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ABSTRACT

Tackling complex optimization problems often relies on expert-designed heuristics,
typically crafted through extensive trial and error. Recent advances demonstrate that
large language models (LLMs), when integrated into well-designed evolutionary
search frameworks, can autonomously discover high-performing heuristics at a
fraction of the traditional cost. However, existing approaches predominantly rely
on verbal guidance, i.e., manipulating the prompt generation process, to steer
the evolution of heuristics, without adapting the underlying LLM. We propose a
hybrid framework that combines verbal and numerical guidance, the latter achieved
by fine-tuning the LLM via reinforcement learning (RL) based on the quality of
generated heuristics. This joint optimization allows the LLM to co-evolve with
the search process. Our method outperforms state-of-the-art (SOTA) baselines
across various optimization tasks, running locally on a single 24GB GPU using a
7B model with INT4 quantization. It surpasses methods that rely solely on verbal
guidance, even when those use significantly more powerful API-based models.

1 INTRODUCTION

Complex optimization problems are prevalent in real-world applications, including logistics (Duan
et al., 2022; Tresca et al., 2022), scheduling (Mihoubi et al., 2021; Palacio et al., 2022), and trans-
portation (Dahmani et al., 2024; Pereira et al., 2021). Traditionally, solving these problems relies
heavily on manually crafting high-quality heuristics, a labor-intensive process requiring substantial
expert knowledge. Given the limitations of this manual approach, Automatic Heuristic Design (AHD)
emerged to streamline heuristic generation. Nevertheless, classic AHD approaches like Genetic
Programming (GP) (Burke et al., 2009) still depend significantly on human-defined problem-specific
components, limiting the search space and flexibility.

Recently, the advent of Large Language Models (LLMs) has introduced promising avenues for
AHD by employing LLMs as heuristic generators and evolutionary computing (EC) techniques
as a search framework. In this paradigm, heuristics generated by LLMs are iteratively evaluated
through a predefined simulation framework, and superior heuristics inform subsequent generation
prompts, thus creating a feedback-driven evolutionary loop (Liu et al., 2024a). Nevertheless, existing
LLM-based AHD methods predominantly keep the underlying LLM untouched and merely guide
heuristic evolution via textual prompt manipulations, referred to as "verbal gradients" (Ye et al.,
2024). Consequently, these methods inherently neglect the opportunity of tuning and enhancing the
generative capability of LLM based on the feedback from heuristic designs.

We propose Co-evolution of Algorithms and the Language Model (CALM) to capture this opportunity.
CALM drastically differs from the state-of-the-art (SOTA) (Liu et al., 2024a; Ye et al., 2024; Dat
et al., 2025; Zheng et al., 2025) by enabling the LLM to co-evolve alongside heuristic designs.
This co-evolution is made possible by treating the heuristic generation process not only as a target
of optimization but also as a rich source of training data. As heuristics are continually proposed,
evaluated, and selected based on their performance, the evolutionary loop naturally produces abundant
prompt-response-performance triplets. These data points are highly informative, as each heuristic’s
effectiveness provides an implicit signal about the utility of the underlying generation process. By
using this signal as feedback for reinforcement learning (RL), we can fine-tune the LLM, thereby
applying what we term "numerical gradients" to adapt the model itself. This co-evolution approach
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Figure 1: Pipeline of existing LLM-based AHD methods (Romera-Paredes et al., 2024; Ye et al.,
2024; Dat et al., 2025; Zheng et al., 2025) under a fixed LLM and our new approach CALM that
enables the co-evolution of LLM in the iterative heuristic search process. New components are
presented in bright colors.

unlocks a new dimension of adaptability, allowing the LLM to internalize characteristics of successful
heuristics and improve its future generations.

CALM is one of the first LLM-based AHD frameworks that jointly optimize both the prompt
generation process and the LLM model itself, overcoming the limitations of fixed-model approaches.
For prompt generation, CALM introduces a suite of evolutionary operators, including fine-granularity
mutation operators (injection and replacement) and a diversity-aware crossover operator, that promote
meaningful and diverse heuristic variations while preserving structural coherence. Furthermore, a
simple yet effective collapse mechanism is developed to help escape the local optima. For model
improvement, CALM employs a memory-efficient RL algorithm GRPO (Shao et al., 2024) with a
carefully designed reward function to enable efficient fine-tuning. Experimental results demonstrate
that our new approach can discover heuristics that beat existing SOTA baselines (Liu et al., 2024a; Ye
et al., 2024; Zheng et al., 2025), while running entirely on a local computer with a single 24GB GPU,
in contrast to prior methods that depend heavily on commercial LLM APIs.

2 RELATED WORK

As our approach centers on fine-tuning LLMs by RL for solving optimization problems, we review
relevant literature in both RL and LLMs applied to optimization. Additional related topics, including
LLMs for code generation and RL-based LLM fine-tuning, are discussed in Appendix B.

RL for Optimization Problems. Existing RL-based methods for optimization can be broadly
categorized by the role the learned policy plays: (1) Instance-Level Solution Generator. Deep RL
has been widely adopted to learn policies for solving specific optimization instances (Kwon et al.,
2020; Pan et al., 2023; Bi et al., 2024). However, these methods differ fundamentally from LLM-based
AHD methods, as they directly produce solutions rather than design the algorithms that generate them.
The LLM-based AHD approach operates at a meta level, seeking to learn the algorithmic structure
that produces solutions. This distinction also applies to the broader class of Neural Combinatorial
Optimization (NCO) (Luo et al., 2024; Xiao et al., 2024; Sui et al., 2024; Zheng et al., 2023),
where models are trained to directly solve instances. Moreover, NCO methods often require explicit
adaptation to handle problem scales not seen during training, whereas our method generalizes more
naturally to new scales. (2) Heuristic Generator. Some RL-based methods target meta-level search
to discover heuristics instead of instance-level solutions. For example, AlphaDev (Mankowitz et al.,
2023) learns to combine low-level operations to discover faster sorting algorithms, and Yi et al. (2022)
searches for high-performing metaheuristics from predefined algorithmic components. While having
similar goals, these approaches rely heavily on hand-engineered building blocks, akin to traditional
AHD frameworks (Pillay and Qu, 2018; Sánchez-Díaz et al., 2021; Burke et al., 2009). In contrast,
LLM-based method reduces manual intervention by leveraging LLMs to explore an open-ended
heuristic space with minimal prior specification.

LLM for Optimization Problems. Studies in this area fall into two categories depending on how
LLMs are employed: (1) Instance-Level Solution Generator. Several works (Abgaryan et al., 2024;
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Jiang et al., 2024; Wu et al., 2024) prompt LLMs with instance-specific inputs for direct solution
generation. LLM-based methods in this category focus on discovering reusable heuristics. Moreover,
methods such as that proposed by Jiang et al. (2024) and Wu et al. (2024) keep LLM parameters
frozen, and Abgaryan et al. (2024) fine-tune the model using supervised labels from an existing
solver (Perron and Furnon, 2024). In contrast, our approach requires no imitation dataset, enabling
its application to problems lacking established solvers. (2) Heuristic Generator. LLM-based AHD
methods (Liu et al., 2023a; Chen et al., 2025; Romera-Paredes et al., 2024; Liu et al., 2024a; Ye
et al., 2024; Liu et al., 2024b; Dat et al., 2025; Zheng et al., 2025; Novikov et al., 2025) repeatedly
ingest information about the current elite heuristics—typically their natural-language descriptions,
source code, and performance scores—and, via fixed prompt templates that mimic genetic operators,
produce new candidate heuristics. Those candidates are then executed and evaluated, and the resulting
feedback is fed back into the prompt, forming an evaluate–generate loop that continues until the
evaluation budget is exhausted. Additionally, some recent studies have also explored incorporating
strategies such as reduction techniques (Thach et al., 2025) and trajectory-based analysis (Yang
et al., 2025), to further enhance AHD. However, prior work keeps the LLM static. Our approach
improves this by continuously fine-tuning the LLM using prompt-response-performance tuples
from the evolutionary process, enhancing future heuristic generation. Notably, there are concurrent
explorations on fine-tuning LLMs for AHD (Surina et al., 2025; Liu et al., 2025). These studies
provide valuable insights into how preference-based fine-tuning methods such as DPO (Rafailov
et al., 2023) can improve heuristic discovery. Our work adopts a different approach by employing the
score-based RL algorithm (Shao et al., 2024) to fine-tune LLMs for AHD, and further introduces
specialized designs such as fine-granularity operators to enhance the fine-tuning process through
prompt manipulation.

3 PRELIMINARY

3.1 LLM-BASED AHD

Let P be a problem with input space I and solution space S, and let a heuristic be a function
h : I → S . Given a training set D ⊂ I and an objective f : S → R (lower is better), the performance
of a heuristic is g(h) = Ex∈D[−f(h(x))]. Let H denote the space of all feasible heuristics. The
objective of AHD is to identify the optimal heuristic within this space, i.e., h∗ = argmaxh∈H g(h).

LLM-based AHD is AHD where LLM serves as a heuristic generator. In practice, the LLM is
charged with designing the core decision function of a solver. For example, on tasks like the Traveling
Salesman Problem (TSP) or the Capacitated Vehicle Routing Problem (CVRP), an LLM-based AHD
method might generate a function, which selects the next city to visit or constructs an edge-desirability
matrix to guide solution search within an Ant Colony Optimization (ACO) framework.

3.2 GRPO

GRPO (Shao et al., 2024) is a recent RL algorithm that has proven effective in training LLMs, as
evidenced by its application in models such as DeepSeek-R1. GRPO starts from an initial model πθ

and a reward function denoted by rϕ(q, o) that maps the prompt q and the generated response o to a
scalar. At the beginning of each training round, it snapshots πθ as a reference model πref . Then, it
split all task prompts into multiple batches. When training for each prompt batchDb, it first snapshots
πθ as πold. For each task prompt q ∈ Db, it samples a group of G responses {oi}Gi=1 ∼ πθold and
computes rewards r = {ri = rϕ(q, oi)}Gi=1 for each prompt-response pair. Subsequently, it computes
the advantage Âi,t for each token t in response i as the normalized reward (ri −mean(r))/std(r).
The model parameters θ are updated by maximizing the following objective function:

JGRPO(θ) = E[q∼Q,{oi}∼πθold ]

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

{
min

[
r̂i,tÂi,t, clip (r̂i,t, 1− ε, 1 + ε) Âi,t

]
− β DKL

[
πθ∥πref

]}
, (1)

where ϵ and β are hyper-parameters, r̂i,t = πθ(oi,t | q, oi,<t)/π
old
θ (oi,t | q, oi,<t), and the KL

divergence term is computed using an unbiased estimator (Schulman, 2020) with guaranteed positivity.
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GRPO uses the group mean reward as a baseline to eliminate the need for an auxiliary value network,
thereby reducing memory requirements. Additionally, the clipping mechanism combined with KL
divergence regularization ensures stable and conservative updates.

4 METHODOLOGY

To explore the benefit of RL-based fine-tuning for discovering higher-quality heuristics in LLM-based
AHD, we introduce CALM, a novel framework that integrates both verbal and numerical guidance in
evolutionary heuristic search. As shown in Fig. 1, CALM maintains a pool of heuristics, each with its
own idea, code, and performance. At every round, CALM draws a feasible evolutionary operator to
produce a new prompt q. Subsequently, G responses are sampled from the local LLM πθ, which are
then evaluated. Based on the evaluation results, rewards are assigned to each response for GRPO to
train the LLM, and new feasible heuristics are added to the pool. Consequently, CALM returns the
best-so-far heuristic after running T rounds. Next, we elaborate on the critical techniques in CALM:
prompt generation, collapse mechanism, and the reward function.

4.1 PROMPT GENERATION

CALM provides several evolutionary operators: injection, replacement, crossover, simplification, and
initialization. Prompts are predominantly generated by the selected operator and heuristics sampled
from maintained pools. The initialization operator is an exception, as it does not require heuristics
from the pool. Next, we elaborate on the heuristic sampling method and operators1.

Heuristic Sampling Method. The heuristic sampling approach varies for the crossover operator,
details of which will be provided when introducing this operator. For the remaining operators, i.e.,
injection, replacement, and simplification, the heuristics are selected based on their performance
rankings like (Liu et al., 2024a). Specifically, the probability of sampling a heuristic h is inversely
proportional to its rank in the current pool (i.e., proportional to 1/rankp(h)). Heuristics ranked below
a threshold, defined as the population size, are assigned a probability of zero.

