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Abstract

Despite the excellent performance of vision-
language pre-trained models (VLPs) on con-
ventional VQA task, they still suffer from two
problems: First, VLPs tend to rely on language
biases in datasets and fail to generalize to out-
of-distribution (OOD) data. Second, they are
inefficient in terms of memory footprint and
computation. Although promising progress has
been made in both problems, most existing
works tackle them independently. To facilitate
the application of VLP to VQA tasks, it is im-
perative to jointly study VLP compression and
OOD robustness, which, however, has not yet
been explored. This paper investigates whether
a VLP can be compressed and debiased simulta-
neously by searching sparse and robust subnet-
works. To this end, we systematically study the
design of a training and compression pipeline
to search the subnetworks, as well as the assign-
ment of sparsity to different modality-specific
modules. Our experiments involve 3 VLPs, 2
compression methods, 4 training methods, 2
datasets and a range of sparsity levels. Our re-
sults show that there indeed exist sparse and ro-
bust subnetworks, which are competitive with
the debiased full VLP and clearly outperform
the debiasing SoTAs with fewer parameters on
OOD datasets VQA-CP v2 and VQA-VS.1

1 Introduction

Visual Question Answering (VQA) (Antol et al.,
2015) is an important task at the intersection of CV
and NLP. In the last decade, deep neural networks
have made promising progress in VQA. However,
recent studies (Agrawal et al., 2016; Manjunatha
et al., 2019) have found that VQA models are prone
to dataset biases. As a result, they always suffer
from sharp performance drops when faced with out-
of-distribution (OOD) test datasets, whose answer
distributions are different from the training set.

∗∗Equal contribution. † Corresponding author: Zheng Lin.
1The codes can be found at https://github.com/

PhoebusSi/Compress-Robust-VQA.
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Figure 1: Comparison of accuracy and model sizes
with debiasing SoTAs on VQA-CP v2. The green and
cyan lines represent our "lxmert(lpf) + mask train(lmh)"
and "lxmert(lmh) + mask train(lmh)", respectively, with
modality-specific sparsity.

Although large-scale vision-language pre-
trained models (VLPs) achieve further improve-
ments in the in-distribution (ID) VQA benchmark
(Goyal et al., 2017), they also fail to address the
dataset-bias problem (Agrawal et al., 2018), e.g.,
lxmert (Tan and Bansal, 2019) suffers a 23.26%
drop between ID and OOD accuracy. At the same
time, the improvement brought by VLPs is partly
due to their large model size, which increases the
computational cost of deploying VQA models.
To facilitate the application of VLPs to VQA
tasks, the two problems should be addressed
simultaneously. However, existing researches
mostly focus on each of them separately.

The dataset-bias problem in VQA is well studied
by numerous debiasing methods based on conven-
tional small-scale models(Anderson et al., 2018;
Cadene et al., 2019). Their main solution (Cadene
et al., 2019; Clark et al., 2019; Liang et al., 2021b;
Mahabadi and Henderson, 2019) is to regularize the
loss according to the bias degree of training sam-
ples. In terms of the increased computational cost,
a line of recent efforts have been made to compress
pre-trained language models (PLMs) in the NLP

https://github.com/PhoebusSi/Compress-Robust-VQA
https://github.com/PhoebusSi/Compress-Robust-VQA


field (Chen et al., 2020b; Li et al., 2020a,b; Liang
et al., 2021a; Liu et al., 2021, 2022; Prasanna et al.,
2020) and VLPs for visual-linguistic tasks (Fang
et al., 2021; Gan et al., 2022). They show that
large-scale PLMs and VLPs can be compressed
into lightweight models without degrading perfor-
mance. Refer to App. A for more related work.

This paper jointly studies the compression and
debiasing problems of VLP for the VQA task. To
this end, we combine the existing debiasing and
pruning methods to establish a training and com-
pression pipeline, and conduct extensive experi-
ments with the pre-trained lxmert, which is the
most popular VLP in VQA, under different OOD
settings. We show that there exist sparse lxmert sub-
networks that are more robust than the full model,
which suggests that the goal of OOD robustness
and computational efficiency can be achieved si-
multaneously.

We also present a comprehensive study on the
design of the training and compression pipeline,
as well as the assignment of sparsity to different
model modules, to identify subnetworks with bet-
ter OOD generalization. Our findings highlight the
importance of 1) Employing a two-stage training
and compression pipeline and integrating the debi-
asing objective throughout the entire process. 2)
If there are two debiasing methods working well
with the full model, training the full model with the
relatively poor-performing one and compressing it
with the better one. 3) Assigning modality-specific
sparsity to different modules of VLP.

Our main contributions are as follows: (1) We
present the first (to our knowledge) systematic
study on sparsity and OOD robustness for VLPs.
(2) Our empirical studies on the training and com-
pression pipeline and sparsity assignment can serve
as a valuable guideline for the future design of VLP
subnetwork searching methods. (3) We obtain sub-
networks that outperform existing debiasing So-
TAs in terms of the trade-off between accuracy
and model size on OOD datasets VQA-CP v2 and
VQA-VS (see Fig. 1, Tab. 1 and Tab. 2).

2 Method

2.1 VLP Architecture and Subnetworks

This section takes lxmert as an example to intro-
duce how we extract subnetworks. Lxmert contains
an embedding layer, a visual fc layer, a pooler layer,
a VQA-specific classifier and a stack of Trans-
former layers, which involve three encoders: lan-

guage encoder (Lenc), object relationship encoder
(Renc) and cross-modality encoder (Cenc).

We adopt unstructured pruning to obtain a com-
pressed version (i.e., a subnetwork) of the origi-
nal VLPs. Specifically, given a VLP f(θ) with
parameters θ, we apply a binary pruning mask
m ∈ {0, 1}|θ| to the model parameters, which
gives rise to f(m⊙θ), where⊙ is the element-wise
product. The parameters to be pruned are:

θpr = {Wemb,Wvis-fc,Wplr} ∪ θLenc ∪ θRenc ∪ θXenc (1)

where Wemb, Wvis-fc and Wplr are the weights of
embedding layer, vision fc layer and pool layer,
θLenc ∪θRenc ∪θXenc are the parameters of Trans-
former layers. More details of lxmert can be found
in App. B.1. Another model visualBERT (Li et al.,
2019), which is also used in our experiments, will
be introduced in App. B.2.

2.2 Pruning Methods

We consider two representative pruning methods,
i.e., magnitude-based pruning (Han et al., 2015)
and mask training (Louizos et al., 2018; Ramanujan
et al., 2020; Sanh et al., 2020; Sehwag et al., 2020).

