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Abstract

Recent models in cross-lingual semantic role
labeling (SRL) barely consider the applicabil-
ity of their network selection. They rely on
LSTMs as their encoders, even though LSTMs
do not transfer effectively to distant languages.
We evaluate the effectiveness of different graph
neural networks (GNNSs) enriched with univer-
sal dependency trees, i.e., transformer-based,
graph convolutional network-based, and graph
attention network (GAT)-based models, and
compare them with a BiLSTM-based model.
We investigate which dependency-aware GNNs
transfer best as an alternative encoder to
LSTMs in cross-lingual SRL. We focus our
study on a zero-shot setting by training the
models in English and evaluating the models
in 23 target languages in the Universal Propo-
sition Bank. We consistently show that syn-
tax from universal dependency trees is essen-
tial for cross-lingual SRL models to achieve
better transferability. Dependency-aware self-
attention with relative position representations
(SAN-RPRs) transfer best across languages, es-
pecially in the long-range dependency distance.
Furthermore, our proposed dependency-aware
two-attention relational GATSs perform better
than SAN-RPRs in languages where most argu-
ments lie in the 1 — 2 dependency distance.

1 Introduction

Semantic role labeling (SRL) is a task to assign
semantic roles to words or phrases in a sentence
concerning a specific predicate, as shown in Figure
1. SRL supports many natural language processing
(NLP) tasks, e.g., information extraction (Chris-
tensen et al., 2010; Stanovsky and Dagan, 2016),
abstractive summarization (Khan et al., 2015), and
machine translation (Rapp, 2022). However, SRL
resource availability is still low, hindering the per-
formance of other NLP tasks in diverse languages.
Cross-lingual SRL models try to solve the problem
by training the model in resource-rich languages
and applying the model to resource-poor languages.
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Figure 1: An example of an SRL task (top) and depen-
dency parsing task (bottom) applied to a sentence taken
from UPB. The red color indicates path intersections in
both tasks.

Recent studies in cross-lingual SRL try to
improve the model performance by separating
language-universal and language-specific compo-
nents (Fei et al., 2020; Conia et al., 2021) or mini-
mizing dependence on external tools (Cai and La-
pata, 2020). Nevertheless, these models barely
consider the applicability of their network selec-
tion. They rely on LSTMs as their encoders, even
though a study in cross-lingual dependency parsing
(Ahmad et al., 2019) has stated that LSTMs do not
transfer effectively to distant languages. LSTMs
encode sentences sequentially, making them sensi-
tive to word orders that vary across languages.

In this work, we investigate the effectiveness of
various dependency-aware graph neural networks
(GNNps) to find an alternative encoder for building
cross-lingual SRL models. We encode universal de-
pendency trees in dependency-aware GNNGs, for the
following reasons: (1) Many predicate-argument
paths and argument roles in SRL intersect with de-
pendency paths and dependency relations in depen-
dency parsing (Marcheggiani and Titov, 2017), as
shown in Figure 1. (2) Universal dependency tree
representing a sentence’s grammatical structure in
a language-universal scheme provides a general
representation across languages. (3) Universal de-



pendency trees help cross-lingual models achieve
better transferability (Ahmad et al., 2021a; Ahmad
et al., 2021b; Zhang et al., 2021).

We conduct comprehensive experiments on vari-
ous networks as encoders, including transformer-
based, graph convolutional network (GCN)-
based, graph attention network (GAT)-based, and
BiLSTM-based encoders. We choose to investi-
gate transformer-based models because they have
been proven effective in performing cross-lingually
in dependency parsing (Ahmad et al., 2019) and
event argument role labeling (EARL) (Ahmad et al.,
2021b). Furthermore, we also investigate GCN-
based and GAT-based models because different
NLP tasks, e.g., monolingual SRL (Marcheggiani
and Titov, 2017), aspect-based sentiment analysis
(ABSA) (Wang et al., 2020; Jiang et al., 2021),
and relation prediction (Nathani et al., 2019), have
shown the effectiveness of exploiting the networks
to encode dependency trees in their models.