Fine-Granularity Mutation Operators: Injection & Replacement. GRPO assigns an advantage
score to each token based on the relative reward of the full response compared to others from the
same prompt. This means each part of a heuristic is encouraged or penalized depending on the quality
of the whole. However, heuristic performance can shift dramatically with changes to even a single
sub-component, making uniform treatment of all parts—in terms of gradient direction—unreliable.

While cumulative gradient updates can correct misattributed rewards or penalties for the same token
appearing in different responses, we aim to further boost this process. To this end, we introduce two
novel operators that enable more precise control over heuristic variations. These operators encourage
the LLM to retain more common parts while introducing meaningful modifications to the input
heuristic (See Appendix E for examples). Consequently, GRPO is expected to more effectively
identify the contribution of individual structural changes. The two newly designed operators are:

Injection. Given an existing heuristic, the injection operator prompts the LLM to incorporate a new
component into it. Additionally, a concise description of the new component must be included in the
response. All component descriptions are stored, and subsequent applications of the injection operator
require the LLM to introduce components distinct from those previously saved, promoting diversity
in generated heuristics. Unlike mutation operators in prior LLM-based AHD methods (Zheng et al.,
2025; Liu et al., 2024a), which are fed with full heuristic codes: (1) Our approach uses compact
summaries instead of full code, allowing more heuristics to fit within the LLM’s context window;
(2) Saved component descriptions are globally accessible and not limited to the currently sampled
heuristics; (3) Prior methods often require entirely new heuristics, while our approach focuses on
more granular modifications; (4) When the number of heuristics is below the population size, the
sampling probability of the injection operator is increased to encourage exploration in the phase of
population expansion.

Replacement. Given an existing heuristic, the replacement operator prompts the LLM to rewrite
an existing component under a specific instruction. There are three distinct instructions, and each
time the replacement operator is applied, one is randomly sampled for the given heuristic. While the

1The complete algorithm and prompt details are in Appendix C and D, respectively, due to space limit.
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"rewrite hyper-parameter" instruction is also present in prior studies (Liu et al., 2024a; Zheng et al.,
2025), CALM introduces two novel instructions: (1) Rewrite an instance-independent decision rule as
an instance-dependent one—to improve the heuristic’s adaptability to varying problem contexts; (2)
Rewrite a fragment that assigns equal or near-equal credit to all candidates as one that differentiates
credit based on contextual performance—to encourage more effective prioritization and refined
decision-making.

Diversity-Aware Crossover. To balance exploitation and exploration, each crossover invocation
randomly chooses between (1) performance-based: sample both parents by performance rank;
and (2) diversity-based: sample the first parent hc,1 by performance rank and the second from all
retained heuristics with probability inversely proportional to diversity rank (larger diversity is better).
Specifically, let idea_token(·) denote the set of unique tokens in a heuristic’s idea, the diversity
is: div(hc,1, h) = |idea_token(h) \ idea_token(hc,1)|/|idea_token(h)|. This hybrid mechanism
ensures that at least one parent heuristic is of high quality, while the second parent is either high-
performing or structurally novel. The diversity-aware selection expands the evolutionary search space
and leverages underutilized heuristics, potentially unlocking novel strategies that might otherwise be
overlooked due to suboptimal early performance. More discussions are moved to Appendix F.

Simplification Operator. As heuristic structures grow increasingly complex through repeated
applications of injection, crossover, and replacement, there is a risk of accumulating redundant or
unnecessarily verbose components. The simplification operator counterbalances this tendency by
prompting the LLM to produce a more concise and effective version of a given heuristic.

Initialization Operator. In cases where there is no heuristic in the pool (e.g., no initial/seeding
function is provided), this operator is invoked to prompt the LLM to generate new heuristics.

4.2 COLLAPSE MECHANISM

Why to Collapse. A key reason LLM-based evolutionary heuristic search can succeed is that prompts
containing better-performing heuristics tend to guide the LLM toward generating even stronger
ones. This creates a self-reinforcing feedback loop, gradually evolving a population of increasingly
effective heuristics. However, this process can also lead to inbreeding and premature convergence:
over time, the population becomes dominated by minor variations of the current best-performing
heuristic. When this state persists without meaningful breakthroughs, the search risks becoming
trapped in a local optimum, a classic challenge in evolutionary computing (Eshelman, 1991).

How to Collapse. As a remedy, CALM introduces a proactive collapse mechanism that resets the
search process when it detects stagnation, allowing the system to escape local optima and reinitiate
meaningful exploration. Specifically, when the search has plateaued—characterized by a prolonged
lack of performance improvement—we reset the population by discarding all heuristics except two:
the original seed algorithm and the current best-performing heuristic. These two retained heuristics
jointly serve as the seed algorithms for the new search process, grounding it in past progress while
freeing it from the genetic redundancy accumulated in the previous population.

When to Collapse. Once the heuristic pool reaches its target population size, CALM begins tracking
stagnation using a no-breakthrough counter cn, initialized to zero. This counter records the number
of consecutive prompt rounds—each involving G sampled responses—that fail to yield a globally
superior heuristic. If any sampled heuristic in a round surpasses all previous ones in performance, cn
is reset to zero; otherwise, it increments by one.

To escape local optima, CALM introduces a probabilistic collapse mechanism based on this counter.
At the end of each round, collapse is triggered if: random(0, 1) < cnδ0 or cn ≥ C, where
δ0 ≪ 1 controls the rate at which collapse probability grows, and C is a hard cap ensuring collapse
happens by the C-th stagnation step at the latest. To aid in hyperparameter selection, we further
provide an analytical approximation for the expected number of rounds before collapse is triggered:

E
[
cn | collapse, C >

1

δ0

]
≈

√
π

2δ0
. (2)

This collision of a rising-probability rule with a fixed maximum fosters a balance between giving
the search plenty of room to improve and ensuring it doesn’t stall infinitely. A detailed proof and
discussion about the benefit of the mechanism can be found in Appendix G.
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4.3 DESIGN OF REWARD FUNCTION

The reward function assigns a score to each LLM-generated response, enabling the RL algorithm
to update the LLM’s parameters and progressively improve its outputs. In AHD, we aim for
responses that yield feasible, novel, and high-performing heuristics. To guide this process, we adopt
a progressive scoring scheme that assigns increasing scores across the following categories: (1)
infeasible responses that fail to produce valid heuristics, (2) duplicate heuristics offering no new
insights, (3) new heuristics, and (4) new high-performing heuristics.

For each invalid response, we assign a reward bounded below by a scalar rinvalid ∈ (−1, 0). Rewards
for valid heuristics are defined relative to this bound, ensuring that valid outputs always score higher.

For valid heuristics, performance serves as the primary learning signal. However, because the
quality of the generated heuristic is influenced by the prompt—particularly its base heuristics—we
avoid attributing full credit or blame to the LLM alone. Instead, we reward improvements relative
to the best base heuristic in the prompt, ensuring that learning reflects meaningful gains rather
than prompt bias. Specifically, let H denote the set of base heuristics used to construct prompt
q, and hnew be the heuristic parsed from the LLM’s output o. We define the top base heuristic as
ht_base = argmaxh∈H g(h), and measure relative performance via:

∆(hnew, ht_base) = clip

(
|g(hnew)− g(ht_base)|

min{|g(hnew)|, |g(ht_base)|}
, 0, 1

)
. (3)

Let α1, α2 ∈ (0, 1) and α1 > α2, the reward function rϕ(q, o | hnew, ht_base) is then defined as:

rϕ(q, o | hnew, ht_base) =


α1rinvalid, if ∃h ∈ H s.t. g(h) = g(hnew);

α2rinvalid ·∆(hnew, ht_base), if g(hnew) < g(ht_base);

1 + ∆(hnew, ht_base), if g(hnew) > g(ht_base).

(4)

Under the reward function above, the reward is primarily determined by whether the new heuristic
improves over the best base heuristic or not, with the relative performance gap further modulating
the strength of the reward or penalty. When the generated heuristic is identical in performance to
an existing base heuristic, a small but consistent reward (α1rinvalid) is given to discourage trivial
reproduction. If the new heuristic underperforms relative to the best base, a scaled negative reward is
applied, while genuine improvements yield strictly positive rewards starting from 1.

5 EXPERIMENTS

Implementation Details of CALM. We build CALM on Unsloth (Daniel Han and team, 2023) and
employ an INT4-quantized Qwen2.5-7B-Instruct model (Yang et al., 2024), fine-tuning just 1.15%
of its weights. INT4 compression cuts memory usage up to 8× versus FP32 but degrades precision.
According to Yang et al. (2024), performance ranks as follows: GPT-4o-mini ≈ Qwen2.5-Turbo
> Qwen2.5-14B-Instruct > Qwen2.5-7B-Instruct > Qwen2.5-7B-Instruct-INT4. The 14B and 7B
Instruct models share the same architecture, so the larger parameter count drives the 14B’s edge over
the 7B, while quantization further reduces the 7B’s accuracy. Consequently, GPT-4o-mini–based
baselines retain a clear advantage in raw accuracy over our lean, resource-efficient setup. More
implementation details can be found in Appendix H

Optimization Tasks. Existing LLM-based methods can demonstrate near-optimal or optimal perfor-
mance on some benchmark problems, such as TSP (Liu et al., 2024a; Ye et al., 2024; Zheng et al.,
2025) (aided by ACO solvers) and knapsack problem (KP) (Zheng et al., 2025), leaving little room
for further improvement. Therefore, we focus on tasks that remain challenging for LLM-based AHD
as follows: Online Bin Packing (OBP) problem and TSP under step-by-step construction task, CVRP
and Orienteering Problem (OP) under an ACO search framework. Detailed problem descriptions can
be found in Appendix H.3

Baselines. To evaluate CALM, we compare its designed heuristics against the following base-
lines: (1) hand-crafted heuristics such as Best-Fit (Kenyon, 1995) for OBP, Greedy-Construct
(GC) (Rosenkrantz et al., 1977) for TSP, and ACO (Blum, 2005) for CVRP and OP; (2) Nerual
Combinatorial Optimization (NCO) methods including POMO (Kwon et al., 2020) and DeepACO (Ye
et al., 2023); and (3) LLM-based AHD approaches like FunSearch (Romera-Paredes et al., 2024),
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EoH (Liu et al., 2024a), ReEvo (Ye et al., 2024), HSEvo (Dat et al., 2025), OpenEvolve (Sharma,
2025), MCTS-AHD (Zheng et al., 2025), and EvoTune (Surina et al., 2025). Notably, AlphaE-
volve (Novikov et al., 2025) does not release its official source code. OpenEvolve, developed by an
independent group, is one of the most popular open-source reimplementations of AlphaEvolve. To
ensure a fair comparison, we align CALM and all LLM-based AHD baselines with consistent settings,
including shared seed heuristics, identical training datasets for evaluating heuristic performance, and
comparable evaluation budgets–specifically, 1,000 heuristic evaluations for baselines and a fixed
budget of 2,000 LLM queries for CALM across all tasks except OBP. Notably, prior AHD methods
typically conduct 2,000 heuristic evaluations using over 4,000 queries for OBP, whereas CALM
operates under a fixed budget of 2,000 queries.

5.1 OVERALL RESULTS

Table 1: Average optimality gaps of heuristics for OBP over three
runs. All methods are trained and evaluated on the same datasets
as Zheng et al. (2025), with gaps measured relative to the lower bound
by Martello and Toth (1990). Test sets whose scale matches the training
distribution are underlined. Format: 1k_100 denotes instances with
1, 000 items and a bin capacity of 100.

Online Bin Packing (OBP)
Test sets 1k_100 1k_500 5k_100 5k_500 10k_100 10k_500 Avg.

