
Compressing and Debiasing Vision-Language Pre-Trained Models
for Visual Question Answering

Qingyi Si1,2∗, Yuanxin Liu3∗, Zheng Lin1,2†

Peng Fu1, Yanan Cao1,2, Weiping Wang1

1Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
2School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

3National Key Laboratory for Multimedia Information Processing,
School of Computer Science, Peking University

{siqingyi,linzheng,fupeng,caoyanan,wangweiping}@iie.ac.cn, liuyuanxin@stu.pku.edu.cn

Abstract

Despite the excellent performance of vision-
language pre-trained models (VLPs) on con-
ventional VQA task, they still suffer from two
problems: First, VLPs tend to rely on language
biases in datasets and fail to generalize to out-
of-distribution (OOD) data. Second, they are
inefficient in terms of memory footprint and
computation. Although promising progress has
been made in both problems, most existing
works tackle them independently. To facilitate
the application of VLP to VQA tasks, it is im-
perative to jointly study VLP compression and
OOD robustness, which, however, has not yet
been explored. This paper investigates whether
a VLP can be compressed and debiased simulta-
neously by searching sparse and robust subnet-
works. To this end, we systematically study the
design of a training and compression pipeline
to search the subnetworks, as well as the assign-
ment of sparsity to different modality-specific
modules. Our experiments involve 3 VLPs, 2
compression methods, 4 training methods, 2
datasets and a range of sparsity levels. Our re-
sults show that there indeed exist sparse and ro-
bust subnetworks, which are competitive with
the debiased full VLP and clearly outperform
the debiasing SoTAs with fewer parameters on
OOD datasets VQA-CP v2 and VQA-VS.1

1 Introduction

Visual Question Answering (VQA) (Antol et al.,
2015) is an important task at the intersection of CV
and NLP. In the last decade, deep neural networks
have made promising progress in VQA. However,
recent studies (Agrawal et al., 2016; Manjunatha
et al., 2019) have found that VQA models are prone
to dataset biases. As a result, they always suffer
from sharp performance drops when faced with out-
of-distribution (OOD) test datasets, whose answer
distributions are different from the training set.

∗∗Equal contribution. † Corresponding author: Zheng Lin.
1The codes can be found at https://github.com/

PhoebusSi/Compress-Robust-VQA.

45

47

49

51

53

55

57

59

61

63

65

67

0 50 100 150 200
O

O
D

 P
er

fo
rm

an
ce

 (A
cc

 %
)

Number of Parameters (Millions)

RUBi

VGQE

LPFS-MRL

CF-VQAS-MRL

DLR

LMH
CF-VQAUpDn
LPFUpDn

CGE

Ours-90%

Ours-70%
Ours-50%

Ours-30%
Ours-10%

lxmert(lmh)

lxmert

lxmert(lpf)

Figure 1: Comparison of accuracy and model sizes
with debiasing SoTAs on VQA-CP v2. The green and
cyan lines represent our "lxmert(lpf) + mask train(lmh)"
and "lxmert(lmh) + mask train(lmh)", respectively, with
modality-specific sparsity.

Although large-scale vision-language pre-
trained models (VLPs) achieve further improve-
ments in the in-distribution (ID) VQA benchmark
(Goyal et al., 2017), they also fail to address the
dataset-bias problem (Agrawal et al., 2018), e.g.,
lxmert (Tan and Bansal, 2019) suffers a 23.26%
drop between ID and OOD accuracy. At the same
time, the improvement brought by VLPs is partly
due to their large model size, which increases the
computational cost of deploying VQA models.
To facilitate the application of VLPs to VQA
tasks, the two problems should be addressed
simultaneously. However, existing researches
mostly focus on each of them separately.

The dataset-bias problem in VQA is well studied
by numerous debiasing methods based on conven-
tional small-scale models(Anderson et al., 2018;
Cadene et al., 2019). Their main solution (Cadene
et al., 2019; Clark et al., 2019; Liang et al., 2021b;
Mahabadi and Henderson, 2019) is to regularize the
loss according to the bias degree of training sam-
ples. In terms of the increased computational cost,
a line of recent efforts have been made to compress
pre-trained language models (PLMs) in the NLP

https://github.com/PhoebusSi/Compress-Robust-VQA
https://github.com/PhoebusSi/Compress-Robust-VQA

field (Chen et al., 2020b; Li et al., 2020a,b; Liang
et al., 2021a; Liu et al., 2021, 2022; Prasanna et al.,
2020) and VLPs for visual-linguistic tasks (Fang
et al., 2021; Gan et al., 2022). They show that
large-scale PLMs and VLPs can be compressed
into lightweight models without degrading perfor-
mance. Refer to App. A for more related work.

This paper jointly studies the compression and
debiasing problems of VLP for the VQA task. To
this end, we combine the existing debiasing and
pruning methods to establish a training and com-
pression pipeline, and conduct extensive experi-
ments with the pre-trained lxmert, which is the
most popular VLP in VQA, under different OOD
settings. We show that there exist sparse lxmert sub-
networks that are more robust than the full model,
which suggests that the goal of OOD robustness
and computational efficiency can be achieved si-
multaneously.

We also present a comprehensive study on the
design of the training and compression pipeline,
as well as the assignment of sparsity to different
model modules, to identify subnetworks with bet-
ter OOD generalization. Our findings highlight the
importance of 1) Employing a two-stage training
and compression pipeline and integrating the debi-
asing objective throughout the entire process. 2)
If there are two debiasing methods working well
with the full model, training the full model with the
relatively poor-performing one and compressing it
with the better one. 3) Assigning modality-specific
sparsity to different modules of VLP.

Our main contributions are as follows: (1) We
present the first (to our knowledge) systematic
study on sparsity and OOD robustness for VLPs.
(2) Our empirical studies on the training and com-
pression pipeline and sparsity assignment can serve
as a valuable guideline for the future design of VLP
subnetwork searching methods. (3) We obtain sub-
networks that outperform existing debiasing So-
TAs in terms of the trade-off between accuracy
and model size on OOD datasets VQA-CP v2 and
VQA-VS (see Fig. 1, Tab. 1 and Tab. 2).

2 Method

2.1 VLP Architecture and Subnetworks

This section takes lxmert as an example to intro-
duce how we extract subnetworks. Lxmert contains
an embedding layer, a visual fc layer, a pooler layer,
a VQA-specific classifier and a stack of Trans-
former layers, which involve three encoders: lan-

guage encoder (Lenc), object relationship encoder
(Renc) and cross-modality encoder (Cenc).

We adopt unstructured pruning to obtain a com-
pressed version (i.e., a subnetwork) of the origi-
nal VLPs. Specifically, given a VLP f(θ) with
parameters θ, we apply a binary pruning mask
m ∈ {0, 1}|θ| to the model parameters, which
gives rise to f(m⊙θ), where⊙ is the element-wise
product. The parameters to be pruned are:

θpr = {Wemb,Wvis-fc,Wplr} ∪ θLenc ∪ θRenc ∪ θXenc (1)

where Wemb, Wvis-fc and Wplr are the weights of
embedding layer, vision fc layer and pool layer,
θLenc ∪θRenc ∪θXenc are the parameters of Trans-
former layers. More details of lxmert can be found
in App. B.1. Another model visualBERT (Li et al.,
2019), which is also used in our experiments, will
be introduced in App. B.2.

2.2 Pruning Methods

We consider two representative pruning methods,
i.e., magnitude-based pruning (Han et al., 2015)
and mask training (Louizos et al., 2018; Ramanujan
et al., 2020; Sanh et al., 2020; Sehwag et al., 2020).

Magnitude-based Pruning approximates the im-
portance of model parameters based on their abso-
lute values and eliminates the less important ones.
We adopt the basic version of magnitude-based
pruning, i.e., one-shot magnitude pruning (OMP).
OMP can optionally be combined with further fine-
tuning of the pruned subnetwork to recover the
performance drop.

Mask Training directly optimizes the binary
pruning mask m towards the given objectives.
Specifically, each weight matrix W ∈ Rdi×do is as-
sociated with two mask matrices, namely a binary
mask m ∈ {0, 1}di×do and a real-valued mask
m̂ ∈ Rdi×do . In the forward propagation, m is
computed from m̂ through binarization:

mi,j =

{
1 if m̂i,j ≥ ϕ

0 else
(2)

where ϕ is the threshold. Then, the original weight
matrix W is replaced with a pruned one m⊙W.
When it comes to backward propagation, we follow
(Liu et al., 2022; Mallya et al., 2018; Radiya-Dixit
and Wang, 2020; Zhao et al., 2020) and use the
straight-through estimator (Bengio et al., 2013) to
estimate the gradients of m̂ using the gradients of

m, and then update m̂ as m̂← m̂− η ∂L
∂m , where

η is the learning rate.
We initialize m̂ according to the magnitudes of

the pre-trained weights of lxmert. This strategy
is shown to be more effective than random initial-
ization for pre-trained language models (Liu et al.,
2022; Radiya-Dixit and Wang, 2020) and we also
validate this in our experiments with lxmert (see
App. C.2). Specifically, m̂ is initialized as:

m̂i,j =

{
0 if Wi,j is pruned by OMP
α× ϕ else

(3)

where α ≥ 1 is a hyper-parameter. At initialization,
we set the threshold ϕ = 0.01 (any other value with
the same order of magnitude should also be fine).
To ensure that the subnetwork satisfies the given
sparsity, ϕ is re-computed every tm training steps.

2.3 Debiasing Methods
The deabising methods in VQA usually contain a
main model and a biased model. The biased model,
which learns the language bias, is used to measure
the training samples’ bias degree and adjust the
training loss for the main model. We experiment
with SoTAs debiasing methods, i.e., LMH (Clark
et al., 2019), RUBi (Cadene et al., 2019) and LPF
(Liang et al., 2021b), of which LMH is widely
studied for the OOD scenario of VQA (Chen et al.,
2020a; Liang et al., 2020; Si et al., 2021) and NLU
(Jia and Liang, 2017; McCoy et al., 2019; Schuster
et al., 2019; Zhang et al., 2019). For comparison,
we also describe the binary cross-entropy here.