Following previous work (Fei et al., 2020), we
limit our exploration to argument detection and ar-
gument labeling in the dependency-based SRL. We
conduct experiments in a zero-shot setting to find
the most transferable network across languages.
We train and evaluate the models in 23 languages
provided by Universal Proposition Bank (UPB) v2.
We show that: (1) Universal dependency trees are
essential for cross-lingual SRL models to achieve
better transferability. (2) Transformer-based model
with dependency relation embedding (DRE) in the
node representation and relative position represen-
tation (RPR) in the edge representation, i.e., SAN-
RPRs, outperforms other models, especially as the
dependency distance increases. (3) Two-attention
relational GATs (TAGATSs) with structural absolute
position embedding (SAPE) in the node represen-
tation, and also dependency relation representation
(DR) and RPR in the edge representation, perform
best in languages where most arguments lie in the
1 — 2 dependency distance.

2 Background

2.1 Universal Proposition Bank

Universal Proposition Bank (UPB) is a corpus
containing SRL annotations for diverse languages.
UPB v2 (Jindal et al., 2022) provides SRL an-
notations for 43 treebanks consisting of 23 lan-
guages, shown in Table 1. UPB is annotated semi-
automatically through filtered annotation projec-
tion and bootstrap training (Akbik et al., 2015).

Target Languages in UPB v2

Chinese (ZH) Czech (CS) Dutch (NL)
Finnish (FI) Greek (EL) Polish (PL)
Italian (IT) Korean (KO) Telugu (TE)
Spanish (ES) Romanian (RO) | Indonesian (ID)
French (FR) Hindi (HI) Japanese (JA)
German (DE) Marathi (MR) Russian (RU)
Portuguese (PT) | Tamil (TA) Ukrainian (UK)

Hungarian (HU) | Vietnamese (VI)

Table 1: List of target languages available in UPB v2.

UPB v2 has significantly improved over UPB vl
regarding SRL annotation quality, language scope,
and availability of span-based SRL annotations
(Jindal et al., 2022). We use dependency-based
SRL annotations in UPB v2 that are annotated ac-
cording to UD v2.9 throughout our experiments.

2.2 Universal Dependencies

Universal Dependencies (UD) is a corpus contain-
ing consistent syntactic annotations for diverse lan-
guages, i.e., part-of-speech (POS) tags, morpho-
logical features, and dependency tree annotations.
UD vl (Nivre et al., 2016) and UD v2 (Nivre et al.,
2020) have different annotation schemes' in terms
of word segmentation, POS tags, morphological
features, and syntactic relations. UD v1 and UD
v2 have 407 and 37° universal dependency rela-
tions, respectively. UD v2.9 (Zeman et al., 2021a)
contains dependency tree annotations for 217 tree-
banks of 122 languages.

2.3 Dependency-based Semantic Role
Labeling

Instead of labeling the whole argument span with a
semantic role, dependency-based SRL only labels
the argument head, i.e., the head of the argument
span according to the dependency tree. For ex-
ample, in Figure 1, the phrase “to anyone” is the
“ARG2” argument of the predicate “recommend”.
Based on the dependency tree at the bottom of the
figure, “anyone” is the head of the phrase “to any-
one”. Therefore, dependency-based SRL annotates
the edge that connects “recommend” to “anyone’
with the “ARG2” argument.

s

2.4 Related Work

Recent cross-lingual SRL models encode sentences
sequentially using BiLSTM-based models, even
though LSTMs do not transfer effectively across
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languages. Fei et al. (2020) introduce a parame-
ter generation network to vanilla BiLSTMs that
isolates language-specific parameters from the uni-
versal parameters in BILSTMs. Meanwhile, Cai
and Lapata (2020) exploit BILSTM-based semantic
role labeler and compressor to build a cross-lingual
SRL model and utilize parallel sentences to help the
semantic role compressor achieve generalization.
Finally, Conia et al. (2021) introduce a BiLSTM-
based universal sentence encoder and predicate-
argument encoder, and also language-specific de-
coders to build a universal SRL model.