Magnitude-based Pruning approximates the im-
portance of model parameters based on their abso-
lute values and eliminates the less important ones.
We adopt the basic version of magnitude-based
pruning, i.e., one-shot magnitude pruning (OMP).
OMP can optionally be combined with further fine-
tuning of the pruned subnetwork to recover the
performance drop.

Mask Training directly optimizes the binary
pruning mask m towards the given objectives.
Specifically, each weight matrix W ∈ Rdi×do is as-
sociated with two mask matrices, namely a binary
mask m ∈ {0, 1}di×do and a real-valued mask
m̂ ∈ Rdi×do . In the forward propagation, m is
computed from m̂ through binarization:

mi,j =

{
1 if m̂i,j ≥ ϕ

0 else
(2)

where ϕ is the threshold. Then, the original weight
matrix W is replaced with a pruned one m⊙W.
When it comes to backward propagation, we follow
(Liu et al., 2022; Mallya et al., 2018; Radiya-Dixit
and Wang, 2020; Zhao et al., 2020) and use the
straight-through estimator (Bengio et al., 2013) to
estimate the gradients of m̂ using the gradients of



m, and then update m̂ as m̂← m̂− η ∂L
∂m , where

η is the learning rate.
We initialize m̂ according to the magnitudes of

the pre-trained weights of lxmert. This strategy
is shown to be more effective than random initial-
ization for pre-trained language models (Liu et al.,
2022; Radiya-Dixit and Wang, 2020) and we also
validate this in our experiments with lxmert (see
App. C.2). Specifically, m̂ is initialized as:

m̂i,j =

{
0 if Wi,j is pruned by OMP
α× ϕ else

(3)

where α ≥ 1 is a hyper-parameter. At initialization,
we set the threshold ϕ = 0.01 (any other value with
the same order of magnitude should also be fine).
To ensure that the subnetwork satisfies the given
sparsity, ϕ is re-computed every tm training steps.

2.3 Debiasing Methods
The deabising methods in VQA usually contain a
main model and a biased model. The biased model,
which learns the language bias, is used to measure
the training samples’ bias degree and adjust the
training loss for the main model. We experiment
with SoTAs debiasing methods, i.e., LMH (Clark
et al., 2019), RUBi (Cadene et al., 2019) and LPF
(Liang et al., 2021b), of which LMH is widely
studied for the OOD scenario of VQA (Chen et al.,
2020a; Liang et al., 2020; Si et al., 2021) and NLU
(Jia and Liang, 2017; McCoy et al., 2019; Schuster
et al., 2019; Zhang et al., 2019). For comparison,
we also describe the binary cross-entropy here.

Binary Cross-Entropy (BCE) computes the
cross-entropy between the predicted distribution
pm (from main model) and the soft target score of
each ground-truth t, as:

Lbce = t · log(δ(pm)) + (1− t) · log(1− δ(pm))] (4)

where δ denotes the sigmoid function.
Learned-Mixin +H (LMH) adds a biased model

to learn biases during training, as follows:

p̂deb = softmax(log(pm) + g(h)log(pb))

g(h) = softplus(w · h)
(5)

where pb and pm are the predicted distribution of
biased model and main model, respectively. g(h)
determines how much to trust the learned biases,
based on lxmert’s last hidden representation h. Fol-
lowing (Clark et al., 2019), we directly use the
answers’ frequency under each question type as

pb
2. To prevent pb from being ignored, LMH also

adds an entropy penalty item R in the final loss:

Llmh = t · log(δ(p̂deb)) + (1− t) · log(1− δ(p̂deb))] +R (6)

RUBi adopts a training strategy similar to LMH
to regularize the main model’s probability, and uses
standard cross-entropy as the training loss:

p̂deb = softmax(pm · δ(pb))

Lrubi = −
1

N

N∑
k

log(p̂deb) [ak]
(7)

LPF measures the bias degree as αk = pb [ak]
to regularize the loss of the main model:

Llpf =
−1
N

N∑
k

(1− αk)
γ log(softmax(pm)) [ak] (8)

where the γ is a tunable hype-parameter.

2.4 Problem Formulation
Given the pre-trained lxmert f(θpt), our goal is
to find a subnetwork f (m⊙ θft) that satisfies a
target sparsity level s and maximizes the OOD
performance:

maxm,θft
(EOOD (f (m⊙ θft))) , s.t. ∥m∥0

|θpr| = (1− s) (9)

where EOOD denotes OOD evaluation, ∥∥0 is the L0

norm and |θpr| is the total number of parameters in
θpr. This goal is achieved by searching the optimal
m and θft in model training and compression.

Eq. 9 only specifies the overall sparsity. In this
work, we also explore a finer-grained control over
sparsity, which allocates different sparsity to differ-
ent modules of lxmert, given that the overall spar-
sity is satisfied. Concretely, we consider three mod-
ules from different modalities, i.e., the language
module, the visual module and the cross-modality
module. The constraint in the optimization prob-
lem is then rewritten as3:

s.t.
∥mLan∥0
|θLan|

= (1− sL),
∥mV is∥0
|θV is|

= (1− sR),
∥mX∥0
|θXenc |

= (1− sX),

sL ·
|θLan|
|θpr|

+ sR ·
|θV is|
|θpr|

+ sX ·
|θXenc |
|θpr|

= s

(10)
where θLan = θLEnc

∪{Wemb}, θV is = θREnc
∪

{Wvis-fc} and θXEnc
are model parameters of

2We use the same pb in our implementation of LMH, RUBi
and LPF. More details of LMH can be found in App. B.3

3For simplicity, the pooler layer’s parameters(0.5M) are
not included in eq. 10. We directly set it to the target sparsity
s.
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Figure 2: Results of subnetworks from the BCE fine-tuned lxmert (left) and from the LMH fine-tuned lxmert (right)
on VQA-CP v2. “lxmert(bce/lmh)" denotes full model fine-tuning in Stage1, “mask train(bce/lmh)" and “OMP"
denote pruning in Stage2. “bce/lmh ft" denotes further fine-tuning in Stage3. “Gap" denotes the improvement of
mask train(bce/lmh) over full lxmert(bce/lmh). The shadowed areas denote standard deviations. These abbreviations
are used throughout this paper. Detailed performance on three question types is shown in App. C.1

the language module, visual module and cross-
modality encoder, respectively. mLan, mV is and
mX are the binary masks for the three modules,
respectively. sL, sR and sX are the target sparsity
levels for the three modules, respectively.

If not otherwise specified, we set the sparsity of
every weight matrix to target sparsity. For exam-
ple, if s = 70% and there is no modality-specific
constraint, then all weight matrices are at 70%
(uniform sparsity). If sL = 50%, then all weight
matrices in θLan are at 50% sparsity, while sR and
sX could be different (modality-specific sparsity).