Binary Cross-Entropy (BCE) computes the
cross-entropy between the predicted distribution
pm (from main model) and the soft target score of
each ground-truth t, as:

Lbce = t · log(δ(pm)) + (1− t) · log(1− δ(pm))] (4)

where δ denotes the sigmoid function.
Learned-Mixin +H (LMH) adds a biased model

to learn biases during training, as follows:

p̂deb = softmax(log(pm) + g(h)log(pb))

g(h) = softplus(w · h)
(5)

where pb and pm are the predicted distribution of
biased model and main model, respectively. g(h)
determines how much to trust the learned biases,
based on lxmert’s last hidden representation h. Fol-
lowing (Clark et al., 2019), we directly use the
answers’ frequency under each question type as

pb
2. To prevent pb from being ignored, LMH also

adds an entropy penalty item R in the final loss:

Llmh = t · log(δ(p̂deb)) + (1− t) · log(1− δ(p̂deb))] +R (6)

RUBi adopts a training strategy similar to LMH
to regularize the main model’s probability, and uses
standard cross-entropy as the training loss:

p̂deb = softmax(pm · δ(pb))

Lrubi = −
1

N

N∑
k

log(p̂deb) [ak]
(7)

LPF measures the bias degree as αk = pb [ak]
to regularize the loss of the main model:

Llpf =
−1
N

N∑
k

(1− αk)
γ log(softmax(pm)) [ak] (8)

where the γ is a tunable hype-parameter.

2.4 Problem Formulation
Given the pre-trained lxmert f(θpt), our goal is
to find a subnetwork f (m⊙ θft) that satisfies a
target sparsity level s and maximizes the OOD
performance:

maxm,θft
(EOOD (f (m⊙ θft))) , s.t. ∥m∥0

|θpr| = (1− s) (9)

where EOOD denotes OOD evaluation, ∥∥0 is the L0

norm and |θpr| is the total number of parameters in
θpr. This goal is achieved by searching the optimal
m and θft in model training and compression.

Eq. 9 only specifies the overall sparsity. In this
work, we also explore a finer-grained control over
sparsity, which allocates different sparsity to differ-
ent modules of lxmert, given that the overall spar-
sity is satisfied. Concretely, we consider three mod-
ules from different modalities, i.e., the language
module, the visual module and the cross-modality
module. The constraint in the optimization prob-
lem is then rewritten as3:

s.t.
∥mLan∥0
|θLan|

= (1− sL),
∥mV is∥0
|θV is|

= (1− sR),
∥mX∥0
|θXenc |

= (1− sX),

sL ·
|θLan|
|θpr|

+ sR ·
|θV is|
|θpr|

+ sX ·
|θXenc |
|θpr|

= s

(10)
where θLan = θLEnc

∪{Wemb}, θV is = θREnc
∪

{Wvis-fc} and θXEnc
are model parameters of

2We use the same pb in our implementation of LMH, RUBi
and LPF. More details of LMH can be found in App. B.3

3For simplicity, the pooler layer’s parameters(0.5M) are
not included in eq. 10. We directly set it to the target sparsity
s.

lxmert(bce)+mask train(bce)

lxmert(bce)+mask train(lmh)

lxmert(bce)+OMP+bce ft

lxmert(bce)+OMP+lmh ft

full lxmert(bce

lxmert(lmh)+mask train(bce)

lxmert(lmh)+mask train(lmh)

lxmert(lmh)+OMP+bce ft

lxmert(lmh)+OMP+lmh ft

full lxmert(bce)

full lxmert(lmh)

Figure 2: Results of subnetworks from the BCE fine-tuned lxmert (left) and from the LMH fine-tuned lxmert (right)
on VQA-CP v2. “lxmert(bce/lmh)" denotes full model fine-tuning in Stage1, “mask train(bce/lmh)" and “OMP"
denote pruning in Stage2. “bce/lmh ft" denotes further fine-tuning in Stage3. “Gap" denotes the improvement of
mask train(bce/lmh) over full lxmert(bce/lmh). The shadowed areas denote standard deviations. These abbreviations
are used throughout this paper. Detailed performance on three question types is shown in App. C.1

the language module, visual module and cross-
modality encoder, respectively. mLan, mV is and
mX are the binary masks for the three modules,
respectively. sL, sR and sX are the target sparsity
levels for the three modules, respectively.

If not otherwise specified, we set the sparsity of
every weight matrix to target sparsity. For exam-
ple, if s = 70% and there is no modality-specific
constraint, then all weight matrices are at 70%
(uniform sparsity). If sL = 50%, then all weight
matrices in θLan are at 50% sparsity, while sR and
sX could be different (modality-specific sparsity).

2.5 Training and Compression Pipeline
We define two notations: FL(f(θ)) denotes
training f(θ) using loss L ∈ {Lbce,Llmh}.
Pp
L(f(θ)) denotes pruning f(θ) using method

p ∈ {OMP,mask train} and loss L (if applicable),
which outputs a pruning mask m. A typical train-
ing and compression pipeline involves three stages:

Stage1: Full Model Fine-tuning. The pre-
trained lxmert f(θpt) is fine-tuned using loss L,
which produces f(θft) = FL(f(θ)).

Stage2: Model Compression. The fine-tuned
lxmert f(θft) is compressed and we get the sub-
network f (m⊙ θft), where m = Pp

L(f(θft)).
Stage3: Further Fine-tuning (optional). The

subnetwork f(m⊙ θft) is further fine-tuned using
loss L′, and gets f(m⊙θ

′
ft) = FL′ (f(m⊙θft)).

3 Experiments

In this section, we mainly investigate three ques-
tions: (1) How does compression affect lxmert’s
OOD generalization ability? (2) How to design
the training and pruning pipeline to achieve a good
sparsity-performance trade-off? (3) How to assign
sparsity to different modality-specific modules?

3.1 Datasets, Model and Implementation

We conduct experiments on the OOD benchmarks
VQA-CP v2 (Agrawal et al., 2018) and VQA-VS
(Si et al., 2022b) that evaluate the robustness of
VQA systems, with the accuracy-based evaluation
metric (Antol et al., 2015). A more detailed discus-
sion of the difference between the two datasets is
shown in Sec. 3.5. We thoroughly study the above
three questions on VQA-CP-v2, which is widely
used in the literature on debiasing VQA systems
(refer to Sec. 3.2, 3.3 and 3.4). Then, based on the
findings, we further explore the more challenging
VQA-VS (Si et al., 2022b) (refer to Sec. 3.5). For
VLP, we adopt the lxmert-base-uncased model (Tan
and Bansal, 2019) released by huggingface (Wolf
et al., 2020). All the results are averaged over 4
random seeds. More information of the model and
implementation details are shown in App. B.4.

3.2 Effect of Compression on OOD Accuracy

Subnetworks from BCE Fine-tuned lxmert.
We compress the BCE fine-tuned lxmert using
OMP and mask training and introduce either Lbce
or Llmh in the pruning (for mask training) or fur-
ther fine-tuning process (for OMP).

The results are shown in the upper row of Fig.
2. We can derive several observations: 1) When
no debiasing methods are used, the subnetworks
of “mask train(bce)" and “OMP + bce ft" improve
over the full lxmert by 1.35% ∼ 2.79%, even at
up to 70% sparsity. This implies that lxmert is
overparameterized and pruning may remove some
parameters related to the bias features. 2) “mask
train(lmh)" and “OMP + lmh ft" achieve further per-
formance boost, exceeding full lxmert by a large
margin (11.05% ∼ 14.02%). Since mask train-
ing does not change the value of parameters, the

0.0 0.2 0.4 0.6 0.8
Sparsity

50

52

54

56

58

60

62

64

Ov
er

al
l A

cc

lxmert(lmh) + mask train(lmh)
lxmert(lpf) + mask train(lpf)
lxmert(rubi) + mask train(rubi)
full lxmert(lmh)
full lxmert(lpf)
full lxmert(rubi)

Figure 3: Results of lxmert subnet-
works fine-tuned with different de-
biasing methods on VQA-CP v2.

Figure 4: Results of lxmert subnetworks
obtained from different training and com-
pressing pipelines on VQA-CP v2. “ft"
means further fine-tuning the subnet-
works in Stage3.

0.0 0.2 0.4 0.6 0.8
Sparsity

47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

Ov
er

al
l A

cc

lxmert(lmh) + mask train(lmh)
lxmert(lpf) + mask train(lmh)
lxmert(rubi) + mask train(lmh)
lxmert(lmh) + mask train(lpf)
lxmert(lmh) + mask train(rubi)
full lxmert(lmh)
full lxmert(lpf)
full lxmert(rubi)

Figure 5: Results of lxmert subnet-
works that adopt different debiasing
methods in Stage1 and Stage2 on
VQA-CP v2.

results of “mask train (lmh)" implicate that the bi-
ased “full lxmert(bce)" already contains sparse and
robust subnetworks (across 10% ∼ 90% sparsity).
3) “mask train" outperforms “OMP" in general,
which suggests that directly optimizing the subnet-
work structure is more effective than debiasing a
compressed subnetwork by further fine-tuning.

Subnetworks from lxmert Fine-tuned with De-
biasing Methods. From the lower row of Fig.
2, we can find that: 1) For the full lxmert, the
OOD performance is obviously promoted with the
LMH debiasing method. 2) Unlike lxmert(bce)
subnetworks, lxmert(lmh) subnetworks do not ex-
hibit significant improvement over the full model.
However, the “mask train(lmh)" and “OMP + lmh
ft" subnetworks, which preserve the lxmert(lmh)’s
performance at up to 50% sparsity, can serve as
an efficient alternative to the LMH fine-tuned full
lxmert. 3) “mask train(bce)" and “OMP + bce ft"
clearly underperform their lmh counterparts, which
suggests that it is important to use the debiasing
method in pruning and subnetwork further fine-
tuning even when the full model is already trained
with the debiasing method.

Fig. 3 compares the subnetworks fine-tuned with
LMH, LPF and RUBi. We find that: The subnet-
works found using LMH consistently outperform
those found by LPF and RUBi across different spar-
sity levels. Therefore, to save computing resources,
we mainly use the best performing LMH in the
following experiments and analysis.