GNNs have been used to encode dependency
trees in building models for different NLP tasks,
e.g., monolingual SRL, ABSA, EARL, and relation
prediction. In monolingual SRL, Marcheggiani
and Titov (2017) employ syntactic GCNs (SGCNs)
on top of BILSTMs to incorporate dependency
trees as graphs. In ABSA, Wang et al. (2020) and
Jiang et al. (2021) apply relational GATs (R-GATs)
and attention-based relational GCNs (ARGCNs),
respectively, over modified dependency trees to
establish direct connections between aspects and
their corresponding words. In EARL, Ahmad et al.
(2021b) modify vanilla Transformers to encode syn-
tactic structures from dependency trees, i.e., graph
attention transformer encoders (GATEs). Finally,
Nathani et al. (2019) propose KBGATS as a modi-
fication to original GATs (Velickovi¢ et al., 2018)
to encode nodes and edge relations for relation pre-
diction in knowledge graphs.

3 Model

3.1 Architecture

We apply an encoder-decoder architecture to com-
pare transformer-based, GCN-based, GAT-based,
and BiLSTM-based cross-lingual SRL models, con-
sisting of an input layer, an encoder, and a decoder.

3.1.1 Input Layer

To produce the final word representation, h;, for
each word in a sentence, we optionally concatenate:
(1) Predicate indicator embedding (PIE), p;, rep-
resents whether a word is a predicate or not (Fei
et al., 2020). (2) POS tag embedding (POSE), o;,
the POS tag of each word. (3) Absolute position
embedding (APE), a;, the position of each word
in the sentence (Vaswani et al., 2017). (4) Struc-
tural absolute position embedding (SAPE), s;, the
dependency depth of each word relative to the root
of the dependency tree (Wang et al., 2019b). (5)
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Figure 2: The illustration of predicate indicator, POS
tag, absolute position, structural absolute position, and
dependency relation of each word in a sentence.

Dependency relation embedding (DRE), d;, the de-
pendency relation of each word as a dependent. (6)
Contextualized multilingual word embedding, c;,
obtained from the concatenation of the last four
hidden layers (Conia et al., 2021) in multilingual
BERT (mBERT) (Devlin et al., 2019). Figure 2
shows the example to obtain each embedding. As
shown in Equation 1, we apply a dropout to the con-
catenation result, and then a linear transformation
following GATEs (Ahmad et al., 2021b).

h; = W (dropout([p;, 0;, ai, si,di, ¢;])) + b (1)

3.1.2 Encoder

We experiment with transformer-based, GCN-
based, GAT-based, and BiLSTM-based encoders.
For GCN-based and GAT-based encoders, we ap-
ply an activation function, dropout, and residual
connection in consecutive order after each layer.
As proposed by GATs (Velickovi¢ et al., 2018), we
can either apply or drop the activation function at
the final layer. For the BiLSTM-based encoder, we
only apply the consecutive operations in the last
layer. Through our comprehensive experiments,
we find the best combination of node and edge
representation in each encoder, as shown in Table
2.

Transformer-Based Encoders In transformer-
based encoders, we experiment with different
modifications to vanilla Transformers, i.e., self-
attention with APE in the node representation
(Trans) (Vaswani et al., 2017), GATEs (Ahmad
et al., 2021b), self-attention with RPR in the
edge representation (SAN-RPRs) (Shaw et al.,
2018), self-attention with SAPE in the node rep-
resentation (SAN-SAPRs) (Wang et al., 2019b),



Model Node Representation Edge Representation
APE SAPE DRE RPR DR SRPR

GATEs X v v X X X
Trans v X v X X X
SAN-RPRs X X v v X X
SAN-SAPRs X v X X X X
SAN-SRPRs X X X X X v
Trans-SRPRs | v X v X X v
SAPR-RPRs X v X v X X
Trans-SRPR-

DRs v X v X B v
SAPR-RPR-

DRs X v X X B X
SGCNs X X v X A X
R-GCNs X v X X A X
ARGCNs X X v v A X
GATs X v v X X X
S-HGNs X X X X A X
TAGATSs X v X v A X
KBGATs X X v v B X
BiLSTMs X v v X X X

Table 2: Best combination of embeddings in node and
representations in edge for each model in transformer-
based, GCN-based, and GAT-based models.

and self-attention with structural relative posi-
tion representation (SRPR) in the edge represen-
tation (SAN-SRPRs) (Wang et al., 2019b). We
also combine the node representation with the
edge representation, i.e., SAN-SAPRs with SAN-
RPRs (SAPR-RPRSs) and Transformers with SAN-
SRPRs (Trans-SRPRs). Following Ahmad et al.
(2019), we take the absolute value when calculating
RPR and SRPR to make the models more robust
to word order differences. Furthermore, we ex-
periment with incorporating dependency relation
representation (DR) into the edge representation.
We explain how to construct DR in Section 3.2.

