss term to penalize damage
to non-targeted probes or leveraging interval bound propagation [31] to place intervened embeddings inside the
adversarial polytope for non-targeted properties. We leave such possibilities to future work.
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Figure 5: Competence of BERT (left bars) and RoBERTa (right bars) for all tasks, using PGD
with ϵ = 0.1. Y-values are the average competence score and error bars are the maximum and
minimum competence score, as measured over 10 experimental iterations (each with a different
randomly-initialized probe gZ).

B.2 Probes

We use BERT’s final layer L to encode hl
i embeddings for each such example, where i is the index

of the [MASK] token or target word in the input prompt xi. To encode the [MASK] token, we issue
BERT masked prompts (as discussed above) to extract h[MASK], then repeat with the [MASK] token
filled-in with the target word to encode it as h+ (e.g., “device” in “A laser is a device which creates
coherent light.”), and concatenate matching embeddings h = (h[MASK];h+) to produce positive
(y = 1) training instances. We also construct one negative (y = 0) instance, h = (h[MASK];h−), for
each h[MASK] by sampling an incorrect target word xi corresponding to an answer to a random prompt
from the same task, feeding it into the cloze prompt in the place of the correct answer, and obtaining
BERT’s contextualized final-layer embedding of this token (h−). Finally, we train gZ on the set of all
such (h, y).

We implement gZ as a multi-layer perceptron with 2 hidden layers, each with a width of 768 (which
is one half the concatenated input dimension of 1536), using ReLU activations and dropout with
p = 0.1, training it for 32 epochs using Binary Cross Entropy with Logits Loss7 and the Adam
optimizer, saving the model from the epoch with the highest validation-set accuracy for use in all
experiments.

For all competence results reported in Section 5, we run the same experiment 10 times – each with a
different random initialization of gZ and shuffled training data – and report each figure as the average
among all 10 runs.

B.3 Interventions

For embedding h, target (counterfactual) class y′, probe gZ , loss function L, and L∞-bound
ϵ ∈ {0.01, 0.03, 0.1, 0.3}8, each intervention (gradient attack) gz may be used to produce per-
turbed representations h′ = gz(h, y

′, fcls,L, ϵ) where ||h − h′||∞ ≤ ϵ. In particular, given
h = (h[MASK];h±) ∈ R2d, let h′

[MASK] be the first d dimensions of h′ (which also satisfies the
L∞-bound with respect to h[MASK], ||h[MASK] − h′

[MASK]||∞ ≤ ϵ). To measure BERT’s use of internal
representations of Z on each prompt task, we evaluate its performance when perturbed h′

[MASK] is
used to compute masked-word predictions, compared to unperturbed h[MASK].

Our intent in intervening only on the final-layer mask embedding h[MASK] in our experiments is that,
in the final layer of a masked language model such as BERT or RoBERTa, the only embedding which
is used to compute masked-word probabilities is that of the [MASK] token. Thus, any representation
of the property that is used by the model in its final layer must be a part of its representation of the
[MASK] token, preventing “recoverability” phenomena such as those observed by Elazar et al. [23].

7https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
8All reported results use ϵ = 0.1, as greater ϵ resulted in unacceptably high “collateral damage” across target

tasks (e.g., even random perturbations of magnitude ϵ = 0.3 do considerable damage), and lesser values meant
that predictions changed on target tasks consisted of only a few test instances.
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FGSM FGSM [30] takes one gradient step of magnitude ϵ in the direction that minimizes the loss of
a classifier (here, the probe fcls) with respect to target class y′. We implement FGSM interventions as

h′ = h+ ϵ · sgn(∇hL(fcls, x, y
′))

where L is the same loss function used to train fcls (here, binary cross entropy).

PGD PGD [12, 44] iteratively minimizes the loss of a classifier (here, the probe fcls) with respect
to target class y′ by performing gradient descent within a L∞ ball of radius ϵ. We implement PGD
interventions as h′ = hT , where

ht+1 = ΠN(h)

(
ht + α · sgn(∇hL(fcls, x, y))

)
for iterations t = 0, 1, ..., T , projection operator Π, L∞-neighborhood N(h) = {h′ : ||h − h′|| ≤
ϵ}, and L is the same loss function used to train fcls (here, binary cross entropy). This method
also introduces two hyperparameters: the number of PGD iterations T and step size α. We use
hyperparameter grid search over α ∈ {0.001, 0.003, 0.01, 0.03} and T ∈ {20, 40, 60, 80, 100},
finding that setting α = ϵ

10 and T = 40 produces the most consistent impact on gZ accuracy across
all tasks; so we use these values for the results visualized in Figure 5.