3.3 Training and Compression Pipeline
In this section, we study the proper design of the
training and compression pipeline, under the basic
framework described in Sec. 2.5. Here we focus
on the mask training compression method, as it

has been shown to generally outperform OMP with
further fine-tuning. Our main observations can be
described from three perspectives:

First, it is recommended to introduce the de-
biasing loss across Stage1, Stage2 and (if appli-
cable) Stage3. The reason is three-fold: 1) As
shown by Fig. 4, the subnetworks at 10%, 30%
and 70% sparsity levels have better performance
when starting from lxmert(lmh), as compared with
the lxmert(bce). At 90% sparsity, “lxmert(lmh)
+ mask train(lmh)" underperforms “lxmert(bce) +
mask train(lmh)" (see App. C.3 for reasons), but
the Accuracy gap is small. Therefore, adopting
Llmh in Stage1 is a better choice than Lbce, espe-
cially when the subnetworks are not at extremely
high sparsity. 2) As we discussed in the previous
section, introducing Llmh in the mask training pro-
cess (Stage2) substantially outperforms Lbce for
both lxmert(lmh) and lxmert(bce). 3) When both
Stage1 and Stage2 adopt the BCE loss, further fine-
tuning the subnetworks with LMH loss in Stage3
can significantly boost the performance, as shown
by the results of “lxmert(bce) + mask train(bce)"
w/o ft and w/ lmh ft in Fig. 4.

Second, Stage3 is unnecessary if it adopts
the same training objective as Stage2. Com-
paring the blue and red (or cyan) bars in Fig.
4, we can see that further fine-tuning with the
same training objective generally degrades the
performance of “lxmert(lmh) + mask train(lmh)",
“lxmert(bce) + mask train(lmh)" and “lxmert(bce) +
mask train(bce)". This phenomenon suggests that
Stage3 can be eliminated to save computation cost.

Third, it is recommended to use different de-
biasing methods in the two stages and leave the
better one to Stage2. As shown in Fig. 5, al-
though LPF and RUBi are less effective in debi-

0.0 0.2 0.4 0.6 0.8
Language Module Sparsity

48

50

52

54

56

58

60

62

64
Ov

er
al

l (
Ac

c)

0.0 0.2 0.4 0.6 0.8
Visual Module Sparsity

47.5

50.0

52.5

55.0

57.5

60.0

62.5

Ov
er

al
l (

Ac
c)

0.0 0.2 0.4 0.6 0.8
Cross-modality Module Sparsity

48

50

52

54

56

58

60

62

64

Ov
er

al
l (

Ac
c) lxmert(bce) + mask train(bce)

lxmert(bce) + mask train(lmh)
lxmert(lmh) + mask train(lmh)
full lxmert(bce)
full lxmert(lmh)

Figure 6: Results of subnetworks obtained by pruning the language (left), visual (middle) and cross-modality (right)
modules. When pruning one module, the other two modules remain unpruned.

0.0 0.2 0.4 0.6 0.8
Sparsity

46

48

50

52

54

56

Ov
er

al
l A

cc

lxmert(lmh) + mask train(lmh)
lxmert(lpf) + mask train(lpf)
lxmert(lpf) + mask train(lmh)
lxmert(lmh) + mask train(lpf)
full lxmert(lmh)
full lxmert(lpf)

Figure 7: Results of visualBERT subnetworks that adopt
different debiasing methods in Stage1 and Stage2 on
VQA-CP v2.

asing the full model than LMH, “lpf+lmh"4 and
“rubi+lmh" are superior to “lmh+lmh". In con-
trast, when reversing the debiasing methods used in
the two stages, “lmh+rubi" and “lmh+lpf" exhibit
worse performance, suggesting that the better debi-
asing method should be used in Stage2. Addition-
ally, “lpf+lmh" is superior to “rubi+lmh", which
indicates that using a better debiasing objective in
Stage1 is helpful when we have multiple choices
different from the Stage2 objective. We also exper-
iment with another VLP model, visualBERT (Li
et al., 2019), and find that “lpf+lmh" still performs
the best as in Fig. 7.

3.4 Modality-specific Sparsity

Pruning Each Single Modality-specific Module.
Since lxmert uses different modules to encode the
multi-modal data, it is intuitive to hypothesize that
different modules of lxmert may capture the lan-
guage bias to different extents. To validate this
hypothesis, we compress the language, visual and
cross-modality modules, respectively. As presented

4“lpf+lmh" denotes “lxmert(lpf) + mask train(lmh)"

by Fig. 6, the compression of different modality-
specific modules indeed exhibits different effects.

When the full model is lxmert(bce) (the orange
and cyan lines), compressing the language or cross-
modality module has a positive effect on the OOD
performance, and the accuracy generally improves
as sparsity increases from 10% to 90%. By contrast,
compressing the visual module results in inferior re-
sults than compressing the other two modules, even
if the number of remaining parameters is larger
(note that the visual module has a smaller number
of parameters than the other two modules). These
results suggest that, for the biased lxmert(bce), the
language and cross-modality modules capture more
training set bias than the visual module, which sup-
ports the above hypothesis.

In terms of “lxmert(lmh) + mask train(lmh)"
(the red line), although compression does not lead
to performance improvement like compressing
lxmert(bce), the results also demonstrate that the
language and cross-modality modules are more
compressible than the visual module.

Searching for Appropriate Modality-specific
Sparsity. Motivated by the above findings, we
search for appropriate modality-specific sparsity by
performing mask training with a variety of sparsity
configurations (see App. C.4) for the three mod-
ules while keeping the overall sparsity the same.

As we can see in Fig. 8, at 50% and 70% overall
sparsity, the configuration that achieves the best re-
sult assigns slightly higher sparsity to the language
and cross-modality modules and significantly lower
sparsity to the visual module, as compared with uni-
form sparsity. This phenomenon is in accordance
with the findings in Fig. 6, implicating that com-
pressing the three modules uniformly is suboptimal
(at 50% ∼ 70% sparsity) and the language and
cross-modality modules should be compressed to

Sparsity = 70% Sparsity = 90%Sparsity = 50%

(𝑠!= 60%, 𝑠" = 4%, 𝑠# = 60%) (𝑠!= 80%, 𝑠" = 35%, 𝑠# = 75%) (𝑠!= 90%, 𝑠" = 94%, 𝑠# = 88%)

Figure 8: Results of subnetworks pruned by different sparsity configurations on
VQA-CP v2 using “lxmert(lmh) + mask train(lmh)". Red and blue lines denote
the coordinates of the data point with uniform sparsity across three modules and
the data point performing the best (the specific configuration is shown below
each plot) respectively. The overall sparsities are shown in the titles.

Figure 9: Comparison of differ-
ent sparsity assignments on VQA-
CP v2. “Gap" is the gap between
“uniform sparsity" and “modality-
specific sparsity".

0.0 0.2 0.4 0.6 0.8

67

68

69

70

71

72

(ID
 A

cc
)

lxmert(bce) + mask train(bce)

all
Language Module
Visual Module
Cross-Modality Module
full lxmert(bce)

0.0 0.2 0.4 0.6 0.8

48

49

50

51

52

53

54

(O
OD

-m
ea

n
Ac

c)

lxmert(bce) + mask train(bce)

0.4 0.6

53.4

53.6

53.8

54.0

54.2

0.0 0.2 0.4 0.6 0.8
58

60

62

64

66

68

70

72

(ID
 A

cc
)

lxmert(lmh) + mask train(lmh)

0.2 0.4 0.6
71

72

73

all
Language Module
Visual Module
Cross-Modality Module
full lxmert(lmh)

0.0 0.2 0.4 0.6 0.8
46

48

50

52

54

(O
OD

-m
ea

n
Ac

c)

lxmert(lmh) + mask train(lmh)

0.2 0.4 0.6

54.0

54.5

55.0

Figure 10: Results of subnetworks pruned using BCE
(upper) and LMH (lower) on VQA-VS. We report ID
and OOD-mean accuracy here. Results on specific OOD
test sets are deferred to App. D.1 Different lines denote
subnetworks obtained by pruning all, language, visual
and cross-modality modules respectively.

a larger extent than the visual module. At 90%
sparsity, the sparsity configuration’s comfort zone
is in the proximity of the uniform point. Further
increasing the sparsity of the language and cross-
modality modules result in performance decline or
only minor improvements. This is because 90%
sparsity already approaches the compression upper
bound, even for the language and cross-modality
modules.

Fig. 9 shows a more direct comparison between
the uniform and modality-specific sparsity. We
also introduce another baseline “matrix-specific
sparsity", which ranks all the model parameters, in-
stead of the parameters in each weight matrix. This
also results in different sparsity levels for different
weight matrices, while there is no explicit control
over the modality-specific sparsity. We can see that

Figure 11: Comparison of “lxmert(lmh) + mask
train(lmh)" subnetworks with uniform and modality-
specific sparsity on VQA-VS. Results on specific OOD
test sets can be found in App. D.2

modality-specific sparsity achieves the best results
across the three overall sparsity levels from 50%
to 90%, demonstrating its superiority. Besides, the
results also suggest that, although simply allowing
different matrices to have different sparsity is more
flexible than uniform sparsity, it is not conducive
to the final performance.

3.5 Exploration on VQA-VS

VQA-CP v2 is widely used in the literature of debi-
asing VQA systems. However, it only considers the
question-type-based bias. To account for other po-
tential biases, VQA-VS constructs several types of
OOD test sets according to different shortcuts (e.g.,
keyword and key object). As a result, VQA-VS is
more challenging and allows us to analyze the re-
sults on different biases. In this section, we search
sparse and robust lxmert subnetworks in VQA-VS
based on the major findings obtained from VQA-
CP v2.