GCN-Based Encoders In GCN-based encoders,
we experiment with different types of GCNs, i.e.,
syntactic GCNs (SGCNs) (Marcheggiani and Titov,
2017), relational GCNs (RGCNs) (Schlichtkrull
et al., 2018), and attention-based relational GCNs
(ARGCNs) (Jiang et al., 2021). Since SGCNs and
RGCNs encode the edge representation by differ-
entiating their weight matrices based on the edge
relations, they can only incorporate A-DR (refer to
Section 3.2).

GAT-Based Encoders In GAT-based encoders,
we experiment with different types of GATs, i.e.,
GATs (Velickovi¢ et al., 2018), simple hetero-
geneous GNNs (SHGNs) (Lv et al., 2021), rela-
tional GATs (RGATs) (Wang et al., 2020), and
knowledge-based GATs (KBGATS) (Nathani et al.,
2019). RGATs calculate the second attention
weight, 5, using position-wise feed-forward net-
work (FFN) (Vaswani et al., 2017). However,
we find that the original dot-product equation

used to calculate the attention weight proposed by
Velickovié et al. (2018) works better for this task.
Therefore, we modify RGATSs into TAGATs. To
calculate the second attention weight, 3, TAGATSs
slightly modify Equation 3 in the original GAT pa-
per (Velickovi¢ et al., 2018) to incorporate the DR,
75, as shown in Equation 2, where ; is neighbor
nodes of node ¢, W, is a weight matrix to linearly
transform the DR, r;;, and LR is a Leaky ReLU.
We provide a detailed explanation of TAGATS in
Appendix C.

Bij = softmax;en; (LR(aT[Wrrij])) 2)

3.1.3 Decoder

We apply a linear scorer as the decoder. For each
word, we concatenate sentence representation, h,
predicate node representation, h,, and node rep-
resentation, h;. hg is obtained by applying max-
pooling over node representations in the sentence
(Ahmad et al., 2021b). Meanwhile, h), is taken
from the node representation of the sentence’s pred-
icate. After that, following GATEs (Ahmad et al.,
2021b), we apply two feed-forward neural net-
works (FFNNs), each followed by a ReLU (RL), to
produce the final node representation, /¢, with the
dimension equal to the number of arguments, c, as
shown in Equation 3.

hf = RL(WQ(RL(Wl [hs, hp, hi]-l-bl))—i-bg) 3)

Finally, we apply a softmax function to produce
the probability for each argument, z, as shown in
Equation 4. We train the model to minimize the
cross-entropy loss.

P(z) = softmax.(hy), z € [1,] 4)

3.2 Graph Construction

First, we explain how to construct dependency re-
lation representation (DR) to be encoded in the
edges of the graphs. DR encodes the dependency
direction, i.e., self-connection, head-to-dependent,
and dependent-to-head, and the dependency rela-
tion between a pair of nodes. There are two ways
of generating DR to be encoded in the edge repre-
sentation of the graphs, i.e., A-DR and B-DR. In
A-DR, following Marcheggiani and Titov (2017),
we assign two completely different representations
for edges with the same dependency relation but
have different dependency directions (Appendix
B). In B-DR, we first generate the representations



separately for each edge’s dependency relation and
direction with d, and d; dimensions, respectively.
Then, we concatenate both representations to pro-
duce the DR with (d, + d4) dimension.

In transformer-based models, we encode a sen-
tence as a fully-connected graph. Shaw et al.
(2018) modify the vanilla Transformers to incor-
porate RPR among the edges. We use the same
approach to encode the DR by adding the DR to
the RPR. Edges in the fully-connected graph that
do not have the corresponding edges in the depen-
dency tree do not have dependency relations. There-
fore, we label these edges as “norel” (short for no
relation) when constructing DRs.