2.5 Training and Compression Pipeline
We define two notations: FL(f(θ)) denotes
training f(θ) using loss L ∈ {Lbce,Llmh}.
Pp
L(f(θ)) denotes pruning f(θ) using method

p ∈ {OMP,mask train} and loss L (if applicable),
which outputs a pruning mask m. A typical train-
ing and compression pipeline involves three stages:

Stage1: Full Model Fine-tuning. The pre-
trained lxmert f(θpt) is fine-tuned using loss L,
which produces f(θft) = FL(f(θ)).

Stage2: Model Compression. The fine-tuned
lxmert f(θft) is compressed and we get the sub-
network f (m⊙ θft), where m = Pp

L(f(θft)).
Stage3: Further Fine-tuning (optional). The

subnetwork f(m⊙ θft) is further fine-tuned using
loss L′, and gets f(m⊙θ

′
ft) = FL′ (f(m⊙θft)).

3 Experiments

In this section, we mainly investigate three ques-
tions: (1) How does compression affect lxmert’s
OOD generalization ability? (2) How to design
the training and pruning pipeline to achieve a good
sparsity-performance trade-off? (3) How to assign
sparsity to different modality-specific modules?

3.1 Datasets, Model and Implementation

We conduct experiments on the OOD benchmarks
VQA-CP v2 (Agrawal et al., 2018) and VQA-VS
(Si et al., 2022b) that evaluate the robustness of
VQA systems, with the accuracy-based evaluation
metric (Antol et al., 2015). A more detailed discus-
sion of the difference between the two datasets is
shown in Sec. 3.5. We thoroughly study the above
three questions on VQA-CP-v2, which is widely
used in the literature on debiasing VQA systems
(refer to Sec. 3.2, 3.3 and 3.4 ). Then, based on the
findings, we further explore the more challenging
VQA-VS (Si et al., 2022b) (refer to Sec. 3.5 ). For
VLP, we adopt the lxmert-base-uncased model (Tan
and Bansal, 2019) released by huggingface (Wolf
et al., 2020). All the results are averaged over 4
random seeds. More information of the model and
implementation details are shown in App. B.4.

3.2 Effect of Compression on OOD Accuracy

Subnetworks from BCE Fine-tuned lxmert.
We compress the BCE fine-tuned lxmert using
OMP and mask training and introduce either Lbce
or Llmh in the pruning (for mask training) or fur-
ther fine-tuning process (for OMP).

The results are shown in the upper row of Fig.
2. We can derive several observations: 1) When
no debiasing methods are used, the subnetworks
of “mask train(bce)" and “OMP + bce ft" improve
over the full lxmert by 1.35% ∼ 2.79%, even at
up to 70% sparsity. This implies that lxmert is
overparameterized and pruning may remove some
parameters related to the bias features. 2) “mask
train(lmh)" and “OMP + lmh ft" achieve further per-
formance boost, exceeding full lxmert by a large
margin (11.05% ∼ 14.02%). Since mask train-
ing does not change the value of parameters, the
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Figure 3: Results of lxmert subnet-
works fine-tuned with different de-
biasing methods on VQA-CP v2.

Figure 4: Results of lxmert subnetworks
obtained from different training and com-
pressing pipelines on VQA-CP v2. “ft"
means further fine-tuning the subnet-
works in Stage3.
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Figure 5: Results of lxmert subnet-
works that adopt different debiasing
methods in Stage1 and Stage2 on
VQA-CP v2.

results of “mask train (lmh)" implicate that the bi-
ased “full lxmert(bce)" already contains sparse and
robust subnetworks (across 10% ∼ 90% sparsity).
3) “mask train" outperforms “OMP" in general,
which suggests that directly optimizing the subnet-
work structure is more effective than debiasing a
compressed subnetwork by further fine-tuning.

Subnetworks from lxmert Fine-tuned with De-
biasing Methods. From the lower row of Fig.
2, we can find that: 1) For the full lxmert, the
OOD performance is obviously promoted with the
LMH debiasing method. 2) Unlike lxmert(bce)
subnetworks, lxmert(lmh) subnetworks do not ex-
hibit significant improvement over the full model.
However, the “mask train(lmh)" and “OMP + lmh
ft" subnetworks, which preserve the lxmert(lmh)’s
performance at up to 50% sparsity, can serve as
an efficient alternative to the LMH fine-tuned full
lxmert. 3) “mask train(bce)" and “OMP + bce ft"
clearly underperform their lmh counterparts, which
suggests that it is important to use the debiasing
method in pruning and subnetwork further fine-
tuning even when the full model is already trained
with the debiasing method.

Fig. 3 compares the subnetworks fine-tuned with
LMH, LPF and RUBi. We find that: The subnet-
works found using LMH consistently outperform
those found by LPF and RUBi across different spar-
sity levels. Therefore, to save computing resources,
we mainly use the best performing LMH in the
following experiments and analysis.

3.3 Training and Compression Pipeline
In this section, we study the proper design of the
training and compression pipeline, under the basic
framework described in Sec. 2.5. Here we focus
on the mask training compression method, as it

has been shown to generally outperform OMP with
further fine-tuning. Our main observations can be
described from three perspectives:

First, it is recommended to introduce the de-
biasing loss across Stage1, Stage2 and (if appli-
cable) Stage3. The reason is three-fold: 1) As
shown by Fig. 4, the subnetworks at 10%, 30%
and 70% sparsity levels have better performance
when starting from lxmert(lmh), as compared with
the lxmert(bce). At 90% sparsity, “lxmert(lmh)
+ mask train(lmh)" underperforms “lxmert(bce) +
mask train(lmh)" (see App. C.3 for reasons), but
the Accuracy gap is small. Therefore, adopting
Llmh in Stage1 is a better choice than Lbce, espe-
cially when the subnetworks are not at extremely
high sparsity. 2) As we discussed in the previous
section, introducing Llmh in the mask training pro-
cess (Stage2) substantially outperforms Lbce for
both lxmert(lmh) and lxmert(bce). 3) When both
Stage1 and Stage2 adopt the BCE loss, further fine-
tuning the subnetworks with LMH loss in Stage3
can significantly boost the performance, as shown
by the results of “lxmert(bce) + mask train(bce)"
w/o ft and w/ lmh ft in Fig. 4.

Second, Stage3 is unnecessary if it adopts
the same training objective as Stage2. Com-
paring the blue and red (or cyan) bars in Fig.
4, we can see that further fine-tuning with the
same training objective generally degrades the
performance of “lxmert(lmh) + mask train(lmh)",
“lxmert(bce) + mask train(lmh)" and “lxmert(bce) +
mask train(bce)". This phenomenon suggests that
Stage3 can be eliminated to save computation cost.

