Under review as a conference paper at ICLR 2026

CALM: CO-EVOLUTION OF ALGORITHMS AND LLAN-
GUAGE MODEL FOR AUTOMATIC HEURISTIC DESIGN

Anonymous authors
Paper under double-blind review

ABSTRACT

Tackling complex optimization problems often relies on expert-designed heuristics,
typically crafted through extensive trial and error. Recent advances demonstrate that
large language models (LLMs), when integrated into well-designed evolutionary
search frameworks, can autonomously discover high-performing heuristics at a
fraction of the traditional cost. However, existing approaches predominantly rely
on verbal guidance, i.e., manipulating the prompt generation process, to steer
the evolution of heuristics, without adapting the underlying LLM. We propose a
hybrid framework that combines verbal and numerical guidance, the latter achieved
by fine-tuning the LLM via reinforcement learning (RL) based on the quality of
generated heuristics. This joint optimization allows the LLM to co-evolve with
the search process. Our method outperforms state-of-the-art (SOTA) baselines
across various optimization tasks, running locally on a single 24GB GPU using a
7B model with INT4 quantization. It surpasses methods that rely solely on verbal
guidance, even when those use significantly more powerful API-based models.

1 INTRODUCTION

Complex optimization problems are prevalent in real-world applications, including logistics (Duan
et al., 2022} [Tresca et al., 2022), scheduling (Mihoubi et al., 2021} |Palacio et al.,[2022])), and trans-
portation (Dahmani et al.| 2024} |Pereira et al.,|2021). Traditionally, solving these problems relies
heavily on manually crafting high-quality heuristics, a labor-intensive process requiring substantial
expert knowledge. Given the limitations of this manual approach, Automatic Heuristic Design (AHD)
emerged to streamline heuristic generation. Nevertheless, classic AHD approaches like Genetic
Programming (GP) (Burke et al., [2009) still depend significantly on human-defined problem-specific
components, limiting the search space and flexibility.

Recently, the advent of Large Language Models (LLMs) has introduced promising avenues for
AHD by employing LLMs as heuristic generators and evolutionary computing (EC) techniques
as a search framework. In this paradigm, heuristics generated by LLMs are iteratively evaluated
through a predefined simulation framework, and superior heuristics inform subsequent generation
prompts, thus creating a feedback-driven evolutionary loop (Liu et al.,2024a). Nevertheless, existing
LLM-based AHD methods predominantly keep the underlying LLM untouched and merely guide
heuristic evolution via textual prompt manipulations, referred to as "verbal gradients" (Ye et al.,
2024). Consequently, these methods inherently neglect the opportunity of tuning and enhancing the
generative capability of LLM based on the feedback from heuristic designs.

We propose Co-evolution of Algorithms and the Language Model (CALM) to capture this opportunity.
CALM drastically differs from the state-of-the-art (SOTA) (Liu et al.| |2024a} |Ye et al., 2024; Dat
et al.| [2025; Zheng et al., |2025) by enabling the LLM to co-evolve alongside heuristic designs.
This co-evolution is made possible by treating the heuristic generation process not only as a target
of optimization but also as a rich source of training data. As heuristics are continually proposed,
evaluated, and selected based on their performance, the evolutionary loop naturally produces abundant
prompt-response-performance triplets. These data points are highly informative, as each heuristic’s
effectiveness provides an implicit signal about the utility of the underlying generation process. By
using this signal as feedback for reinforcement learning (RL), we can fine-tune the LLM, thereby
applying what we term "numerical gradients" to adapt the model itself. This co-evolution approach

Under review as a conference paper at ICLR 2026

4 Ve, \ Best N \
€D perf [y o Heuristic |t o €2) perf. ﬁ) perf.
D KB - [ES [EQ - 0RO & @ better
Heuristic Base l Heuristic Base Collapse. lap: response ¥ heuristic
Evaluation Env. Evaluation Env, analysis
. (selection) @ (selection) /
A A novei
Q Thought perf-based 3 p(:zrf-based Idea-,@: heuristic
Diversity-based
p mcts-based prompt
Code - y N ! TR Code response!
Do il K Do i F 2
Crossover Slmpllfy Initialize Crossover; Slmpllfy Initialize r
ST I R R - 2 S A 1 reward
Prompt & ; Prompt
— % F H— Task (€9} . —— & DY Greo
_,Musa_ts._._R_e.f_',e_c_E ___________ Description |nject iReplace fine-tune
LLM (# frozen) Operator Base Operator Base)) Rewar
Existing LLM-based AHD Methods) Our CALM Framework)

Figure 1: Pipeline of existing LLM-based AHD methods (Romera-Paredes et al., [2024; |Ye et al.,
2024; [Dat et al., 2025 Zheng et al.| 2025)) under a fixed LLM and our new approach CALM that
enables the co-evolution of LLM in the iterative heuristic search process. New components are
presented in bright colors.

unlocks a new dimension of adaptability, allowing the LLM to internalize characteristics of successful
heuristics and improve its future generations.

CALM is one of the first LLM-based AHD frameworks that jointly optimize both the prompt
generation process and the LLM model itself, overcoming the limitations of fixed-model approaches.
For prompt generation, CALM introduces a suite of evolutionary operators, including fine-granularity
mutation operators (injection and replacement) and a diversity-aware crossover operator, that promote
meaningful and diverse heuristic variations while preserving structural coherence. Furthermore, a
simple yet effective collapse mechanism is developed to help escape the local optima. For model
improvement, CALM employs a memory-efficient RL algorithm GRPO (Shao et al.,[2024) with a
carefully designed reward function to enable efficient fine-tuning. Experimental results demonstrate
that our new approach can discover heuristics that beat existing SOTA baselines (Liu et al., 2024a; |Ye
et al., 2024} Zheng et al., 2025), while running entirely on a local computer with a single 24GB GPU,
in contrast to prior methods that depend heavily on commercial LLM APIs.

2 RELATED WORK

As our approach centers on fine-tuning LLMs by RL for solving optimization problems, we review
relevant literature in both RL and LL.Ms applied to optimization. Additional related topics, including
LLMs for code generation and RL-based LLM fine-tuning, are discussed in Appendix

RL for Optimization Problems. Existing RL-based methods for optimization can be broadly
categorized by the role the learned policy plays: (1) Instance-Level Solution Generator. Deep RL
has been widely adopted to learn policies for solving specific optimization instances (Kwon et al.,
2020; [Pan et al.;[2023}Bi et al.||2024)). However, these methods differ fundamentally from LLM-based
AHD methods, as they directly produce solutions rather than design the algorithms that generate them.
The LLM-based AHD approach operates at a meta level, seeking to learn the algorithmic structure
that produces solutions. This distinction also applies to the broader class of Neural Combinatorial
Optimization (NCO) (Luo et al.l [2024; Xiao et al.| 2024} Sui et al., 2024} |Zheng et al., [2023)),
where models are trained to directly solve instances. Moreover, NCO methods often require explicit
adaptation to handle problem scales not seen during training, whereas our method generalizes more
naturally to new scales. (2) Heuristic Generator. Some RL-based methods target meta-level search
to discover heuristics instead of instance-level solutions. For example, AlphaDev (Mankowitz et al.,
2023)) learns to combine low-level operations to discover faster sorting algorithms, and|Yi et al.|(2022)
searches for high-performing metaheuristics from predefined algorithmic components. While having
similar goals, these approaches rely heavily on hand-engineered building blocks, akin to traditional
AHD frameworks (Pillay and Qu} 2018 Sanchez-Diaz et al., 2021} |Burke et al.,|2009). In contrast,
LLM-based method reduces manual intervention by leveraging LLMs to explore an open-ended
heuristic space with minimal prior specification.

LLM for Optimization Problems. Studies in this area fall into two categories depending on how
LLMs are employed: (1) Instance-Level Solution Generator. Several works (Abgaryan et al., [2024;

Under review as a conference paper at ICLR 2026

Jiang et al.| [2024; Wu et al.| 2024) prompt LLMs with instance-specific inputs for direct solution
generation. LLM-based methods in this category focus on discovering reusable heuristics. Moreover,
methods such as that proposed by [Jiang et al.| (2024)) and [Wu et al.[(2024) keep LLM parameters
frozen, and |Abgaryan et al.| (2024)) fine-tune the model using supervised labels from an existing
solver (Perron and Furnonl 2024). In contrast, our approach requires no imitation dataset, enabling
its application to problems lacking established solvers. (2) Heuristic Generator. LLM-based AHD
methods (Liu et al., [2023a; |Chen et al., [2025; |[Romera-Paredes et al., 2024} [Liu et al., |2024a; |Ye
et al.,|2024; Liu et al., [2024bj Dat et al., [2025; Zheng et al., 2025} |[Novikov et al.,[2025) repeatedly
ingest information about the current elite heuristics—typically their natural-language descriptions,
source code, and performance scores—and, via fixed prompt templates that mimic genetic operators,
produce new candidate heuristics. Those candidates are then executed and evaluated, and the resulting
feedback is fed back into the prompt, forming an evaluate—generate loop that continues until the
evaluation budget is exhausted. Additionally, some recent studies have also explored incorporating
strategies such as reduction techniques (Thach et al., 2025) and trajectory-based analysis (Yang
et al., 2025)), to further enhance AHD. However, prior work keeps the LLM static. Our approach
improves this by continuously fine-tuning the LLM using prompt-response-performance tuples
from the evolutionary process, enhancing future heuristic generation. Notably, there are concurrent
explorations on fine-tuning LLMs for AHD (Surina et al., 2025} [Liu et al., 2025). These studies
provide valuable insights into how preference-based fine-tuning methods such as DPO (Rafailov
et al.,|2023)) can improve heuristic discovery. Our work adopts a different approach by employing the
score-based RL algorithm (Shao et al.l 2024) to fine-tune LLMs for AHD, and further introduces
specialized designs such as fine-granularity operators to enhance the fine-tuning process through
prompt manipulation.

3 PRELIMINARY

3.1 LLM-BASED AHD

Let P be a problem with input space Z and solution space S, and let a heuristic be a function
h:Z — §. Given a training set D C 7 and an objective f : S — R (lower is better), the performance
of a heuristic is g(h) = E,ep[—f(h(z))]. Let H denote the space of all feasible heuristics. The
objective of AHD is to identify the optimal heuristic within this space, i.e., h* = argmaxpecy g(h).

LLM-based AHD is AHD where LLM serves as a heuristic generator. In practice, the LLM is
charged with designing the core decision function of a solver. For example, on tasks like the Traveling
Salesman Problem (TSP) or the Capacitated Vehicle Routing Problem (CVRP), an LLM-based AHD
method might generate a function, which selects the next city to visit or constructs an edge-desirability
matrix to guide solution search within an Ant Colony Optimization (ACO) framework.

3.2 GRPO

GRPO (Shao et al.,[2024)) is a recent RL algorithm that has proven effective in training LLMs, as
evidenced by its application in models such as DeepSeek-R1. GRPO starts from an initial model 7
and a reward function denoted by r4(g, 0) that maps the prompt ¢ and the generated response o to a
scalar. At the beginning of each training round, it snapshots 7y as a reference model 7,¢¢. Then, it
split all task prompts into multiple batches. When training for each prompt batch Dy, it first snapshots
Ty as Telq- For each task prompt g € Dy, it samples a group of G responses {oi}ic*':1 ~ Ty, and
computes rewards r = {r; = r¢,(q, 02-)}?:1 for each prompt-response pair. Subsequently, it computes

the advantage A, ; for each token ¢ in response i as the normalized reward (r; — mean(r)) /std(r).
The model parameters 6 are updated by maximizing the following objective function:

Jarro(f) = E[qNQ{Oi}N”Bom]
[oi]

G
&30 o7 2 {min [fuadis, lip (ot =21 +9) Au] - BB ol)
i=1 " =1

where € and 3 are hyper-parameters, 7;; = 7(0; ¢ | q,0i<¢)/7$%(0i ¢ | ¢,0i.<¢), and the KL
divergence term is computed using an unbiased estimator (Schulman, [2020) with guaranteed positivity.

Under review as a conference paper at ICLR 2026

GRPO uses the group mean reward as a baseline to eliminate the need for an auxiliary value network,
thereby reducing memory requirements. Additionally, the clipping mechanism combined with KL
divergence regularization ensures stable and conservative updates.

4 METHODOLOGY

To explore the benefit of RL-based fine-tuning for discovering higher-quality heuristics in LLM-based
AHD, we introduce CALM, a novel framework that integrates both verbal and numerical guidance in
evolutionary heuristic search. As shown in Fig. [Tl CALM maintains a pool of heuristics, each with its
own idea, code, and performance. At every round, CALM draws a feasible evolutionary operator to
produce a new prompt g. Subsequently, G responses are sampled from the local LLM 7y, which are
then evaluated. Based on the evaluation results, rewards are assigned to each response for GRPO to
train the LLM, and new feasible heuristics are added to the pool. Consequently, CALM returns the
best-so-far heuristic after running 7" rounds. Next, we elaborate on the critical techniques in CALM:
prompt generation, collapse mechanism, and the reward function.

4.1 PROMPT GENERATION

CALM provides several evolutionary operators: injection, replacement, crossover, simplification, and
initialization. Prompts are predominantly generated by the selected operator and heuristics sampled
from maintained pools. The initialization operator is an exception, as it does not require heuristics
from the pool. Next, we elaborate on the heuristic sampling method and operator

Heuristic Sampling Method. The heuristic sampling approach varies for the crossover operator,
details of which will be provided when introducing this operator. For the remaining operators, i.e.,
injection, replacement, and simplification, the heuristics are selected based on their performance
rankings like (Liu et al.| [2024a)). Specifically, the probability of sampling a heuristic A is inversely
proportional to its rank in the current pool (i.e., proportional to 1/rank, (h)). Heuristics ranked below
a threshold, defined as the population size, are assigned a probability of zero.

Fine-Granularity Mutation Operators: Injection & Replacement. GRPO assigns an advantage
score to each token based on the relative reward of the full response compared to others from the
same prompt. This means each part of a heuristic is encouraged or penalized depending on the quality
of the whole. However, heuristic performance can shift dramatically with changes to even a single
sub-component, making uniform treatment of all parts—in terms of gradient direction—unreliable.