Best Fit 4.77% 0.25% 4.31% 0.55% 4.05% 0.47% 2.40%
First Fit 5.02% 0.25% 4.65% 0.55% 4.36% 0.50% 2.56%

LLM-based AHD: GPT-4o-mini (w/o. GRPO)

FunSearch 2.45% 0.66% 1.30% 0.25% 1.05% 0.21% 0.99%
EoH 2.69% 0.25% 1.63% 0.53% 1.47% 0.45% 1.17%
ReEvo 3.94% 0.50% 2.72% 0.40% 2.39% 0.31% 1.71%
HSEvo 2.64% 1.07% 1.43% 0.32% 1.13% 0.21% 1.13%
OpenEvolve 4.84% 0.25% 4.28% 0.55% 4.07% 0.47% 2.41%
MCTS-AHD 2.45% 0.50% 1.06% 0.32% 0.74% 0.26% 0.89%
CALM (Ours) 2.78% 0.29% 0.83% 0.28% 0.50% 0.24% 0.82%

LLM-based AHD: Qwen2.5-7B-Instruct-INT4 (w/. GRPO)
EvoTune 4.67% 0.25% 4.23% 0.55% 4.11% 0.60% 2.40%
CALM (Ours) 2.55% 0.00% 0.85% 0.17% 0.56% 0.14% 0.71%

OBP. We train and eval-
uate CALM on the same
dataset used by Zheng et al.
(2025), which includes four
training instances at vary-
ing scales and five testing
instances spanning six dif-
ferent scales—two of which
are out-of-domain and not
seen during training. Re-
sults in Table 1 show that
CALM consistently outper-
forms all baseline methods
in terms of average opti-
mality gap across the full
test set. It can achieve su-
perior performance on out-
of-domain and in-domain
scales. Remarkably, CALM
achieves a zero gap in set
1k_500, indicating exact optimal solutions at that scale.

Table 2: Performance on TSP, averaged over three
runs. Methods are evaluated on three test sets of
1,000 instances each, using the same training and
testing datasets as by Zheng et al. (2025). In-
domain scales (i.i.d. to training) are underlined.
Optimal tours are from LKH (Lin and Kernighan,
1973). Best LLM-based results are shaded, over-
all best in bold.

Traveling Salesman Problem (TSP)
N=50 N=100 N=200

Methods Obj.↓ Gap↓ Obj.↓ Gap↓ Obj.↓ Gap↓
Optimal 5.675 – 7.768 – 10.659 –
GC 6.959 22.62% 9.706 24.94% 13.461 26.29%
POMO 5.697 0.39% 8.001 3.01% 12.897 20.45%

LLM-based AHD: GPT-3.5-turbo (w/o. GRPO)
FunSearch 6.683 17.75% 9.240 18.95% 12.808 19.61%
EoH 6.390 12.59% 8.930 14.96% 12.538 17.63%
MCTS-AHD 6.346 11.82% 8.861 14.08% 12.418 16.51%

LLM-based AHD: GPT-4o-mini (w/o. GRPO)
FunSearch 6.357 12.00% 8.850 13.93% 12.372 15.54%
EoH 6.394 12.67% 8.894 14.49% 12.437 16.68%
OpenEvolve 6.281 10.68% 8.719 12.25% 12.148 13.96%
MCTS-AHD 6.225 9.69% 8.684 11.79% 12.120 13.71%
CALM (Ours) 6.273 10.54% 8.691 11.88% 12.104 13.56%

LLM-based AHD: Qwen2.5-7B-Instruct-INT4 (w. GRPO)
EvoTune 6.267 10.43% 8.777 12.99% 12.429 16.60%
CALM (Ours) 6.244 10.04% 8.668 11.58% 12.088 13.41%

TSP. CALM is trained on the same dataset used
by Zheng et al. (2025): a training set of 64 TSP
instances with N = 50 nodes and three test sets
of 1,000 instances each at N = 50, 100, and
200. As shown in Table 2, CALM-constructed
heuristics outperform all LLM-based baselines
on both out-of-domain test sets and achieve the
second-best LLM-based result on the in-domain
set. Notably, at the largest scale, CALM sur-
passes the NCO baseline POMO, which requires
per-scale training.

CVRP. CALM is trained on 10 instances as
in (Zheng et al., 2025) with N = 50 nodes us-
ing the ACO framework, and evaluated on three
test sets of 64 instances each at N = 50, 100,
and 200, following the same generation protocol.
During both training and testing, the number of
ants and iterations is fixed to 30 and 100, respec-
tively. As shown in Table 3, CALM consistently
outperforms all LLM-based baselines across all
test sets, including both the in-domain and out-
of-domain ones.

OP. CALM is trained 5 OP instances with N =
50 nodes using the ACO framework and evaluated on three test sets of 64 instances each at N =
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50, 100, and 200, following the generation protocol in HSEvo (Dat et al., 2025). Both training
and testing use a fixed configuration of 20 ants and 50 iterations. As reported in Table 3, CALM
consistently outperforms all other LLM-based baselines on the out-of-domain scales. As for the
in-domain scale, it still outperforms EoH and the most recent approach, MCTS-AHD and EvoTune.

Table 3: Performance of ACO-based heuristics on CVRP and OP, averaged over three runs. All
methods are evaluated on three test sets of 64 randomly generated instances each, following the setup
in (Zheng et al., 2025) and (Dat et al., 2025), respectively. Optimal solutions are approximated using
DeepACO with significantly more ants and iterations than those in the baseline configurations.

CVRP OP
N=50 N=100 N=200 N=50 N=100 N=200

Methods Obj.↓ Gap↓ Obj.↓ Gap↓ Obj.↓ Gap↓ Obj.↑ Gap↓ Obj.↑ Gap↓ Obj.↑ Gap↓
Optimal 8.888 – 14.932 – 27.159 – 19.867 – 36.392 – 63.380 –
ACO 18.581 109.05% 30.107 101.63% 37.590 40.69% 13.354 32.69% 24.131 33.69% 37.586 40.69%

LLM-based AHD: GPT-4o-mini (w/o. GRPO)
EoH 9.894 11.32% 16.953 13.54% 30.314 11.62% 13.388 32.61% 24.154 33.63% 37.319 41.12%
ReEvo 9.558 7.54% 16.350 9.50% 29.219 7.58% 15.103 23.98% 30.523 16.13% 53.807 15.10%
HSEvo 9.431 6.11% 16.396 9.81% 29.520 8.69% 15.082 24.08% 30.454 16.32% 53.260 15.97%
OpenEvolve 10.077 13.37% 17.418 16.65% 31.190 14.84% 14.314 27.95% 28.336 22.13% 48.576 23.36%
MCTS-AHD 9.372 5.44% 15.974 6.98% 28.434 4.70% 14.847 25.27% 30.163 17.12% 53.024 16.34%
CALM (Ours) 9.404 5.81% 16.046 7.46% 28.713 5.72% 15.017 24.41% 30.294 16.76% 53.098 16.22%

LLM-based AHD: Qwen2.5-7B-Instruct-INT4 (w/. GRPO)
EvoTune 9.405 5.82% 15.975 6.98% 28.823 6.13% 15.053 24.23% 29.743 18.27% 50.499 20.32%
CALM (Ours) 9.228 3.83% 15.745 5.44% 28.230 3.95% 15.054 24.22% 30.778 15.43% 55.406 12.58%

5.2 DISCUSSION

Efficacy of our verbal gradient. For each problem instance, we further evaluate the design of our
verbal gradient in isolation (i.e., without GRPO) by (1) switching the backend to the GPT-4o-mini
API, (2) setting G = 1, and (3) using T = 4000 for OBP and T = 2000 for all other tasks—matching
the query budgets of prior LLM-based AHD methods. As shown in Tables 1–3, this API-based
variant of CALM delivers performance on par with or superior to the recent MCTS-AHD approach:
it achieves the lowest optimality gaps on the 5k_100 and 10k_100 OBP datasets and ranks second
on average across all OBP test sets, matches MCTS-AHD and outperforms all other baselines on
every CVRP test set, consistently surpasses MCTS-AHD on all OP instances, and closely tracks
MCTS-AHD on TSP at N = 50 and 100 while outperforming all non-MCTS baselines at those scales
and even surpassing MCTS-AHD at N = 200. These results demonstrate that, even without RL or
advanced techniques such as reflection (Ye et al., 2024; Dat et al., 2025) and tree search (Zheng et al.,
2025), CALM’s verbal guidance mechanism remains highly effective, placing the API-based CALM
firmly within the top tier of existing LLM-based AHD methods.

Power of RL. We have tested the performance of CALM without the GRPO algorithm and under many
ablation settings. As shown in Table 4, results demonstrate that disabling the GRPO module causes
the largest drop in performance across near all ablations. In other words, The reinforcement-learning
component has the most significant impact on overall performance among all ablation settings.
Morever, as illustrated in Table 1~3, with GRPO and our custom reward, the Qwen2.5-7B-Instruct-
INT4–derived heuristic not only closes the gap but actually outperforms the GPT-4o-mini–based
heuristic. We have also visualized the training curve in Figure 2. Results show CALM’s heuristics lag
early—likely due to GPT-4o-mini’s head start—but as GRPO adapts the LLM, its heuristics converge
and outperform all baselines. This suggests the transformative power of RL in enhancing AHD.

Impact of reward design. Our feasible-response reward allocates credit by comparing each gen-
erated heuristic against its parent(s), rather than attributing full reward or blame solely to the
LLM. We evaluate two alternative schemes (keeping the infeasible-response penalty unchanged): (i)
performance-based reward, where a feasible heuristic receives a positive reward proportional to its
performance relative to the seed algorithm; and (ii) the {0.5 rrand, 1}-improvement reward, which
assigns reward 1 if the new heuristic outperforms all parent or baseline heuristics, and 0.5 rrand
otherwise. Both alternatives remove the trivial-reproduction penalty and mitigate the performance
bias present in Equation (4). As Table 4 demonstrates, neither variant beats our original design:
the performance-based scheme underperforms even the no-RL baseline on the OP problem, while
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the {0.5 rrand, 1}-improvement strategy delivers closer but still inferior results compared to our
proposed reward function. This confirms the effectiveness of our original reward design.
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(a) CVRP.
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(b) OP.

Figure 2: Objective score of the best heuristic in training
averaged over 3 runs (std. dev. shaded).

Table 4: Optimality gap under ablation settings for prob-
lem OBP and OP averaged over three runs.

Method OBP OP

CALM (local, w/ GRPO) 0.71% 17.41%
CALM (API, w/o GRPO) 0.82% 19.13%

RL-based Fine-tuning
local, w/o GRPO 1.78% 19.89%
rew∈ {0.5rinvalid, 1} 1.04% 17.44%
rew=performance 1.24% 21.30%

Collapse Mechanism
w/o Collapse 0.98% 19.57%
δ0 = 0.0005, C = 15 0.77% 18.31%
δ0 = 0.005, C = 15 1.93% 27.22%
δ0 = 0.0005, C = ∞ 0.96% 19.50%
δ0 = 0.005, C = ∞ 0.98% 18.38%

Operators
w/o diversity 1.05% 19.44%
w/o crossover 0.88% 18.49%
w/o injection 1.11% 18.68%
w/o replacement 1.20% 17.57%
w/o simplification 1.35% 19.45%

Impact of collapse. We examine the im-
pact of the collapse mechanism by ana-
lyzing the heuristics produced by CALM
both without collapse and under various hy-
perparameter configurations that influence
when collapse is triggered. As shown in
Table 4, incorporating the collapse mech-
anism generally enhances the heuristic
search process. An exception arises in the
configuration with the strictest tolerance
for not discovering a breakthrough heuris-
tic (i.e., when δ0 = 0.005 and C = 15).
A detailed analysis of the evolutionary tra-
jectory under this setting reveals a signif-
icantly reduced number of breakthroughs.
In one run on the OP problem, no break-
through heuristic was identified after the
132nd LLM query. These findings sug-
gest that setting a reasonable tolerance for
the absence of breakthroughs—balancing
patience with the benefits of early stop-
ping—is important for supporting a more
effective evolution.

Impact of operators. We evaluate
each operator’s contribution by measuring
CALM’s performance with that operator re-
moved (Table 4). Results show that all op-
erators positively impact heuristic quality.
Crossover, injection, and replacement are
similarly critical—removing any one no-
tably degrades performance in either OBP
or OP. Among all, removing simplifica-
tion causes the largest drop in both tasks,
likely because it uniquely reduces redun-
dancy and curbs complexity, counterbal-
ancing other operators that tend to increase
heuristic length. Moreover, when crossover is applied without diversity-based selection—using only
performance-based sampling—CALM performs worse than with no crossover at all, highlighting the
importance of diversity awareness in the most-used operator.

Additional Experimental Results. Due to space constraints, additional experimental results are
presented in Appendix I, including a detailed breakdown of running time, the effects of fine-tuning
and foundational model choices, performance on more challenging OBP instances, scaling behavior,
statistical significance (p-values), sensitivity analyses of reward-function hyperparameters, and the
set of elite heuristics discovered.