Third, it is recommended to use different de-
biasing methods in the two stages and leave the
better one to Stage2. As shown in Fig. 5, al-
though LPF and RUBi are less effective in debi-
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Figure 6: Results of subnetworks obtained by pruning the language (left), visual (middle) and cross-modality (right)
modules. When pruning one module, the other two modules remain unpruned.
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Figure 7: Results of visualBERT subnetworks that adopt
different debiasing methods in Stage1 and Stage2 on
VQA-CP v2.

asing the full model than LMH, “lpf+lmh"4 and
“rubi+lmh" are superior to “lmh+lmh". In con-
trast, when reversing the debiasing methods used in
the two stages, “lmh+rubi" and “lmh+lpf" exhibit
worse performance, suggesting that the better debi-
asing method should be used in Stage2. Addition-
ally, “lpf+lmh" is superior to “rubi+lmh", which
indicates that using a better debiasing objective in
Stage1 is helpful when we have multiple choices
different from the Stage2 objective. We also exper-
iment with another VLP model, visualBERT (Li
et al., 2019), and find that “lpf+lmh" still performs
the best as in Fig. 7.

3.4 Modality-specific Sparsity

Pruning Each Single Modality-specific Module.
Since lxmert uses different modules to encode the
multi-modal data, it is intuitive to hypothesize that
different modules of lxmert may capture the lan-
guage bias to different extents. To validate this
hypothesis, we compress the language, visual and
cross-modality modules, respectively. As presented

4“lpf+lmh" denotes “lxmert(lpf) + mask train(lmh)"

by Fig. 6, the compression of different modality-
specific modules indeed exhibits different effects.

When the full model is lxmert(bce) (the orange
and cyan lines), compressing the language or cross-
modality module has a positive effect on the OOD
performance, and the accuracy generally improves
as sparsity increases from 10% to 90%. By contrast,
compressing the visual module results in inferior re-
sults than compressing the other two modules, even
if the number of remaining parameters is larger
(note that the visual module has a smaller number
of parameters than the other two modules). These
results suggest that, for the biased lxmert(bce), the
language and cross-modality modules capture more
training set bias than the visual module, which sup-
ports the above hypothesis.

In terms of “lxmert(lmh) + mask train(lmh)"
(the red line), although compression does not lead
to performance improvement like compressing
lxmert(bce), the results also demonstrate that the
language and cross-modality modules are more
compressible than the visual module.

Searching for Appropriate Modality-specific
Sparsity. Motivated by the above findings, we
search for appropriate modality-specific sparsity by
performing mask training with a variety of sparsity
configurations (see App. C.4) for the three mod-
ules while keeping the overall sparsity the same.

As we can see in Fig. 8, at 50% and 70% overall
sparsity, the configuration that achieves the best re-
sult assigns slightly higher sparsity to the language
and cross-modality modules and significantly lower
sparsity to the visual module, as compared with uni-
form sparsity. This phenomenon is in accordance
with the findings in Fig. 6, implicating that com-
pressing the three modules uniformly is suboptimal
(at 50% ∼ 70% sparsity) and the language and
cross-modality modules should be compressed to



Sparsity = 70% Sparsity = 90%Sparsity = 50%

(	𝑠!= 60%, 𝑠" = 4%, 𝑠# = 60%	) (	𝑠!= 80%, 𝑠" = 35%, 𝑠# = 75%	) (	𝑠!= 90%, 𝑠" = 94%, 𝑠# = 88%	)

Figure 8: Results of subnetworks pruned by different sparsity configurations on
VQA-CP v2 using “lxmert(lmh) + mask train(lmh)". Red and blue lines denote
the coordinates of the data point with uniform sparsity across three modules and
the data point performing the best (the specific configuration is shown below
each plot) respectively. The overall sparsities are shown in the titles.

Figure 9: Comparison of differ-
ent sparsity assignments on VQA-
CP v2. “Gap" is the gap between
“uniform sparsity" and “modality-
specific sparsity".
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Figure 10: Results of subnetworks pruned using BCE
(upper) and LMH (lower) on VQA-VS. We report ID
and OOD-mean accuracy here. Results on specific OOD
test sets are deferred to App. D.1 Different lines denote
subnetworks obtained by pruning all, language, visual
and cross-modality modules respectively.

a larger extent than the visual module. At 90%
sparsity, the sparsity configuration’s comfort zone
is in the proximity of the uniform point. Further
increasing the sparsity of the language and cross-
modality modules result in performance decline or
only minor improvements. This is because 90%
sparsity already approaches the compression upper
bound, even for the language and cross-modality
modules.

Fig. 9 shows a more direct comparison between
the uniform and modality-specific sparsity. We
also introduce another baseline “matrix-specific
sparsity", which ranks all the model parameters, in-
stead of the parameters in each weight matrix. This
also results in different sparsity levels for different
weight matrices, while there is no explicit control
over the modality-specific sparsity. We can see that

Figure 11: Comparison of “lxmert(lmh) + mask
train(lmh)" subnetworks with uniform and modality-
specific sparsity on VQA-VS. Results on specific OOD
test sets can be found in App. D.2

modality-specific sparsity achieves the best results
across the three overall sparsity levels from 50%
to 90%, demonstrating its superiority. Besides, the
results also suggest that, although simply allowing
different matrices to have different sparsity is more
flexible than uniform sparsity, it is not conducive
to the final performance.

3.5 Exploration on VQA-VS

VQA-CP v2 is widely used in the literature of debi-
asing VQA systems. However, it only considers the
question-type-based bias. To account for other po-
tential biases, VQA-VS constructs several types of
OOD test sets according to different shortcuts (e.g.,
keyword and key object). As a result, VQA-VS is
more challenging and allows us to analyze the re-
sults on different biases. In this section, we search
sparse and robust lxmert subnetworks in VQA-VS
based on the major findings obtained from VQA-
CP v2.

The Effect of Compression. Fig. 10 shows the
results of full lxmert and subnetworks on VQA-VS.
We can see that: 1) When using the BCE objective,
we can identify sparse “bce+bce" subnetworks that
are comparable with full lxmert (bce). 2) Different
from VQA-CP v2, full lxmert (lmh) only slightly