While cumulative gradient updates can correct misattributed rewards or penalties for the same token
appearing in different responses, we aim to further boost this process. To this end, we introduce two
novel operators that enable more precise control over heuristic variations. These operators encourage
the LLM to retain more common parts while introducing meaningful modifications to the input
heuristic (See Appendix [E] for examples). Consequently, GRPO is expected to more effectively
identify the contribution of individual structural changes. The two newly designed operators are:

Injection. Given an existing heuristic, the injection operator prompts the LLM to incorporate a new
component into it. Additionally, a concise description of the new component must be included in the
response. All component descriptions are stored, and subsequent applications of the injection operator
require the LLM to introduce components distinct from those previously saved, promoting diversity
in generated heuristics. Unlike mutation operators in prior LLM-based AHD methods (Zheng et al.|
2025; |Liu et al., [2024a), which are fed with full heuristic codes: (1) Our approach uses compact
summaries instead of full code, allowing more heuristics to fit within the LLM’s context window;
(2) Saved component descriptions are globally accessible and not limited to the currently sampled
heuristics; (3) Prior methods often require entirely new heuristics, while our approach focuses on
more granular modifications; (4) When the number of heuristics is below the population size, the
sampling probability of the injection operator is increased to encourage exploration in the phase of
population expansion.

Replacement. Given an existing heuristic, the replacement operator prompts the LLM to rewrite
an existing component under a specific instruction. There are three distinct instructions, and each
time the replacement operator is applied, one is randomly sampled for the given heuristic. While the

'The complete algorithm and prompt details are in Appendix and@ respectively, due to space limit.

Under review as a conference paper at ICLR 2026

"rewrite hyper-parameter"” instruction is also present in prior studies (Liu et al.,[2024a}; |[Zheng et al.,
2025)), CALM introduces two novel instructions: (1) Rewrite an instance-independent decision rule as
an instance-dependent one—to improve the heuristic’s adaptability to varying problem contexts; (2)
Rewrite a fragment that assigns equal or near-equal credit to all candidates as one that differentiates
credit based on contextual performance—to encourage more effective prioritization and refined
decision-making.

Diversity-Aware Crossover. To balance exploitation and exploration, each crossover invocation
randomly chooses between (1) performance-based: sample both parents by performance rank;
and (2) diversity-based: sample the first parent h.; by performance rank and the second from all
retained heuristics with probability inversely proportional to diversity rank (larger diversity is better).
Specifically, let idea_token(-) denote the set of unique tokens in a heuristic’s idea, the diversity
is: div(he,1, h) = |idea_token(h) \ idea_token(h. 1)|/|idea_token(h)|. This hybrid mechanism
ensures that at least one parent heuristic is of high quality, while the second parent is either high-
performing or structurally novel. The diversity-aware selection expands the evolutionary search space
and leverages underutilized heuristics, potentially unlocking novel strategies that might otherwise be
overlooked due to suboptimal early performance. More discussions are moved to Appendix [F|

Simplification Operator. As heuristic structures grow increasingly complex through repeated
applications of injection, crossover, and replacement, there is a risk of accumulating redundant or
unnecessarily verbose components. The simplification operator counterbalances this tendency by
prompting the LLM to produce a more concise and effective version of a given heuristic.

Initialization Operator. In cases where there is no heuristic in the pool (e.g., no initial/seeding
function is provided), this operator is invoked to prompt the LLM to generate new heuristics.

4.2 COLLAPSE MECHANISM

Why to Collapse. A key reason LLM-based evolutionary heuristic search can succeed is that prompts
containing better-performing heuristics tend to guide the LLM toward generating even stronger
ones. This creates a self-reinforcing feedback loop, gradually evolving a population of increasingly
effective heuristics. However, this process can also lead to inbreeding and premature convergence:
over time, the population becomes dominated by minor variations of the current best-performing
heuristic. When this state persists without meaningful breakthroughs, the search risks becoming
trapped in a local optimum, a classic challenge in evolutionary computing (Eshelman, {1991).

How to Collapse. As a remedy, CALM introduces a proactive collapse mechanism that resets the
search process when it detects stagnation, allowing the system to escape local optima and reinitiate
meaningful exploration. Specifically, when the search has plateaued—characterized by a prolonged
lack of performance improvement—we reset the population by discarding all heuristics except two:
the original seed algorithm and the current best-performing heuristic. These two retained heuristics
jointly serve as the seed algorithms for the new search process, grounding it in past progress while
freeing it from the genetic redundancy accumulated in the previous population.

When to Collapse. Once the heuristic pool reaches its target population size, CALM begins tracking
stagnation using a no-breakthrough counter c,, initialized to zero. This counter records the number
of consecutive prompt rounds—each involving G sampled responses—that fail to yield a globally
superior heuristic. If any sampled heuristic in a round surpasses all previous ones in performance, ¢,
is reset to zero; otherwise, it increments by one.

To escape local optima, CALM introduces a probabilistic collapse mechanism based on this counter.
At the end of each round, collapse is triggered if: random(0,1) < ¢,dp or ¢, > C, where
0o < 1 controls the rate at which collapse probability grows, and C' is a hard cap ensuring collapse
happens by the C-th stagnation step at the latest. To aid in hyperparameter selection, we further
provide an analytical approximation for the expected number of rounds before collapse is triggered:

E (¢, | collapse, C' > (510} R~ ,/%. 2)

This collision of a rising-probability rule with a fixed maximum fosters a balance between giving
the search plenty of room to improve and ensuring it doesn’t stall infinitely. A detailed proof and
discussion about the benefit of the mechanism can be found in Appendix

Under review as a conference paper at ICLR 2026

4.3 DESIGN OF REWARD FUNCTION

The reward function assigns a score to each LLM-generated response, enabling the RL algorithm
to update the LLM’s parameters and progressively improve its outputs. In AHD, we aim for
responses that yield feasible, novel, and high-performing heuristics. To guide this process, we adopt
a progressive scoring scheme that assigns increasing scores across the following categories: (1)
infeasible responses that fail to produce valid heuristics, (2) duplicate heuristics offering no new
insights, (3) new heuristics, and (4) new high-performing heuristics.

For each invalid response, we assign a reward bounded below by a scalar ripyaiiq € (—1,0). Rewards
for valid heuristics are defined relative to this bound, ensuring that valid outputs always score higher.

For valid heuristics, performance serves as the primary learning signal. However, because the
quality of the generated heuristic is influenced by the prompt—particularly its base heuristics—we
avoid attributing full credit or blame to the LLM alone. Instead, we reward improvements relative
to the best base heuristic in the prompt, ensuring that learning reflects meaningful gains rather
than prompt bias. Specifically, let H denote the set of base heuristics used to construct prompt
q, and hyey be the heuristic parsed from the LLM’s output o. We define the top base heuristic as
It base = arg maxpe g g(h), and measure relative performance via:

|9(Pnew) = g(t_base)])
- ,0,1). 3
min{|g(Anew)|, [9(ht_base) |} ©

A(hnew, ht_base) = Clip (

Let a1, 2 € (0,1) and a1 > o, the reward function 74 (g, 0 | hnew, hs_base) 18 then defined as:

Q1 Tinvalid if 3h € H s.t. g(h) = g(hnew);
Tt,b(Qa o | hneW7 ht_base) = Q2T invalid * A(hnewa htfbase)v ifg(hnew) < g(htfbase); (4)
1+ A(hnew; htfbase)a ifg(hnew) > g(htfbase)-

Under the reward function above, the reward is primarily determined by whether the new heuristic
improves over the best base heuristic or not, with the relative performance gap further modulating
the strength of the reward or penalty. When the generated heuristic is identical in performance to
an existing base heuristic, a small but consistent reward (o Tinvalid) 1S given to discourage trivial
reproduction. If the new heuristic underperforms relative to the best base, a scaled negative reward is
applied, while genuine improvements yield strictly positive rewards starting from 1.

5 EXPERIMENTS

Implementation Details of CALM. We build CALM on Unsloth (Daniel Han and team), |2023)) and
employ an INT4-quantized Qwen2.5-7B-Instruct model (Yang et al.||2024), fine-tuning just 1.15%
of its weights. INT4 compression cuts memory usage up to 8x versus FP32 but degrades precision.
According to |Yang et al.| (2024), performance ranks as follows: GPT-40-mini ~ Qwen2.5-Turbo
> Qwen2.5-14B-Instruct > Qwen2.5-7B-Instruct > Qwen2.5-7B-Instruct-INT4. The 14B and 7B
Instruct models share the same architecture, so the larger parameter count drives the 14B’s edge over
the 7B, while quantization further reduces the 7B’s accuracy. Consequently, GPT-40-mini—based
baselines retain a clear advantage in raw accuracy over our lean, resource-efficient setup. More
implementation details can be found in Appendix [H]

Optimization Tasks. Existing LLM-based methods can demonstrate near-optimal or optimal perfor-
mance on some benchmark problems, such as TSP (Liu et al.| 2024a}|Ye et al., 2024; [Zheng et al.|
2025])) (aided by ACO solvers) and knapsack problem (KP) (Zheng et al.| 2025)), leaving little room
for further improvement. Therefore, we focus on tasks that remain challenging for LLM-based AHD
as follows: Online Bin Packing (OBP) problem and TSP under step-by-step construction task, CVRP
and Orienteering Problem (OP) under an ACO search framework. Detailed problem descriptions can
be found in Appendix

Baselines. To evaluate CALM, we compare its designed heuristics against the following base-
lines: (1) hand-crafted heuristics such as Best-Fit (Kenyon, [1995) for OBP, Greedy-Construct
(GC) (Rosenkrantz et al., [1977) for TSP, and ACO (Bluml, [2005) for CVRP and OP; (2) Nerual
Combinatorial Optimization (NCO) methods including POMO (Kwon et al.,[2020) and DeepACO (Ye
et al., 2023)); and (3) LLM-based AHD approaches like FunSearch (Romera-Paredes et al., [2024),

Under review as a conference paper at ICLR 2026

EoH (Liu et al., [2024a)), ReEvo (Ye et al.| 2024), HSEvo (Dat et al.,[2025)), OpenEvolve (Sharmal
2025), MCTS-AHD (Zheng et al.l 2025), and EvoTune (Surina et al.l 2025). Notably, AlphaE-
volve (Novikov et al., 2025) does not release its official source code. OpenEvolve, developed by an
independent group, is one of the most popular open-source reimplementations of AlphaEvolve. To
ensure a fair comparison, we align CALM and all LLM-based AHD baselines with consistent settings,
including shared seed heuristics, identical training datasets for evaluating heuristic performance, and
comparable evaluation budgets—specifically, 1,000 heuristic evaluations for baselines and a fixed
budget of 2,000 LLM queries for CALM across all tasks except OBP. Notably, prior AHD methods
typically conduct 2,000 heuristic evaluations using over 4,000 queries for OBP, whereas CALM

operates under a fixed budget of 2,000 queries.

5.1 OVERALL RESULTS

OBP. We train and eval-
uate CALM on the same
dataset used by |Zheng et al.
(2025)), which includes four
training instances at vary-
ing scales and five testing

runs.

by Martello and Toth

Table 1: Average optimality gaps of heuristics for OBP over three
All methods are trained and evaluated on the same datasets
as Zheng et al.|(2025), with gaps measured relative to the lower bound

(1990). Test sets whose scale matches the training

distribution are underlined. Format: 1k_100 denotes instances with
1,000 items and a bin capacity of 100.

instances spanning six dif-
ferent scales—two of which

Online Bin Packing (OBP)

are out-of-domain and not Test sets 1k_100 1k 500 5k _100 5k 500 10k_100 10k_500 Avg.
seen during training. Re- Best Fit 477% 025% 431% 055% 405% 047% 2.40%
sults in Table [show that First Fit 502% 025% 4.65% 055% 436% 0.50% 2.56%
CALM consistently outper- LLM-based AHD: GPT-4o-mini (w/o. GRPO)

. FunSearch 245% 0.66% 130% 025% 105% 021% 0.99%
forms all baseline methods EoH 269% 025% 1.63% 0.53% 147% 045% 1.17%
in terms of average opti- ReEvo 394% 050% 272% 040% 239% 031% 1.71%
mality gap across the full HSEvo 264% 1.07% 143% 032% 1.13% 021% 1.13%

1 hi OpenEvolve 4.84% 025% 428% 055% 4.07% 047% 241%
test set. It can achieve su- MCTS-AHD 2.45% 0.50% 1.06% 032% 0.74% 026% 0.89%
erior performance on out- CALM (Ours) 2.78% 029% 0.83% 0.28% 050% 024% 0.82%
p p
of-domain and in-domain LLM-based AHD: Qwen2.5-7B-Instruct-INT4 (w/. GRPO)
scales. Remarkably, CALM EvoTune 467% 025% 423% 055% 411% 0.60% 2.40%
CALM (Ours) 2.55% 0.00% 0.85% 017% 056% 0.14% 0.71%

achieves a zero gap in set

1k_500, indicating exact optimal solutions at that scale.

TSP. CALM is trained on the same dataset used
by |Zheng et al.|(2025)): a training set of 64 TSP
instances with N = 50 nodes and three test sets
of 1,000 instances each at N = 50,100, and
200. As shown in Table 2] CALM-constructed
heuristics outperform all LLM-based baselines
on both out-of-domain test sets and achieve the
second-best LLM-based result on the in-domain
set. Notably, at the largest scale, CALM sur-
passes the NCO baseline POMO, which requires
per-scale training.

CVRP. CALM is trained on 10 instances as
in (Zheng et al.l [2025) with N = 50 nodes us-
ing the ACO framework, and evaluated on three
test sets of 64 instances each at N = 50, 100,
and 200, following the same generation protocol.
During both training and testing, the number of
ants and iterations is fixed to 30 and 100, respec-
tively. As shown in Table[3] CALM consistently
outperforms all LLM-based baselines across all
test sets, including both the in-domain and out-
of-domain ones.

OP. CALM is trained 5 OP instances with N =

Table 2: Performance on TSP, averaged over three
runs. Methods are evaluated on three test sets of
1,000 instances each, using the same training and
testing datasets as by [Zheng et al| (2025). In-
domain scales (i.i.d. to training) are underlined.
Optimal tours are from LKH (Lin and Kernighan,
1973)). Best LLM-based results are shaded, over-
all best in bold.