6 CONCLUSION

This paper introduces CALM, the first framework to marry prompt evolution with on-the-fly LLM
adaptation for AHD, freeing it from the constraints of fixed-model approaches. Running entirely on a
single 24 GB GPU with a compact foundation model, CALM autonomously uncovers heuristics that
outmatch SOTA API-based baselines across various challenging optimization scenarios. Moreover,
even without the power of RL, CALM matches or exceeds prior best results using the same LLM
API, demonstrating the potency of our verbal-gradient designs. In the future, we expect that scaling
CALM’s paradigm to larger models and extended post-training could further push the frontier of
automated algorithm discovery.
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or animal experimentation. All datasets employed were obtained and used in accordance with
relevant licensing and usage policies, ensuring no infringement of privacy. No personally identifiable
information was processed, and no experiments were conducted that could pose privacy or security
risks. Throughout the study, we have taken deliberate steps to mitigate biases and avoid discriminatory
outcomes. We are committed to transparency, reproducibility, and integrity in both our methodology
and reporting.

8 REPRODUCIBILITY STATEMENT

We have provided all information necessary to reproduce the main experimental results of this
work, sufficient to support its central claims and conclusions. In detail, the complete algorithm is
provided in Appendix C, the prompts used (including the system prompt, operator prompts, and task
descriptions) are detailed in Appendix D, the experimental settings are described in Section 5 and
further elaborated in Appendix H, and the full source code, including the discovered heuristics, is
included in the supplementary material.
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A THE USE OF LLMS

LLM serves as a heuristic generator in our core method, as all LLM-based AHD frameworks do. The
idea of the method was originally created and implemented by human. Additionally, the LLM was
employed as a tool to refine and polish the writing.

B EXTENDED DISCUSSION ABOUT RELATED WORK

LLM for Code Generation. Recent work has explored improving LLMs’ code generation capabilities
through post-training (Islam et al., 2024; Tsai et al., 2024; Wang et al., 2024; Shen and Zhang, 2024;
Li et al., 2024). For example,Islam et al. (2024) employ RL and semantic feedback to repair
vulnerabilities, while Wang et al. (2024) demonstrate RL’s effectiveness in enhancing code quality.
Despite surface similarities, our task differs drastically: in code generation, objectives often prioritize
pass rates (Shen and Zhang, 2024; Wang et al., 2024; Tsai et al., 2024) or safety (Li et al., 2024; Islam
et al., 2024), whereas our goal is to maximize heuristic performance. Moreover, in code generation,
fine-tuning aims to produce a generally stronger model, while in our case, both the model tuning and
prompt evolution serve a singular goal—improving the quality of generated heuristics.

Notably, LLaMoCo (Ma et al., 2024) trains LLMs for optimization by fine-tuning on curated
prompt–code pairs and enabling direct code generation for new problems. Its training data is derived
from established sources such as papers, competitions, and benchmarks. By contrast, CALM adapts
LLMs using prompts and responses generated dynamically during the evolutionary process, allowing
problem-specific adaptation without external data. A promising future direction is to combine the
supervised training of LLaMoCo as a first stage with CALM’s reinforcement learning as a second
stage for adaptive optimization.

RL for LLM Fine-tuning. Reinforcement learning is a central technique for fine-tuning large
language models, with the RLHF paradigm commonly relying on Proximal Policy Optimization
(PPO) (Schulman et al., 2017) to iteratively refine model outputs based on human feedback. Building
on this, Group Relative Policy Optimization (GRPO) (Shao et al., 2024) simplifies training by
removing the need for a separate value network, instead estimating baselines over groups of candidate
completions—leading to improved sample efficiency and stability. Other alternatives such as Direct
Preference Optimization (DPO), SLiC-HF (Zhao et al., 2023), and Rejection Sampling Optimization
(RSO) (Liu et al., 2023b) offer off-policy mechanisms that further reduce computational burden.
While we do not aim to develop new fine-tuning algorithms, our method integrates GRPO within
the broader co-evolution framework to adapt the LLM in tandem with heuristic evolution. We
specifically adopt GRPO because it requires only a scalar signal per prompt-response pair (in contrast
to preference-based signals), making it suitable for our setting. Moreover, we implement fine-tuning
using Unsloth (Daniel Han and team, 2023), a GPU-efficient open-source framework that enables
fast, memory-light training even on single consumer-grade GPUs—making our method especially
practical and accessible for researchers with limited hardware resources.

C COMPLETE ALGORITHM

The complete algorithm body is shown in Algorithm 1.
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Algorithm 1: CALM
Input :LLM πθ, Evaluation environment g, number G of responses to be sampled for one

prompt, maximum round number T , Population size Lp, Sampling weight w for each
operator, Hyperparameter δ0 and C that control the collapse mechanism, set of seed
heuristicHseed (set to be ∅ if not given any seed heuristic).

Initialize collapse counter tc = −1, best heuristic h∗ = null, best performance g∗ = −∞,
heuristic poolHpool = Hseed, wi = winjection;

for t = 1, · · · , T do
Operator base OPs← {Initialization};
if |Hpool| ≥ 1 then

OPs← {Injection,Replacement,Crossover,Simplification};
end
if |Hpool| ≥ 2 then

OPs← OPs ∪ {Crossover};
end
if |Hpool| < Lp then

wInjection ← max(w);
else

wInjection ← wi;
Hbase ← ∅, op← Draw an operator from OPs with the probability proportional to w;
if op ̸= Initialization then

hc,1 ←Draw an heuristic from top-Lp-performing heuristics inHpool, where the
sampling probability of an heuristic h is proportional to 1/rankp(h) and rankp(h) is
the heuristic’s performance rank;
Hbase ← Hbase ∪ {h};
if op = Crossover then

if random(0, 1) ≤ 0.5 then
hc,2 ←Draw a heuristic from the population by performance rank as sampling
hc,1;

else
Calculate diversity metric
div(hc,1, h) =

|idea_token(h)\idea_token(hc,1)|
|idea_token(h)| , ∀h ∈ Hpool;

hc,2 ←Draw a heuristic from the pool by diversity rank where the sampling
probability is proportional to 1/rankd(h) (a larger diversity value yields a
higher probability);

Hbase ← Hbase ∪ {hc,2};
end

end
q ←Generate prompt by the operator op and base heuristicsHbase;
O ←Sample G responses from πθ for q;
Hfeasible, r̂O ← Try extracting a feasible heuristic from each response o ∈ O and assign

reward to each response following Section 4.3;
θ ←Update the LLM by GRPO that optimizes Equation 1 with (q,O, r̂O);
Hpool ← Hpool ∪H{⌉⊣∫⟩⌊↕⌉;
h∗ ← argmaxh∈Hpool

g(h);
if g(h∗) = g∗ and |Hpool| ≥ Lp then

/* If the population is full, the counter for collapse
starts. */

tc ← max(tc, 0) + 1;
else

g∗ = (h∗), tc ← min(tc, 0);
if random(0, 1) ≤ δ0tc or tc ≥ C then
Hbase ← {h∗} ∪ Hseed, tc ← −1; /* Collapse */

end
end
Return :h∗
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Searching superior heuristics on the {problem.name} problem in an evolutionary manner through 
conversation between User and Assistant. In this problem, {problem.description} The User 
provides existing algorithms and requests a new one.

## Your Task
You should first present a concise conceptual description, followed by a complete code 
implementation.
* The description must:

* Be enclosed with a double brace and starts with "The idea of the algorithm is to".
* Ensure it is self-contained, insightful, and creatively original.
* Not reference or rely on any prior ideas or existing code.

* The code must:
* Strictly follow the input-output variable names and types used in the provided implementation.
* Be a single Python function formatted within Python code blocks.
* Exclude any usage examples.
* Ensure the algorithm is deterministic.
* Avoid introducing unnecessary, arbitrarily-tuned hyperparameters; any parameters used should 

be essential and systematically derived from the input.
Overall, your response should be like:
{{The idea of the algorithm is to (sepcific description here)}}
```python
your code here
```
Except for the idea and code, do not give additional explanations or comments.

Figure 3: Template of the system prompt.

D PROMPTS USED IN CALM

System Prompt. The system prompt is generated by inserting the name and description into the
template shown in Figure 3. The specific prompt used for each problem can be found in Table 5.

Injection Prompt. The template used to generate injection prompts is shown in Figure 4. In the
prompt template, the algorithm details are generated by the given heuristics and the prompt template
in Figure 8. The description of the most recent injected components is created by (1) parsing the
string wrapped within "The new component ... has been introduced", (2) globally saving the historical
new components, and (3) picking the last 10 new components to be used.

Replacement Prompt. The replacement prompt is created by the template, some predefined compo-
nent Paris shown in Figure 5, and the algorithm detail template shown in Figure 8.

Crossover Prompt. The crossover prompt is generated by the template shown in Figure 6 and the
algorithm detail template shown in Figure 8.

Simplification Prompt. The simplification prompt is created by the template shown in Figure 7 and
the algorithm detail template shown in Figure 8.

Initialization Prompt. The initialization prompt is created by the template shown in Figure 9. The
algorithm template is a function signature.

E EXAMPLE PROMPT-RESPONSE PAIRS FOR INJECTION AND REPLACEMENT

The example prompt-response pairs with concrete explanation for the modification on heuristics is
shown in Figure 10, 11, 12, and 13.
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Inject a novel, meaningful component into the following algorithm. The component may be self-
devised or inspired by ideas from other domains or problems.

{algorithm_details(given_heuristics)}

Use a concise noun phrase to describe the new component in the responded idea like "The new 
component ... has been introduced.". Exclude the following components that have already been 
explored: {description of most recent injected components}

Figure 4: Template of the injection prompt.

For the following algorithm, identify {old_component} and rewrite it to {new_component}.

{algorithm_details(given_heuristics)}

new_componentold_component

an instance-dependent rule that derives its value 
from the current observationa fixed, instance-independent decision rule

a more principled constant justified by theory or 
practice

a key hyper-parameter expressed as either a 
constant literal or a stationary variable

a fragment where credits are deterministically 
and reasonably differentiated

a fragment that assigns equal or near-equal 
credits to multiple elements

Figure 5: Template of the replacement prompt.

Please generate a new algorithm that is motivated by the following algorithms but performs better 
on any same instance.

{algorithm_details(given_heuristics)}

Figure 6: Template of the crossover prompt.

Please create a simplified and more elegant version of an algorithm by distilling and refining the 
core ideas from the following: 

{algorithm_details(given_heuristics)}

Figure 7: Template of the simplification prompt.

...
## Algorithm k
* Performance: {heuristic.performance} (Rank {heurisitc.rank})
* Idea: {heuristic.idea} {heuristic.unit}
* Code:
```python
{heuristic.code}
```
...

Figure 8: Template of algorithm details.
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Be very creative and inventive. Generate an efficient algorithm following the template below: 

{algorithm_template}

Figure 9: Template of the initialization prompt.

Table 5: Information of each problem used in prompts

OBP CVRP OP TSP
Name Online Bin

Packing
Capacitated Vehicle
Routing

Orienteering Traveling
Salesman

Unit percent of
the gap to the
lower bound

units of travel distance units of collected
reward

length units
of the tour

Description Items arrive
sequentially
and must be
placed imme-
diately into
bins only if
they fit within
the remaining
capacity. The
objective is to
minimize the
number of bins
used.

A fleet of vehicles with
limited carrying capacity
must deliver goods to a
set of geographically dis-
tributed customers with
known demands, mini-
mizing the total travel
distance while ensuring
that no vehicle exceeds
its capacity. The goal
is to design a heuristic
function that estimates
the desirability of mov-
ing between customers,
to be used within an Ant
Colony Optimization
(ACO) algorithm.

An agent must visit
a subset of locations,
each offering a re-
ward, within a max-
imum travel budget.
The objective is to
maximize the total
collected reward
while adhering to
the travel constraint.
The goal is to design
a heuristic function
that estimates the de-
sirability of moving
between locations, to
be used within an Ant
Colony Optimization
(ACO) algorithm.

The algorithm
must find a
tour that visits
each node
exactly once
and returns to
the start node.
The objective
is to minimize
the length of
the tour.
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Inject a novel, meaningful component into the following algorithm. The component may be self-
devised or inspired by ideas from other domains or problems.