Methods Backbone Params. All Y/N Num Other
RUBi (Cadene et al., 2019) S-MRL ∼60M 47.11 68.65 20.28 43.18
VGQE (Kv and Mittal, 2020) S-MRL ∼60M 50.11 66.35 27.08 46.77
LPF (Liang et al., 2021b) S-MRL ∼60M 53.38 88.06 25.00 42.99
CF-VQA (Niu et al., 2021) S-MRL ∼60M 55.05 90.61 21.50 45.61
AdvReg. (Ramakrishnan et al., 2018) UpDn 35M 41.17 65.49 15.48 35.48
GRL (Grand and Belinkov, 2019) UpDn 35M 42.33 59.74 14.78 40.76
RUBi (Cadene et al., 2019) UpDn 35M 44.23 67.05 17.48 39.61
Loss-Rescaling (Guo et al., 2021) UpDn 35M 47.09 68.42 21.71 42.88
VGQE (Kv and Mittal, 2020) UpDn 35M 48.75 - - -
DLR (Jing et al., 2020) UpDn 35M 48.87 70.99 18.72 45.57
LMH (Clark et al., 2019) UpDn 35M 52.01 72.58 31.12 46.97
CF-VQA (Niu et al., 2021) UpDn 35M 53.55 91.15 13.03 44.97
LPF (Liang et al., 2021b) UpDn 35M 55.34 88.61 23.78 46.57
LMH+MMBS (Si et al., 2022a) UpDn 35M 56.44 76.00 43.77 49.67
CGE (Han et al., 2021) UpDn 35M 57.32 87.04 27.75 49.59
BCE full lxmert 202M 48.01 48.24 20.04 55.57
LPF (Clark et al., 2019) full lxmert 202M 62.68 87.57 51.98 52.58
LMH (Clark et al., 2019) full lxmert 202M 63.55 81.84 55.00 56.32
lpf+lmh (Ours) 10% lxmert 24M 59.05 75.08 57.12 51.17
lpf+lmh (Ours) 30% lxmert 64M 64.02 79.99 63.38 56.35
lpf+lmh (Ours) 50% lxmert 103M 66.07 84.70 63.71 56.95
CE full mPLUG 350M 57.05 - - -
LPF (Clark et al., 2019) full mPLUG 350M 65.24 - - -
ce+lpf (Ours) ∼50% mPLUG 182M 62.53 - - -
lpf+lpf (Ours) ∼50% mPLUG 182M 63.66 - - -

Table 1: Comparison with debiasing SoTAs on VQA-CP
v2. “lpf+lmh" denotes “lxmert(lpf) + mask train(lmh)"
subnetworks with modality-specific sparsity. “10%
lxmert" denotes keeping 10% parameters of lxmert. The
subnetworks from mPLUG are pruned using uniform
sparsity.

outperforms full lxmert (bce) in the OOD setting
of VQA-VS, and underperforms in the ID setting.
3) The “lmh+lmh"5 subnetworks improve over full
lxmert (lmh) on both ID and OOD test sets, across
a wide range of sparsity levels, suggesting that
lxmert can also be simultaneously compressed and
debiased on VQA-VS.

The Effect of Modality-specific Sparsity. Fig.
10 also shows that compressing different modality-
specific modules has different effect on VQA-VS,
as in VQA-CP v2. The language module is the
most compressible while compressing the visual
module results in the sharpest performance decline.
To compare modality-specific sparsity and uniform
sparsity, we directly inherit the sparsity configura-
tion selected in Sec. 3.4 on VQA-CP v2. Fig. 11
shows that modality-specific sparsity consistently
outperform uniform sparsity, except for 90% spar-
sity in the ID setting.

3.6 Comparison with Debiasing SoTAs

In this section, we will compare the best training
and compression solutions identified in the pre-
vious sections with the current SoTA debiasing
methods.

Tab. 1 shows the results on VQA-CP v2. We find
that: 1) The accuracy of our methods (10% lxmert
and 30% lxmert) beats the previous non-VLP debi-

5Since most debiasing methods (e.g., LPF and RUBi) fail
on VQA-VS (see Tab.2), we only use LMH in VQA-VS. How-
ever, combining LMH and other effective debiasing methods
in different stages may further outperform “lmh+lmh", as
found in VQA-CP v2. We leave it for future work.

Methods Backbone Params. ID OOD-mean
Cross Entropy S-MRL ∼60M 62.03 42.65
RUBi (Cadene et al., 2019) S-MRL ∼60M 59.09 38.73
Cross Entropy UpDn 35M 65.20 46.80
LPF (Liang et al., 2021b) UpDn 35M 54.72 43.31
LMH (Clark et al., 2019) UpDn 35M 56.89 45.85
BCE full lxmert 202M 72.24 53.92
RUBi (Cadene et al., 2019) full lxmert 202M 69.49 50.07
LPF (Liang et al., 2021b) full lxmert 202M 68.48 50.83
LMH (Clark et al., 2019) full lxmert 202M 70.22 54.41
bce+bce (Ours) 10% lxmert 24M 67.28 48.77
bce+bce (Ours) 30% lxmert 64M 70.89 53.06
bce+bce (Ours) 50% lxmert 103M 71.33 53.42
bce+bce (Ours) 70% lxmert 143M 71.85 53.51
bce+bce (Ours) 90% lxmert 183M 71.85 53.87
lmh+lmh (Ours) 10% lxmert 24M 58.42 46.39
lmh+lmh (Ours) 30% lxmert 64M 69.34 53.59
lmh+lmh (Ours) 50% lxmert 103M 70.66 54.31
lmh+lmh (Ours) 70% lxmert 143M 71.56 54.34
lmh+lmh (Ours) 90% lxmert 183M 71.97 54.75

Table 2: Comparison with debiasing SoTAs on VQA-
VS. The subnetworks are pruned using modality-
specific sparsity. “bce+bce" and “lmh+lmh" are defined
in the same way as Tab. 1.

asing SoTAs with 1.55% and 5.79%, respectively,
with fewer or similar amounts of parameters, estab-
lishing new state-of-the-arts. 2) Our methods (30%
lxmert and 50% lxmert) outperform the debiased
full lxmert, even with much fewer parameters. 3)
Full lxmert(lpf) and full lxmert(lmh) are good at
different question types, which can partly explain
why combining them in different stages produces
more robust subnetworks.

We also add experiments on a more recent VLP
mPLUG (Li et al., 2022). We adopt the base
version of mPLUG, fine-tune it on the VQA-CP
v2 training set and then conduct pruning using
mask training. Since mPLUG formulas VQA as
a text generation task, we adopt the LPF debias-
ing method. Note that LMH and RUBi cannot be
directly applied to debias text generation models,
because they are designed for classification loss
over a fixed number of classes. As shown in the
bottom rows of Tab. 1, the mPLUG trained with
standard cross-entropy (CE) loss can be simulta-
neously compressed (to 50%) and debiased (+5.48
Acc). The mPLUG trained with LPF debiasing
loss can also be compressed to 50% with a slight
accuracy decline. These results demonstrate that
the findings and techniques present in our work can
be generalized to more advanced VLPs.