Traveling Salesman Problem (TSP)

N=50 N=100 N=200

Methods Obj.} Gapl Obj.l Gapl Obj.| Gapl
Optimal 5.675 - 7.768 - 10.659 -
GC 6.959 22.62% 9.706 24.94% 13.461 26.29%
POMO 5697 039% 8.001 3.01% 12.897 20.45%

LLM-based AHD: GPT-3.5-turbo (w/o. GRPO)
FunSearch 6.683 17.75% 9.240 18.95% 12.808 19.61%
EoH 6390 12.59% 8.930 14.96% 12.538 17.63%
MCTS-AHD 6.346 11.82% 8.861 14.08% 12418 16.51%

LLM-based AHD: GPT-40-mini (w/o. GRPO)

FunSearch 6357 12.00% 8850 13.93% 12.372 15.54%
EoH 6.394 12.67% 8.894 14.49% 12.437 16.68%
OpenEvolve 6.281 10.68% 8.719 12.25% 12.148 13.96%
MCTS-AHD 6.225 9.69% 8.684 11.79% 12.120 13.71%
CALM (Ours) 6273 10.54% 8.691 11.88% 12.104 13.56%

LLM-based AHD: Qwen2.5-7B-Instruct-INT4 (w. GRPO)

6.267 1043% 8.777 12.99% 12429 16.60%
6.244 10.04% 8.668 11.58% 12.088 13.41%

EvoTune
CALM (Ours)

50 nodes using the ACO framework and evaluated on three test sets of 64 instances each at N =

Under review as a conference paper at ICLR 2026

50,100, and 200, following the generation protocol in HSEvo (Dat et al 2025). Both training
and testing use a fixed configuration of 20 ants and 50 iterations. As reported in Table 3} CALM
consistently outperforms all other LLM-based baselines on the out-of-domain scales. As for the
in-domain scale, it still outperforms EoH and the most recent approach, MCTS-AHD and EvoTune.

Table 3: Performance of ACO-based heuristics on CVRP and OP, averaged over three runs. All
methods are evaluated on three test sets of 64 randomly generated instances each, following the setup
in (Zheng et al., [2025)) and (Dat et al., 2025), respectively. Optimal solutions are approximated using
DeepACO with significantly more ants and iterations than those in the baseline configurations.

CVRP opP
N=50 N=100 N=200 N=50 N=100 N=200
Methods Obj.). Gapl, Obj.) Gapl Obj.| Gapl Obj.1 Gapl, Obj.1 Gapl Obj.1 Gapl
Optimal 8.888 - 14.932 - 27.159 - 19.867 - 36.392 - 63.380 -
ACO 18.581 109.05% 30.107 101.63% 37.590 40.69% 13.354 32.69% 24.131 33.69% 37.586 40.69%
LLM-based AHD: GPT-40-mini (w/o. GRPO)

EoH 9.894 11.32% 16953 13.54% 30314 11.62% 13388 32.61% 24.154 33.63% 37.319 41.12%
ReEvo 9.558 754% 16350 9.50% 29219 7.58% 15103 23.98% 30.523 16.13% 53.807 15.10%
HSEvo 9.431 6.11% 16396 9.81% 29.520 8.69% 15.082 24.08% 30.454 16.32% 53.260 15.97%

OpenEvolve 10.077 1337% 17418 16.65% 31.190 14.84% 14314 27.95% 28336 22.13% 48.576 23.36%
MCTS-AHD 9.372 5.44% 15974 698% 28434 470% 14.847 2527% 30.163 17.12% 53.024 16.34%
CALM (Ours) 9.404 5.81% 16.046 7.46% 28713 572% 15017 2441% 30.294 16.76% 53.098 16.22%

LLM-based AHD: Qwen2.5-7B-Instruct-INT4 (w/. GRPO)

EvoTune 9.405 5.82% 15975 698% 28.823 6.13% 15.053 24.23% 29.743 18.27% 50.499 20.32%
CALM (Ours) ~ 9.228 383% 15745 544% 28230 395% 15054 24.22% 30.778 15.43% 55.406 12.58%

5.2 DISCUSSION

Efficacy of our verbal gradient. For each problem instance, we further evaluate the design of our
verbal gradient in isolation (i.e., without GRPO) by (1) switching the backend to the GPT-40-mini
API, (2) setting G = 1, and (3) using 7' = 4000 for OBP and 7" = 2000 for all other tasks—matching
the query budgets of prior LLM-based AHD methods. As shown in Tables [TH3] this API-based
variant of CALM delivers performance on par with or superior to the recent MCTS-AHD approach:
it achieves the lowest optimality gaps on the Sk_100 and 10k_100 OBP datasets and ranks second
on average across all OBP test sets, matches MCTS-AHD and outperforms all other baselines on
every CVRP test set, consistently surpasses MCTS-AHD on all OP instances, and closely tracks
MCTS-AHD on TSP at N = 50 and 100 while outperforming all non-MCTS baselines at those scales
and even surpassing MCTS-AHD at N = 200. These results demonstrate that, even without RL or
advanced techniques such as reflection (Ye et al.| 2024, \Dat et al.| | 2025|) and tree search (Zheng et al.|
2025)), CALM’s verbal guidance mechanism remains highly effective, placing the API-based CALM
firmly within the top tier of existing LLM-based AHD methods.

Power of RL. We have tested the performance of CALM without the GRPO algorithm and under many
ablation settings. As shown in Table[4] results demonstrate that disabling the GRPO module causes
the largest drop in performance across near all ablations. In other words, The reinforcement-learning
component has the most significant impact on overall performance among all ablation settings.
Morever, as illustrated in Table [IN3] with GRPO and our custom reward, the Qwen2.5-7B-Instruct-
INT4—derived heuristic not only closes the gap but actually outperforms the GPT-40-mini—based
heuristic. We have also visualized the training curve in Figure[2] Results show CALM’s heuristics lag
early—likely due to GPT-40-mini’s head start—but as GRPO adapts the LLM, its heuristics converge
and outperform all baselines. This suggests the transformative power of RL in enhancing AHD.

Impact of reward design. Our feasible-response reward allocates credit by comparing each gen-
erated heuristic against its parent(s), rather than attributing full reward or blame solely to the
LLM. We evaluate two alternative schemes (keeping the infeasible-response penalty unchanged): (i)
performance-based reward, where a feasible heuristic receives a positive reward proportional to its
performance relative to the seed algorithm; and (ii) the {0.5 7ana, 1}-improvement reward, which
assigns reward 1 if the new heuristic outperforms all parent or baseline heuristics, and 0.5 7;anqd
otherwise. Both alternatives remove the trivial-reproduction penalty and mitigate the performance
bias present in Equation (@). As Table f] demonstrates, neither variant beats our original design:
the performance-based scheme underperforms even the no-RL baseline on the OP problem, while

Under review as a conference paper at ICLR 2026

the {0.57rana, 1}-improvement strategy delivers closer but still inferior results compared to our
proposed reward function. This confirms the effectiveness of our original reward design.

Impact of collapse. We examine the im-
pact of the collapse mechanism by ana-
lyzing the heuristics produced by CALM
both without collapse and under various hy-
perparameter configurations that influence
when collapse is triggered. As shown in
Table] incorporating the collapse mech- 0
anism generally enhances the heuristic
search process. An exception arises in the
configuration with the strictest tolerance
for not discovering a breakthrough heuris-
tic (i.e., when 6, = 0.005 and C' = 15).
A detailed analysis of the evolutionary tra-
jectory under this setting reveals a signif-
icantly reduced number of breakthroughs.
In one run on the OP problem, no break-

15.0
— CALM

EoH

——- ReEvo
MCTS-AHD
EvoTune

,_.
»
n

,_\
&
o

Objective
Objective

EvoTune

500 1000 1500 2000 0
LLM queries

500 1000 1500 2000
LLM queries

(a) CVRP, (b) OP.

Figure 2: Objective score of the best heuristic in training
averaged over 3 runs (std. dev. shaded).

Table 4: Optimality gap under ablation settings for prob-
lem OBP and OP averaged over three runs.

through heuristic was identified after the Method OBP or
132nd LLM query. These findings sug- CALM (local, w/ GRPO) 0.71% 17.41%
gest that setting a reasonable tolerance for CALM (APL, w/o GRPO) 0.82% 19.13%
the.absence. of breakthroughs—balancing RL-based Fine-nuning
patience with the benefits of early stop- local, w/o GRPO 1.78% 19.89%
ping—is 1mp0r.tant for supporting a more rew€ {0.57invalia, 1} 1.04% 17.44%
effective evolution. rew=performance 1.24% 21.30%
Impact of operators. We evaluate Collapse Mechanism
each operator’s contribution by measuring w/o Collapse 0.98% 19.57%
CALM’s performance with that operator re- do = 0.0005, C' =15 0.77% 18.31%
moved (Table[d). Results show that all op- do = 0.005,C =15 1.93% 27.22%
erators positively impact heuristic quality. b0 = 0.0005, ¢ = oo 0.96% 19.50%
Crossover, injection, and replacement are do = 0.005, €' = o0 0.98% 18.38%
similarly critical—removing any one no- Operators
tably degrades performance in either OBP w/o diversity 1.05% 19.44%
or OP. Among all, removing simplifica- w/o crossover 0.88% 18.49%
tion causes the largest drop in both tasks, w/o injection L11% 18.68%
likely because it uniquely reduces redun- w/o replacement 1.20% 17.57%
w/o simplification 1.35% 19.45%

dancy and curbs complexity, counterbal-
ancing other operators that tend to increase
heuristic length. Moreover, when crossover is applied without diversity-based selection—using only
performance-based sampling—CALM performs worse than with no crossover at all, highlighting the
importance of diversity awareness in the most-used operator.

Additional Experimental Results. Due to space constraints, additional experimental results are
presented in Appendix [} including a detailed breakdown of running time, the effects of fine-tuning
and foundational model choices, performance on more challenging OBP instances, scaling behavior,
statistical significance (p-values), sensitivity analyses of reward-function hyperparameters, and the
set of elite heuristics discovered.

6 CONCLUSION

This paper introduces CALM, the first framework to marry prompt evolution with on-the-fly LLM
adaptation for AHD, freeing it from the constraints of fixed-model approaches. Running entirely on a
single 24 GB GPU with a compact foundation model, CALM autonomously uncovers heuristics that
outmatch SOTA API-based baselines across various challenging optimization scenarios. Moreover,
even without the power of RL, CALM matches or exceeds prior best results using the same LLM
API, demonstrating the potency of our verbal-gradient designs. In the future, we expect that scaling
CALM’s paradigm to larger models and extended post-training could further push the frontier of
automated algorithm discovery.

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. The research did not involve human participants
or animal experimentation. All datasets employed were obtained and used in accordance with
relevant licensing and usage policies, ensuring no infringement of privacy. No personally identifiable
information was processed, and no experiments were conducted that could pose privacy or security
risks. Throughout the study, we have taken deliberate steps to mitigate biases and avoid discriminatory
outcomes. We are committed to transparency, reproducibility, and integrity in both our methodology
and reporting.

8 REPRODUCIBILITY STATEMENT

We have provided all information necessary to reproduce the main experimental results of this
work, sufficient to support its central claims and conclusions. In detail, the complete algorithm is
provided in Appendix [C] the prompts used (including the system prompt, operator prompts, and task
descriptions) are detailed in Appendix [D] the experimental settings are described in Section [5|and
further elaborated in Appendix |[H} and the full source code, including the discovered heuristics, is
included in the supplementary material.

REFERENCES

Jiahui Duan, Xialiang Tong, Fei Ni, Zhenan He, Lei Chen, and Mingxuan Yuan. A data-driven
column generation algorithm for bin packing problem in manufacturing industry. arXiv preprint
arXiv:2202.12466, 2022.

Giulia Tresca, Graziana Cavone, Raffaele Carli, Antonio Cerviotti, and Mariagrazia Dotoli. Automat-
ing bin packing: A layer building matheuristics for cost effective logistics. IEEE Transactions on
Automation Science and Engineering, 19(3):1599-1613, 2022.

Bachir Mihoubi, Brahim Bouzouia, and Mehdi Gaham. Reactive scheduling approach for solving a
realistic flexible job shop scheduling problem. International journal of production research, 59
(19):5790-5808, 2021.

Jessica Coto Palacio, Yailen Martinez Jiménez, Leander Schietgat, Bart Van Doninck, and Ann Nowé.
A g-learning algorithm for flexible job shop scheduling in a real-world manufacturing scenario.
Procedia CIRP, 106:227-232, 2022.

Nadia Dahmani, Ines Sbai, Takwa Tlili, and Saoussen Krichen. On solving the 21-cvrp using an
adaptive chemical reaction algorithm: postal transportation real-case. International Journal of
System Assurance Engineering and Management, pages 1-25, 2024.

Rafael HM Pereira, Marcus Saraiva, Daniel Herszenhut, Carlos Kaue Vieira Braga, and Matthew Wig-
ginton Conway. 15r: rapid realistic routing on multimodal transport networks with r 5 in r. Findings,
2021.

Edmund K Burke, Mathew R Hyde, Graham Kendall, Gabriela Ochoa, Ender Ozcan, and John R
Woodward. Exploring hyper-heuristic methodologies with genetic programming. Computational
intelligence: Collaboration, fusion and emergence, pages 177-201, 2009.

Fei Liu, Tong Xialiang, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language
model. In International Conference on Machine Learning, pages 32201-32223. PMLR, 2024a.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo Park,
and Guojie Song. Reevo: Large language models as hyper-heuristics with reflective evolution. In
Advances in Neural Information Processing Systems, 2024.

Pham Vu Tuan Dat, Long Doan, and Huynh Thi Thanh Binh. Hsevo: Elevating automatic heuristic
design with diversity-driven harmony search and genetic algorithm using llms. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 39, pages 26931-26938, 2025.

10

Under review as a conference paper at ICLR 2026

Zhi Zheng, Zhuoliang Xie, Zhenkun Wang, and Bryan Hooi. Monte carlo tree search for comprehen-
sive exploration in llm-based automatic heuristic design. In International Conference on Machine
Learning. PMLR, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468-475, 2024.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, 33:21188-21198, 2020.

Yuxin Pan, Yize Chen, and Fangzhen Lin. Adjustable robust reinforcement learning for online 3d bin
packing. Advances in Neural Information Processing Systems, 36:51926-51954, 2023.

Jieyi Bi, Yining Ma, Jianan Zhou, Wen Song, Zhiguang Cao, Yaoxin Wu, and Jie Zhang. Learning
to handle complex constraints for vehicle routing problems. Advances in Neural Information
Processing Systems, 37:93479-93509, 2024.

Fu Luo, Xi Lin, Zhenkun Wang, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang. Self-improved
learning for scalable neural combinatorial optimization. arXiv preprint arXiv:2403.19561, 2024.

Pei Xiao, Zizhen Zhang, Jinbiao Chen, Jiahai Wang, and Zhenzhen Zhang. Neural combinatorial op-
timization for robust routing problem with uncertain travel times. Advances in Neural Information
Processing Systems, 37:134841-134867, 2024.