The Effect of Compression. Fig. 10 shows the
results of full lxmert and subnetworks on VQA-VS.
We can see that: 1) When using the BCE objective,
we can identify sparse “bce+bce" subnetworks that
are comparable with full lxmert (bce). 2) Different
from VQA-CP v2, full lxmert (lmh) only slightly

Methods Backbone Params. All Y/N Num Other
RUBi (Cadene et al., 2019) S-MRL ∼60M 47.11 68.65 20.28 43.18
VGQE (Kv and Mittal, 2020) S-MRL ∼60M 50.11 66.35 27.08 46.77
LPF (Liang et al., 2021b) S-MRL ∼60M 53.38 88.06 25.00 42.99
CF-VQA (Niu et al., 2021) S-MRL ∼60M 55.05 90.61 21.50 45.61
AdvReg. (Ramakrishnan et al., 2018) UpDn 35M 41.17 65.49 15.48 35.48
GRL (Grand and Belinkov, 2019) UpDn 35M 42.33 59.74 14.78 40.76
RUBi (Cadene et al., 2019) UpDn 35M 44.23 67.05 17.48 39.61
Loss-Rescaling (Guo et al., 2021) UpDn 35M 47.09 68.42 21.71 42.88
VGQE (Kv and Mittal, 2020) UpDn 35M 48.75 - - -
DLR (Jing et al., 2020) UpDn 35M 48.87 70.99 18.72 45.57
LMH (Clark et al., 2019) UpDn 35M 52.01 72.58 31.12 46.97
CF-VQA (Niu et al., 2021) UpDn 35M 53.55 91.15 13.03 44.97
LPF (Liang et al., 2021b) UpDn 35M 55.34 88.61 23.78 46.57
LMH+MMBS (Si et al., 2022a) UpDn 35M 56.44 76.00 43.77 49.67
CGE (Han et al., 2021) UpDn 35M 57.32 87.04 27.75 49.59
BCE full lxmert 202M 48.01 48.24 20.04 55.57
LPF (Clark et al., 2019) full lxmert 202M 62.68 87.57 51.98 52.58
LMH (Clark et al., 2019) full lxmert 202M 63.55 81.84 55.00 56.32
lpf+lmh (Ours) 10% lxmert 24M 59.05 75.08 57.12 51.17
lpf+lmh (Ours) 30% lxmert 64M 64.02 79.99 63.38 56.35
lpf+lmh (Ours) 50% lxmert 103M 66.07 84.70 63.71 56.95
CE full mPLUG 350M 57.05 - - -
LPF (Clark et al., 2019) full mPLUG 350M 65.24 - - -
ce+lpf (Ours) ∼50% mPLUG 182M 62.53 - - -
lpf+lpf (Ours) ∼50% mPLUG 182M 63.66 - - -

Table 1: Comparison with debiasing SoTAs on VQA-CP
v2. “lpf+lmh" denotes “lxmert(lpf) + mask train(lmh)"
subnetworks with modality-specific sparsity. “10%
lxmert" denotes keeping 10% parameters of lxmert. The
subnetworks from mPLUG are pruned using uniform
sparsity.

outperforms full lxmert (bce) in the OOD setting
of VQA-VS, and underperforms in the ID setting.
3) The “lmh+lmh"5 subnetworks improve over full
lxmert (lmh) on both ID and OOD test sets, across
a wide range of sparsity levels, suggesting that
lxmert can also be simultaneously compressed and
debiased on VQA-VS.

The Effect of Modality-specific Sparsity. Fig.
10 also shows that compressing different modality-
specific modules has different effect on VQA-VS,
as in VQA-CP v2. The language module is the
most compressible while compressing the visual
module results in the sharpest performance decline.
To compare modality-specific sparsity and uniform
sparsity, we directly inherit the sparsity configura-
tion selected in Sec. 3.4 on VQA-CP v2. Fig. 11
shows that modality-specific sparsity consistently
outperform uniform sparsity, except for 90% spar-
sity in the ID setting.

3.6 Comparison with Debiasing SoTAs

In this section, we will compare the best training
and compression solutions identified in the pre-
vious sections with the current SoTA debiasing
methods.

Tab. 1 shows the results on VQA-CP v2. We find
that: 1) The accuracy of our methods (10% lxmert
and 30% lxmert) beats the previous non-VLP debi-

5Since most debiasing methods (e.g., LPF and RUBi) fail
on VQA-VS (see Tab.2), we only use LMH in VQA-VS. How-
ever, combining LMH and other effective debiasing methods
in different stages may further outperform “lmh+lmh", as
found in VQA-CP v2. We leave it for future work.

Methods Backbone Params. ID OOD-mean
Cross Entropy S-MRL ∼60M 62.03 42.65
RUBi (Cadene et al., 2019) S-MRL ∼60M 59.09 38.73
Cross Entropy UpDn 35M 65.20 46.80
LPF (Liang et al., 2021b) UpDn 35M 54.72 43.31
LMH (Clark et al., 2019) UpDn 35M 56.89 45.85
BCE full lxmert 202M 72.24 53.92
RUBi (Cadene et al., 2019) full lxmert 202M 69.49 50.07
LPF (Liang et al., 2021b) full lxmert 202M 68.48 50.83
LMH (Clark et al., 2019) full lxmert 202M 70.22 54.41
bce+bce (Ours) 10% lxmert 24M 67.28 48.77
bce+bce (Ours) 30% lxmert 64M 70.89 53.06
bce+bce (Ours) 50% lxmert 103M 71.33 53.42
bce+bce (Ours) 70% lxmert 143M 71.85 53.51
bce+bce (Ours) 90% lxmert 183M 71.85 53.87
lmh+lmh (Ours) 10% lxmert 24M 58.42 46.39
lmh+lmh (Ours) 30% lxmert 64M 69.34 53.59
lmh+lmh (Ours) 50% lxmert 103M 70.66 54.31
lmh+lmh (Ours) 70% lxmert 143M 71.56 54.34
lmh+lmh (Ours) 90% lxmert 183M 71.97 54.75

Table 2: Comparison with debiasing SoTAs on VQA-
VS. The subnetworks are pruned using modality-
specific sparsity. “bce+bce" and “lmh+lmh" are defined
in the same way as Tab. 1.

asing SoTAs with 1.55% and 5.79%, respectively,
with fewer or similar amounts of parameters, estab-
lishing new state-of-the-arts. 2) Our methods (30%
lxmert and 50% lxmert) outperform the debiased
full lxmert, even with much fewer parameters. 3)
Full lxmert(lpf) and full lxmert(lmh) are good at
different question types, which can partly explain
why combining them in different stages produces
more robust subnetworks.

We also add experiments on a more recent VLP
mPLUG (Li et al., 2022). We adopt the base
version of mPLUG, fine-tune it on the VQA-CP
v2 training set and then conduct pruning using
mask training. Since mPLUG formulas VQA as
a text generation task, we adopt the LPF debias-
ing method. Note that LMH and RUBi cannot be
directly applied to debias text generation models,
because they are designed for classification loss
over a fixed number of classes. As shown in the
bottom rows of Tab. 1, the mPLUG trained with
standard cross-entropy (CE) loss can be simulta-
neously compressed (to 50%) and debiased (+5.48
Acc). The mPLUG trained with LPF debiasing
loss can also be compressed to 50% with a slight
accuracy decline. These results demonstrate that
the findings and techniques present in our work can
be generalized to more advanced VLPs.

Results on VQA-VS are presented in Tab. 2.
We can observe that: 1) Our methods “bce+bce"
10% lxmert and “lmh+lmh" 30% lxmert outper-
form all the non-VLP debiasing methods in both
ID and OOD settings, with similar or fewer pa-
rameters. 2) Except for LMH, other debiasing
methods underperform BCE in OOD-mean. LMH
improves the OOD accuracy at the cost of ID ac-
curacy decline. 3) The “lmh+lmh" subnetworks

(even with 50% remaining parameters) obviously
improve the ID performance of lxmert (lmh) and re-
tain comparable OOD performance. 4) Compared
with “bce+bce", the OOD advantage of “lmh+lmh"
outweighs its ID disadvantage at 50% to 90% pa-
rameters. With fewer remaining parameters, the
overall performance of “bce+bce" is superior.

4 Conclusion

To facilitate the application of VLP-based VQA
systems, this paper presents the first joint study
on the compression and debiasing problems of
VLP for the VQA task. Through extensive ex-
periments with three VLPs (i.e., lxmert, visual-
BERT and mPLUG), we analyze the impact of
compression on the OOD generalization ability.
We present a comprehensive study on the design of
the training and compression pipeline for a good
sparsity-performance trade-off, and provide some
valuable findings about the assignment of sparsity
to different modality-specific modules. The com-
pressed lxmert subnetworks in this paper outper-
form the SoTA debiasing methods with fewer or
similar model parameter counts.

Limitations

Although we have empirically verified that the
adoption of modality-specific sparsity is beneficial
for the search for more robust subnetworks, our
work still does not provide a solution on how to
determine the optimal sparsity assignment effec-
tively and efficiently. We invite follow-up studies
to further address it in future work.

Acknowledgement

This work was supported by National Natural Sci-
ence Foundation of China (No. 61976207) and
National Social Science Foundation of China (No.
21AZD145).

References
Aishwarya Agrawal, Dhruv Batra, and Devi Parikh.

2016. Analyzing the behavior of visual question an-
swering models. arXiv preprint arXiv:1606.07356.

Aishwarya Agrawal, Dhruv Batra, Devi Parikh, and
Aniruddha Kembhavi. 2018. Don’t just assume; look
and answer: Overcoming priors for visual question
answering. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
4971–4980.

Peter Anderson, Xiaodong He, Chris Buehler, Damien
Teney, Mark Johnson, Stephen Gould, and Lei Zhang.
2018. Bottom-up and top-down attention for image
captioning and visual question answering. In Pro-
ceedings of the IEEE conference on computer vision
and pattern recognition, pages 6077–6086.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C Lawrence Zitnick, and
Devi Parikh. 2015. Vqa: Visual question answering.
In Proceedings of the IEEE international conference
on computer vision, pages 2425–2433.

Yoshua Bengio, Nicholas Léonard, and Aaron C.
Courville. 2013. Estimating or propagating gradients
through stochastic neurons for conditional computa-
tion. CoRR, abs/1308.3432.