B.4 Compute Budget

BERT-base-uncased has 110 million parameters, and RoBERTa-base has 125M parameters. As our
goal is to study the internal representation and use of linguistic properties in existing pre-trained
models, and we are not directly concerned with training or fine-tuning such models, we use these
models only for inference (including encoding text inputs, using embeddings to train probes, and
feeding intervened embeddings back into the language models). The only models we trained were
probes gZ , which each had 1.77M parameters.

Each experimental iteration (including encoding text inputs, training probes on all 14 tasks, and
performing all GBIs) for either BERT or RoBERTa took less than one hour on a single NVIDIA
GeForce GTX 1080 GPU, meaning that running all 10 iterations across both language models took
less than 20 hours on a single GPU. Each iteration, probe, and GBI can easily be parallelized across
GPUs: in our case, running all iterations across both models took less than 3 hours total across 8
GTX 1080 GPUs.

C Competence Metric
C.1 Comparison With IIA

As noted in Section 2.2, the CT (M |GT ) metric defined in Equation (2) is an adaptation of the
Interchange Intervention Accuracy (IIA) metric [29, 27], which evaluates the faithfulness of a causal
abstraction like GT as a (potential) explanation of the behavior of a “black box” system like M . In
our case, this is equivalent to evaluating the competence of M on task T , provided that GT is the
appropriate SCM for T , as an LLM is competent only to the extent that its behavior is determined by
a causally invariant representation of the task.9 IIA requires performing interchange interventions
doII(zj), where the part of M ’s intermediate representation of input xi hypothesized to encode
latent variables Z (taking the values zi when provided input xi) is replaced with that of xj (which, in
principle, means that the modified representation encodes the values zj instead of zi), at which point
these interchange interventions are used to compute predictions M(xi|doII(zj)), and the output
is compared with GT (xi|do(zj)) to measure how faithfully GT predicts M ’s behavior under these
interventions. Thus, given access to high-quality interchange interventions over M , IIA measures the
extent to which GT correctly models M ’s behavior under counterfactuals, and thus its faithfulness as
a causal abstraction of M .

To adapt IIA to the context of causal probing and define CT (M |GT ), we replace instance-level
interchange interventions doII with concept-level interventions doZ for any given property Z. That
is, instead of swapping M ’s representation of variables Z = Z1, ..., Zk given input xi with that
of xj , we intervene on the representation of each property Z ∈ Z at the level of arbitrary values
z : Z1 = z1, ..., Zk = zk that need not correspond to previously observed x, allowing us to simulate

9For many tasks, there is more than one valid GT (see, e.g., the “price tagging game” constructed by Wu
et al. [80]). In such cases, CT (M |GT ) should be computed with respect to each valid GT and the highest result
should be selected, as conforming to any such GT carries the same implications.
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the behavior of M under previously-unseen distribution shifts (i.e., settings z representing previously-
unseen combinations of values) and in doing so predict M ’s consistency with a given causal model
GT under these new conditions. As one of our primary motivations in studying LLM competence
is to provide a framework useful for predicting and explaining behavior under distribution shifts,
CT is more appropriate than IIA in this setting. However, this also introduces greater room for
error: where interchange interventions only requires modifying representations to match the values
taken by another input – as counterfactual representations can be obtained simply by “plugging in”
representations from a different input – computing CT instead requires one to perform open-ended
interventions that may not correspond to any ground-truth input, in which case there may be no region
of the embedding space that corresponds to the intended setting z [28, 1, 14].

C.2 Experimental Competence Metric

To compute the expectation in Equation (2) for test set {xi,yi, zi}ni=1 ∼ T × Z, we sum the
competence score over all samples xi and perform one intervention do(Zj = 0) corresponding to
each concept Zj ∈ Z.10 As our goal is to measure the extent to which M ’s behavior is attributable
to an underlying representation of the causal property Zc or environmental property Z ∈ Ze, our
experimental model defines GT ’s predictions with reference to M ’s original predictions M(xi) = ŷi,
according to the following principle: if M is competent, then its prediction M(xi) = ŷi is wholly
attributable to its representation of causal property Zc, so its predictions M(xi|do(Zc)) = ŷi

′ will not
overlap with its original predictions ŷi (i.e., overlap(ŷi, ŷi

′) = 0); and conversely, a competent M
will make the same predictions M(xi|do(Zj)) = ŷi

′′ for any Zj ∈ Ze, because its prediction is not
caused by its representation of these environmental properties (i.e., overlap(ŷi, ŷi