Jingyan Sui, Shizhe Ding, Boyang Xia, Ruizhi Liu, and Dongbo Bu. Neuralgls: learning to guide local
search with graph convolutional network for the traveling salesman problem. Neural Computing
and Applications, 36(17):9687-9706, 2024.

Zhi Zheng, Shunyu Yao, Genghui Li, Linxi Han, and Zhenkun Wang. Pareto improver: Learning
improvement heuristics for multi-objective route planning. IEEE Transactions on Intelligent
Transportation Systems, 25(1):1033-1043, 2023.

Daniel J] Mankowitz, Andrea Michi, Anton Zhernov, Marco Gelmi, Marco Selvi, Cosmin Paduraru,
Edouard Leurent, Shariq Igbal, Jean-Baptiste Lespiau, Alex Ahern, et al. Faster sorting algorithms
discovered using deep reinforcement learning. Nature, 618(7964):257-263, 2023.

Wenjie Yi, Rong Qu, Licheng Jiao, and Ben Niu. Automated design of metaheuristics using rein-
forcement learning within a novel general search framework. IEEE Transactions on Evolutionary
Computation, 27(4):1072-1084, 2022.

Nelishia Pillay and Rong Qu. Hyper-heuristics: theory and applications. Springer, 2018.

Xavier Sdnchez-Diaz, José Carlos Ortiz-Bayliss, Ivan Amaya, Jorge M Cruz-Duarte, Santiago Enrique
Conant-Pablos, and Hugo Terashima-Marin. A feature-independent hyper-heuristic approach for
solving the knapsack problem. Applied Sciences, 11(21):10209, 2021.

Henrik Abgaryan, Ararat Harutyunyan, and Tristan Cazenave. Llms can schedule. arXiv preprint
arXiv:2408.06993, 2024.

Xia Jiang, Yaoxin Wu, Yuan Wang, and Yingqian Zhang. Unco: Towards unifying neural combinato-
rial optimization through large language model. arXiv preprint arXiv:2408.12214, 2024.

Duo Wu, Xianda Wang, Yaqi Qiao, Zhi Wang, Junchen Jiang, Shuguang Cui, and Fangxin Wang.
Netllm: Adapting large language models for networking. In Proceedings of the ACM SIGCOMM
2024 Conference, pages 661-678, 2024.

11

Under review as a conference paper at ICLR 2026

Laurent Perron and Vincent Furnon. Or-tools, 2024. URL https://developers.google.co
m/optimization/.

Fei Liu, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang. Algorithm evolution using large
language model. arXiv preprint arXiv:2311.15249, 2023a.

Zijie Chen, Zhanchao Zhou, Yu Lu, Renjun Xu, Lili Pan, and Zhenzhong Lan. Qube: Enhancing
automatic heuristic design via quality-uncertainty balanced evolution, 2025. URL https:
//arxiv.org/abs/2412.20694.

Fei Liu, Rui Zhang, Zhuoliang Xie, Rui Sun, Kai Li, Xi Lin, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Llmd4ad: A platform for algorithm design with large language model. arXiv preprint
arXiv:2412.17287, 2024b.

Alexander Novikov, Ngan Vi, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt Wag-
ner, Sergey Shirobokov, Borislav Kozlovskii, Francisco J. R. Ruiz, Abbas Mehrabian, M. Pawan
Kumar, Abigail See, Swarat Chaudhuri, George Holland, Alex Davies, Sebastian Nowozin, Push-
meet Kohli, and Matej Balog. AlphaEvolve: A coding agent for scientific and algorithmic discovery.
Technical report, Google DeepMind, 05 2025. URL https://storage.googleapis.com
/deepmind-media/DeepMind.com/Blog/alphaevolve—a—-gemini-powered-c
oding—agent-for-designing-advanced-algorithms/AlphaEvolve.pdf.

Nguyen Thach, Aida Riahifar, Nathan Huynh, and Hau Chan. Redahd: Reduction-based end-to-end
automatic heuristic design with large language models. arXiv preprint arXiv:2505.20242, 2025.

Xianliang Yang, Ling Zhang, Haolong Qian, Lei Song, and Jiang Bian. Heuragenix: Leveraging
1Ims for solving complex combinatorial optimization challenges. arXiv preprint arXiv:2506.15196,
2025.

Anja Surina, Amin Mansouri, Lars Quaedvlieg, Amal Seddas, Maryna Viazovska, Emmanuel Abbe,
and Caglar Gulcehre. Algorithm discovery with 1lms: Evolutionary search meets reinforcement
learning. arXiv preprint arXiv:2504.05108, 2025.

Fei Liu, Rui Zhang, Xi Lin, Zhichao Lu, and Qingfu Zhang. Fine-tuning large language model for
automated algorithm design. arXiv preprint arXiv:2507.10614, 2025.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728-53741, 2023.

John Schulman. Approximating k1 divergence, 2020. URLhttp://joschu.net/blog/kl-a
pprox.html. Accessed: 2025-05-11.

Larry J Eshelman. Preventing premature convergence in genetic algorithms by preventing incest. In
Proceedings of Fourth International Conference on Genetic Algorithms, 1991, 1991.

Michael Han Daniel Han and Unsloth team. Unsloth, 2023. URL http://github.com/unslo
thai/unsloth.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Claire Kenyon. Best-fit bin-packing with random order. PhD thesis, Laboratoire de 1’informatique du
parallélisme, 1995.

Daniel J Rosenkrantz, Richard E Stearns, and Philip M Lewis, II. An analysis of several heuristics
for the traveling salesman problem. SIAM journal on computing, 6(3):563-581, 1977.

Christian Blum. Ant colony optimization: Introduction and recent trends. Physics of Life reviews, 2
(4):353-373, 2005.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Helan Liang, and Yong Li. Deepaco: Neural-enhanced ant
systems for combinatorial optimization. Advances in neural information processing systems, 36:
43706-43728, 2023.

12

https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://arxiv.org/abs/2412.20694
https://arxiv.org/abs/2412.20694
https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/AlphaEvolve.pdf
https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/AlphaEvolve.pdf
https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/AlphaEvolve.pdf
http://joschu.net/blog/kl-approx.html
http://joschu.net/blog/kl-approx.html
http://github.com/unslothai/unsloth
http://github.com/unslothai/unsloth

Under review as a conference paper at ICLR 2026

Asankhaya Sharma. Openevolve: an open-source evolutionary coding agent, 2025. URL https:
//github.com/codelion/openevolvel

Silvano Martello and Paolo Toth. Lower bounds and reduction procedures for the bin packing
problem. Discrete applied mathematics, 28(1):59-70, 1990.

Shen Lin and Brian W Kernighan. An effective heuristic algorithm for the traveling-salesman problem.
Operations research, 21(2):498-516, 1973.

Nafis Tanveer Islam, Joseph Khoury, Andrew Seong, Mohammad Bahrami Karkevandi, Gonzalo De
La Torre Parra, Elias Bou-Harb, and Peyman Najafirad. LIm-powered code vulnerability repair
with reinforcement learning and semantic reward. arXiv preprint arXiv:2401.03374, 2024.

Yun-Da Tsai, Mingjie Liu, and Haoxing Ren. Code less, align more: Efficient llm fine-tuning for
code generation with data pruning. arXiv preprint arXiv:2407.05040, 2024.

Jungiao Wang, Zeng Zhang, Yangfan He, Yuyang Song, Tianyu Shi, Yuchen Li, Hengyuan Xu, Kunyu
Wu, Guangwu Qian, Qiuwu Chen, et al. Enhancing code llms with reinforcement learning in code
generation. arXiv preprint arXiv:2412.20367, 2024.

Wei Shen and Chuheng Zhang. Policy filtration in rlhf to fine-tune Ilm for code generation. arXiv
preprint arXiv:2409.06957, 2024.

Junjie Li, Aseem Sangalay, Cheng Cheng, Yuan Tian, and Jinqiu Yang. Fine tuning large language
model for secure code generation. In Proceedings of the 2024 IEEE/ACM First International
Conference on Al Foundation Models and Software Engineering, pages 86-90, 2024.

Zeyuan Ma, Hongshu Guo, Jiacheng Chen, Guojun Peng, Zhiguang Cao, Yining Ma, and Yue-Jiao
Gong. Llamoco: Instruction tuning of large language models for optimization code generation.
arXiv preprint arXiv:2403.01131, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Yao Zhao, Rishabh Joshi, Tiangi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. Slic-hf:
Sequence likelihood calibration with human feedback. arXiv preprint arXiv:2305.10425, 2023.

Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J Liu, and Jialu Liu.
Statistical rejection sampling improves preference optimization. arXiv preprint arXiv:2309.06657,
2023b.

13

https://github.com/codelion/openevolve
https://github.com/codelion/openevolve

Under review as a conference paper at ICLR 2026

APPENDIX

[A"The Use of LLMs

B Fxtended Discussion about Related Work

[C Complete Algorithm|

[D Prompts Used in CALM]|

Example Prompt-Response Pairs for Injection and Replacement|

[Discussion about the Diversity-Aware Crossover Operator]

|G More Details For the Collapse Mechanism|
|G.1 Proofof Equation (2)|
G2 Goodness|

[More Experimental Details|

[H.1 Implementation Details|

[H.2 Baseline Implementations|.

[H.3 Description of Problems in Experiments|

I More Experimental Results|
.1 Breakdown of CALM’s Time Consumption|
.2 Impact of Fine-tuning on the Foundational Model|
I.3° Impact of the Foundational LLM|

) 1mitations

IK Broader Impact|

[L_Ticensel

14

15

15

15

17

17

24

24
24
25

25
25
25
26

26
26
27
27
28
28
29
29
29

38

38

38

Under review as a conference paper at ICLR 2026

A THE USE OF LLMS

LLM serves as a heuristic generator in our core method, as all LLM-based AHD frameworks do. The
idea of the method was originally created and implemented by human. Additionally, the LLM was
employed as a tool to refine and polish the writing.

B EXTENDED DISCUSSION ABOUT RELATED WORK

LLM for Code Generation. Recent work has explored improving LLMs’ code generation capabilities
through post-training (Islam et al., 2024; Tsai et al., [2024; Wang et al.| 2024} |Shen and Zhang}, |2024;
Li et al| 2024). For example/Islam et al|(2024) employ RL and semantic feedback to repair
vulnerabilities, while|Wang et al.|(2024) demonstrate RL’s effectiveness in enhancing code quality.
Despite surface similarities, our task differs drastically: in code generation, objectives often prioritize
pass rates (Shen and Zhang|, 2024; |Wang et al.,2024; Tsai et al.,|2024) or safety (Li et al.| [2024} Islam
et al.,[2024)), whereas our goal is to maximize heuristic performance. Moreover, in code generation,
fine-tuning aims to produce a generally stronger model, while in our case, both the model tuning and
prompt evolution serve a singular goal—improving the quality of generated heuristics.

Notably, LLaMoCo (Ma et al.l [2024)) trains LLMs for optimization by fine-tuning on curated
prompt—code pairs and enabling direct code generation for new problems. Its training data is derived
from established sources such as papers, competitions, and benchmarks. By contrast, CALM adapts
LLMs using prompts and responses generated dynamically during the evolutionary process, allowing
problem-specific adaptation without external data. A promising future direction is to combine the
supervised training of LL.aMoCo as a first stage with CALM’s reinforcement learning as a second
stage for adaptive optimization.

RL for LLM Fine-tuning. Reinforcement learning is a central technique for fine-tuning large
language models, with the RLHF paradigm commonly relying on Proximal Policy Optimization
(PPO) (Schulman et al.l 2017) to iteratively refine model outputs based on human feedback. Building
on this, Group Relative Policy Optimization (GRPO) (Shao et al.| [2024) simplifies training by
removing the need for a separate value network, instead estimating baselines over groups of candidate
completions—leading to improved sample efficiency and stability. Other alternatives such as Direct
Preference Optimization (DPO), SLiC-HF (Zhao et al.,[2023), and Rejection Sampling Optimization
(RSO) (Liu et al.| [2023b) offer off-policy mechanisms that further reduce computational burden.
While we do not aim to develop new fine-tuning algorithms, our method integrates GRPO within
the broader co-evolution framework to adapt the LLM in tandem with heuristic evolution. We
specifically adopt GRPO because it requires only a scalar signal per prompt-response pair (in contrast
to preference-based signals), making it suitable for our setting. Moreover, we implement fine-tuning
using Unsloth (Daniel Han and team, |2023)), a GPU-efficient open-source framework that enables
fast, memory-light training even on single consumer-grade GPUs—making our method especially
practical and accessible for researchers with limited hardware resources.

C COMPLETE ALGORITHM

The complete algorithm body is shown in Algorithm

15

Under review as a conference paper at ICLR 2026

Algorithm 1: CALM

Input :LLM 7y, Evaluation environment g, number G of responses to be sampled for one
prompt, maximum round number 7', Population size L, Sampling weight w for each
operator, Hyperparameter d, and C' that control the collapse mechanism, set of seed
heuristic Hseeq (set to be @) if not given any seed heuristic).

Initialize collapse counter t. = —1, best heuristic h* = null, best performance g* = —oo,

heuristic pool Hpoo1 = Hseed> Wi = Winjection’

fort=1,--- ,Tdo

Operator base OPs < {Initialization};

if [Hpool| > 1 then

| OPs « {Injection, Replacement, Crossover, Simplification};
end

if [Hpool| > 2 then

| OPs - OPs U {Crossover};
end
if [Hpool| < L, then

‘ Winjection < max(w);
else

‘ Winjection < Wy

Hpase 0, op + Draw an operator from OPs with the probability proportional to w;

if op # Initialization then

he,1 <—Draw an heuristic from top-L,-performing heuristics in Hq01, Where the

sampling probability of an heuristic h is proportional to 1/rank,(h) and rank, (h) is
the heuristic’s performance rank;

Hbasc — 7'[basc U {h},

if op = Crossover then

if random(0, 1) < 0.5 then

he,2 <Draw a heuristic from the population by performance rank as sampling

hc,l;

else

Calculate diversity metric

div(he,, h) = LeatoteGlicentorenliodl v € Hpoor:

he,2 <Draw a heuristic from the pool by diversity rank where the sampling
probability is proportional to 1/rank,(h) (a larger diversity value yields a
higher probability);

Hbase — Hbase U {hC,Z};

end

end
q +—Generate prompt by the operator op and base heuristics Hpage;
O <Sample G responses from 7y for g;
Hieasible, 7o < Try extracting a feasible heuristic from each response 0o € O and assign
reward to each response following Section
6 +Update the LLM by GRPO that optimizes Equation[l|with (¢, O, 70);
Hpool < Hpoot UH 1) (175
h* < arg MAXpeH 01 g(h);
if g(h*) = ¢* and |Hpoo1| > Ly, then
/+ If the population is full, the counter for collapse
starts. */
t. < max(t,0) + 1;
else
| 9" = (h*),t. < min(t.,0);
if random(0,1) < dgt. or t. > C then
‘ Hbase — {h*} U Hseed»tc <~ _]-; / x Collapse */
end

end
Return:h*

16

Under review as a conference paper at ICLR 2026

Searching superior heuristics on the {problem.name} problem in an evolutionary manner through
conversation between User and Assistant. In this problem, {problem.description} The User
provides existing algorithms and requests a new one.