Remi Cadene, Corentin Dancette, Matthieu Cord, Devi
Parikh, et al. 2019. Rubi: Reducing unimodal biases
for visual question answering. Advances in neural
information processing systems, 32:841–852.

Long Chen, Xin Yan, Jun Xiao, Hanwang Zhang, Shil-
iang Pu, and Yueting Zhuang. 2020a. Counterfactual
samples synthesizing for robust visual question an-
swering. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
pages 10800–10809.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia
Liu, Yang Zhang, Zhangyang Wang, and Michael
Carbin. 2020b. The lottery ticket hypothesis for pre-
trained BERT networks. In NeurIPS, pages 15834–
15846.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakr-
ishna Vedantam, Saurabh Gupta, Piotr Dollár, and
C Lawrence Zitnick. 2015. Microsoft coco captions:
Data collection and evaluation server. arXiv preprint
arXiv:1504.00325.

Christopher Clark, Mark Yatskar, and Luke Zettlemoyer.
2019. Don’t take the easy way out: Ensemble based
methods for avoiding known dataset biases. arXiv
preprint arXiv:1909.03683.

Yang Ding, Jing Yu, Bang Liu, Yue Hu, Mingxin Cui,
and Qi Wu. 2022. Mukea: Multimodal knowledge
extraction and accumulation for knowledge-based
visual question answering. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 5089–5098.

Zi-Yi Dou, Yichong Xu, Zhe Gan, Jianfeng Wang,
Shuohang Wang, Lijuan Wang, Chenguang Zhu,
Pengchuan Zhang, Lu Yuan, Nanyun Peng, et al.
2022. An empirical study of training end-to-end
vision-and-language transformers. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 18166–18176.

Mengnan Du, Subhabrata Mukherjee, Yu Cheng, Milad
Shokouhi, Xia Hu, and Ahmed Hassan Awadallah.
2021. What do compressed large language models
forget? robustness challenges in model compression.
CoRR, abs/2110.08419.

Zhiyuan Fang, Jianfeng Wang, Xiaowei Hu, Lijuan
Wang, Yezhou Yang, and Zicheng Liu. 2021. Com-
pressing visual-linguistic model via knowledge dis-
tillation. In ICCV, pages 1408–1418. IEEE.

Jonathan Frankle and Michael Carbin. 2019. The lottery
ticket hypothesis: Finding sparse, trainable neural
networks. In ICLR. OpenReview.net.

Yonggan Fu, Qixuan Yu, Yang Zhang, Shang Wu,
Xu Ouyang, David D. Cox, and Yingyan Lin. 2021.
Drawing robust scratch tickets: Subnetworks with in-
born robustness are found within randomly initialized
networks. In NeurIPS, pages 13059–13072.

Trevor Gale, Erich Elsen, and Sara Hooker. 2019. The
state of sparsity in deep neural networks. CoRR,
abs/1902.09574.

Zhe Gan, Yen-Chun Chen, Linjie Li, Tianlong Chen,
Yu Cheng, Shuohang Wang, Jingjing Liu, Lijuan
Wang, and Zicheng Liu. 2022. Playing lottery tickets
with vision and language. In AAAI, pages 652–660.
AAAI Press.

Tejas Gokhale, Pratyay Banerjee, Chitta Baral, and
Yezhou Yang. 2020. Mutant: A training paradigm for
out-of-distribution generalization in visual question
answering. arXiv preprint arXiv:2009.08566.

Mitchell A. Gordon, Kevin Duh, and Nicholas An-
drews. 2020. Compressing BERT: studying the ef-
fects of weight pruning on transfer learning. In
RepL4NLP@ACL, pages 143–155.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv
Batra, and Devi Parikh. 2017. Making the v in vqa
matter: Elevating the role of image understanding
in visual question answering. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 6904–6913.

Gabriel Grand and Yonatan Belinkov. 2019. Adver-
sarial regularization for visual question answering:
Strengths, shortcomings, and side effects. NAACL
HLT 2019, page 1.

Shupeng Gui, Haotao Wang, Haichuan Yang, Chen Yu,
Zhangyang Wang, and Ji Liu. 2019. Model compres-
sion with adversarial robustness: A unified optimiza-
tion framework. In NeurIPS, pages 1283–1294.

Yangyang Guo, Liqiang Nie, Zhiyong Cheng, Qi Tian,
and Min Zhang. 2021. Loss re-scaling vqa: re-
visiting the language prior problem from a class-
imbalance view. IEEE Transactions on Image Pro-
cessing, 31:227–238.

Song Han, Jeff Pool, John Tran, and William Dally.
2015. Learning both weights and connections for
efficient neural network. In Advances in Neural In-
formation Processing Systems 28, pages 1135–1143.
Curran Associates, Inc.

Xinzhe Han, Shuhui Wang, Chi Su, Qingming Huang,
and Qi Tian. 2021. Greedy gradient ensemble for ro-
bust visual question answering. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 1584–1593.

Geoffrey E. Hinton. 2002. Training products of experts
by minimizing contrastive divergence. Neural Com-
put., 14(8):1771–1800.

Robin Jia and Percy Liang. 2017. Adversarial examples
for evaluating reading comprehension systems. arXiv
preprint arXiv:1707.07328.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
Tinybert: Distilling BERT for natural language under-
standing. In EMNLP (Findings), pages 4163–4174.

Chenchen Jing, Yuwei Wu, Xiaoxun Zhang, Yunde Jia,
and Qi Wu. 2020. Overcoming language priors in
vqa via decomposed linguistic representations. In
Proceedings of the AAAI Conference on Artificial
Intelligence, pages 11181–11188.

Gouthaman Kv and Anurag Mittal. 2020. Reduc-
ing language biases in visual question answering
with visually-grounded question encoder. In Euro-
pean Conference on Computer Vision, pages 18–34.
Springer.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In ICLR. Open-
Review.net.

Chenliang Li, Haiyang Xu, Junfeng Tian, Wei Wang,
Ming Yan, Bin Bi, Jiabo Ye, Hehong Chen, Guo-
hai Xu, Zheng Cao, Ji Zhang, Songfang Huang, Fei
Huang, Jingren Zhou, and Luo Si. 2022. mplug:
Effective and efficient vision-language learning by
cross-modal skip-connections.

Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare,
Shafiq Joty, Caiming Xiong, and Steven Chu Hong
Hoi. 2021. Align before fuse: Vision and language
representation learning with momentum distillation.
Advances in neural information processing systems,
34:9694–9705.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui
Hsieh, and Kai-Wei Chang. 2019. Visualbert: A sim-
ple and performant baseline for vision and language.
arXiv preprint arXiv:1908.03557.

Wei Li, Can Gao, Guocheng Niu, Xinyan Xiao, Hao
Liu, Jiachen Liu, Hua Wu, and Haifeng Wang.
2020a. Unimo: Towards unified-modal understand-
ing and generation via cross-modal contrastive learn-
ing. arXiv preprint arXiv:2012.15409.

Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt
Keutzer, Dan Klein, and Joseph E. Gonzalez. 2020b.
Train large, then compress: Rethinking model size
for efficient training and inference of transformers.
CoRR, abs/2002.11794.

https://doi.org/10.1162/089976602760128018
https://doi.org/10.1162/089976602760128018
http://arxiv.org/abs/2205.12005
http://arxiv.org/abs/2205.12005
http://arxiv.org/abs/2205.12005

Chen Liang, Simiao Zuo, Minshuo Chen, Haoming
Jiang, Xiaodong Liu, Pengcheng He, Tuo Zhao, and
Weizhu Chen. 2021a. Super tickets in pre-trained
language models: From model compression to im-
proving generalization. In ACL/IJCNLP, pages 6524–
6538. Association for Computational Linguistics.

Zujie Liang, Haifeng Hu, and Jiaying Zhu. 2021b. Lpf:
A language-prior feedback objective function for de-
biased visual question answering. arXiv preprint
arXiv:2105.14300.

Zujie Liang, Weitao Jiang, Haifeng Hu, and Jiaying
Zhu. 2020. Learning to contrast the counterfactual
samples for robust visual question answering. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3285–3292.

Yuanxin Liu, Zheng Lin, and Fengcheng Yuan. 2021.
ROSITA: refined BERT compression with integrated
techniques. In AAAI, pages 8715–8722. AAAI Press.

Yuanxin Liu, Fandong Meng, Zheng Lin, Peng Fu,
Yanan Cao, Weiping Wang, and Jie Zhou. 2022.
Learning to win lottery tickets in BERT transfer via
task-agnostic mask training. CoRR, abs/2204.11218.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Christos Louizos, Max Welling, and Diederik P. Kingma.
2018. Learning sparse neural networks through l_0
regularization. In ICLR (Poster). OpenReview.net.

Rabeeh Karimi Mahabadi and James Henderson. 2019.
Simple but effective techniques to reduce biases.
arXiv preprint arXiv:1909.06321, 9.

Arun Mallya, Dillon Davis, and Svetlana Lazebnik.
2018. Piggyback: Adapting a single network to mul-
tiple tasks by learning to mask weights. In ECCV,
volume 11208 of Lecture Notes in Computer Science,
pages 72–88. Springer.

Varun Manjunatha, Nirat Saini, and Larry S Davis. 2019.
Explicit bias discovery in visual question answering
models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
9562–9571.

Kenneth Marino, Mohammad Rastegari, Ali Farhadi,
and Roozbeh Mottaghi. 2019. Ok-vqa: A visual ques-
tion answering benchmark requiring external knowl-
edge. In Proceedings of the IEEE/cvf conference
on computer vision and pattern recognition, pages
3195–3204.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019. Right
for the wrong reasons: Diagnosing syntactic heuris-
tics in natural language inference. In ACL, pages
3428–3448. Association for Computational Linguis-
tics.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In NeurIPS,
pages 14014–14024.

Yulei Niu, Kaihua Tang, Hanwang Zhang, Zhiwu Lu,
Xian-Sheng Hua, and Ji-Rong Wen. 2021. Counter-
factual vqa: A cause-effect look at language bias. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 12700–
12710.