In GCN-based and GAT-based models, we en-
code a sentence by forming a dependency graph
based on its dependency tree. We follow the
method proposed by Marcheggiani and Titov
(2017) (Appendix B). They convert a dependency
tree to a graph by adding edges that flow in the
opposite direction of the original dependency direc-
tion and edges that flow from nodes to themselves.
Furthermore, we encode either A-DR or B-DR in
the edge representation.

4 Experiments

4.1 Corpus

We conduct experiments using corpus from UPB
v2* (Jindal et al., 2022). UPB v2 contains SRL
annotations based on dependency tree annotations
in UD v2.9 (Zeman et al., 2021a). Some treebanks
in UPB v2 have enhanced dependency tree annota-
tions that cause new tokens (i.e., enhanced tokens)
to be added to the sentences. The enhanced to-
kens cause some SRL annotations in UPB v2 to
be shifted when merged with UD v2.9, resulting
in the shifted predicate or semantic role annota-
tions. Therefore, we run some preprocessing steps
to fix the shifted annotation problem (Appendix
A.2). When running our experiments, we merge all
treebanks that belong to the same language.

4.2 Settings

We focus on conducting experiments in a zero-shot
setting. We train the model in English and evalu-
ate the model in 23 target languages provided by
UPB v2, as shown in Table 1. In each experiment,
we choose the final model from the epoch whose
model performs best in the English validation set.
However, we take the average F1 scores from the

“https://github.com/UniversalPropositions

validation sets of 23 languages when choosing the
best hyperparameter setting. We run exhaustive
experiments to find the best hyperparameter setting
to obtain the most transferable cross-lingual SRL
model (Appendix D.2).

We use predicted dependency trees and POS tags
for model evaluation (Appendix D.1). To obtain
the predicted dependency trees and POS tags, we
use pre-trained models trained on UD 2.8% (Zeman
et al., 2021b) provided by Stanza (Qi et al., 2020).

We train the models for 100 epochs with 32
batch size. We use SGD optimizer (Kiefer and
Wolfowitz, 1952) with a 0.1 learning rate. Follow-
ing GATEs (Ahmad et al., 2021b), we apply early
stopping if there is no improvement after 20 con-
secutive epochs. If the validation performance de-
creases, we decrease the learning rate by 10%. The
training process will be stopped if the learning rate
falls below 0.00001 after the decrement. We freeze
mBERT as our contextualized word embedding to
observe each model’s effectiveness solely. Our pre-
liminary experiments show that taking the average
of subword embeddings from mBERT works best
for our task. Therefore, we are going to apply this
setting to our experiments. We report the average
F1 scores from five runs with the standard deviation
for model comparison.

4.3 Comparison Among Transformer-Based
Models

Table 3 compares transformer-based models with
the best hyperparameter setting. Trans-SRPR-DRs
and SAPR-RPR-DRs perform worst among the
transformer-based models. To obtain DR in the
fully-connected graph, we label the edges that do
not reflect the edges in the corresponding depen-
dency tree as “norel”. However, there are a lot
more edges labeled as “norel” than edges that are
labeled as the actual dependency relations. The im-
balanced proportion of dependency relations might
cause the model to overfit the limited actual depen-
dency relations.

Furthermore, the table shows the superiority of
SAN-RPRs over Trans, indicating that encoding
the position of each word relative to another word
in the edge representation produces a more gen-
eral model than encoding the absolute position of

We train the models from scratch for
Japanese-GSDLUW and French-Rhapsodie tree-
banks because the pre-trained models are unavailable, and for
English-EWT treebank because the SRL annotations are
annotated based on an older version of UD, i.e., UD v2.5.



Model PR EN AVG

GATEs 122M | 78.96+031 | 52.57+0.23
Trans 122M | 76.16+051 | 52.07+0.21
SAN-RPRs 122M | 78.26+040 | 52.73+0.40
SAN-SAPRs 12.2M | 75.93+047 | 51.98+0.10
SAN-SRPRs 12.1M | 78.27+050 | 51.51+027
Trans-SRPRs 12.2M | 79.03+032 | 52.21+030
SAPR-RPRs 122M | 78.11+042 | 52.64+0.38
Trans-SRPR-DRs | 12.2M | 79.85+021 | 50.60+0.14
SAPR-RPR-DRs 12.2M | 79.83+0.19 | 50.69+021
SGCNs 5.99M | 79.94+027 | 52.52+0.38
R-GCNs 3.23M | 78.28+029 | 51.48+035
ARGCNs 3.52M | 77.84+044 | 52.13+0.32
GATs 5.09M | 79.81+0.19 | 52.66+0.14
S-HGNs 5.06M | 78.84+035 | 52.61+026
TAGATSs 6.31M | 79.07+0.19 | 52.78+0.14
KBGATSs 7.73M | 79.53+031 | 52.31+032