Your Task
You should first present a concise conceptual description, followed by a complete code
implementation.
* The description must:
* Be enclosed with a double brace and starts with "The idea of the algorithm is to".
* Ensure it is self-contained, insightful, and creatively original.
* Not reference or rely on any prior ideas or existing code.
* The code must:
* Strictly follow the input-output variable names and types used in the provided implementation.
* Be a single Python function formatted within Python code blocks.
* Exclude any usage examples.
* Ensure the algorithm is deterministic.
* Avoid introducing unnecessary, arbitrarily-tuned hyperparameters; any parameters used should
be essential and systematically derived from the input.
Overall, your response should be like:
{{The idea of the algorithm is to (sepcific description here)}}
“*python
your code here

Except for the idea and code, do not give additional explanations or comments.

Figure 3: Template of the system prompt.

D PromprTS USED IN CALM

System Prompt. The system prompt is generated by inserting the name and description into the
template shown in Figure[3] The specific prompt used for each problem can be found in Table[5]

Injection Prompt. The template used to generate injection prompts is shown in Figure [d In the
prompt template, the algorithm details are generated by the given heuristics and the prompt template
in Figure[§] The description of the most recent injected components is created by (1) parsing the
string wrapped within "The new component ... has been introduced", (2) globally saving the historical
new components, and (3) picking the last 10 new components to be used.

Replacement Prompt. The replacement prompt is created by the template, some predefined compo-
nent Paris shown in Figure[5] and the algorithm detail template shown in Figure[8]

Crossover Prompt. The crossover prompt is generated by the template shown in Figure[6and the
algorithm detail template shown in Figure

Simplification Prompt. The simplification prompt is created by the template shown in Figure|7|and
the algorithm detail template shown in Figure[§]

Initialization Prompt. The initialization prompt is created by the template shown in Figure[9] The
algorithm template is a function signature.

E EXAMPLE PROMPT-RESPONSE PAIRS FOR INJECTION AND REPLACEMENT

The example prompt-response pairs with concrete explanation for the modification on heuristics is

shown in Figure and

17

Under review as a conference paper at ICLR 2026

Inject a novel, meaningful component into the following algorithm. The component may be self-
devised or inspired by ideas from other domains or problems.

{algorithm_details(given_heuristics)}
Use a concise noun phrase to describe the new component in the responded idea like "The new

component ... has been introduced.". Exclude the following components that have already been
explored: {description of most recent injected components}

Figure 4: Template of the injection prompt.

For the following algorithm, identify {old_component} and rewrite it to {new_component}.

{algorithm_details(given_heuristics)}

old_component new_component

an instance-dependent rule that derives its value

fixed, instance-in ndent ision rul .
a fixed, instance-independent decision rule from the current observation

a key hyper-parameter expressed as either a a more principled constant justified by theory or
constant literal or a stationary variable practice

a fragment that assigns equal or near-equal a fragment where credits are deterministically
credits to multiple elements and reasonably differentiated

Figure 5: Template of the replacement prompt.

Please generate a new algorithm that is motivated by the following algorithms but performs better
on any same instance.

{algorithm_details(given_heuristics)}

Figure 6: Template of the crossover prompt.

Please create a simplified and more elegant version of an algorithm by distilling and refining the
core ideas from the following:

{algorithm_details(given_heuristics)}

Figure 7: Template of the simplification prompt.

#4# Algorithm k

* Performance: {heuristic.performance} (Rank {heurisitc.rank})
* |dea: {heuristic.idea} {heuristic.unit}

* Code:

“*python

{heuristic.code}

Figure 8: Template of algorithm details.

18

Under review as a conference paper at ICLR 2026

Be very creative and inventive. Generate an efficient algorithm following the template below:

{algorithm_template}

Figure 9: Template of the initialization prompt.

Table 5: Information of each problem used in prompts

diately into
bins only if
they fit within
the remaining
capacity. The
objective is to
minimize the
number of bins
used.

tributed customers with
known demands, mini-
mizing the total travel
distance while ensuring
that no vehicle exceeds
its capacity. The goal
is to design a heuristic
function that estimates
the desirability of mov-
ing between customers,
to be used within an Ant
Colony Optimization
(ACO) algorithm.

imum travel budget.
The objective is to
maximize the total
collected reward
while adhering to

the travel constraint.
The goal is to design
a heuristic function
that estimates the de-
sirability of moving
between locations, to
be used within an Ant
Colony Optimization
(ACO) algorithm.

OBP CVRP op TSP

Name Online Bin Capacitated Vehicle Orienteering Traveling
Packing Routing Salesman

Unit percent of units of travel distance units of collected length units
the gap to the reward of the tour
lower bound

Description Items arrive A fleet of vehicles with An agent must visit The algorithm
sequentially limited carrying capacity a subset of locations, ~ must find a
and must be must deliver goods to a each offering a re- tour that visits
placed imme- set of geographically dis- ward, within a max- each node

exactly once
and returns to
the start node.
The objective
is to minimize
the length of
the tour.

19

Under review as a conference paper at ICLR 2026

Prompt

Inject a novel, meaningful component into the following algorithm. The component may be self-
devised or inspired by ideas from other domains or problems.

Algorithm 1

* Performance: 12.578 units of collected reward (Rank: 1)

* |dea: The idea of the algorithm is to return the ratio of the prize and the inter-node distance
* Code:

“*python

The idea of the algorithm is to return the ratio of the prize and the inter-node distance

import numpy as np
def heuristics(prize: np.ndarray, distance: np.ndarray, maxlen: float) -> np.ndarray:

return prize[np.newaxis, :] / distance

Use a concise noun phrase to describe the new component in the responded idea like "The new
component ... has been introduced.".

Inject a new decay component, and the

rformance is improv 4.21%!
Response performance is improved by %

{{The idea of the algorithm is to return the ratio of the prize and the inter-node distance. The new
component incorporating a distance decay factor has been introduced.}}

“*Tpython
import numpy as np

def heuristics(prize: np.ndarray, distance: np.ndarray, maxlen: float) -> np.ndarray:
distance_decay = np.exp(-distance / maxlen)
return prize[np.newaxis, :] / distance * distance_decay

Figure 10: Example of improvement made by injection operator.

20

Under review as a conference paper at ICLR 2026

Prompt

For the following algorithm, identify a fragment that assigns equal or near-equal credits to multiple
elements and rewrite it to a fragment where credits are deterministically and reasonably
differentiated.

#4# Algorithm 1

* Performance: 13.826 units of collected reward (Rank: 1)

* |dea: The idea of the algorithm is to return the ratio of the prize and the inter-node distance, while
incorporating a distance decay factor that uses a novel hybrid decay. This hybrid decay combines
elements of the initial exponential and linear decays, starting with an initial exponential decay that
quickly reduces the influence of distant nodes, followed by a linear decay that gradually reduces
the influence further. This hybrid approach enhances the exploration-exploitation trade-off,
providing a balance between visiting close nodes and exploring more distant ones, thereby
optimizing the balance.

* Code:

**“python

import numpy as np

def heuristics(prize: np.ndarray, distance: np.ndarray, maxlen: float) -> np.ndarray:
Initial exponential decay followed by a linear decay
distance_decay = np.exp(-distance / (0.4 * maxlen)) * (1 - 2 * (distance - 0.4 * maxlen) / (0.6 *
maxlen))
distance_decay[distance > 0.4 * maxlen] = 0 # Ensure linear decay only applies to close nodes
return prize[np.newaxis, :] / distance * distance_decay

Treat edge pairs differently by a
distance threshold, and the
Response performance is improved by 0.39%!

{{The idea of the algorithm is to return the ratio of the prize and the inter-node distance, while
incorporating a hybrid decay that enhances the exploration-exploitation trade-off.} }

** T python

import numpy as np

def heuristics(prize: np.ndarray, distance: np.ndarray, maxlen: float) -> np.ndarray:
Initial exponential decay followed by a linear decay
initial_exponential_decay = np.exp(-distance / (0.4 * maxlen))
linear_decay =1 - 2 * (distance - 0.4 * maxlen) / (0.6 * maxlen)
linear_decayl[distance > 0.4 * maxlen] = 1 # Ensure linear decay only applies to close nodes

Hybrid decay combining initial exponential and linear decay
hybrid_decay = initial_exponential_decay * linear_decay
return prize[np.newaxis, :] / distance * hybrid_decay

Figure 11: Example of improvement made by replacing an equal-credit rule operator.

21

Under review as a conference paper at ICLR 2026

Prompt

For the following algorithm, identify a key hyper-parameter expressed as either a constant literal or
a stationary variable and rewrite it to a more principled constant justified by theory or practice.

Algorithm 1

* Performance: 7.103 length units of the tour (Rank: 1)

* ldea: The idea of the algorithm is to select the next node to visit from the unvisited nodes by
calculating a score that considers the direct distance to the current node, the average distance to
the unvisited nodes, the standard deviation of these distances, and the distance to the destination
node.

* Code:

**python

import numpy as np

def select_next_node(current_node: int, destination_node: int, unvisited_nodes: set, distance_matrix:
np.ndarray) -> int:

cl,c2,c3,c4=04,03,02,01

scores = {}

for node in unvisited_nodes:
distances = [distance_matrix[current_node][node], distance_matrix[destination_node][node]]
average_distance_to_current = np.mean(distances)
std_dev_distance_to_current = np.std(distances)

score = (

cl * distance_matrix[current_node][node]

- €2 * average_distance_to_current

+ c3 * std_dev_distance_to_current

- c4 * distance_matrix[destination_node][node]
)
scores[node] = score

next_node = min(scores, key=scores.get)
return next_node

Change one hyperparameter, and the

rfe is il d by 8.29%!
Response performance is improved by %

{{The idea of the algorithm is to select the next node to visit from the unvisited nodes by
calculating a score that considers the direct distance to the current node, the average distance to
the unvisited nodes, the standard deviation of these distances, and the distance to the destination
node.}}

" python

import numpy as np

def select_next_node(current_node: int, destination_node: int, unvisited_nodes: set, distance_matrix:
np.ndarray) -> int:

cl,c2,c3,c4=05,0.3,0.2,0.1

scores = {}

for node in unvisited_nodes:
distances = [distance_matrix[current_node][node], distance_matrix[destination_node][node]]
average_distance_to_current = np.mean(distances)
std_dev_distance_to_current = np.std(distances)

score = (

c1 * distance_matrix[current_node][node]

- c2 * average_distance_to_current

+ c3 * std_dev_distance_to_current

- c4 * distance_matrix[destination_node][node]
)

scores[node] = score

next_node = min(scores, key=scores.get)
return next_node

Figure 12: Example of improvement made by replacing a hyperparameter.
22

Under review as a conference paper at ICLR 2026

Prompt

For the following algorithm, identify a fixed, instance-independent decision rule and rewrite it to an
instance-dependent rule that derives its value from the current observation.

Algorithm 1

* Performance: 3.052 percent of the gap to the lower bound (Rank: 1)

* |dea: The idea of the algorithm is to score each available bin by integrating the remaining
capacity, item size, and a penalty for overfilled bins. This algorithm introduces a novel adaptive
scaling factor based on the geometric mean of the remaining capacity and the maximum capacity.
It also uses a quintic penalty term to better penalize overfilled bins and a quadratic scaling to
stabilize the score for bins with very small remaining capacity.

* Code:

“*python

import numpy as np

def step(item_size: float, remaining_capacity: np.ndarray) -> np.ndarray:

max_bin_cap = np.max(remaining_capacity)

geometric_mean = remaining_capacity * max_bin_cap / (remaining_capacity + max_bin_cap)
scale_factor = np.sqrt(geometric_mean / max_bin_cap)

quintic_penalty = remaining_capacity**5 / (item_size**5)

score = (remaining_capacity - max_bin_cap)**2 / item_size + quintic_penalty
score[remaining_capacity > item_size] = -score[remaining_capacity > item_size]

score[1:] -= score[:-1]

score *= scale_factor

return score

Replace a static threshold by the
dynamic item size, and the
Response performance is improved by 7.79%!

p

{{The idea of the algorithm is to score each available bin by integrating the remaining capacity,
item size, and a penalty for overfilled bins. This algorithm uses a deterministic rule that derives its
value from the current input instance by calculating the geometric mean of the remaining capacity
and the maximum capacity as the scale factor and adjusting the score based on the item size and
remaining capacity.} }

* T python

import numpy as np

def step(item_size: float, remaining_capacity: np.ndarray) -> np.ndarray:
max_bin_cap = np.max(remaining_capacity)
geometric_mean = np.sqrt(remaining_capacity * max_bin_cap)
scale_factor = geometric_mean / max_bin_cap
score = (remaining_capacity - item_size) / item_size + remaining_capacity**5 / (item_size**5)
score[remaining_capacity > item_size] = -score[remaining_capacity > item_size]
score[1:] -= score[:-1]
score *= scale_factor
return score

Figure 13: Example of improvement made by replacing a instance-independent decision rule.

23

Under review as a conference paper at ICLR 2026

F DISCUSSION ABOUT THE DIVERSITY-AWARE CROSSOVER OPERATOR

Notably,Zheng et al.| (2025) allowed heuristic selection beyond the top-performing population,
offering greater exploration flexibility, though without explicitly modeling diversity. In contrast/Dat;
et al.| (2025) emphasized the role of diversity in heuristic evolution but did not integrate it into
crossover and operated within a fixed-size population. Therefore, CALM’s crossover operator
complements prior work by explicitly incorporating diversity into the crossover process.

G MORE DETAILS FOR THE COLLAPSE MECHANISM

G.1 PROOF OF EQUATION (2))

Let ¢,, be the stagnation counter just before collapse. Under the collapse mechanism with per-round
hazard
pk:k(so, k:1,2,...,
the probability of surviving beyond k rounds is
k

Prlc, > k] = H(l — i50)7
i=1
which vanishes for k > |1/dq].