Sai Prasanna, Anna Rogers, and Anna Rumshisky. 2020.
When BERT plays the lottery, all tickets are winning.
In EMNLP, pages 3208–3229.

Evani Radiya-Dixit and Xin Wang. 2020. How fine can
fine-tuning be? learning efficient language models.
In AISTATS, volume 108 of Proceedings of Machine
Learning Research, pages 2435–2443. PMLR.

Sainandan Ramakrishnan, Aishwarya Agrawal, and Ste-
fan Lee. 2018. Overcoming language priors in visual
question answering with adversarial regularization.
arXiv preprint arXiv:1810.03649.

Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kem-
bhavi, Ali Farhadi, and Mohammad Rastegari. 2020.
What’s hidden in a randomly weighted neural net-
work? In CVPR, pages 11890–11899. Computer
Vision Foundation / IEEE.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. 2015. Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances
in neural information processing systems, 28:91–99.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Victor Sanh, Thomas Wolf, and Alexander M. Rush.
2020. Movement pruning: Adaptive sparsity by fine-
tuning. In NeurIPS, pages 20378–20389.

Tal Schuster, Darsh J. Shah, Yun Jie Serene Yeo,
Daniel Filizzola, Enrico Santus, and Regina Barzilay.
2019. Towards debiasing fact verification models. In
EMNLP/IJCNLP, pages 3417–3423. Association for
Computational Linguistics.

Vikash Sehwag, Shiqi Wang, Prateek Mittal, and Suman
Jana. 2020. HYDRA: pruning adversarially robust
neural networks. In NeurIPS.

Qingyi Si, Zheng Lin, Mingyu Zheng, Peng Fu, and
Weiping Wang. 2021. Check it again: Progressive vi-
sual question answering via visual entailment. arXiv
preprint arXiv:2106.04605.

Qingyi Si, Yuanxin Liu, Fandong Meng, Zheng Lin,
Peng Fu, Yanan Cao, Weiping Wang, and Jie Zhou.
2022a. Towards robust visual question answering:
Making the most of biased samples via contrastive
learning. ArXiv, abs/2210.04563.

Qingyi Si, Fandong Meng, Mingyu Zheng, Zheng Lin,
Yuanxin Liu, Peng Fu, Yanan Cao, Weiping Wang,
and Jie Zhou. 2022b. Language prior is not the only
shortcut: A benchmark for shortcut learning in vqa.
arXiv preprint arXiv:2210.04692.

Qingyi Si, Yuchen Mo, Zheng Lin, Huishan Ji, and
Weiping Wang. 2023. Combo of thinking and ob-
serving for outside-knowledge vqa. arXiv preprint
arXiv:2305.06407.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for BERT model com-
pression. In EMNLP/IJCNLP, pages 4322–4331.

Hao Tan and Mohit Bansal. 2019. Lxmert: Learning
cross-modality encoder representations from trans-
formers. arXiv preprint arXiv:1908.07490.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS, pages 5998–6008.

Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai
Bai, Zhikang Li, Jianxin Ma, Chang Zhou, Jingren
Zhou, and Hongxia Yang. 2022. Ofa: Unifying ar-
chitectures, tasks, and modalities through a simple
sequence-to-sequence learning framework. ICML.

Wenhui Wang, Hangbo Bao, Li Dong, and Furu Wei.
2021a. Vlmo: Unified vision-language pre-training
with mixture-of-modality-experts. arXiv preprint
arXiv:2111.02358.

Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai, Yu-
lia Tsvetkov, and Yuan Cao. 2021b. Simvlm: Simple
visual language model pretraining with weak super-
vision. arXiv preprint arXiv:2108.10904.

Zhiquan Wen, Guanghui Xu, Mingkui Tan, Qingyao
Wu, and Qi Wu. 2021. Debiased visual question
answering from feature and sample perspectives. Ad-
vances in Neural Information Processing Systems,
34:3784–3796.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online.

Canwen Xu, Wangchunshu Zhou, Tao Ge, Ke Xu, Ju-
lian J. McAuley, and Furu Wei. 2021. Beyond pre-
served accuracy: Evaluating loyalty and robustness
of BERT compression. In EMNLP (1), pages 10653–
10659. Association for Computational Linguistics.

Shaokai Ye, Xue Lin, Kaidi Xu, Sijia Liu, Hao Cheng,
Jan-Henrik Lambrechts, Huan Zhang, Aojun Zhou,
Kaisheng Ma, and Yanzhi Wang. 2019. Adversarial
robustness vs. model compression, or both? In ICCV,
pages 111–120. IEEE.

Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella,
Xiyang Dai, Jianfeng Gao, Houdong Hu, Xuedong
Huang, Boxin Li, Chunyuan Li, Ce Liu, Mengchen
Liu, Zicheng Liu, Yumao Lu, Yu Shi, Lijuan Wang,
Jianfeng Wang, Bin Xiao, Zhen Xiao, Jianwei Yang,
Michael Zeng, Luowei Zhou, and Pengchuan Zhang.
2021. Florence: A new foundation model for com-
puter vision. arXiv preprint arXiv:2111.11432.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8BERT: quantized 8bit BERT.
In EMC2@NeurIPS, pages 36–39. IEEE.

Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei
Yang, Lei Zhang, Lijuan Wang, Yejin Choi, and Jian-
feng Gao. 2021. Vinvl: Revisiting visual representa-
tions in vision-language models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5579–5588.

Wei Zhang, Lu Hou, Yichun Yin, Lifeng Shang, Xiao
Chen, Xin Jiang, and Qun Liu. 2020. Ternarybert:
Distillation-aware ultra-low bit BERT. In EMNLP,
pages 509–521. Association for Computational Lin-
guistics.

Yuan Zhang, Jason Baldridge, and Luheng He. 2019.
PAWS: paraphrase adversaries from word scrambling.
In NAACL-HLT, pages 1298–1308. Association for
Computational Linguistics.

Mengjie Zhao, Tao Lin, Fei Mi, Martin Jaggi, and Hin-
rich Schütze. 2020. Masking as an efficient alterna-
tive to finetuning for pretrained language models. In
EMNLP, pages 2226–2241.

A More Related Work

A.1 Overcoming Dataset Bias in VQA
Most VQA systems heavily rely on the information
of the question to predict answers no matter the
content of the given image. That is they learned
the language biases in datasets. They are not robust
and always perform poor in the OOD setting where
the language biases they learned in training set are
invalid for test set. To promote the development of
models that overcome such problem, VQA-CP v2
(Goyal et al., 2017) is proposed and has become
the standard OOD benchmark in VQA. Currently,
the widely used debiasing methods can be roughly
grouped into non-data-augmentation (Clark et al.,
2019; Liang et al., 2021b; Mahabadi and Hender-
son, 2019) and data-augmentation methods (Chen
et al., 2020a; Gokhale et al., 2020). The former ap-
plies a biased model (trained with question only) to

https://www.microsoft.com/en-us/research/publication/florence-a-new-foundation-model-for-computer-vision/
https://www.microsoft.com/en-us/research/publication/florence-a-new-foundation-model-for-computer-vision/

regularize the model training and thus prevent learn-
ing from question. The latter generates samples to
balance the training data and directly erase the bi-
ases in the training set. However, the augmented
data also increase the training cost, and overcoming
the language-bias problem remaining the original
dataset biases unchanged still remains a major chal-
lenge (Liang et al., 2021b; Niu et al., 2021). Thus,
we only focus on non-data-augmentation methods,
such as LMH (Clark et al., 2019), RUBi (Cadene
et al., 2019) and LPF (Liang et al., 2021b). Very
recently, VQA-VS6 (Si et al., 2022b) is proposed
to explore the varying types of dataset biases. We
also use this dataset to study how the training and
compression pipeline affect different dataset biases.

A.2 Vision-Language Pre-trained Models

Recently, VLPs (Dou et al., 2022; Li et al., 2021,
2020a; Wang et al., 2021a,b; Zhang et al., 2021;
Si et al., 2023; Li et al., 2022) based on the
Transformer backbone (Vaswani et al., 2017) have
achieved encouraging success. Specially, OFA
(Wang et al., 2022) and Florence (Yuan et al., 2021)
establish the SoTA on the in-distribution VQA v2.
To learn better cross-modality representations and
vision-language alignment, they are trained with
large-scale pre-training data and generally have
huge model capacity. Among them, lxmert (Tan
and Bansal, 2019) is the most widely used VLP as
the backbone model in VQA field (e.g., some data-
augmentation debiasing methods (Gokhale et al.,
2020; Si et al., 2021; Wen et al., 2021) and the
open-domain VQA (Marino et al., 2019) method
MuKEA (Ding et al., 2022)). In this paper, we
therefore mainly use lxmert as the backbone model
and extend several debiasing methods to it for in-
depth research on compressing and debiasing. For
completeness, we also conduct experiments on the
popular VLP visualBERT (Li et al., 2019).

A.3 Model Compression and Robustness

Model compression techniques for Transformer-
based pre-trained models are well developed
(mainly around BERT), including pruning (Gale
et al., 2019; Gordon et al., 2020; Michel et al.,
2019), knowledge distillation (Jiao et al., 2020;
Sanh et al., 2019; Sun et al., 2019), parameter shar-
ing (Lan et al., 2020) and quantization (Zafrir et al.,
2019; Zhang et al., 2020). Inspired by lottery ticket

6Both VQA-VS and VQA-CP v2 datasets are licensed
under Commons Attribution 4.0 International License.

hypothesis (Frankle and Carbin, 2019), many re-
cent studies show that BERT can be pruned to a
sparse subnetwork after (Gale et al., 2019) and be-
fore fine-tuning (Chen et al., 2020b; Liang et al.,
2021a; Liu et al., 2022; Prasanna et al., 2020), with-
out performance degrading. On this basis, we ex-
tend the pruning paradigm to the fine-tuned lxmert
for OOD scenario in VQA, which incorporates the
debiasing methods when fine-tuning and pruning.
In the NLP and CV fields, some recent efforts have
also been made to study model compression and
robustness to adversarial attacks (Fu et al., 2021;
Gui et al., 2019; Sehwag et al., 2020; Xu et al.,
2021; Ye et al., 2019) and spurious correlations
(Du et al., 2021; Xu et al., 2021) (which is more
common than the worst-case adversarial attack).
Dataset-bias problem is a typical symptom of spu-
rious correlations and poses a challenge to VQA
models. We are the first to thoroughly investigate
the sparsity and OOD robustness for VLPs in VQA.