## Algorithm 1
* Performance: 12.578 units of collected reward (Rank: 1)
* Idea: The idea of the algorithm is to return the ratio of the prize and the inter-node distance
* Code:
```python
# The idea of the algorithm is to return the ratio of the prize and the inter-node distance

import numpy as np

def heuristics(prize: np.ndarray, distance: np.ndarray, maxlen: float) -> np.ndarray:
return prize[np.newaxis, :] / distance

```

Use a concise noun phrase to describe the new component in the responded idea like "The new 
component ... has been introduced.".

{{The idea of the algorithm is to return the ratio of the prize and the inter-node distance. The new 
component incorporating a distance decay factor has been introduced.}}

```python
import numpy as np

def heuristics(prize: np.ndarray, distance: np.ndarray, maxlen: float) -> np.ndarray:
distance_decay = np.exp(-distance / maxlen)
return prize[np.newaxis, :] / distance * distance_decay

```

Inject a new decay component, and the 
performance is improved by 4.21%!

Prompt

Response

Figure 10: Example of improvement made by injection operator.
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For the following algorithm, identify a fragment that assigns equal or near-equal credits to multiple 
elements and rewrite it to a fragment where credits are deterministically and reasonably 
differentiated.

## Algorithm 1
* Performance: 13.826 units of collected reward (Rank: 1)
* Idea: The idea of the algorithm is to return the ratio of the prize and the inter-node distance, while 
incorporating a distance decay factor that uses a novel hybrid decay. This hybrid decay combines 
elements of the initial exponential and linear decays, starting with an initial exponential decay that 
quickly reduces the influence of distant nodes, followed by a linear decay that gradually reduces 
the influence further. This hybrid approach enhances the exploration-exploitation trade-off, 
providing a balance between visiting close nodes and exploring more distant ones, thereby 
optimizing the balance.
* Code:
```python
import numpy as np

def heuristics(prize: np.ndarray, distance: np.ndarray, maxlen: float) -> np.ndarray:
# Initial exponential decay followed by a linear decay
distance_decay = np.exp(-distance / (0.4 * maxlen)) * (1 - 2 * (distance - 0.4 * maxlen) / (0.6 *                           

maxlen))
distance_decay[distance > 0.4 * maxlen] = 0 # Ensure linear decay only applies to close nodes
return prize[np.newaxis, :] / distance * distance_decay

```

{{The idea of the algorithm is to return the ratio of the prize and the inter-node distance, while 
incorporating a hybrid decay that enhances the exploration-exploitation trade-off.}}
```python
import numpy as np

def heuristics(prize: np.ndarray, distance: np.ndarray, maxlen: float) -> np.ndarray:
# Initial exponential decay followed by a linear decay
initial_exponential_decay = np.exp(-distance / (0.4 * maxlen))
linear_decay = 1 - 2 * (distance - 0.4 * maxlen) / (0.6 * maxlen)
linear_decay[distance > 0.4 * maxlen] = 1 # Ensure linear decay only applies to close nodes

# Hybrid decay combining initial exponential and linear decay
hybrid_decay = initial_exponential_decay * linear_decay
return prize[np.newaxis, :] / distance * hybrid_decay

```

Treat edge pairs differently by a 
distance threshold, and the 
performance is improved by 0.39%!

Prompt

Response

Figure 11: Example of improvement made by replacing an equal-credit rule operator.
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For the following algorithm, identify a key hyper-parameter expressed as either a constant literal or 
a stationary variable and rewrite it to a more principled constant justified by theory or practice.

## Algorithm 1
* Performance: 7.103 length units of the tour (Rank: 1)
* Idea: The idea of the algorithm is to select the next node to visit from the unvisited nodes by 
calculating a score that considers the direct distance to the current node, the average distance to 
the unvisited nodes, the standard deviation of these distances, and the distance to the destination 
node.
* Code:
```python
import numpy as np

def select_next_node(current_node: int, destination_node: int, unvisited_nodes: set, distance_matrix: 
np.ndarray) -> int:

c1, c2, c3, c4 = 0.4, 0.3, 0.2, 0.1
scores = {}

for node in unvisited_nodes:
distances = [distance_matrix[current_node][node], distance_matrix[destination_node][node]]
average_distance_to_current = np.mean(distances)
std_dev_distance_to_current = np.std(distances)

score = (
c1 * distance_matrix[current_node][node]
- c2 * average_distance_to_current
+ c3 * std_dev_distance_to_current
- c4 * distance_matrix[destination_node][node]

)
scores[node] = score

next_node = min(scores, key=scores.get)
return next_node

```

{{The idea of the algorithm is to select the next node to visit from the unvisited nodes by 
calculating a score that considers the direct distance to the current node, the average distance to 
the unvisited nodes, the standard deviation of these distances, and the distance to the destination 
node.}}

```python
import numpy as np

def select_next_node(current_node: int, destination_node: int, unvisited_nodes: set, distance_matrix: 
np.ndarray) -> int:

c1, c2, c3, c4 = 0.5, 0.3, 0.2, 0.1
scores = {}

for node in unvisited_nodes:
distances = [distance_matrix[current_node][node], distance_matrix[destination_node][node]]
average_distance_to_current = np.mean(distances)
std_dev_distance_to_current = np.std(distances)

score = (
c1 * distance_matrix[current_node][node]
- c2 * average_distance_to_current
+ c3 * std_dev_distance_to_current
- c4 * distance_matrix[destination_node][node]

)
scores[node] = score

next_node = min(scores, key=scores.get)
return next_node

```

Change one hyperparameter, and the 
performance is improved by 8.29%!

Prompt

Response

Figure 12: Example of improvement made by replacing a hyperparameter.
22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

For the following algorithm, identify a fixed, instance-independent decision rule and rewrite it to an 
instance-dependent rule that derives its value from the current observation.

## Algorithm 1
* Performance: 3.052 percent of the gap to the lower bound (Rank: 1)
* Idea: The idea of the algorithm is to score each available bin by integrating the remaining 
capacity, item size, and a penalty for overfilled bins. This algorithm introduces a novel adaptive 
scaling factor based on the geometric mean of the remaining capacity and the maximum capacity. 
It also uses a quintic penalty term to better penalize overfilled bins and a quadratic scaling to 
stabilize the score for bins with very small remaining capacity.
* Code:
```python
import numpy as np

def step(item_size: float, remaining_capacity: np.ndarray) -> np.ndarray:
max_bin_cap = np.max(remaining_capacity)
geometric_mean = remaining_capacity * max_bin_cap / (remaining_capacity + max_bin_cap)
scale_factor = np.sqrt(geometric_mean / max_bin_cap)
quintic_penalty = remaining_capacity**5 / (item_size**5)
score = (remaining_capacity - max_bin_cap)**2 / item_size + quintic_penalty
score[remaining_capacity > item_size] = -score[remaining_capacity > item_size]
score[1:] -= score[:-1]
score *= scale_factor
return score

```

{{The idea of the algorithm is to score each available bin by integrating the remaining capacity, 
item size, and a penalty for overfilled bins. This algorithm uses a deterministic rule that derives its 
value from the current input instance by calculating the geometric mean of the remaining capacity 
and the maximum capacity as the scale factor and adjusting the score based on the item size and 
remaining capacity.}}
```python
import numpy as np

def step(item_size: float, remaining_capacity: np.ndarray) -> np.ndarray:
max_bin_cap = np.max(remaining_capacity)
geometric_mean = np.sqrt(remaining_capacity * max_bin_cap)
scale_factor = geometric_mean / max_bin_cap
score = (remaining_capacity - item_size) / item_size + remaining_capacity**5 / (item_size**5)
score[remaining_capacity > item_size] = -score[remaining_capacity > item_size]
score[1:] -= score[:-1]
score *= scale_factor
return score

```

Replace a static threshold by the 
dynamic item size, and the 
performance is improved by 7.79%!

Prompt

Response

Figure 13: Example of improvement made by replacing a instance-independent decision rule.
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F DISCUSSION ABOUT THE DIVERSITY-AWARE CROSSOVER OPERATOR

Notably,Zheng et al. (2025) allowed heuristic selection beyond the top-performing population,
offering greater exploration flexibility, though without explicitly modeling diversity. In contrast,Dat
et al. (2025) emphasized the role of diversity in heuristic evolution but did not integrate it into
crossover and operated within a fixed-size population. Therefore, CALM’s crossover operator
complements prior work by explicitly incorporating diversity into the crossover process.

G MORE DETAILS FOR THE COLLAPSE MECHANISM

G.1 PROOF OF EQUATION (2)

Let cn be the stagnation counter just before collapse. Under the collapse mechanism with per-round
hazard

pk = k δ0, k = 1, 2, . . . ,

the probability of surviving beyond k rounds is

Pr[cn > k] =

k∏
i=1

(
1− i δ0

)
,

which vanishes for k ≥ ⌊1/δ0⌋.
By definition,

E[ cn ] =
∞∑
k=1

k Pr[cn = k].

Introduce the nonnegative array

aj,k =

{
Pr[cn = k], k ≥ j ≥ 1,

0, otherwise.
Then

∞∑
k=1

k Pr[cn = k] =

∞∑
k=1

k∑
j=1

Pr[cn = k] =

∞∑
k=1

∞∑
j=1

aj,k.

Since aj,k ≥ 0, Tonelli’s theorem allows swapping the sums:
∞∑
k=1

∞∑
j=1

aj,k =

∞∑
j=1

∞∑
k=1

aj,k =

∞∑
j=1

∞∑
k=j

Pr[cn = k] =

∞∑
j=1

Pr[cn ≥ j] =

∞∑
j=0

Pr[cn > j].

Hence the tail-sum identity

E[ cn ] =
∞∑
j=0

Pr[cn > j].

For δ0 ≪ 1 we approximate the finite product by exponentiating its logarithm, using the Maclaurin
expansion

ln(1− x) = −
∞∑

m=1

xm

m
= −x− x2

2 − · · · , |x| < 1,

with x = iδ0. Truncating at the linear term gives
k∑

i=1

ln
(
1− i δ0

)
≈ −

k∑
i=1

i δ0 = − δ0
2 k(k + 1) ≈ − δ0

2 k2,

so
Pr[cn > k] ≈ exp

(
− δ0

2 k
2
)
.

Substituting into the tail-sum and replacing the discrete sum by an integral yields

E[ cn ] ≈
∞∑
k=0

e−
δ0
2 k2

≈
∫ ∞

0

e−
δ0
2 x2

dx =

√
π

2 δ0
,

which establishes Equation (2).
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G.2 GOODNESS

Following this reset, the search effectively starts anew, but with a strategic advantage: it builds upon
the best insights discovered so far. Importantly, during the early stage of repopulation, the system
temporarily relaxes selection constraints. New heuristics generated via injection, replacement, or
crossover are allowed into the population regardless of performance, as long as the total number
of heuristics remains below the target population size. This gives structurally novel but potentially
suboptimal components the opportunity to propagate and evolve—something not feasible under
normal selection pressure, where only top-performing heuristics are retained and processed further.

H MORE EXPERIMENTAL DETAILS

H.1 IMPLEMENTATION DETAILS

We build CALM on Unsloth (Daniel Han and team, 2023), with two modifications: raising the
learning rate to 5× 10−5 for faster adaptation and sampling G = 4 responses per prompt to enable
more evolutionary steps under a fixed query budget.

We set the initial collapse growth rate to δ0 = 0.0005 (max threshold C = 25), cap training at
T = 500 rounds, and assign operator sampling probabilities in the ratio 1 : 1 : 2 : 4 for simplification,
injection, modification, and crossover, respectively. Each heuristic is evaluated within 60 s (Zheng
et al., 2025). All experiments ran on a 24 GB NVIDIA A30 GPU with an Intel Xeon Gold 5220R
CPU.

For invalid responses, the maximum reward rinvalid is set to −0.75. Furthermore, we apply a
hierarchy of failure modes, assigning progressively higher (i.e., less negative) rewards to increasingly
plausible but still unacceptable outputs. These modes include: (1) omission of a required idea (reward:
r7 = −1.0); (2) missing code block (r6 = −0.95); (3) improperly formatted function (r5 = −0.9);
(4) runtime errors or time budget violations (r4 = −0.85); and (5) detection of randomness in the
heuristic (r3 = −0.75)2, which incurs the mildest penalty among infeasible cases.

Under this configuration, the average running time of CALM for the OBP, CVRP, OP, and TSP is
about 6.8, 7.2, 5.3, and 5.5 hours, respectively, for T = 500 steps. However, it is important to note
that the actual running time for a single trial may vary considerably due to the stochastic nature of
the LLM and the potentially large number of heuristics generated, each requiring time-intensive
evaluation.