By definition,
o)
Elc,] = Zk} Pric, = k.
k=1

Introduce the nonnegative array

P Prlc, =k], k>j>1,
k70, otherwise.
Then

Zk Prlc, = k] = ZZPr[cn =kl = ZZajyk.
k=1 k=1 j=1

k=1j=1
Since a3 > 0, Tonelli’s theorem allows swapping the sums:

ZZajyk = ZZaj,k = ZZPr[cn =k]= ZPr[cn >J]= ZPr[cn > 7).
=1 i

k=1j=1 j=1k=1 j=1k=j
Hence the tail-sum identity

Ele,] = ZPr[cn > j.

For 09 < 1 we approximate the finite product by exponentiating its logarithm, using the Maclaurin

expansion
0 m

T 2
In(l —2)=-— —=—z-%L -, |z/<1
2))
= m
with & = idy. Truncating at the linear term gives

k k
Zln(l —idg) ~ —ZMO = —%Ok(k+ 1) ~ _%0 k2,
=1 i=1
)
Pre, > k] =~ exp(f%okz).
Substituting into the tail-sum and replacing the discrete sum by an integral yields

> _8g 2 0 s 2 T
]E[Cn}z E e 2 ~ e 2 dr = ﬁ’
k=0 0 0

which establishes Equation (2).

24

Under review as a conference paper at ICLR 2026

G.2 GOODNESS

Following this reset, the search effectively starts anew, but with a strategic advantage: it builds upon
the best insights discovered so far. Importantly, during the early stage of repopulation, the system
temporarily relaxes selection constraints. New heuristics generated via injection, replacement, or
crossover are allowed into the population regardless of performance, as long as the total number
of heuristics remains below the target population size. This gives structurally novel but potentially
suboptimal components the opportunity to propagate and evolve—something not feasible under
normal selection pressure, where only top-performing heuristics are retained and processed further.

H MORE EXPERIMENTAL DETAILS

H.1 IMPLEMENTATION DETAILS

We build CALM on Unsloth (Daniel Han and team) 2023)), with two modifications: raising the
learning rate to 5 x 10~° for faster adaptation and sampling G = 4 responses per prompt to enable
more evolutionary steps under a fixed query budget.

We set the initial collapse growth rate to dp = 0.0005 (max threshold C' = 25), cap training at
T = 500 rounds, and assign operator sampling probabilities in the ratio 1 : 1 : 2 : 4 for simplification,
injection, modification, and crossover, respectively. Each heuristic is evaluated within 60 s (Zheng
et al., [2025). All experiments ran on a 24 GB NVIDIA A30 GPU with an Intel Xeon Gold 5220R
CPU.

For invalid responses, the maximum reward 7inyaliq 1S set to —0.75. Furthermore, we apply a
hierarchy of failure modes, assigning progressively higher (i.e., less negative) rewards to increasingly
plausible but still unacceptable outputs. These modes include: (1) omission of a required idea (reward:
rv = —1.0); (2) missing code block (rg = —0.95); (3) improperly formatted function (r5 = —0.9);
(4) runtime errors or time budget violations (r4 = —0.85); and (5) detection of randomness in the
heuristic (r3 = —0.75ﬂ which incurs the mildest penalty among infeasible cases.

Under this configuration, the average running time of CALM for the OBP, CVRP, OP, and TSP is
about 6.8, 7.2, 5.3, and 5.5 hours, respectively, for T = 500 steps. However, it is important to note
that the actual running time for a single trial may vary considerably due to the stochastic nature of
the LLM and the potentially large number of heuristics generated, each requiring time-intensive
evaluation.

H.2 BASELINE IMPLEMENTATIONS

The source code, training dataset, and test dataset for AlphaEvolve (Novikov et al.| 2025) are not
available. Therefore, we use OpenEvolve (Sharmal, 2025) as the baseline, which is the most popular
open-source implementation of AlphaEvolve.

In its original implementation, EvoTune (Surina et al.l [2025) requires approximately 80GB of
GPU memory to conduct experiments on LLMs with fewer than 7B parameters, which exceeds the
computational resources available to us. By contrast, our CALM method could operate on a single
GPU with 24GB of memory. To ensure a fair comparison, we re-implemented EvoTune within the
same Unsloth (Daniel Han and team, [2023)) framework, following its official source code, so that it
can be executed on the same Qwen model under identical GPU constraints.

Besides, ReEvo (Ye et al.,[2024) and its follow-up approach HSEvo (Dat et al., 2025) can stop at a
very early stage in evolution as found by [Zheng et al.| (2025). Thus, the results of them on TSP are
not reported. For the OP and CVRP tasks, OpenEvolve (Sharma} 2025)) failed to discover improved
heuristics beyond the early stages of heuristics search. As a result, its training curve is omitted from
Figure 2] for clarity.

*Randomized heuristics are excluded in the experiments because their stochastic behavior substantially
increases evaluation cost and noise. To enforce determinism, CALM penalizes responses that invoke randomness
(e.g., usage of random, np . random, etc.). The framework could support randomized heuristics by relaxing
this constraint, though evaluation overhead would increase.

25

Under review as a conference paper at ICLR 2026

Table 6: Breakdown of time consumption in CALM (with detailed wall-clock time).

Inference Evaluation Training

CVRP 73.29% (4.059h) 16.11% (0.893h) 10.60% (0.587 h)
OBP 78.59% (5.749h) 11.10% (0.812h) 10.31% (0.754 h)
OP 82.12% (4.281h) 9.77% (0.510h) 8.11% (0.423 h)
TSP 83.23% (6.457h) 7.20% (0.559h) 9.57% (0.742 h)

H.3 DESCRIPTION OF PROBLEMS IN EXPERIMENTS

Online Bin Packing (OBP). A sequence of items of varying sizes arrives one by one. Each bin has a
fixed capacity. Upon arrival of an item, the algorithm must immediately assign it to an existing bin
that has enough remaining space or open a new bin. The goal is to minimize the total number of bins
used. The input of the heuristic is the size of the current item and the remaining capacities of the bins.
The output of the heuristic is the priority score of each observed bin, where the feasible bin with the
highest score will be selected to accomodate the item.

Traveling Salesman Problem (TSP) under Step-by-Step Construction. Given a set of locations
with pairwise travel distances, the objective is to construct a tour that starts at one location, visits
each other location exactly once, and returns to the start. At each step the heuristic must choose the
next unvisited location based solely on the information gathered so far. The aim is to keep the total
travel distance as small as possible.

Capacitated Vehicle Routing Problem (CVRP) under ACO. A fleet of vehicles with identical
load capacity must serve a set of customers, each with a known demand, and all vehicles start and
end at a central depot. Under the Ant Colony Optimization framework, many artificial “ants” build
routes by moving from customer to customer. Each ant’s choice of next customer is guided by a
combination of pheromone trails—updated based on previous high-quality solutions—and heuristic
scores provided by the LLM. The goal is to serve all customers while minimizing the total distance
traveled and respecting vehicle capacity limits.

Orienteering Problem (OP) under ACO. Starting from a given location (and possibly ending at
the same or another specified location), an agent may visit a subset of available sites, each offering
a reward, subject to an overall travel budget. Within the ACO framework, ants construct candidate
paths by choosing which site to visit next based on pheromone levels and LLM-generated heuristic
scores that estimate the benefit of each edge under the reward-and-budget trade-off. The aim is to
collect as much reward as possible without exceeding the travel budget.

I MORE EXPERIMENTAL RESULTS

1.1 BREAKDOWN OF CALM’s TIME CONSUMPTION

We break down the total CALM running time into three components: (i) Inference—the time taken by
the LLM to generate response (i1) Evaluation—the time spent parsing each heuristic and validating
its feasibility and performance; and (iii) Training—the time required to compute the loss and update
the LLM parameters. The time spent on each component across different tasks is summarized in
Table

These results show that inference is the dominant time cost in CALM. Despite parallelizing heuristic
evaluations across the training dataset, evaluation still requires more time than model training for
most tasks. In other words, employing the fine-tuning algorithm in the LLM-based AHD introduces a
minimal time overhead.

3We additionally quantified the potential overhead of gradient computation during inference, as training
in CALM includes rollouts. Since gradient computation is tightly integrated into PyTorch, we compared two
runs: (i) inference with gradients enabled and (ii) inference with torch.no_grad () to disable gradient
computation. Across all tasks, the extra cost was consistently below 0.25% of the pure inference time, which is
negligible and does not affect the breakdown reported in Table@

26

Under review as a conference paper at ICLR 2026

Table 7: Average scores of fine-tuned models. Lower is better for CVRP (|) and higher is better for
OP (7).

Step=0 Step=100 Step=200 Step=300 Step=400 Step=500

CVRP (]) 66.356 32.403 40.860 40.451 49.699 32.403
OP (1) 11.956 25.025 25.025 25.025 12.228 25.025

Table 8: Feasibility ratio of fine-tuned models.

Step=0 Step=100 Step=200 Step=300 Step=400 Step=500

CVRP 10.00% 100.00% 83.33% 62.50% 71.43% 100.00%
op 26.32% 100.00% 100.00% 100.00% 45.45% 100.00%

1.2 IMPACT OF FINE-TUNING ON THE FOUNDATIONAL MODEL

To investigate the performance of the fine-tuned model, we conducted additional experiments.
Specifically, we saved a snapshot of the LLM every 100 training steps during the evolutionary process
of CALM. For each snapshot, we used the same prompt, which instructs the LLM to generate an
improved variant of the seed algorithm for a given task. For each snapshot and task prompt, we
repeatedly sampled responses until five feasible outputs capable of producing valid heuristic code
for the task were obtained. We then recorded the following metrics: (i) the average score of the five
heuristics, where the score for each heuristic is calculated as the performance averaged over the test
scales reported in our manuscript; and (ii) the feasibility ratio, defined as the number of feasible
responses (fixed at five) divided by the total number of samples required to obtain them. We focused
on the snapshots generated during the run for CVRP that yielded the best heuristic among all three
runs. For these LLM snapshots, we evaluated them on both CVRP and OP. Results are shown in
Table[7]and [8]

Key observations are as follows:

 Both the average score of the discovered heuristics and the feasibility ratio of the responses
improve significantly after fine-tuning. For example, in the CVRP task, the feasibility
ratio increases from 10% to 100%, and the average score decreases by more than 50%
after fine-tuning. This demonstrates the effectiveness of CALM in enhancing the LLM’s
capability.

* Although the LLM is fine-tuned on data generated from AHD for the CVRP task, substantial
improvements in both the average score and feasibility ratio are also observed for the OP
task. This suggests that the improvements gained through fine-tuning on CALM-generated
data generalize beyond the in-domain task and can benefit other related tasks.

* Beginning at step 200, both the average score and feasibility ratio fluctuate during the
training process. Notably, the heuristics achieving the best scores (20.088 for CVRP and
25.252 for OP) were discovered by LLM snapshots saved at 300 and 400 training steps,
respectively. Interestingly, these snapshots also exhibit the lowest feasibility ratios and
non-leading average scores for the respective tasks. This indicates that an LLM capable
of producing an exceptional heuristic may not be the most stable in generating feasible
responses or in producing consistently high-quality heuristics on average. In other words,
an LLM capable of occasional breakthroughs may exhibit erratic behavior—illustrating the
notion that genius can verge on madness.

1.3 IMPACT OF THE FOUNDATIONAL LLM

We have added additional experiments by replacing the foundational model with (i) a SOTA reasoning
LLM o4-mini and (ii) another open-source compact model Llama-3.1-8B-Instruct-Int4. Results are
as shown in Table[9]and

The SOTA reasoning LLM o04-mini effectively identifies superior heuristics under the CALM frame-
work (w/o GRPO), achieving notable performance improvements—approximately 15.5% with the

27

Under review as a conference paper at ICLR 2026

Table 9: Optimality gaps on OBP (Qwen, Llama, and 04-mini) with CALM.

1k_100 1k 500 5k_100 S5k _500 10k_100 10k 500 Avg.

Qwen+GRPO 2.55% 0.00% 0.85% 0.17% 0.56% 0.14% 0.71%
Llama+GRPO 298% 0.00% 096% 0.10% 0.54% 0.10% 0.78%
04-mini 229% 0.00% 0.85% 0.10% 0.34% 0.02% 0.60%

Table 10: Objective scores and optimality gaps on OP (Qwen & Llama) with CALM.

N=50 N=100 N=200

Qwen 15.054 (24.22%) 30.778 (15.43%) 55.406 (12.58%)
Llama 15.038 (24.31%) 30.599 (15.92%) 54.593 (13.86%)

04-mini model—though this advantage comes with over twice the inference time compared to
Qwen+GRPO. Despite this trade-off, using locally deployed, compact models remains competitive,
particularly when the time budget for search is limited. Additionally, heuristics identified by the
Llama model show strong performance and generalizability, outperforming all other methods at
certain scales (5k_500 and 10k_500) in OBP and surpassing all baseline methods in OP at N=100
and 200, while maintaining comparable results at all scales. Moreover, removing GRPO significantly
reduces average optimality gaps, by 34.33% in OBP and 17.91% in OP, further highlighting the
robustness of the proposed method.

1.4 MORE RESULTS ON HARDER OBP INSTANCES

Smaller-scale instances of OBP are more challenging in the online setting, as each decision has a
larger impact and variance is higher, making them a stricter robustness test for heuristics. Thus,
we further evaluated CALM’s performance on OBP with smaller problem scales. Specifically, we
generated 10 Weibull-distributed instances for each of the following training scales (in the format
n_capacity): 100_100, 100_500, 300_100, 300_500, 500_100, and 500_500. For evaluation, 50
instances were generated for each scale. CALM was equipped with Llama-3.1-8B-Instruct-INT4.
For comparison, we included MCTS-AHD, the SOTA LLM-based AHD method that achieved the
best performance on the smallest scale in Table [9]

The results show that CALM+Llama achieves a lower average optimality gap than MCTS-AHD,
even when the latter is paired with a more powerful LLM. CALM underperforms only at the 500_500
scale. In addition, the standard deviation of the average optimality gap is smaller for CALM (0.03%)
compared to MCTS-AHD (0.21%).

1.5 SCALING BEHAVIOR

We conducted additional experiments to evaluate the scaling behavior of CALM on OP, using an
increased training budget of 2500 steps. Results are shown in Table [I2] The key findings are as
follows:

* With a substantially larger evaluation budget, CALM is able to discover heuristics that
outperform those found with only 500 training steps, as shown in the table below.