B More Details of Model and
Implementation

B.1 lxmert Architecture and Subnetworks

For lxmert, the embedding layer and visual fc layer
map language-modality input (token sequences
obtained by WordPiece tokenizer) and vision-
modality input (36 object features obtained by
Faster R-CNN (Ren et al., 2015)) into the same-
dimension space. The pooler layer connects the
Transformer top layer and the classifier. The Trans-
former layers involve three encoders 7: language
encoder (Lenc), object relationship encoder (Renc)
and cross-modality encoder (Cenc), and are usually
composed of attention modules and feed-forward
networks (FFN).

The attention modules have four kinds of weight
matrices, i.e., the query, key and value matrices
WQ,K,V ∈ Rdmodel×dmodel , and the output matrix
WO ∈ Rdmodel×dmodel . FFN contains two linear lay-
ers Win ∈ Rdmodel×dFFN , Wout ∈ RdFFN×dmodel .

We adopt unstructured pruning to obtain a com-
pressed version (i.e., a subnetwork) of the origi-
nal VLPs. Specifically, given a VLP f(θ) with

7Each Transformer layer of the language encoder and ob-
ject relationship encoder has a multi-head self-attention mod-
ule and a feed-forward network (FFN). Each Transformer layer
of the cross-modality encoder has a language self-attention
module, a visual self-attention module and a multi-head cross-
attention module. Only the language self-attention and visual
self-attention modules are followed by FFN. All the weight
matrices of Transformer layers are summarized in eq. 12.

0.0 0.2 0.4 0.6 0.8
Sparsity

45.0

47.5

50.0

52.5

55.0

57.5

60.0

62.5

Ov
er

al
l A

cc

0.0 0.2 0.4 0.6 0.8
Sparsity

45

50

55

60

65

70

75

80

Y/
N

Ac
c

0.0 0.2 0.4 0.6 0.8
Sparsity

15

20

25

30

35

40

45

50

55

Nu
m

 A
cc

0.0 0.2 0.4 0.6 0.8
Sparsity

50

52

54

56

58

Ot
he

r A
cc

lxmert(bce) + mask train(bce)
lxmert(bce) + mask train(lmh)
lxmert(bce) + OMP + bce ft
lxmert(bce) + OMP + lmh ft
full lxmert(bce)4

3

2

1

0

1

2

3

Ac
c

Ga
p

Gap

0.0 0.2 0.4 0.6 0.8
Sparsity

45

50

55

60

65

Ov
er

al
l A

cc

0.0 0.2 0.4 0.6 0.8
Sparsity

45

50

55

60

65

70

75

80

85

Y/
N

Ac
c

0.0 0.2 0.4 0.6 0.8
Sparsity

20

30

40

50

60

Nu
m

 A
cc

0.0 0.2 0.4 0.6 0.8
Sparsity

50

52

54

56

Ot
he

r A
cc

lxmert(lmh) + mask train(bce)
lxmert(lmh) + mask train(lmh)
lxmert(lmh) + OMP + bce ft
lxmert(lmh) + OMP + lmh ft
full lxmert(bce)
full lxmert(lmh)

5

4

3

2

1

0
Ac

c
Ga

p

Gap

Figure 12: Results of subnetworks from the BCE fine-tuned lxmert (upper) and from the LMH fine-tuned lxmert
(lower) on VQA-CP v2. “lxmert(bce/lmh)" denotes full model fine-tuning in Stage1, “mask train(bce/lmh)" and
“OMP" denote pruning in Stage2. “bce/lmh ft" denotes further fine-tuning in Stage3. “Gap" denotes the improvement
of mask train(bce/lmh) over full lxmert(bce/lmh).

parameters θ, we apply a binary pruning mask
m ∈ {0, 1}|θ| to the model parameters, which
gives rise to f(m ⊙ θ), where ⊙ is the element-
wise product. For lxmert, we focus on the em-
bedding layer, visual fc layer, pooler layer and
Transformer layers of which the parameters are
pre-trained, while the classifier is excluded. The
language encoder, visual encoder, cross-modality
encoder have T , I and X Transformer layers re-
spectively. The parameters to be pruned are:

θpr = {Wemb,Wvis-fc,Wplr} ∪ θLenc ∪ θRenc ∪ θXenc

(11)
where Wemb, Wvis-fc and Wplr are the weights of
embedding layer, vision fc layer and pool layer,
θLenc ∪θRenc ∪θXenc are the parameters of Trans-
former layers:

θLenc =
{
Wt

QL
,Wt

KL
,Wt

VL
,Wt

OL
,Wt

inL ,W
t
outL

}T

t=1

θRenc =
{
Wi

QR
,Wi

VR
,Wi

KR
,Wi

OR
,Wi

inR ,W
i
outR

}I

i=1

θXenc = {Wx
QCX

,Wx
KCX

,Wx
KCX

,Wx
OCX

,

Wx
QCL

,Wx
KCL

,Wx
VCL

,Wx
OCL

,Wx
inCL

,Wx
outCL

,

Wx
QCR

,Wx
KCR

,Wx
KCR

,Wx
OCR

,Wx
inCR

,Wx
outCR

}Xx=1

(12)
where CX , CL and CR are the language self-
attention, visual self-attention and cross-attention
modules respectively.

B.2 visualBERT Architecture and
Subnetworks

Similar to lxmert, visualBERT is composed of an
embedding layer, a visual projection layer, a pooler

layer, a stack of Transformer layers. Differently,
visualBERT’s Transformer layers only involve a
single encoder (Venc). The parameters of visual-
BERT to be pruned are:

θpr = {Wemb,Wplr} ∪ θVenc (13)

where Wemb and Wplr are the weights of embed-
ding layer and pool layer, θVenc are the parameters
of Transformer layers:

θVenc =
{
Wv

QL
,Wv

KL
,Wv

VL
,Wv

OL
,Wv

inL ,W
v
outL

}V

v=1

(14)
where V = 12.

B.3 LMH details

LMH takes a step further based on Produce of Ex-
perts (PoE) (Hinton, 2002), which simply combines
the predicted distributions of the main model and
the biasd model as follows:

p̂deb = softmax(log(pm) + log(pb)) (15)

where pb is the predicted distribution of biased
model, and indicates the bias degree of the sample.
In this way, when a sample is heavily biased, that
is, pb is large, the main model will not output a
large pm for it during training. Following (Clark
et al., 2019), we directly use the answers’ frequency
under each question type as pb.

To selectively adjust the main model’s behavior,
LMH adds a learn function g to explicitly deter-

mine how much to trust the learned biases:

p̂deb = softmax(log(pm) + g(h)log(pb))

g(h) = softplus(w · h)
(16)

where h is the cross-modality representation from
the last hidden layer of lxmert, w is trainable. To
prevent pb being ignored, LMH also adds an en-
tropy penalty item R, and the final loss is computed
as:

Llmh = t · log(δ(p̂deb)) + (1− t) · log(1− δ(p̂deb))] +R

(17)

B.4 Model and Implementation Details

Lxmert has about 202M parameters, and 197.7M
parameters are involved in the pruning process
(4.5M parameters are left to the classifier). The
three modules from different modalities, namely
the language module, the visual module and the
cross-modality module, contain 83.1M, 35.3M and
78.8M parameters respectively. We train the mod-
els for 20 epochs with a batch size of 128 on
two Tesla-V100-32G or 256 on A100-80GB. The
AdamW (Loshchilov and Hutter, 2017) optimizer
is adopted with a learning rate of 5e-5. Our codes
are based on the huggingface transformers library
(Wolf et al., 2020). We adopt visualBERT of its
coco-pre version which is pre-trained with COCO
(Chen et al., 2015) dataset.

C More Experiments on VQA-CP v2

C.1 Performance of Subnetworks on Three
Types of Questions

Subnetworks from BCE Fine-tuned lxmert.
For the three types of questions, as shown in the
right three plots of Fig. 12 (upper), we find that: 1)
The performance on "Num" questions is sensitive
to the varying sparsity levels while that on "Y/N"
questions is relatively stable in general except at
90% sparsity. Specially, with the increase of spar-
sity, the performance on "Num" questions of "mask
train(lmh)" and "OMP + lmh ft" counterintuitively
greatly promote. This shows that language biases
for the "Num" questions exist in a large propor-
tion of the parameters of biased lxmert. 2) For the
"Other" questions, debiasing methods have little
gain on the performance of subnetworks. For exam-
ple, the performance of "mask train(lmh)" is similar
with that of "mask train(bce)". This indicates that
the language biases for "Other" questions is minor

0.0 0.2 0.4 0.6 0.8
Sparsity

40

45

50

55

60

65

Ov
er

al
l A

cc

lxmert(bce) + mask train(bce)
lxmert(bce) + mask train(lmh)
lxmert(lmh) + mask train(lmh)
lxmert(bce) + rand-init mask train(bce)
lxmert(bce) + rand-init mask train(lmh)
lxmert(lmh) + rand-init mask train(lmh)
full lxmert(bce)
full lxmert(lmh)

Figure 13: Results of subnetworks obtained by mask
training with different initialization strategies of m̂ on
VQA-CP v2. "rand-init" means initializing m̂ randomly.

in training set. Therefore, "Other" questions re-
quest more reasoning than debiasing. 3)There is a
sharp decline of all the subnetworks’ performance
on "Other" questions from 70% ∼ 90% sparsity.
We conjecture that this is because reducing the
model’s capacity too drastically hurt the reasoning
ability which is necessary to answer the "Other"
questions correctly.