Results on VQA-VS are presented in Tab. 2.
We can observe that: 1) Our methods “bce+bce"
10% lxmert and “lmh+lmh" 30% lxmert outper-
form all the non-VLP debiasing methods in both
ID and OOD settings, with similar or fewer pa-
rameters. 2) Except for LMH, other debiasing
methods underperform BCE in OOD-mean. LMH
improves the OOD accuracy at the cost of ID ac-
curacy decline. 3) The “lmh+lmh" subnetworks



(even with 50% remaining parameters) obviously
improve the ID performance of lxmert (lmh) and re-
tain comparable OOD performance. 4) Compared
with “bce+bce", the OOD advantage of “lmh+lmh"
outweighs its ID disadvantage at 50% to 90% pa-
rameters. With fewer remaining parameters, the
overall performance of “bce+bce" is superior.

4 Conclusion

To facilitate the application of VLP-based VQA
systems, this paper presents the first joint study
on the compression and debiasing problems of
VLP for the VQA task. Through extensive ex-
periments with three VLPs (i.e., lxmert, visual-
BERT and mPLUG), we analyze the impact of
compression on the OOD generalization ability.
We present a comprehensive study on the design of
the training and compression pipeline for a good
sparsity-performance trade-off, and provide some
valuable findings about the assignment of sparsity
to different modality-specific modules. The com-
pressed lxmert subnetworks in this paper outper-
form the SoTA debiasing methods with fewer or
similar model parameter counts.

Limitations

Although we have empirically verified that the
adoption of modality-specific sparsity is beneficial
for the search for more robust subnetworks, our
work still does not provide a solution on how to
determine the optimal sparsity assignment effec-
tively and efficiently. We invite follow-up studies
to further address it in future work.
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A More Related Work

A.1 Overcoming Dataset Bias in VQA
Most VQA systems heavily rely on the information
of the question to predict answers no matter the
content of the given image. That is they learned
the language biases in datasets. They are not robust
and always perform poor in the OOD setting where
the language biases they learned in training set are
invalid for test set. To promote the development of
models that overcome such problem, VQA-CP v2
(Goyal et al., 2017) is proposed and has become
the standard OOD benchmark in VQA. Currently,
the widely used debiasing methods can be roughly
grouped into non-data-augmentation (Clark et al.,
2019; Liang et al., 2021b; Mahabadi and Hender-
son, 2019) and data-augmentation methods (Chen
et al., 2020a; Gokhale et al., 2020). The former ap-
plies a biased model (trained with question only) to

https://www.microsoft.com/en-us/research/publication/florence-a-new-foundation-model-for-computer-vision/
https://www.microsoft.com/en-us/research/publication/florence-a-new-foundation-model-for-computer-vision/


regularize the model training and thus prevent learn-
ing from question. The latter generates samples to
balance the training data and directly erase the bi-
ases in the training set. However, the augmented
data also increase the training cost, and overcoming
the language-bias problem remaining the original
dataset biases unchanged still remains a major chal-
lenge (Liang et al., 2021b; Niu et al., 2021). Thus,
we only focus on non-data-augmentation methods,
such as LMH (Clark et al., 2019), RUBi (Cadene
et al., 2019) and LPF (Liang et al., 2021b). Very
recently, VQA-VS6 (Si et al., 2022b) is proposed
to explore the varying types of dataset biases. We
also use this dataset to study how the training and
compression pipeline affect different dataset biases.

A.2 Vision-Language Pre-trained Models

Recently, VLPs (Dou et al., 2022; Li et al., 2021,
2020a; Wang et al., 2021a,b; Zhang et al., 2021;
Si et al., 2023; Li et al., 2022) based on the
Transformer backbone (Vaswani et al., 2017) have
achieved encouraging success. Specially, OFA
(Wang et al., 2022) and Florence (Yuan et al., 2021)
establish the SoTA on the in-distribution VQA v2.
To learn better cross-modality representations and
vision-language alignment, they are trained with
large-scale pre-training data and generally have
huge model capacity. Among them, lxmert (Tan
and Bansal, 2019) is the most widely used VLP as
the backbone model in VQA field (e.g., some data-
augmentation debiasing methods (Gokhale et al.,
2020; Si et al., 2021; Wen et al., 2021) and the
open-domain VQA (Marino et al., 2019) method
MuKEA (Ding et al., 2022)). In this paper, we
therefore mainly use lxmert as the backbone model
and extend several debiasing methods to it for in-
depth research on compressing and debiasing. For
completeness, we also conduct experiments on the
popular VLP visualBERT (Li et al., 2019).

A.3 Model Compression and Robustness

Model compression techniques for Transformer-
based pre-trained models are well developed
(mainly around BERT), including pruning (Gale
et al., 2019; Gordon et al., 2020; Michel et al.,
2019), knowledge distillation (Jiao et al., 2020;
Sanh et al., 2019; Sun et al., 2019), parameter shar-
ing (Lan et al., 2020) and quantization (Zafrir et al.,
2019; Zhang et al., 2020). Inspired by lottery ticket

6Both VQA-VS and VQA-CP v2 datasets are licensed
under Commons Attribution 4.0 International License.

hypothesis (Frankle and Carbin, 2019), many re-
cent studies show that BERT can be pruned to a
sparse subnetwork after (Gale et al., 2019) and be-
fore fine-tuning (Chen et al., 2020b; Liang et al.,
2021a; Liu et al., 2022; Prasanna et al., 2020), with-
out performance degrading. On this basis, we ex-
tend the pruning paradigm to the fine-tuned lxmert
for OOD scenario in VQA, which incorporates the
debiasing methods when fine-tuning and pruning.
In the NLP and CV fields, some recent efforts have
also been made to study model compression and
robustness to adversarial attacks (Fu et al., 2021;
Gui et al., 2019; Sehwag et al., 2020; Xu et al.,
2021; Ye et al., 2019) and spurious correlations
(Du et al., 2021; Xu et al., 2021) (which is more
common than the worst-case adversarial attack).
Dataset-bias problem is a typical symptom of spu-
rious correlations and poses a challenge to VQA
models. We are the first to thoroughly investigate
the sparsity and OOD robustness for VLPs in VQA.

B More Details of Model and
Implementation

B.1 lxmert Architecture and Subnetworks

For lxmert, the embedding layer and visual fc layer
map language-modality input (token sequences
obtained by WordPiece tokenizer) and vision-
modality input (36 object features obtained by
Faster R-CNN (Ren et al., 2015)) into the same-
dimension space. The pooler layer connects the
Transformer top layer and the classifier. The Trans-
former layers involve three encoders 7: language
encoder (Lenc), object relationship encoder (Renc)
and cross-modality encoder (Cenc), and are usually
composed of attention modules and feed-forward
networks (FFN).

The attention modules have four kinds of weight
matrices, i.e., the query, key and value matrices
WQ,K,V ∈ Rdmodel×dmodel , and the output matrix
WO ∈ Rdmodel×dmodel . FFN contains two linear lay-
ers Win ∈ Rdmodel×dFFN , Wout ∈ RdFFN×dmodel .