» Without LLM fine-tuning, CALM is unable to consistently discover new, superior heuristics
at early stages of training. In one instance, no better heuristic was found beyond step 256.

* Evaluation of fine-tuned model snapshots at different training steps shows that after several
hundred steps, performance fluctuates and does not always improve monotonically. Never-
theless, the fine-tuned models consistently outperform the untuned baseline. This suggests
that, in later stages, fine-tuning may not significantly enhance the LLM’s capabilities but
instead introduces variation to the LLM for heuristic generation. This variation may help
maintain the LLM’s performance while increasing the diversity of the heuristic population.

28

Under review as a conference paper at ICLR 2026

Table 11: Optimality gaps on OBP with smaller scales.

100_100 100_500 300_100 300_500 500_100 500_500 Avg.

MCTS-AHD (GPT-40-mini) 6.97% 1.39% 5.67% 0.57% 5.20% 0.63% 3.40%
CALM (Llama-3.1-8B-Instruct-INT4) 6.80% 1.39% 5.61% 0.57% 5.06% 0.64% 3.35%

Table 12: Objective scores and optimality gaps of CALM (w/ GRPO) on OP under different search
budgets.

N=50 N=100 N=200

#LLM Queries=2,000 15.054 (24.22%) 30.778 (15.43%) 55.406 (12.58%)
#LLM Queries=10,000 15.201 (23.49%) 31.153 (14.40%) 56.432 (10.96%)

Overall, these results indicate that CALM exhibits favorable scaling behavior under larger training
budgets.

1.6 P-VALUES FOR SIGNIFICANCE

To further highlight the superiority of CALM, we compare its performance against the state-of-the-art
LLM-based AHD method MCTS-AHD (Zheng et al.l [2025)) across ten independent runs on two
representative tasks: the TSP (step-by-step construction) and the OP (ACO-based). For fairness, we
adopt the exact same dataset as used by Zheng et al.| (2025). The per-run performance of MCTS-AHD
on the TSP task is directly obtained from their appendix, while for the OP task we obtain the results
using the official implementation under the same evaluation environment as CALM. The results
are summarized in Tab. [[3] The small p-values further confirm with high confidence that CALM
consistently outperforms MCTS-AHD on both tasks.

1.7 SENSITIVITY TO THE HYPERPARAMETERS IN THE REWARD FUNCTION

Our reward design is guided by a fundamental principle: rewards should increase progressively with
the quality of the generated response. This principle is illustrated by the high-level cases in Figure|T]
To differentiate between these cases, we introduce several hyperparameters (e.g., a1, e, and ripvalid)-
To evaluate the robustness of this principle, we conducted an additional ablation study where CALM’s
reward function was instantiated under the following settings:

* The original implementation with a relatively even reward distribution, as described in

Section[H11

* Random sampling of all hyperparameters under the progressive-guiding constraint, i.e.,
1>a1>a9>0>173="igvalid > T4 > 75 > 16 > —1.

» The same a1, ag, and rinvaliq values as in Section but with all invalid responses
uniformly assigned ripyalid-

The results are presented in Table [T4]

Across all settings, heuristics derived from these reward designs remain highly competitive at every
scale. In particular, when invalid responses are assigned a unified reward, CALM achieves the best
performance at N = 50, surpassing all methods reported in Table[3] The slight performance gap
between CALM with randomly sampled hyperparameters and the other two implementations likely
results from uneven reward spacing across neighboring cases. Overall, these findings indicate that
CALM’s effectiveness is not tied to precise numerical values in reward shaping but instead depends
on adherence to the underlying principle of progressive reward allocation.

1.8 GENERATED HEURISITCS

nwn

29

Under review as a conference paper at ICLR 2026

Table 13: Performance comparison of CALM and MCTS-AHD on TSP (step-by-step construction)
and OP (ACO-based) tasks over ten runs. “avg.” represents the average and “std.” the standard
deviation. p-values are calculated using single-tailed t-tests.

Methods runl run2 run3 run4d run5 run6 run7 run8 run9 runl0 avg. std. p-value
TSP()
MCTS-AHD 6450 6447 6284 6386 6316 6372 6480 6480 6259 6388 638 0.080
(GPT-40-mini)
CALM

6.220 6217 6213 6205 6221 6.174 6213 6219 6224 6222 6213 0.015 0.0000012315
(Qwen2.5-7B)

OP(1)
MCTS-AHD *) 66 14910 14786 14602 14738 14724 14642 14826 14722 14690 14731 0.091
(GPT-40-mini)
CALM

14.876 14.822 14.951 14.798 14.844 14.669 14.850 14.878 14.880 14.746 14.831 0.079 0.00831786
(Qwen2.5-7B)

Table 14: Ablation study of reward parameter choices under CALM’s reward design on the OP task.

Settings N=50 N=100 N=200
Original reward configuration (Sec. 15.054 (24.22%) 30.780 (15.43%) 55.406 (12.58%)
Original reward configuration (Sec. 15.059(24.20%) 30.744(12.52%) 55.341(12.68%)

but the same reward for all invalid responses

Randomly sampled reward parameters

under progressive-guiding constraint 15.046 (24.26%) 30.613 (15.88%) 55.165 (12.96%)

The idea of the algorithm is to refine the scoring mechanism by
introducing logarithmic adjustments and a novel scoring component
that captures the logarithmic relationship between the remaining
capacity and the square of the item size, and an adjusted
logarithmic density term that provides a more refined scoring
mechanism. This new algorithm aims to enhance the accuracy of bin
suitability assessment by adding a component that adjusts the score
based on the logarithmic difference between the remaining capacity
and the maximum bin capacity. The algorithm also simplifies the

scoring steps to make it more elegant and efficient.
mmw

import numpy as np

def step(item_size: float, remaining_capacity: np.ndarray) -> np.ndarray:

max_bin_cap = max(remaining_capacity)

bin_density = np.sum(remaining_capacity) / (item_size =
len (remaining_capacity))

log_adj = np.log(remaining_capacity + 1) / np.log(max_bin_cap + 1)

score = (remaining_capacity - max_bin_cap)**2 / item_size +
remaining_capacity**2 / (item_size*x2) + remaining_capacity*x*2 /
(item_sizexx3) + bin_density % remaining_capacity

score[remaining_capacity > item_size] = -score[remaining_capacity >
item_size]
score[l:] —-= score[:-1]

score x= log_adj
score += log_adj * remaining_capacity

score x= log_adj

new_component = remaining_capacity / (item_size - remaining_capacity
+ 1)

score += new_component

30

Under review as a conference paper at ICLR 2026

new_component = remaining_capacity #* np.log(remaining_capacity + 1)
/ (item_size * np.log(max_bin_cap + 1)) * (1 -
remaining_capacity / item_size)

score += new_component

new_adjustment = (remaining_capacity / item_size) x log_ad]
score += new_adjustment

remaining_capacity_adjusted = remaining_capacity / item_size
score += np.log(remaining_capacity_adjusted + 1) /
np.log(max_bin_cap + 1)

new_component = (remaining_capacity - 1) / (item_size -
remaining_capacity + 1) » log_adj / np.log(max_bin_cap + 1)
score += new_component

new_component = log_adj * remaining_capacity / (item_size -
remaining_capacity)
score += new_component

new_component = remaining_capacity % np.log(remaining_capacity + 1)
/ (item_sizex*2) * (1 - remaining_capacity / item_size)
score += new_component

return score

Heuristic 1: OBP, by CALM (local, w/ GRPO)

nwn

The idea of the algorithm is to introduce the "Bin Utilization
Diminution" component, which assesses the degree of bin usage
throughout the sequence of placements and introduces a diminishing
incentive for overpopulating any particular bin beyond a certain
threshold. This encourages a more even distribution of item
placements across all bins, thereby reducing the risk of reaching
capacity too quickly in any single bin, helping to extend the
lifespan and utility of each bin in the packing process. By
dynamically adjusting the fit score to favor items that contribute
to a balanced utilization, the algorithm aims to enhance overall bin
efficiency and minimize the total bin count.

nwn

import numpy as np

def step(item_size: float, remaining_capacity: np.ndarray) —-> np.ndarray:
avg_item_size = np.mean(item_size) if item_size > 0 else 1.0

adaptive_factor = avg_item_size / np.maximum(remaining_capacity,
le-10)

fit_score = np.maximum(remaining_capacity - item_size, 0) /
(remaining_capacity + 1e-10)

fit_score[remaining_capacity < item_size] = -np.inf

sustainability_score = (remaining_capacity - avg_item_size) xx% 2

sustainability_score[remaining_capacity < item_size] = np.inf

historical_fit_scores = np.cumsum(fit_score)

normalized_historical_fit_scores = historical_fit_scores /

(np.max (historical_fit_scores) + 1le-10)

combined_scores = (
(0.5 » fit_score adaptive_factor) +
(0.3 / (sustainability_score + 1le-10)) -
(0.2 * normalized_historical_fit_scores)

31

Under review as a conference paper at ICLR 2026

nun

The

wnn

)

differentiation_factor = 1 / (1 + np.arange(len(remaining_capacity))
* 0.1)

combined_scores x= differentiation_factor

cumulative_fit_impact = np.cumsum(fit_score) / (np.arange(l,
len (remaining_capacity) + 1) + 1)

cumulative_fit_adjustment = np.maximum(fit_score -

cumulative_fit_impact, 0)
combined_scores += 0.4 % cumulative_fit_adjustment
temporal_utilization_metric = np.arange (len(remaining_capacity)) /
(np.maximum (remaining_capacity, le-10) + 1le-10)
combined_scores x= (1 + temporal_utilization_metric)
sequential_elasticity = np.exp(-np.arange (len(remaining_capacity)) /
(np.mean (np.maximum (remaining_capacity, le-10)) + 1le-10))
combined_scores x= sequential_elasticity

size_factor = 1 + (item_size / (np.sum(item_size) + 1le-10))

New Component: Bin Utilization Diminution

overutilization_penalty = np.maximum(0, np.cumsum(item_size) /
(np.maximum (np.cumsum(remaining_capacity), le-10) + 1le-10) - 1)
combined_scores —-= 0.3 % overutilization_penalty # Encourage even

distribution across bins

Eventual Capacity Influence
eventual_capacity_score = np.log(np.maximum(np.arange (1,

len (remaining_capacity) + 1), 1)) /
(np.maximum (remaining_capacity, 1le-10) + 1le-10)
combined_scores -= 0.3 % eventual_capacity_score # Penalize bins

that don’t contribute to optimal utilization
distinct_scores = combined_scores x size_factor

return distinct_scores

Heuristic 2: OBP, by CALM (API, w/o GRPO)

idea of the algorithm is to further refine the savings potential
calculation by emphasizing a more adaptive balance factor that is
influenced by the current instance’s capacity utilization and the
diversity of capacity usage across the routing problem. By
leveraging a more sophisticated adaptive balance factor and reducing
the complexity of the penalty factor, we ensure that nodes that are
too close to each other are penalized appropriately without overly
compounding the impact. This simplified yet adaptive approach allows
for a nuanced exploration of the solution space, enhancing the ACO
algorithm’s ability to converge to high-quality solutions while
maintaining a balance between exploration and exploitation.
Additionally, we introduce a clustering-based adjustment factor that
captures the overall network connectivity and adjusts the savings
potential accordingly, leading to more robust and flexible routing
plans.

import numpy as np

def advanced_heuristics_v7 (distance_matrix: np.ndarray, coordinates:

np.ndarray, demands: np.ndarray, capacity: int) -> np.ndarray:

32

Under review as a conference paper at ICLR 2026

nwn

The

nwn

capacity_prob = demands / capacity

distance_reciprocal = 1 / distance_matrix

proximity_factor = np.linalg.norm(coordinates[:, np.newaxis, :] -
coordinates[np.newaxis, :, :], axis=2)

proximity_factor /= np.max(proximity_factor) # Normalize between 0
and 1

proximity_factor = 1 - proximity_factor # Invert for higher penalty

as proximity increases

remaining_demands = capacity - demands

future_savings = (remaining_demands[:, np.newaxis] =
remaining_demands) / (distance_matrix x (remaining_demands](:,
np.newaxis] + remaining_demands))

capacity_ratio = remaining_demands / capacity

proximity_savings = proximity_factor x capacity_ratio

Cluster-based proximity adaptive savings potential

cluster_savings = np.zeros_like (distance_matrix)

cluster_distance = np.sum(distance_matrix, axis=1l) /
np.linalg.norm(capacity_prob - 1, ord=1l)

cluster_adj_factor = (remaining_demands[:, np.newaxis] =*

remaining_demands * cluster_distance *x 3.5) / (distance_matrix
* (remaining_demands[:, np.newaxis] + remaining_demands))

Adaptive balance factor adjusted based on remaining capacity and
cluster adjustment

balance_factor = np.min([1l, 0.975 + 0.05 x capacity_prob.mean() +
0.03 » cluster_adj_factor.mean() + 0.005 *
np.var (capacity_prob)])

Penalty factor that heavily penalizes nodes that are too close to
each other, focusing on the proximity to the next node
penalty_factor = proximity_factor ** 3

Combine all components

probability = distance_reciprocal x capacity_prob % proximity_factor
+ future_savings * proximity_savings * cluster_adj_factor * (1 -
balance_factor + proximity_savings x balance_factor) x (1 -
penalty_factor) =+ (1 + cluster_adj_factor = 0.6)

return probability

Heuristic 3: CVRP, by CALM(local, w/ GRPO)

idea of the algorithm is to refine the credit allocation process in
the vehicle routing problem by implementing a deterministic
weighting mechanism that assigns distinct credits to customers based
on their delivery demands, individual distance factors, and their
influence on overall routing efficiency, thus ensuring that credits
reflect meaningful differences without redundancy.

import numpy as np
from sklearn.cluster import DBSCAN

def heuristics(distance_matrix: np.ndarray, coordinates: np.ndarray,

demands: np.ndarray, capacity: int) -> np.ndarray:
num_customers = demands.shape[0]
cumulative_penalty = np.zeros (num_customers)

Calculate baseline scores from demand to distance with added
urgency weighting

urgency_weight = np.linspace(l, 1.5, num_customers)

base_score = (demands * urgency_weight) / (distance_matrix + le-5)

33

Under review as a conference paper at ICLR 2026

nun

The

base_score[np.isnan (base_score)] = 0

Set penalties for exceeding capacity based on cumulative demands
for i in range (num_customers) :

current_demand = demands[i]

cumulative_penalty[i] = max (0, current_demand - capacity)

Normalize distances to emphasize closer customers to refine scoring
normalized_distance_score = 1 / (np.clip(distance_matrix, le-5,
None) % 2.5)

Calculate effective capacity utilization adjustment
effective_capacity_utilization = np.clip((capacity - demands) /

capacity, 0, 1)

Historical performance adjustments

historical_performance_factor = np.zeros (num_customers)
for i in range (num_customers) :
historical_performance_factor[i] = np.mean([base_score[j] for j
in range (num_customers) if distance_matrix[i][]j] < 10 and j
l= d])

Spatial clustering mechanism

clustering_model = DBSCAN (eps=5, min_samples=2) .fit (coordinates)
labels = clustering_model.labels_

cluster_scores = np.zeros (num_customers)

Calculate cluster-based scores with deterministic differentiation
for cluster_id in set (labels):
if cluster_id != -1: # Ignore noise points
cluster_indices = np.where(labels == cluster_id) [0]
total_demand = demands[cluster_indices].sum()
for idx in cluster_indices:
Implement differentiated scoring based on demand,
ensuring non-equal credits

cluster_demand_factor = (demands[idx] / total_demand) if
total_demand > 0 else 0
distance_weight = 1 / (1 + distance_matrix[idx].min())
Closer customers get more weight
cluster_scores[idx] = cluster_demand_factor =

distance_weight # Mix demand and distance

New resilience score based on historical demand variability
demand_variability = np.std(demands)
resilience_score = 1 / (1 + demand_variability)

Compose final scores combining all elements including the new
resilience score

final_scores = base_score * normalized_distance_score x*
effective_capacity_utilization » (1 +
historical_ performance_factor + cluster_scores) x
resilience_score

return final_scores

Heuristic 4: CVRP, by CALM (API, w/o GRPO)

idea of the algorithm is to refine the exploration-expemy
exploitation trade-off by introducing a sinusoidal decay that
incorporates a sinusoidal penalty with a sinusoidal smoothness
adjustment. This adjustment helps to smooth the preference for both
recent and distant nodes, leading to a more balanced and improved
performance.