Subnetworks from LMH Fine-tuned lxmert.
The right three plots of Fig. 12 (lower) shows
the performance of LMH fine-tuned lxmert sub-
networks on different types of questions. For the
“Num" questions, when compressing LMH fine-
tuned lxmert (the grey and maroon lines), the per-
formance of subnetworks no longer rises with spar-
sity growth. This demonstrates that language biases
for the “Num" questions exist in a much smaller
proportion of the parameters of debiased lxmert
than that of biased lxmert. For “Other" questions,
“lxmert(bce) + mask train(lmh)" is consistently su-
perior to “lxmert(lmh) + mask train(lmh)", which
demonstrates that further debiasing the debiased
full lxmert in the pruning process sacrifices the
reasoning ability.

C.2 The Effect of Different Initialization
Strategies of m̂ for Mask Training

We conduct experiments with different subnet-
works to validate the effectiveness of initializing
m̂ according to the magnitudes of lxmert’s pre-
trained weights. From Fig. 13, it can be seen that
"lxmert(bce) + mask train(bce)", "lxmert(bce) +
mask train(lmh)", "lxmert(lmh) + mask train(bce)"
(dashed lines) consistently outperform "lxmert(bce)
+ rand-init mask train(bce)", "lxmert(bce) + rand-
init mask train(lmh)", "lxmert(lmh) + rand-init

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

58

59

60

61

62

63

64
Ov

er
al

l A
cc

0.88 0.90 0.92
57.5

58.0

58.5

59.0

59.5

lxmert(bce) + mask train(lmh)
lxmert(lmh) + mask train(lmh)
lxmert(bce) + OMP + lmh ft
lxmert(lmh) + OMP + lmh ft
full lxmert(lmh)

Figure 14: Results of subnetworks obtained by pruning
with debiasing method LMH on VQA-CP v2.

mask train(bce)" (full lines) at all sparsity levels.
As the sparsity increases, the gaps widen. This
shows the initialization strategy we adopt is more
effective than random initialization.

C.3 A Close Look at The Performance of
Subnetworks at 90% Sparsity

From Fig. 14, we derive two abnormal observa-
tions at the extremely high sparsity, i.e., 90%: 1)
Pruning with "OMP + lmh ft" (pink and grey lines)
is better than pruning with "mask train(lmh)" (cyan
and brown lines). 2) Starting from "lxmert(bce)"
(pink and cyan lines) is better than starting from
"lxmert(lmh)" (grey and brown lines). The two
observations at 90% sparsity are contrary to other
sparsity. For the first observation, we conjecture
that this is because mask training (which involves
binarization and gradient estimation) is more dif-
ficult to optimize at 90% compared with further
fine-tuning of the OMP subnetworks. The second
observation can be explained by that: Further de-
biasing the debiased full lxmert in the pruning pro-
cess slightly sacrifices the performance on "Other"
questions, which require more reasoning ability
than debiasing ability (as shown in the rightmost
two plots of Fig. 12). Therefore, at the extremely
high sparsity, when the benefits of debiasing on
"Y/N" and "Num" questions are small, the perfor-
mance penalty on "Other" questions results in a
drop in "Overall" accuracy. Nevertheless, the gaps
between "lxmert(lmh) + mask train(lmh)" and the
other two pipelines are small at 90% sparsity.

C.4 Sparsity Configurations for the Three
Modality-specific Modules

For the overall target sparsity of 50% and 70%,
we adopt the following procedure to search the
comfortable zone for the modality-specific sparsity:

First, we traverse [10%, 30%, 50%, 70%, 90%]
(i.e., step size of 20%) to assign modality-specific
sparsity for any two modules, and compute the
modality-specific sparsity for the remaining one8

according to eq. 10 in the main paper. From the ex-
perimental results of these sparsity configurations,
we can determine the approximate range where the
pruned subnetworks perform better.

Second, we use the same method to traverse the
reduced range with a smaller step size of 5%. In
this way, we can determine the most comfortable
zone for the modality-specific sparsity.

Similarly, when the overall target sparsity is
90%, we directly traverse 80% ∼ 98% with a step
size of 2% to search the most comfortable zone of
the modality-specific sparsity.

D More Experiments on VQA-VS

D.1 Performance on varying OOD test sets of
VQA-VS

The Effect of Compression without Debiasing
For simplicity, we categorize the nine OOD test
sets into 3 categories of different modalities, i.e.,
language-based (OOD-lang), visual-based (OOD-
vis) and cross-modality (OOD-crsM) ones. We
report the average accuracy of each category, as
well as the IID accuracy and the average accuracy
of all OOD test sets (OOD-mean) in Fig. 15.

The upper part of Fig. 15 shows the perfor-
mance of subnetworks compressed without debi-
asing method, it can be seen that: 1) All subnet-
works obtained by pruning all three modules un-
derperform “full model(bce)" in ID test set. This
is because the ID performance relies on memory
ability, which is positively related to the parameter
quantity. 2) The subnetworks obtained by pruning
the language module consistently outperform the
full model on OOD-mean, OOD-lang and OOD-
crsM test sets, which are related to the language
bias. This indicates that the language module of
lxmert is slightly overparameterized. 3) In contrast,
pruning other modules causes a negative impact
on OOD performance. Especially, pruning visual
modules also results in a sharp OOD-vis accuracy
drop, indicating that the visual module of lxmert is
not suitable for compression.

The Effect of Compression with Debiasing The
lower part of Fig. 15 shows the VQA-VS perfor-

8We exclude the configurations where the computed spar-
sity for the remaining module is greater than 1 or smaller than
0.

0.0 0.2 0.4 0.6 0.8

67

68

69

70

71

72
(ID

 A
cc

)
lxmert(bce) + mask train(bce)

all
Language Module
Visual Module
Cross-Modality Module
full lxmert(bce)

0.0 0.2 0.4 0.6 0.8

48

49

50

51

52

53

54

(O
OD

-m
ea

n
Ac

c)

lxmert(bce) + mask train(bce)

0.4 0.6

53.4

53.6

53.8

54.0

54.2

0.0 0.2 0.4 0.6 0.8
48

49

50

51

52

53

54

(O
OD

-la
ng

 A
cc

)

lxmert(bce) + mask train(bce)

0.4 0.6

53.8

54.0

54.2

54.4

0.0 0.2 0.4 0.6 0.8

37

38

39

40

41

42

(O
OD

-v
is

Ac
c)

lxmert(bce) + mask train(bce)

0.4 0.6

41.8

42.0

42.2

42.4

0.0 0.2 0.4 0.6 0.8

55

56

57

58

59

60

61

OO
D-

cr
sM

 A
cc

lxmert(bce) + mask train(bce)

0.4 0.6

60.8

61.0

61.2

61.4

0.0 0.2 0.4 0.6 0.8
58

60

62

64

66

68

70

72

(ID
 A

cc
)

lxmert(lmh) + mask train(lmh)

0.2 0.4 0.6
71.0

71.5

72.0

72.5

73.0

0.0 0.2 0.4 0.6 0.8
46

48

50

52

54

(O
OD

-m
ea

n
Ac

c)

lxmert(lmh) + mask train(lmh)

0.2 0.4 0.6

54.0

54.5

55.0

0.0 0.2 0.4 0.6 0.8

48

50

52

54

(O
OD

-la
ng

 A
cc

)

lxmert(lmh) + mask train(lmh)

0.2 0.4 0.6

54.50

54.75

55.00

55.25

55.50

0.0 0.2 0.4 0.6 0.8
37

38

39

40

41

42

43

(O
OD

-v
is

Ac
c)

lxmert(lmh) + mask train(lmh)

0.2 0.4 0.6

42.6

42.8

43.0

43.2

0.0 0.2 0.4 0.6 0.8

52

54

56

58

60

62

OO
D-

cr
sM

 A
cc

lxmert(lmh) + mask train(lmh)

0.2 0.4 0.6
61.0

61.5

62.0

all
Language Module
Visual Module
Cross-Modality Module
full lxmert(lmh)

Figure 15: Results of subnetworks pruned using BCE (upper) and LMH (lower) on VQA-VS. Each column measures
accuracy on ID test set, all, language-based, visual-based and cross-modality OOD test sets respectively. Different
lines denote subnetworks obtained by pruning all, language, visual and cross-modality modules respectively.

(a) ID (b) OOD-mean (c) OOD-lang (d) OOD-vis (e) OOD-crsM

Figure 16: Comparison of subnetworks “lxmert(lmh) + mask train(lmh)" with uniform sparsity and modality-specific
sparsity on VQA-VS.

mance of “lxmert(lmh) + mask train(lmh)"9, which
performs the best on VQA-CP v2. We can ob-
serve that: 1) Pruning any modules can improve
ID performance over the debiased full model ("full
model(lmh)"). This is because debiasing methods
improve OOD performance at the cost of ID per-
formance, while our pipeline alleviates such ID
performance decline by compressing some harm-
ful parameters. 2) Similarly, pruning any lxmert
modules with a small sparsity (e.g., 0.2 and 0.4)
also improves the OOD-mean performance. This
demonstrates the existence of sparse and robust
lxmert subnetworks on VQA-VS. 3) Especially,
subnetworks obtained by compressing the language
module consistently perform better than subnet-
works obtained by pruning other modules and the
debiased full model (except on OOD-vis), since the
dataset biases tend to be learned by the language
module. 4) However, pruning on any module fails
to improve the OOD-vis accuracy, as the debiasing
method LMH is designed for the language bias.

9Note that most debiasing methods fail on VQA-VS (Si
et al., 2022b), such as LPF and RUBi. We thus do not discuss
them in this section.

D.2 The Effect of Modality-specific Sparsity
on varying OOD test sets of VQA-VS

We directly use the modality-specific sparsity se-
lected by the experiments of Sec. 3.4 in the main
paper on VQA-CP v2. Fig. 16 shows that the sub-
networks with modality-specific sparsity always
outperform those with uniform sparsity except for
90% sparsity on ID test set, which validates that
different modules should be compressed with dif-
ferent sparsity. Besides, when the overall sparsity
is too large or too small, the benefits of the assign-
ment of modality-specific sparsity will decrease ac-
cordingly. Note that the phenomenon of OOD-vis
is different from other OOD test sets as the spar-
sity increases, since the debiasing methods LMH
is designed for the language biases.