We adopt unstructured pruning to obtain a com-
pressed version (i.e., a subnetwork) of the origi-
nal VLPs. Specifically, given a VLP f(θ) with

7Each Transformer layer of the language encoder and ob-
ject relationship encoder has a multi-head self-attention mod-
ule and a feed-forward network (FFN). Each Transformer layer
of the cross-modality encoder has a language self-attention
module, a visual self-attention module and a multi-head cross-
attention module. Only the language self-attention and visual
self-attention modules are followed by FFN. All the weight
matrices of Transformer layers are summarized in eq. 12.
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Figure 12: Results of subnetworks from the BCE fine-tuned lxmert (upper) and from the LMH fine-tuned lxmert
(lower) on VQA-CP v2. “lxmert(bce/lmh)" denotes full model fine-tuning in Stage1, “mask train(bce/lmh)" and
“OMP" denote pruning in Stage2. “bce/lmh ft" denotes further fine-tuning in Stage3. “Gap" denotes the improvement
of mask train(bce/lmh) over full lxmert(bce/lmh).

parameters θ, we apply a binary pruning mask
m ∈ {0, 1}|θ| to the model parameters, which
gives rise to f(m ⊙ θ), where ⊙ is the element-
wise product. For lxmert, we focus on the em-
bedding layer, visual fc layer, pooler layer and
Transformer layers of which the parameters are
pre-trained, while the classifier is excluded. The
language encoder, visual encoder, cross-modality
encoder have T , I and X Transformer layers re-
spectively. The parameters to be pruned are:

θpr = {Wemb,Wvis-fc,Wplr} ∪ θLenc ∪ θRenc ∪ θXenc

(11)
where Wemb, Wvis-fc and Wplr are the weights of
embedding layer, vision fc layer and pool layer,
θLenc ∪θRenc ∪θXenc are the parameters of Trans-
former layers:

θLenc =
{
Wt

QL
,Wt

KL
,Wt

VL
,Wt

OL
,Wt

inL ,W
t
outL

}T

t=1
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,Wi
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inR ,W
i
outR

}I

i=1
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outCL

,
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,Wx
KCR

,Wx
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,Wx
inCR

,Wx
outCR

}Xx=1

(12)
where CX , CL and CR are the language self-
attention, visual self-attention and cross-attention
modules respectively.

B.2 visualBERT Architecture and
Subnetworks

Similar to lxmert, visualBERT is composed of an
embedding layer, a visual projection layer, a pooler

layer, a stack of Transformer layers. Differently,
visualBERT’s Transformer layers only involve a
single encoder (Venc). The parameters of visual-
BERT to be pruned are:

θpr = {Wemb,Wplr} ∪ θVenc (13)

where Wemb and Wplr are the weights of embed-
ding layer and pool layer, θVenc are the parameters
of Transformer layers:

θVenc =
{
Wv

QL
,Wv

KL
,Wv

VL
,Wv

OL
,Wv

inL ,W
v
outL

}V

v=1

(14)
where V = 12.

B.3 LMH details

LMH takes a step further based on Produce of Ex-
perts (PoE) (Hinton, 2002), which simply combines
the predicted distributions of the main model and
the biasd model as follows:

p̂deb = softmax(log(pm) + log(pb)) (15)

where pb is the predicted distribution of biased
model, and indicates the bias degree of the sample.
In this way, when a sample is heavily biased, that
is, pb is large, the main model will not output a
large pm for it during training. Following (Clark
et al., 2019), we directly use the answers’ frequency
under each question type as pb.

To selectively adjust the main model’s behavior,
LMH adds a learn function g to explicitly deter-



mine how much to trust the learned biases:

p̂deb = softmax(log(pm) + g(h)log(pb))

g(h) = softplus(w · h)
(16)

where h is the cross-modality representation from
the last hidden layer of lxmert, w is trainable. To
prevent pb being ignored, LMH also adds an en-
tropy penalty item R, and the final loss is computed
as:

Llmh = t · log(δ(p̂deb)) + (1− t) · log(1− δ(p̂deb))] +R

(17)

B.4 Model and Implementation Details

Lxmert has about 202M parameters, and 197.7M
parameters are involved in the pruning process
(4.5M parameters are left to the classifier). The
three modules from different modalities, namely
the language module, the visual module and the
cross-modality module, contain 83.1M, 35.3M and
78.8M parameters respectively. We train the mod-
els for 20 epochs with a batch size of 128 on
two Tesla-V100-32G or 256 on A100-80GB. The
AdamW (Loshchilov and Hutter, 2017) optimizer
is adopted with a learning rate of 5e-5. Our codes
are based on the huggingface transformers library
(Wolf et al., 2020). We adopt visualBERT of its
coco-pre version which is pre-trained with COCO
(Chen et al., 2015) dataset.

C More Experiments on VQA-CP v2

C.1 Performance of Subnetworks on Three
Types of Questions

Subnetworks from BCE Fine-tuned lxmert.
For the three types of questions, as shown in the
right three plots of Fig. 12 (upper), we find that: 1)
The performance on "Num" questions is sensitive
to the varying sparsity levels while that on "Y/N"
questions is relatively stable in general except at
90% sparsity. Specially, with the increase of spar-
sity, the performance on "Num" questions of "mask
train(lmh)" and "OMP + lmh ft" counterintuitively
greatly promote. This shows that language biases
for the "Num" questions exist in a large propor-
tion of the parameters of biased lxmert. 2) For the
"Other" questions, debiasing methods have little
gain on the performance of subnetworks. For exam-
ple, the performance of "mask train(lmh)" is similar
with that of "mask train(bce)". This indicates that
the language biases for "Other" questions is minor
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Figure 13: Results of subnetworks obtained by mask
training with different initialization strategies of m̂ on
VQA-CP v2. "rand-init" means initializing m̂ randomly.

in training set. Therefore, "Other" questions re-
quest more reasoning than debiasing. 3)There is a
sharp decline of all the subnetworks’ performance
on "Other" questions from 70% ∼ 90% sparsity.
We conjecture that this is because reducing the
model’s capacity too drastically hurt the reasoning
ability which is necessary to answer the "Other"
questions correctly.

Subnetworks from LMH Fine-tuned lxmert.
The right three plots of Fig. 12 (lower) shows
the performance of LMH fine-tuned lxmert sub-
networks on different types of questions. For the
“Num" questions, when compressing LMH fine-
tuned lxmert (the grey and maroon lines), the per-
formance of subnetworks no longer rises with spar-
sity growth. This demonstrates that language biases
for the “Num" questions exist in a much smaller
proportion of the parameters of debiased lxmert
than that of biased lxmert. For “Other" questions,
“lxmert(bce) + mask train(lmh)" is consistently su-
perior to “lxmert(lmh) + mask train(lmh)", which
demonstrates that further debiasing the debiased
full lxmert in the pruning process sacrifices the
reasoning ability.