34

Under review as a conference paper at ICLR 2026

wnn

import numpy as np

def

nwn

The

nun

enhanced_heuristics(prize: np.ndarray, distance: np.ndarray, maxlen:
float) -> np.ndarray:

Exponential decay for immediate high Subscription nodes

exp_ratio = np.exp(prize[np.newaxis, :] / distance - maxlen)

Logarithmic scaling for exploration
log_ratio = np.log(prize[np.newaxis, :] + 1) / distance

Sinusoidal decay for recent nodes with a sinusoidal smoothness
adjustment

sinusoidal_penalty = 0.5 * (1 + np.sin(np.pi » distance / (maxlen +
1))) * (distance / maxlen) * maxlen

Combined ratio
combined_ratio = exp_ratio » log_ratio * (1 - sinusoidal_penalty)

Ensure the ratio is non-negative
combined_ratio[combined_ratio < 0] = 0

return combined_ratio

Heuristic 5: OP, by CALM (local, w/ GRPO)

idea of the algorithm is to introduce a novel component called
"reward fluctuation sensitivity" which adjusts the desirability of
each location based on the variability of rewards over time. This
component accounts for the possibility that rewards may change or
fluctuate due to external factors, thereby allowing the agent to
prioritize locations not only by their current rewards but also by
the potential volatility of those rewards. This sensitivity is
integrated into the existing framework, allowing for a more dynamic
response to the changing landscape of rewards, ultimately enhancing
the agent\’s decision-making process and route optimization.

import numpy as np

def heuristics(prize: np.ndarray, distance: np.ndarray, maxlen: float)

—> np.ndarray:
adjusted_distance = distance + 1le-10 # Avoid division by zero
potential_reward = np.zeros_like (prize)

for i in range (len(prize)):
reachable_indices = np.where(distance[i] <= maxlen) [0]
potential_reward[i] = np.sum(prize[reachable_indices]) if
reachable_indices.size > 0 else 0

reward_hist_factor = potential_reward / (1 + np.sum(prize)) # Shape
reward based on historical performance

reward_decay = np.exp(-adjusted_distance / maxlen) # Decay effect
for distant rewards

proximity_factor = (maxlen - adjusted_distance) xx 4 # Further
enhance proximity impact with quartic distance

proximity_factor[proximity_factor < 0] = 0

tiered_adjustment = (prize / (adjusted_distance + 1le-10)) xx 2 #

Classify rewards into categories for tiering

35

Under review as a conference paper at ICLR 2026

nwn

The

nwn

Reward volatility assessment component
volatility_ factor = np.zeros_like (prize)
for i in range(len(prize)):
historical_rewards = prize[np.where(distance[i] <= maxlen) [0]]
if historical_rewards.size > 1:
volatility_factor[i] = np.std(historical_rewards) /
np.mean (historical_rewards) # Coefficient of variation

Risk-reward analysis component

variability_factor = np.zeros_like (prize)

for i in range(len(prize)):
historical_rewards = prize[np.where(distance[i] <= maxlen) [0]]
if historical_rewards.size:

variability_ factor[i] = np.mean (historical_rewards) -
np.std(historical_rewards) # Basic differentiation
final_heuristic = (reward_hist_factor * reward_decay =

proximity_factor =
tiered_adjustment) / (1 + volatility_factor +
variability_factor + 1le-10)
return final_heuristic

Heuristic 6: OP, by CALM (API, w/o GRPO)

idea of the algorithm is to select the next node by optimizing a
heuristic that considers the distance to the current node, the
average distance to unvisited nodes, the variance of distances to
the current node from the unvisited nodes, the entropy of distances
to the destination node from each of the unvisited nodes, the
average distance from the destination node to each of the unvisited
nodes, the current node’s distance to the destination node, and the
standard deviation of the overall tour distances. This proposed
algorithm aims to introduce a new term that captures the deviation
of the current node from the average tour length and balances it
with the entropy term to reduce the overall tour length.
Additionally, this method assigns more weight to the standard
deviation of the distances from the destination node to each of the
unvisited nodes, which helps in reducing the variability of
distances and thus leading to more consistent and shorter tour
lengths.

import numpy as np

def select_next_node (current_node: int, destination_node: int,

unvisited_nodes: set, distance_matrix: np.ndarray) -> int:
scores = {}

for node in unvisited_nodes:

all distances = [distance_matrix[node][1] for i in
unvisited_nodes if i != node]

average_distance = np.mean(all_distances)

standard_deviation = np.std(all_distances)

variance_of_distances = np.var([distance_matrix[current_node] [i]
for i in unvisited_nodes if i != node])

entropy_of_distances =
-np.sum(np.log2 ([distance_matrix[destination_node] [i] for i
in unvisited_nodes if i1 != node]) / len(unvisited_nodes))

average_distance_to_destination =
np.mean ([distance_matrix[destination_node] [i] for i in
unvisited_nodes if i != node])

score = (

36

Under review as a conference paper at ICLR 2026

0.6 * distance_matrix[current_node] [node]
- 0.4 % average_distance
+ 0.3 x standard_deviation
- 0.2 % entropy_of_distances
- 0.1 x distance_matrix[destination_node] [node]
- 0.08 % variance_of_distances
- 0.05 x average_distance_to_destination
- 0.01 * (np.mean([distance_matrix[current_node][i] for i in
unvisited_nodes]) - average_distance)
- 0.005 % entropy_of_distances
- 0.008 * distance_matrix[current_node] [node] =
distance_matrix[node] [destination_node]
- 0.006 * standard_deviation =
distance_matrix[node] [destination_node]
)
scores[node] = score

next_node = min(scores, key=scores.get)
return next_node

Heuristic 7: TSP, by CALM (local, w/ GRPO)

nwn

The idea of the algorithm is to select the next node to visit from the
unvisited nodes, incorporating a novel component of dynamic path
optimization feedback. The new component analyzes previous decision
points in the tour to determine the effectiveness of the routes
taken, adjusting future node selection to favor pathways that have
historically resulted in lower overall traversal costs. This method
not only enhances the algorithm’s ability to learn from its own
experiences but also promotes the selection of routes that align
with optimal connectivity patterns established during the tour.

nun

import numpy as np

def select_next_node (current_node: int, destination_node: int,
unvisited_nodes: set, distance_matrix: np.ndarray) -> int:
threshold = 0.7
cl, c2, c3, c4, ¢c5 =0.4, 0.3, 0.2, 0.1, 0.1
scores = {}

for node in unvisited_nodes:
all_distances = [distance_matrix[node] [i] for i in
unvisited_nodes if i != node]
average_distance_to_unvisited = np.mean(all_distances)
std_dev_distance_to_unvisited = np.std(all_distances)

New component: consider dynamic path optimization feedback
feedback_paths = [distance_matrix[i] [node] for i in
range (len (distance_matrix)) if i not in unvisited_nodes and
distance_matrix[current_node] [i] < threshold]
average_feedback_distance = np.mean (feedback_paths) if
feedback_paths else 0

score = (
cl * distance_matrix[current_node] [node]
- c2 % average_distance_to_unvisited
+ ¢c3 * std_dev_distance_to_unvisited
— c4 % distance_matrix[destination_node] [node]
+ ¢5 % average_feedback_distance
)

scores[node] = score

37

Under review as a conference paper at ICLR 2026

next_node = min(scores, key=scores.get)
return next_node

Heuristic 8: TSP, by CALM (API, w/o GRPO)

J LIMITATIONS

A current limitation of our method is that the evolution of the LLM during the heuristic discovery
process depends heavily on performance signals derived from heuristics present in the prompt and
response. As a result, trajectories that do not contain explicit heuristics (e.g., the response from
a reflection prompt may contain the thoughts only) in either component provide no reward signal,
limiting the LLM’s ability to learn from such cases.

Another limitation is that we currently evaluate our method, CALM, using a compact LLM on a
single 24GB GPU. This restriction is primarily due to limited computational resources and the high
cost associated with high-accuracy, full-parameter fine-tuning on larger models. While this setup
demonstrates the feasibility of our approach in a resource-constrained environment, further evaluation
on larger-scale models and infrastructure would be valuable for understanding the method’s full
potential and scalability.

In future work, we aim to address these limitations by (1) exploring mechanisms for adapting the
LLM in the absence of explicit performance feedback, enabling more effective use of reinforcement
learning, and (2) extending evaluations to more powerful models and settings. These directions may
allow for better integration with techniques such as reflection (Ye et al.,[2024; |Dat et al.,2025)), which
have shown promise in enhancing LLM-based automated heuristic discovery.

K BROADER IMPACT

The CALM framework stands to greatly accelerate the pace of innovation in algorithm design by
seamlessly integrating prompt engineering and on-the-fly model adaptation. By enabling state-of-
the-art heuristic discovery on a single 24 GB GPU, CALM democratizes access to cutting-edge
Automatic Heuristic Design. This empowers research groups, startups, and educational institutions
with limited compute budgets to explore and deploy high-performance solutions in domains such as
logistics, scheduling, and resource allocation.

L LICENSE

The licenses and URLSs of baselines, models, and softwares are summarized in Table [T3}

38

Under review as a conference paper at ICLR 2026

Table 15: A summary of licenses.

Resources Type License URL

Unsloth Code Apache-2.0 License https://github.com/unslothai/uns
loth

Qwen2.5 Model Apache-2.0 License https://huggingface.co/Qwen/Qwen
2.5-7B-Instruct

LKH3 Code Available for academic researchuse |http://webhoteld.ruc.dk/~keld/re
search/LKH-3/

OR-Tools Code MIT License https://developers.google.com/op
timization/pack/knapsack?hl=zh-cn

POMO Code Available online https://github.com/yd-kwon/POMO/t
ree/master

DeepACO Code MIT License https://github.com/henry—-yeh/Dee
PACO

Funsearch Code Apache License https://github.com/google—deepmin
d/funsearch

EoH Code MIT License https://github.com/FeilLiu36/EoH/
tree/main

ReEvo Code MIT License https://github.com/aidco/reevo

HSEvo Code Available online https://github.com/datphamvn/HSE
%l

MCTS-AHD Code MIT License https://github.com/zz1358m/MCTS-A
HD-master

EvoTune Code MIT License https://github.com/CLAIRE-Labo/Ev
oTune

OpenEvolve Code Apach-2.0 License https://github.com/codelion/open

evolve

39

https://github.com/unslothai/unsloth
https://github.com/unslothai/unsloth
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
http://webhotel4.ruc.dk/~keld/research/LKH-3/
http://webhotel4.ruc.dk/~keld/research/LKH-3/
https://developers.google.com/optimization/pack/knapsack?hl=zh-cn
https://developers.google.com/optimization/pack/knapsack?hl=zh-cn
https://github.com/yd-kwon/POMO/tree/master
https://github.com/yd-kwon/POMO/tree/master
https://github.com/henry-yeh/DeepACO
https://github.com/henry-yeh/DeepACO
https://github.com/google-deepmind/funsearch
https://github.com/google-deepmind/funsearch
https://github.com/FeiLiu36/EoH/tree/main
https://github.com/FeiLiu36/EoH/tree/main
https://github.com/ai4co/reevo
https://github.com/datphamvn/HSEvo
https://github.com/datphamvn/HSEvo
https://github.com/zz1358m/MCTS-AHD-master
https://github.com/zz1358m/MCTS-AHD-master
https://github.com/CLAIRE-Labo/EvoTune
https://github.com/CLAIRE-Labo/EvoTune
https://github.com/codelion/openevolve
https://github.com/codelion/openevolve

	Introduction
	Related Work
	Preliminary
	LLM-Based AHD
	GRPO

	Methodology
	Prompt Generation
	Collapse Mechanism
	Design of Reward Function

	Experiments
	Overall Results
	Discussion

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Appendix
	The Use of LLMs
	Extended Discussion about Related Work
	Complete Algorithm
	Prompts Used in CALM
	Example Prompt-Response Pairs for Injection and Replacement
	Discussion about the Diversity-Aware Crossover Operator
	More Details For the Collapse Mechanism
	Proof of Equation (2)
	Goodness

	More Experimental Details
	Implementation Details
	Baseline Implementations
	Description of Problems in Experiments

	More Experimental Results
	Breakdown of CALM's Time Consumption
	Impact of Fine-tuning on the Foundational Model
	Impact of the Foundational LLM
	More Results on Harder OBP Instances
	Scaling Behavior
	P-values for Significance
	Sensitivity to the Hyperparameters in the Reward Function
	Generated Heurisitcs

	Limitations
	Broader Impact
	License