H.2 BASELINE IMPLEMENTATIONS

The source code, training dataset, and test dataset for AlphaEvolve (Novikov et al., 2025) are not
available. Therefore, we use OpenEvolve (Sharma, 2025) as the baseline, which is the most popular
open-source implementation of AlphaEvolve.

In its original implementation, EvoTune (Surina et al., 2025) requires approximately 80GB of
GPU memory to conduct experiments on LLMs with fewer than 7B parameters, which exceeds the
computational resources available to us. By contrast, our CALM method could operate on a single
GPU with 24GB of memory. To ensure a fair comparison, we re-implemented EvoTune within the
same Unsloth (Daniel Han and team, 2023) framework, following its official source code, so that it
can be executed on the same Qwen model under identical GPU constraints.

Besides, ReEvo (Ye et al., 2024) and its follow-up approach HSEvo (Dat et al., 2025) can stop at a
very early stage in evolution as found by Zheng et al. (2025). Thus, the results of them on TSP are
not reported. For the OP and CVRP tasks, OpenEvolve (Sharma, 2025) failed to discover improved
heuristics beyond the early stages of heuristics search. As a result, its training curve is omitted from
Figure 2 for clarity.

2Randomized heuristics are excluded in the experiments because their stochastic behavior substantially
increases evaluation cost and noise. To enforce determinism, CALM penalizes responses that invoke randomness
(e.g., usage of random, np.random, etc.). The framework could support randomized heuristics by relaxing
this constraint, though evaluation overhead would increase.
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Table 6: Breakdown of time consumption in CALM (with detailed wall-clock time).

Inference Evaluation Training
CVRP 73.29% (4.059 h) 16.11% (0.893 h) 10.60% (0.587 h)
OBP 78.59% (5.749 h) 11.10% (0.812 h) 10.31% (0.754 h)
OP 82.12% (4.281 h) 9.77% (0.510 h) 8.11% (0.423 h)
TSP 83.23% (6.457 h) 7.20% (0.559 h) 9.57% (0.742 h)

H.3 DESCRIPTION OF PROBLEMS IN EXPERIMENTS

Online Bin Packing (OBP). A sequence of items of varying sizes arrives one by one. Each bin has a
fixed capacity. Upon arrival of an item, the algorithm must immediately assign it to an existing bin
that has enough remaining space or open a new bin. The goal is to minimize the total number of bins
used. The input of the heuristic is the size of the current item and the remaining capacities of the bins.
The output of the heuristic is the priority score of each observed bin, where the feasible bin with the
highest score will be selected to accomodate the item.

Traveling Salesman Problem (TSP) under Step-by-Step Construction. Given a set of locations
with pairwise travel distances, the objective is to construct a tour that starts at one location, visits
each other location exactly once, and returns to the start. At each step the heuristic must choose the
next unvisited location based solely on the information gathered so far. The aim is to keep the total
travel distance as small as possible.

Capacitated Vehicle Routing Problem (CVRP) under ACO. A fleet of vehicles with identical
load capacity must serve a set of customers, each with a known demand, and all vehicles start and
end at a central depot. Under the Ant Colony Optimization framework, many artificial “ants” build
routes by moving from customer to customer. Each ant’s choice of next customer is guided by a
combination of pheromone trails—updated based on previous high-quality solutions—and heuristic
scores provided by the LLM. The goal is to serve all customers while minimizing the total distance
traveled and respecting vehicle capacity limits.

Orienteering Problem (OP) under ACO. Starting from a given location (and possibly ending at
the same or another specified location), an agent may visit a subset of available sites, each offering
a reward, subject to an overall travel budget. Within the ACO framework, ants construct candidate
paths by choosing which site to visit next based on pheromone levels and LLM-generated heuristic
scores that estimate the benefit of each edge under the reward-and-budget trade-off. The aim is to
collect as much reward as possible without exceeding the travel budget.

I MORE EXPERIMENTAL RESULTS

I.1 BREAKDOWN OF CALM’S TIME CONSUMPTION

We break down the total CALM running time into three components: (i) Inference—the time taken by
the LLM to generate responses3; (ii) Evaluation—the time spent parsing each heuristic and validating
its feasibility and performance; and (iii) Training—the time required to compute the loss and update
the LLM parameters. The time spent on each component across different tasks is summarized in
Table 6.

These results show that inference is the dominant time cost in CALM. Despite parallelizing heuristic
evaluations across the training dataset, evaluation still requires more time than model training for
most tasks. In other words, employing the fine-tuning algorithm in the LLM-based AHD introduces a
minimal time overhead.

3We additionally quantified the potential overhead of gradient computation during inference, as training
in CALM includes rollouts. Since gradient computation is tightly integrated into PyTorch, we compared two
runs: (i) inference with gradients enabled and (ii) inference with torch.no_grad() to disable gradient
computation. Across all tasks, the extra cost was consistently below 0.25% of the pure inference time, which is
negligible and does not affect the breakdown reported in Table 6.
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Table 7: Average scores of fine-tuned models. Lower is better for CVRP (↓) and higher is better for
OP (↑).

Step=0 Step=100 Step=200 Step=300 Step=400 Step=500
CVRP (↓) 66.356 32.403 40.860 40.451 49.699 32.403
OP (↑) 11.956 25.025 25.025 25.025 12.228 25.025

Table 8: Feasibility ratio of fine-tuned models.

Step=0 Step=100 Step=200 Step=300 Step=400 Step=500
CVRP 10.00% 100.00% 83.33% 62.50% 71.43% 100.00%
OP 26.32% 100.00% 100.00% 100.00% 45.45% 100.00%

I.2 IMPACT OF FINE-TUNING ON THE FOUNDATIONAL MODEL

To investigate the performance of the fine-tuned model, we conducted additional experiments.
Specifically, we saved a snapshot of the LLM every 100 training steps during the evolutionary process
of CALM. For each snapshot, we used the same prompt, which instructs the LLM to generate an
improved variant of the seed algorithm for a given task. For each snapshot and task prompt, we
repeatedly sampled responses until five feasible outputs capable of producing valid heuristic code
for the task were obtained. We then recorded the following metrics: (i) the average score of the five
heuristics, where the score for each heuristic is calculated as the performance averaged over the test
scales reported in our manuscript; and (ii) the feasibility ratio, defined as the number of feasible
responses (fixed at five) divided by the total number of samples required to obtain them. We focused
on the snapshots generated during the run for CVRP that yielded the best heuristic among all three
runs. For these LLM snapshots, we evaluated them on both CVRP and OP. Results are shown in
Table 7 and 8.

Key observations are as follows:

• Both the average score of the discovered heuristics and the feasibility ratio of the responses
improve significantly after fine-tuning. For example, in the CVRP task, the feasibility
ratio increases from 10% to 100%, and the average score decreases by more than 50%
after fine-tuning. This demonstrates the effectiveness of CALM in enhancing the LLM’s
capability.

• Although the LLM is fine-tuned on data generated from AHD for the CVRP task, substantial
improvements in both the average score and feasibility ratio are also observed for the OP
task. This suggests that the improvements gained through fine-tuning on CALM-generated
data generalize beyond the in-domain task and can benefit other related tasks.

• Beginning at step 200, both the average score and feasibility ratio fluctuate during the
training process. Notably, the heuristics achieving the best scores (20.088 for CVRP and
25.252 for OP) were discovered by LLM snapshots saved at 300 and 400 training steps,
respectively. Interestingly, these snapshots also exhibit the lowest feasibility ratios and
non-leading average scores for the respective tasks. This indicates that an LLM capable
of producing an exceptional heuristic may not be the most stable in generating feasible
responses or in producing consistently high-quality heuristics on average. In other words,
an LLM capable of occasional breakthroughs may exhibit erratic behavior—illustrating the
notion that genius can verge on madness.

I.3 IMPACT OF THE FOUNDATIONAL LLM

We have added additional experiments by replacing the foundational model with (i) a SOTA reasoning
LLM o4-mini and (ii) another open-source compact model Llama-3.1-8B-Instruct-Int4. Results are
as shown in Table 9 and 10.

The SOTA reasoning LLM o4-mini effectively identifies superior heuristics under the CALM frame-
work (w/o GRPO), achieving notable performance improvements—approximately 15.5% with the
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Table 9: Optimality gaps on OBP (Qwen, Llama, and o4-mini) with CALM.

1k_100 1k_500 5k_100 5k_500 10k_100 10k_500 Avg.
Qwen+GRPO 2.55% 0.00% 0.85% 0.17% 0.56% 0.14% 0.71%
Llama+GRPO 2.98% 0.00% 0.96% 0.10% 0.54% 0.10% 0.78%
o4-mini 2.29% 0.00% 0.85% 0.10% 0.34% 0.02% 0.60%

Table 10: Objective scores and optimality gaps on OP (Qwen & Llama) with CALM.

N=50 N=100 N=200
Qwen 15.054 (24.22%) 30.778 (15.43%) 55.406 (12.58%)
Llama 15.038 (24.31%) 30.599 (15.92%) 54.593 (13.86%)

o4-mini model—though this advantage comes with over twice the inference time compared to
Qwen+GRPO. Despite this trade-off, using locally deployed, compact models remains competitive,
particularly when the time budget for search is limited. Additionally, heuristics identified by the
Llama model show strong performance and generalizability, outperforming all other methods at
certain scales (5k_500 and 10k_500) in OBP and surpassing all baseline methods in OP at N=100
and 200, while maintaining comparable results at all scales. Moreover, removing GRPO significantly
reduces average optimality gaps, by 34.33% in OBP and 17.91% in OP, further highlighting the
robustness of the proposed method.

I.4 MORE RESULTS ON HARDER OBP INSTANCES

Smaller-scale instances of OBP are more challenging in the online setting, as each decision has a
larger impact and variance is higher, making them a stricter robustness test for heuristics. Thus,
we further evaluated CALM’s performance on OBP with smaller problem scales. Specifically, we
generated 10 Weibull-distributed instances for each of the following training scales (in the format
n_capacity): 100_100, 100_500, 300_100, 300_500, 500_100, and 500_500. For evaluation, 50
instances were generated for each scale. CALM was equipped with Llama-3.1-8B-Instruct-INT4.
For comparison, we included MCTS-AHD, the SOTA LLM-based AHD method that achieved the
best performance on the smallest scale in Table 9.

The results show that CALM+Llama achieves a lower average optimality gap than MCTS-AHD,
even when the latter is paired with a more powerful LLM. CALM underperforms only at the 500_500
scale. In addition, the standard deviation of the average optimality gap is smaller for CALM (0.03%)
compared to MCTS-AHD (0.21%).

I.5 SCALING BEHAVIOR

We conducted additional experiments to evaluate the scaling behavior of CALM on OP, using an
increased training budget of 2500 steps. Results are shown in Table 12. The key findings are as
follows:

• With a substantially larger evaluation budget, CALM is able to discover heuristics that
outperform those found with only 500 training steps, as shown in the table below.

• Without LLM fine-tuning, CALM is unable to consistently discover new, superior heuristics
at early stages of training. In one instance, no better heuristic was found beyond step 256.

• Evaluation of fine-tuned model snapshots at different training steps shows that after several
hundred steps, performance fluctuates and does not always improve monotonically. Never-
theless, the fine-tuned models consistently outperform the untuned baseline. This suggests
that, in later stages, fine-tuning may not significantly enhance the LLM’s capabilities but
instead introduces variation to the LLM for heuristic generation. This variation may help
maintain the LLM’s performance while increasing the diversity of the heuristic population.
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Table 11: Optimality gaps on OBP with smaller scales.

100_100 100_500 300_100 300_500 500_100 500_500 Avg.
MCTS-AHD (GPT-4o-mini) 6.97% 1.39% 5.67% 0.57% 5.20% 0.63% 3.40%
CALM (Llama-3.1-8B-Instruct-INT4) 6.80% 1.39% 5.61% 0.57% 5.06% 0.64% 3.35%

Table 12: Objective scores and optimality gaps of CALM (w/ GRPO) on OP under different search
budgets.

N=50 N=100 N=200
#LLM Queries=2,000 15.054 (24.22%) 30.778 (15.43%) 55.406 (12.58%)
#LLM Queries=10,000 15.201 (23.49%) 31.153 (14.40%) 56.432 (10.96%)

Overall, these results indicate that CALM exhibits favorable scaling behavior under larger training
budgets.