C.2 The Effect of Different Initialization
Strategies of m̂ for Mask Training

We conduct experiments with different subnet-
works to validate the effectiveness of initializing
m̂ according to the magnitudes of lxmert’s pre-
trained weights. From Fig. 13, it can be seen that
"lxmert(bce) + mask train(bce)", "lxmert(bce) +
mask train(lmh)", "lxmert(lmh) + mask train(bce)"
(dashed lines) consistently outperform "lxmert(bce)
+ rand-init mask train(bce)", "lxmert(bce) + rand-
init mask train(lmh)", "lxmert(lmh) + rand-init
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Figure 14: Results of subnetworks obtained by pruning
with debiasing method LMH on VQA-CP v2.

mask train(bce)" (full lines) at all sparsity levels.
As the sparsity increases, the gaps widen. This
shows the initialization strategy we adopt is more
effective than random initialization.

C.3 A Close Look at The Performance of
Subnetworks at 90% Sparsity

From Fig. 14, we derive two abnormal observa-
tions at the extremely high sparsity, i.e., 90%: 1)
Pruning with "OMP + lmh ft" (pink and grey lines)
is better than pruning with "mask train(lmh)" (cyan
and brown lines). 2) Starting from "lxmert(bce)"
(pink and cyan lines) is better than starting from
"lxmert(lmh)" (grey and brown lines). The two
observations at 90% sparsity are contrary to other
sparsity. For the first observation, we conjecture
that this is because mask training (which involves
binarization and gradient estimation) is more dif-
ficult to optimize at 90% compared with further
fine-tuning of the OMP subnetworks. The second
observation can be explained by that: Further de-
biasing the debiased full lxmert in the pruning pro-
cess slightly sacrifices the performance on "Other"
questions, which require more reasoning ability
than debiasing ability (as shown in the rightmost
two plots of Fig. 12). Therefore, at the extremely
high sparsity, when the benefits of debiasing on
"Y/N" and "Num" questions are small, the perfor-
mance penalty on "Other" questions results in a
drop in "Overall" accuracy. Nevertheless, the gaps
between "lxmert(lmh) + mask train(lmh)" and the
other two pipelines are small at 90% sparsity.

C.4 Sparsity Configurations for the Three
Modality-specific Modules

For the overall target sparsity of 50% and 70%,
we adopt the following procedure to search the
comfortable zone for the modality-specific sparsity:

First, we traverse [10%, 30%, 50%, 70%, 90%]
(i.e., step size of 20%) to assign modality-specific
sparsity for any two modules, and compute the
modality-specific sparsity for the remaining one8

according to eq. 10 in the main paper. From the ex-
perimental results of these sparsity configurations,
we can determine the approximate range where the
pruned subnetworks perform better.

Second, we use the same method to traverse the
reduced range with a smaller step size of 5%. In
this way, we can determine the most comfortable
zone for the modality-specific sparsity.

Similarly, when the overall target sparsity is
90%, we directly traverse 80% ∼ 98% with a step
size of 2% to search the most comfortable zone of
the modality-specific sparsity.

D More Experiments on VQA-VS

D.1 Performance on varying OOD test sets of
VQA-VS

The Effect of Compression without Debiasing
For simplicity, we categorize the nine OOD test
sets into 3 categories of different modalities, i.e.,
language-based (OOD-lang), visual-based (OOD-
vis) and cross-modality (OOD-crsM) ones. We
report the average accuracy of each category, as
well as the IID accuracy and the average accuracy
of all OOD test sets (OOD-mean) in Fig. 15.

The upper part of Fig. 15 shows the perfor-
mance of subnetworks compressed without debi-
asing method, it can be seen that: 1) All subnet-
works obtained by pruning all three modules un-
derperform “full model(bce)" in ID test set. This
is because the ID performance relies on memory
ability, which is positively related to the parameter
quantity. 2) The subnetworks obtained by pruning
the language module consistently outperform the
full model on OOD-mean, OOD-lang and OOD-
crsM test sets, which are related to the language
bias. This indicates that the language module of
lxmert is slightly overparameterized. 3) In contrast,
pruning other modules causes a negative impact
on OOD performance. Especially, pruning visual
modules also results in a sharp OOD-vis accuracy
drop, indicating that the visual module of lxmert is
not suitable for compression.

The Effect of Compression with Debiasing The
lower part of Fig. 15 shows the VQA-VS perfor-

8We exclude the configurations where the computed spar-
sity for the remaining module is greater than 1 or smaller than
0.
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Figure 15: Results of subnetworks pruned using BCE (upper) and LMH (lower) on VQA-VS. Each column measures
accuracy on ID test set, all, language-based, visual-based and cross-modality OOD test sets respectively. Different
lines denote subnetworks obtained by pruning all, language, visual and cross-modality modules respectively.
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Figure 16: Comparison of subnetworks “lxmert(lmh) + mask train(lmh)" with uniform sparsity and modality-specific
sparsity on VQA-VS.

mance of “lxmert(lmh) + mask train(lmh)"9, which
performs the best on VQA-CP v2. We can ob-
serve that: 1) Pruning any modules can improve
ID performance over the debiased full model ("full
model(lmh)"). This is because debiasing methods
improve OOD performance at the cost of ID per-
formance, while our pipeline alleviates such ID
performance decline by compressing some harm-
ful parameters. 2) Similarly, pruning any lxmert
modules with a small sparsity (e.g., 0.2 and 0.4)
also improves the OOD-mean performance. This
demonstrates the existence of sparse and robust
lxmert subnetworks on VQA-VS. 3) Especially,
subnetworks obtained by compressing the language
module consistently perform better than subnet-
works obtained by pruning other modules and the
debiased full model (except on OOD-vis), since the
dataset biases tend to be learned by the language
module. 4) However, pruning on any module fails
to improve the OOD-vis accuracy, as the debiasing
method LMH is designed for the language bias.

9Note that most debiasing methods fail on VQA-VS (Si
et al., 2022b), such as LPF and RUBi. We thus do not discuss
them in this section.

D.2 The Effect of Modality-specific Sparsity
on varying OOD test sets of VQA-VS

We directly use the modality-specific sparsity se-
lected by the experiments of Sec. 3.4 in the main
paper on VQA-CP v2. Fig. 16 shows that the sub-
networks with modality-specific sparsity always
outperform those with uniform sparsity except for
90% sparsity on ID test set, which validates that
different modules should be compressed with dif-
ferent sparsity. Besides, when the overall sparsity
is too large or too small, the benefits of the assign-
ment of modality-specific sparsity will decrease ac-
cordingly. Note that the phenomenon of OOD-vis
is different from other OOD test sets as the spar-
sity increases, since the debiasing methods LMH
is designed for the language biases.