′′) = 1). Motivated
by this reasoning, our experimental model defines GT (xi|do(Zj = 0)) = M(xi) for environmental
Zj ∈ Ze; and for causal property Zc, defines GT (xi|do(Zc = 0)) = {y′ ∈ VM : y′ /∈ M(xi)} (i.e.,
the set of all tokens y′ in M ’s vocabulary that were not in its original prediction M(xi)). Thus, under
experimental model E, we approximate CT (M |GT ) by computing it as follows:

ĈT (M |GT ) =
1

n ·m

n∑
i=1

m∑
j=1

overlap
(
M

(
xi|do(Zj = 0)

)
,GT

(
xi|do(Zj = 0)

))
(3)

Notably, our experimental model E only accounts for the relationship between M ’s intervened and
non-intervened predictions, independently of ground truth labels – instead, what is being measured is
M ’s consistency under meaning-preserving interventions do(Zj′) and its mutability under meaning-
altering interventions do(Zj). However, as we find in Section 5.1, the resulting competence metric
CT (M |GT ) is nonetheless useful for predicting M ’s accuracy.

D Future Work
D.1 Representation Learning

The CALM framework, competence measure, and GBI methodology developed in Sections 2 and 3
are sufficiently general to be directly applied to analyze arbitrary LLMs on any language modeling
task whose causal structure is already well understood (or, for tasks where this is not the case, we
may apply the causal graph discovery approach described in Appendix D.4), allowing us to study
the impact of various model architectures, pre-training regimes, and fine-tuning strategies on the
representations LLMs learn and use for arbitrary tasks of interest.

D.2 Multitask Learning

Are high competence scores on task T correlated with an LLMs’ robustness to meaning-preserving
transformations (see, e.g., [24]) on tasks T ′ that share several causal properties Zc with task T .
Through the lens of causally invariant prediction [55, 3, 13], this hypothesis is likely true (however,
see [64] for appropriate caveats) – if so, this would make it possible to use clusters of related
tasks to predict LLMs’ robustness (and other behavioral patterns, such as brittleness in the face of

10Note that this intervention changes the prediction GT (xi) ̸= GT (xi| do(Zj = 0)) if and only if (xi,yi) ∈
Tj – i.e., where the corresponding (zi)j = 1 – otherwise, (zi)j is already 0, so the intervention has no effect.
Thus, as CT (M |GT ) measures M ’s consistency with GT , then to the extent that M is competent, its prediction
should change under all and only the same interventions as GT .
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distribution shifts introduced by spurious dependencies) between related tasks using CALM, given
an appropriate experimental model. Furthermore, the ability to characterize tasks based on mutual
(learned) dependency structures could be valuable in transfer learning applications such as guiding
the selection of auxiliary tasks in multi-task learning [65] or predicting the impact of intermediate
task fine-tuning on downstream target tasks [16].

D.3 Task Dependencies

Another possible application of CALM concerns causal invariance under multi-task applications.
Existing approaches in invariant representation learning generally require task-specific training [85],
as the notion of invariance is inherently task-centric (i.e., the properties which are invariant predictors
of output values vary by task, and different tasks may have opposite notions of which properties are
causal versus environmental), so applying such approaches to train models to be causally invariant
with respect to a specific downstream task T is expected to come at the cost of performance on other
downstream tasks T ′. Therefore, considering the recent rise of open-ended, task-general LLMs [84, 7,
74, 73, 32], it is important to understand the relationship between different task dependencies learned
when fine-tuning task-general models on specific downstream tasks to account for applications
involving tasks with different (and perhaps contradictory) causal structures, such as CALM.

D.4 Causal Competence Graph Discovery

A key feature of CALM is that, instead of simply measuring consistency with respect to a known,
static task description GT , the competence metric in Equation (2) can also be used to dynamically
discover a competence graph G which most faithfully explains a model M ’s behavior in a given
task or context (see Section 2.2) by computing C(M |G) “in-the-loop” of existing causal graph
discovery algorithms like IGSP [81]. Such algorithms could be used to suggest likely competence
graphs based on interventional data collected by running CALM experiments, to recommend the
experiments that would yield the most useful interventional data for the graph discovery algorithm, or
to evaluate candidate graphs G according to C(M |G), terminating the graph discovery algorithm once
a competence graph G that offers sufficiently faithful explanations of M ’s behavior has been found
(e.g., where C(M |G) > τ for some threshold τ ). In this case, it is still necessary to define the set of
properties Z being probed and the scoring function S used to compare the predictions of M and G;
but no knowledge of the causal dependencies (or structural functions F : pa(Zj) 7→ Zj mapping
from causal parents pa(Zj) to causal dependents Zj ; see [9]) is required.
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