I.6 P-VALUES FOR SIGNIFICANCE

To further highlight the superiority of CALM, we compare its performance against the state-of-the-art
LLM-based AHD method MCTS-AHD (Zheng et al., 2025) across ten independent runs on two
representative tasks: the TSP (step-by-step construction) and the OP (ACO-based). For fairness, we
adopt the exact same dataset as used by Zheng et al. (2025). The per-run performance of MCTS-AHD
on the TSP task is directly obtained from their appendix, while for the OP task we obtain the results
using the official implementation under the same evaluation environment as CALM. The results
are summarized in Tab. 13. The small p-values further confirm with high confidence that CALM
consistently outperforms MCTS-AHD on both tasks.

I.7 SENSITIVITY TO THE HYPERPARAMETERS IN THE REWARD FUNCTION

Our reward design is guided by a fundamental principle: rewards should increase progressively with
the quality of the generated response. This principle is illustrated by the high-level cases in Figure 1.
To differentiate between these cases, we introduce several hyperparameters (e.g., α1, α2, and rinvalid).
To evaluate the robustness of this principle, we conducted an additional ablation study where CALM’s
reward function was instantiated under the following settings:

• The original implementation with a relatively even reward distribution, as described in
Section H.1.

• Random sampling of all hyperparameters under the progressive-guiding constraint, i.e.,
1 > α1 > α2 > 0 > r3 = rinvalid > r4 > r5 > r6 > −1.

• The same α1, α2, and rinvalid values as in Section H.1, but with all invalid responses
uniformly assigned rinvalid.

The results are presented in Table 14.

Across all settings, heuristics derived from these reward designs remain highly competitive at every
scale. In particular, when invalid responses are assigned a unified reward, CALM achieves the best
performance at N = 50, surpassing all methods reported in Table 3. The slight performance gap
between CALM with randomly sampled hyperparameters and the other two implementations likely
results from uneven reward spacing across neighboring cases. Overall, these findings indicate that
CALM’s effectiveness is not tied to precise numerical values in reward shaping but instead depends
on adherence to the underlying principle of progressive reward allocation.

I.8 GENERATED HEURISITCS

"""
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Table 13: Performance comparison of CALM and MCTS-AHD on TSP (step-by-step construction)
and OP (ACO-based) tasks over ten runs. “avg.” represents the average and “std.” the standard
deviation. p-values are calculated using single-tailed t-tests.

Methods run1 run2 run3 run4 run5 run6 run7 run8 run9 run10 avg. std. p-value

TSP(↓)
MCTS-AHD

(GPT-4o-mini) 6.452 6.447 6.284 6.386 6.316 6.372 6.480 6.480 6.259 6.388 6.386 0.080

CALM
(Qwen2.5-7B) 6.220 6.217 6.213 6.205 6.221 6.174 6.213 6.219 6.224 6.222 6.213 0.015 0.0000012315

OP(↑)
MCTS-AHD

(GPT-4o-mini) 14.668 14.910 14.786 14.602 14.738 14.724 14.642 14.826 14.722 14.690 14.731 0.091

CALM
(Qwen2.5-7B) 14.876 14.822 14.951 14.798 14.844 14.669 14.850 14.878 14.880 14.746 14.831 0.079 0.00831786

Table 14: Ablation study of reward parameter choices under CALM’s reward design on the OP task.

Settings N=50 N=100 N=200

Original reward configuration (Sec. H.1) 15.054 (24.22%) 30.780 (15.43%) 55.406 (12.58%)

Original reward configuration (Sec. H.1)
but the same reward for all invalid responses 15.059(24.20%) 30.744(12.52%) 55.341(12.68%)

Randomly sampled reward parameters
under progressive-guiding constraint 15.046 (24.26%) 30.613 (15.88%) 55.165 (12.96%)

The idea of the algorithm is to refine the scoring mechanism by
introducing logarithmic adjustments and a novel scoring component
that captures the logarithmic relationship between the remaining
capacity and the square of the item size, and an adjusted
logarithmic density term that provides a more refined scoring
mechanism. This new algorithm aims to enhance the accuracy of bin
suitability assessment by adding a component that adjusts the score
based on the logarithmic difference between the remaining capacity
and the maximum bin capacity. The algorithm also simplifies the
scoring steps to make it more elegant and efficient.

"""

import numpy as np

def step(item_size: float, remaining_capacity: np.ndarray) -> np.ndarray:
max_bin_cap = max(remaining_capacity)
bin_density = np.sum(remaining_capacity) / (item_size *

len(remaining_capacity))
log_adj = np.log(remaining_capacity + 1) / np.log(max_bin_cap + 1)
score = (remaining_capacity - max_bin_cap)**2 / item_size +

remaining_capacity**2 / (item_size**2) + remaining_capacity**2 /
(item_size**3) + bin_density * remaining_capacity

score[remaining_capacity > item_size] = -score[remaining_capacity >
item_size]

score[1:] -= score[:-1]

score *= log_adj
score += log_adj * remaining_capacity

score *= log_adj
new_component = remaining_capacity / (item_size - remaining_capacity

+ 1)
score += new_component
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new_component = remaining_capacity * np.log(remaining_capacity + 1)
/ (item_size * np.log(max_bin_cap + 1)) * (1 -
remaining_capacity / item_size)

score += new_component

new_adjustment = (remaining_capacity / item_size) * log_adj
score += new_adjustment

remaining_capacity_adjusted = remaining_capacity / item_size
score += np.log(remaining_capacity_adjusted + 1) /

np.log(max_bin_cap + 1)

new_component = (remaining_capacity - 1) / (item_size -
remaining_capacity + 1) * log_adj / np.log(max_bin_cap + 1)

score += new_component

new_component = log_adj * remaining_capacity / (item_size -
remaining_capacity)

score += new_component

new_component = remaining_capacity * np.log(remaining_capacity + 1)
/ (item_size**2) * (1 - remaining_capacity / item_size)

score += new_component

return score

Heuristic 1: OBP, by CALM (local, w/ GRPO)

"""
The idea of the algorithm is to introduce the "Bin Utilization

Diminution" component, which assesses the degree of bin usage
throughout the sequence of placements and introduces a diminishing
incentive for overpopulating any particular bin beyond a certain
threshold. This encourages a more even distribution of item
placements across all bins, thereby reducing the risk of reaching
capacity too quickly in any single bin, helping to extend the
lifespan and utility of each bin in the packing process. By
dynamically adjusting the fit score to favor items that contribute
to a balanced utilization, the algorithm aims to enhance overall bin
efficiency and minimize the total bin count.

"""

import numpy as np

def step(item_size: float, remaining_capacity: np.ndarray) -> np.ndarray:
avg_item_size = np.mean(item_size) if item_size > 0 else 1.0
adaptive_factor = avg_item_size / np.maximum(remaining_capacity,

1e-10)

fit_score = np.maximum(remaining_capacity - item_size, 0) /
(remaining_capacity + 1e-10)

fit_score[remaining_capacity < item_size] = -np.inf

sustainability_score = (remaining_capacity - avg_item_size) ** 2
sustainability_score[remaining_capacity < item_size] = np.inf

historical_fit_scores = np.cumsum(fit_score)
normalized_historical_fit_scores = historical_fit_scores /

(np.max(historical_fit_scores) + 1e-10)

combined_scores = (
(0.5 * fit_score * adaptive_factor) +
(0.3 / (sustainability_score + 1e-10)) -
(0.2 * normalized_historical_fit_scores)
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)

differentiation_factor = 1 / (1 + np.arange(len(remaining_capacity))
* 0.1)

combined_scores *= differentiation_factor

cumulative_fit_impact = np.cumsum(fit_score) / (np.arange(1,
len(remaining_capacity) + 1) + 1)

cumulative_fit_adjustment = np.maximum(fit_score -
cumulative_fit_impact, 0)

combined_scores += 0.4 * cumulative_fit_adjustment

temporal_utilization_metric = np.arange(len(remaining_capacity)) /
(np.maximum(remaining_capacity, 1e-10) + 1e-10)

combined_scores *= (1 + temporal_utilization_metric)

sequential_elasticity = np.exp(-np.arange(len(remaining_capacity)) /
(np.mean(np.maximum(remaining_capacity, 1e-10)) + 1e-10))

combined_scores *= sequential_elasticity

size_factor = 1 + (item_size / (np.sum(item_size) + 1e-10))

# New Component: Bin Utilization Diminution
overutilization_penalty = np.maximum(0, np.cumsum(item_size) /

(np.maximum(np.cumsum(remaining_capacity), 1e-10) + 1e-10) - 1)
combined_scores -= 0.3 * overutilization_penalty # Encourage even

distribution across bins

# Eventual Capacity Influence
eventual_capacity_score = np.log(np.maximum(np.arange(1,

len(remaining_capacity) + 1), 1)) /
(np.maximum(remaining_capacity, 1e-10) + 1e-10)

combined_scores -= 0.3 * eventual_capacity_score # Penalize bins
that don’t contribute to optimal utilization

distinct_scores = combined_scores * size_factor

return distinct_scores

Heuristic 2: OBP, by CALM (API, w/o GRPO)

"""
The idea of the algorithm is to further refine the savings potential

calculation by emphasizing a more adaptive balance factor that is
influenced by the current instance’s capacity utilization and the
diversity of capacity usage across the routing problem. By
leveraging a more sophisticated adaptive balance factor and reducing
the complexity of the penalty factor, we ensure that nodes that are
too close to each other are penalized appropriately without overly
compounding the impact. This simplified yet adaptive approach allows
for a nuanced exploration of the solution space, enhancing the ACO
algorithm’s ability to converge to high-quality solutions while
maintaining a balance between exploration and exploitation.
Additionally, we introduce a clustering-based adjustment factor that
captures the overall network connectivity and adjusts the savings
potential accordingly, leading to more robust and flexible routing
plans.

"""

import numpy as np

def advanced_heuristics_v7(distance_matrix: np.ndarray, coordinates:
np.ndarray, demands: np.ndarray, capacity: int) -> np.ndarray:
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capacity_prob = demands / capacity
distance_reciprocal = 1 / distance_matrix
proximity_factor = np.linalg.norm(coordinates[:, np.newaxis, :] -

coordinates[np.newaxis, :, :], axis=2)
proximity_factor /= np.max(proximity_factor) # Normalize between 0

and 1
proximity_factor = 1 - proximity_factor # Invert for higher penalty

as proximity increases

remaining_demands = capacity - demands
future_savings = (remaining_demands[:, np.newaxis] *

remaining_demands) / (distance_matrix * (remaining_demands[:,
np.newaxis] + remaining_demands))

capacity_ratio = remaining_demands / capacity
proximity_savings = proximity_factor * capacity_ratio

# Cluster-based proximity adaptive savings potential
cluster_savings = np.zeros_like(distance_matrix)
cluster_distance = np.sum(distance_matrix, axis=1) /

np.linalg.norm(capacity_prob - 1, ord=1)
cluster_adj_factor = (remaining_demands[:, np.newaxis] *

remaining_demands * cluster_distance ** 3.5) / (distance_matrix
* (remaining_demands[:, np.newaxis] + remaining_demands))

# Adaptive balance factor adjusted based on remaining capacity and
cluster adjustment

balance_factor = np.min([1, 0.975 + 0.05 * capacity_prob.mean() +
0.03 * cluster_adj_factor.mean() + 0.005 *
np.var(capacity_prob)])

# Penalty factor that heavily penalizes nodes that are too close to
each other, focusing on the proximity to the next node

penalty_factor = proximity_factor ** 3

# Combine all components
probability = distance_reciprocal * capacity_prob * proximity_factor

* future_savings * proximity_savings * cluster_adj_factor * (1 -
balance_factor + proximity_savings * balance_factor) * (1 -
penalty_factor) * (1 + cluster_adj_factor * 0.6)

return probability

Heuristic 3: CVRP, by CALM(local, w/ GRPO)

"""
The idea of the algorithm is to refine the credit allocation process in

the vehicle routing problem by implementing a deterministic
weighting mechanism that assigns distinct credits to customers based
on their delivery demands, individual distance factors, and their
influence on overall routing efficiency, thus ensuring that credits
reflect meaningful differences without redundancy.

"""

import numpy as np
from sklearn.cluster import DBSCAN

def heuristics(distance_matrix: np.ndarray, coordinates: np.ndarray,
demands: np.ndarray, capacity: int) -> np.ndarray:
num_customers = demands.shape[0]
cumulative_penalty = np.zeros(num_customers)

# Calculate baseline scores from demand to distance with added
urgency weighting

urgency_weight = np.linspace(1, 1.5, num_customers)
base_score = (demands * urgency_weight) / (distance_matrix + 1e-5)
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base_score[np.isnan(base_score)] = 0

# Set penalties for exceeding capacity based on cumulative demands
for i in range(num_customers):

current_demand = demands[i]
cumulative_penalty[i] = max(0, current_demand - capacity)

# Normalize distances to emphasize closer customers to refine scoring
normalized_distance_score = 1 / (np.clip(distance_matrix, 1e-5,

None) ** 2.5)

# Calculate effective capacity utilization adjustment
effective_capacity_utilization = np.clip((capacity - demands) /

capacity, 0, 1)

# Historical performance adjustments
historical_performance_factor = np.zeros(num_customers)
for i in range(num_customers):

historical_performance_factor[i] = np.mean([base_score[j] for j
in range(num_customers) if distance_matrix[i][j] < 10 and j
!= i])

# Spatial clustering mechanism
clustering_model = DBSCAN(eps=5, min_samples=2).fit(coordinates)
labels = clustering_model.labels_
cluster_scores = np.zeros(num_customers)

# Calculate cluster-based scores with deterministic differentiation
for cluster_id in set(labels):

if cluster_id != -1: # Ignore noise points
cluster_indices = np.where(labels == cluster_id)[0]
total_demand = demands[cluster_indices].sum()
for idx in cluster_indices:

# Implement differentiated scoring based on demand,
ensuring non-equal credits

cluster_demand_factor = (demands[idx] / total_demand) if
total_demand > 0 else 0

distance_weight = 1 / (1 + distance_matrix[idx].min())
# Closer customers get more weight

cluster_scores[idx] = cluster_demand_factor *
distance_weight # Mix demand and distance

# New resilience score based on historical demand variability
demand_variability = np.std(demands)
resilience_score = 1 / (1 + demand_variability)

# Compose final scores combining all elements including the new
resilience score

final_scores = base_score * normalized_distance_score *
effective_capacity_utilization * (1 +
historical_performance_factor + cluster_scores) *
resilience_score

return final_scores

Heuristic 4: CVRP, by CALM (API, w/o GRPO)

"""
The idea of the algorithm is to refine the exploration-expemy

exploitation trade-off by introducing a sinusoidal decay that
incorporates a sinusoidal penalty with a sinusoidal smoothness
adjustment. This adjustment helps to smooth the preference for both
recent and distant nodes, leading to a more balanced and improved
performance.
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"""

import numpy as np

def enhanced_heuristics(prize: np.ndarray, distance: np.ndarray, maxlen:
float) -> np.ndarray:
# Exponential decay for immediate high Subscription nodes
exp_ratio = np.exp(prize[np.newaxis, :] / distance - maxlen)

# Logarithmic scaling for exploration
log_ratio = np.log(prize[np.newaxis, :] + 1) / distance

# Sinusoidal decay for recent nodes with a sinusoidal smoothness
adjustment

sinusoidal_penalty = 0.5 * (1 + np.sin(np.pi * distance / (maxlen +
1))) * (distance / maxlen) * maxlen

# Combined ratio
combined_ratio = exp_ratio * log_ratio * (1 - sinusoidal_penalty)

# Ensure the ratio is non-negative
combined_ratio[combined_ratio < 0] = 0

return combined_ratio

Heuristic 5: OP, by CALM (local, w/ GRPO)

"""
The idea of the algorithm is to introduce a novel component called

"reward fluctuation sensitivity" which adjusts the desirability of
each location based on the variability of rewards over time. This
component accounts for the possibility that rewards may change or
fluctuate due to external factors, thereby allowing the agent to
prioritize locations not only by their current rewards but also by
the potential volatility of those rewards. This sensitivity is
integrated into the existing framework, allowing for a more dynamic
response to the changing landscape of rewards, ultimately enhancing
the agent\’s decision-making process and route optimization.

"""

import numpy as np

def heuristics(prize: np.ndarray, distance: np.ndarray, maxlen: float)
-> np.ndarray:
adjusted_distance = distance + 1e-10 # Avoid division by zero
potential_reward = np.zeros_like(prize)

for i in range(len(prize)):
reachable_indices = np.where(distance[i] <= maxlen)[0]
potential_reward[i] = np.sum(prize[reachable_indices]) if

reachable_indices.size > 0 else 0

reward_hist_factor = potential_reward / (1 + np.sum(prize)) # Shape
reward based on historical performance

reward_decay = np.exp(-adjusted_distance / maxlen) # Decay effect
for distant rewards

proximity_factor = (maxlen - adjusted_distance) ** 4 # Further
enhance proximity impact with quartic distance

proximity_factor[proximity_factor < 0] = 0

tiered_adjustment = (prize / (adjusted_distance + 1e-10)) ** 2 #
Classify rewards into categories for tiering
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# Reward volatility assessment component
volatility_factor = np.zeros_like(prize)
for i in range(len(prize)):

historical_rewards = prize[np.where(distance[i] <= maxlen)[0]]
if historical_rewards.size > 1:

volatility_factor[i] = np.std(historical_rewards) /
np.mean(historical_rewards) # Coefficient of variation

# Risk-reward analysis component
variability_factor = np.zeros_like(prize)
for i in range(len(prize)):

historical_rewards = prize[np.where(distance[i] <= maxlen)[0]]
if historical_rewards.size:

variability_factor[i] = np.mean(historical_rewards) -
np.std(historical_rewards) # Basic differentiation

final_heuristic = (reward_hist_factor * reward_decay *
proximity_factor *

tiered_adjustment) / (1 + volatility_factor +
variability_factor + 1e-10)

return final_heuristic

Heuristic 6: OP, by CALM (API, w/o GRPO)

"""
The idea of the algorithm is to select the next node by optimizing a

heuristic that considers the distance to the current node, the
average distance to unvisited nodes, the variance of distances to
the current node from the unvisited nodes, the entropy of distances
to the destination node from each of the unvisited nodes, the
average distance from the destination node to each of the unvisited
nodes, the current node’s distance to the destination node, and the
standard deviation of the overall tour distances. This proposed
algorithm aims to introduce a new term that captures the deviation
of the current node from the average tour length and balances it
with the entropy term to reduce the overall tour length.
Additionally, this method assigns more weight to the standard
deviation of the distances from the destination node to each of the
unvisited nodes, which helps in reducing the variability of
distances and thus leading to more consistent and shorter tour
lengths.

"""

import numpy as np

def select_next_node(current_node: int, destination_node: int,
unvisited_nodes: set, distance_matrix: np.ndarray) -> int:
scores = {}

for node in unvisited_nodes:
all_distances = [distance_matrix[node][i] for i in

unvisited_nodes if i != node]
average_distance = np.mean(all_distances)
standard_deviation = np.std(all_distances)
variance_of_distances = np.var([distance_matrix[current_node][i]

for i in unvisited_nodes if i != node])
entropy_of_distances =

-np.sum(np.log2([distance_matrix[destination_node][i] for i
in unvisited_nodes if i != node]) / len(unvisited_nodes))

average_distance_to_destination =
np.mean([distance_matrix[destination_node][i] for i in
unvisited_nodes if i != node])

score = (
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0.6 * distance_matrix[current_node][node]
- 0.4 * average_distance
+ 0.3 * standard_deviation
- 0.2 * entropy_of_distances
- 0.1 * distance_matrix[destination_node][node]
- 0.08 * variance_of_distances
- 0.05 * average_distance_to_destination
- 0.01 * (np.mean([distance_matrix[current_node][i] for i in

unvisited_nodes]) - average_distance)
- 0.005 * entropy_of_distances
- 0.008 * distance_matrix[current_node][node] *

distance_matrix[node][destination_node]
- 0.006 * standard_deviation *

distance_matrix[node][destination_node]
)
scores[node] = score

next_node = min(scores, key=scores.get)
return next_node

Heuristic 7: TSP, by CALM (local, w/ GRPO)

"""
The idea of the algorithm is to select the next node to visit from the

unvisited nodes, incorporating a novel component of dynamic path
optimization feedback. The new component analyzes previous decision
points in the tour to determine the effectiveness of the routes
taken, adjusting future node selection to favor pathways that have
historically resulted in lower overall traversal costs. This method
not only enhances the algorithm’s ability to learn from its own
experiences but also promotes the selection of routes that align
with optimal connectivity patterns established during the tour.

"""

import numpy as np

def select_next_node(current_node: int, destination_node: int,
unvisited_nodes: set, distance_matrix: np.ndarray) -> int:
threshold = 0.7
c1, c2, c3, c4, c5 = 0.4, 0.3, 0.2, 0.1, 0.1
scores = {}

for node in unvisited_nodes:
all_distances = [distance_matrix[node][i] for i in

unvisited_nodes if i != node]
average_distance_to_unvisited = np.mean(all_distances)
std_dev_distance_to_unvisited = np.std(all_distances)

# New component: consider dynamic path optimization feedback
feedback_paths = [distance_matrix[i][node] for i in

range(len(distance_matrix)) if i not in unvisited_nodes and
distance_matrix[current_node][i] < threshold]

average_feedback_distance = np.mean(feedback_paths) if
feedback_paths else 0

score = (
c1 * distance_matrix[current_node][node]
- c2 * average_distance_to_unvisited
+ c3 * std_dev_distance_to_unvisited
- c4 * distance_matrix[destination_node][node]
+ c5 * average_feedback_distance

)
scores[node] = score
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next_node = min(scores, key=scores.get)
return next_node

Heuristic 8: TSP, by CALM (API, w/o GRPO)

J LIMITATIONS

A current limitation of our method is that the evolution of the LLM during the heuristic discovery
process depends heavily on performance signals derived from heuristics present in the prompt and
response. As a result, trajectories that do not contain explicit heuristics (e.g., the response from
a reflection prompt may contain the thoughts only) in either component provide no reward signal,
limiting the LLM’s ability to learn from such cases.

Another limitation is that we currently evaluate our method, CALM, using a compact LLM on a
single 24GB GPU. This restriction is primarily due to limited computational resources and the high
cost associated with high-accuracy, full-parameter fine-tuning on larger models. While this setup
demonstrates the feasibility of our approach in a resource-constrained environment, further evaluation
on larger-scale models and infrastructure would be valuable for understanding the method’s full
potential and scalability.

In future work, we aim to address these limitations by (1) exploring mechanisms for adapting the
LLM in the absence of explicit performance feedback, enabling more effective use of reinforcement
learning, and (2) extending evaluations to more powerful models and settings. These directions may
allow for better integration with techniques such as reflection (Ye et al., 2024; Dat et al., 2025), which
have shown promise in enhancing LLM-based automated heuristic discovery.

K BROADER IMPACT

The CALM framework stands to greatly accelerate the pace of innovation in algorithm design by
seamlessly integrating prompt engineering and on-the-fly model adaptation. By enabling state-of-
the-art heuristic discovery on a single 24 GB GPU, CALM democratizes access to cutting-edge
Automatic Heuristic Design. This empowers research groups, startups, and educational institutions
with limited compute budgets to explore and deploy high-performance solutions in domains such as
logistics, scheduling, and resource allocation.

L LICENSE

The licenses and URLs of baselines, models, and softwares are summarized in Table 15.
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Table 15: A summary of licenses.

Resources Type License URL

Unsloth Code Apache-2.0 License https://github.com/unslothai/uns
loth

Qwen2.5 Model Apache-2.0 License https://huggingface.co/Qwen/Qwen
2.5-7B-Instruct

LKH3 Code Available for academic research use http://webhotel4.ruc.dk/~keld/re
search/LKH-3/

OR-Tools Code MIT License https://developers.google.com/op
timization/pack/knapsack?hl=zh-cn

POMO Code Available online https://github.com/yd-kwon/POMO/t
ree/master

DeepACO Code MIT License https://github.com/henry-yeh/Dee
pACO

Funsearch Code Apache License https://github.com/google-deepmin
d/funsearch

EoH Code MIT License https://github.com/FeiLiu36/EoH/
tree/main

ReEvo Code MIT License https://github.com/ai4co/reevo
HSEvo Code Available online https://github.com/datphamvn/HSE

vo
MCTS-AHD Code MIT License https://github.com/zz1358m/MCTS-A

HD-master
EvoTune Code MIT License https://github.com/CLAIRE-Labo/Ev

oTune
OpenEvolve Code Apach-2.0 License https://github.com/codelion/open

evolve
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