Table 3: F1 scores (%) of transformer-based, GCN-
based, GAT-based models evaluated on UPB v2 test set
with predicted parsers. AVG indicates the average F1
scores of a specific model evaluated in target languages.
The bold score and underlined score indicate the highest
and second-highest scores in each group.

each word in the sentence in the node representa-
tion. This finding aligns with the results in Ahmad
et al. (2019). On the other hand, SAN-SAPRs
outperform SAN-SRPRs, indicating that encoding
the dependency distance of each word relative to
the root of the dependency tree in the node rep-
resentation produces a more general model than
encoding each word’s dependency distance relative
to another word in the edge representation. We
further combine the information regarding the po-
sition of each word according to the sentence and
the sentence’s dependency tree, i.e., SAPR-RPRs
and Trans-SRPRs. Consistent with the previous
results, SAPR-RPRs, consisting of features from
SAN-SAPRs and SAN-RPRs, outperform Trans-
SRPRs, consisting of features from Trans and SAN-
SRPRs.

According to the average F1 score, SAN-RPRs
and SAPR-RPRs are strong models with 52.73%
and 52.64% average F1 scores, respectively, out-
performing GATEs (Ahmad et al., 2021b), i.e., the
model proposed for cross-lingual EARL. Further-
more, SAN-RPRs which employ DRE in the node
representation, perform better than SAPR-RPRs.
Nevertheless, SAPR-RPRs perform best among
transformer-based models in more languages than
SAN-RPRs (Appendix E.1.1). We take both mod-
els for comparison with other best models in Sec-
tion 4.6.

4.4 Comparison Among GCN-Based Models

Table 3 compares GCN-based models with the best
hyperparameter setting. SGCNs significantly out-
perform the other GCN-based models, i.e., RGCNs
and ARGCNs, with a 52.52% average F1 score.
RGCNs perform the worst among GCN-based mod-
els because RGCNs are the only network not ap-
plying the attention mechanism. ARGCNs apply a
self-attention mechanism, while SGCNs realize the
attention mechanism in the form of a gating mecha-
nism. Self-attention or gating mechanism measures
how much attention each node should pay to other
nodes when the network updates each node’s repre-
sentation. Those mechanisms help emphasize the
edges in the dependency graph that intersect with
the predicate-argument paths.

4.5 Comparison Among GAT-Based Models

Table 3 compares GAT-based models with the best
hyperparameter setting. TAGATSs perform better
than SHGNSs indicating that the GAT-based model
learns better when we separate the attention weight
calculation based on node representations and edge
representations. Moreover, GATs also perform bet-
ter than SHGNSs indicating that encoding the SAPE
and DRE in the node representation is a better
way to encode dependency features than combin-
ing node representations with edge representations
when calculating the attention weight. According
to the average F1 score, TAGATSs and GATs are
strong models with 52.78% and 52.66% average
F1 scores, respectively. Therefore, we compare
both models with other best models in Section 4.6.
On the other hand, according to the average F1
score, KBGAT's perform worst among GAT-based
models. The significant difference between KB-
GATs and the others is that KBGAT's update each
node representation with (1) neighbor node repre-
sentations and (2) surrounding edges’ representa-
tions that contain information about DR and RPR.
Meanwhile, the other models update each node
representation only with (1). We conjecture that
the approach of KBGATSs might overpopulate each
node in every update with information too specific
to a particular language the network learns from.

4.6 Comparison Among Best Models

We compare the best models from each group,
i.e., SAN-RPRs, SAPR-RPRs, SGCNs, GATs, and
TAGATs, with the BILSTM-based model, i.e., BiL-
STMs, in Table 4. We calculate each model’s supe-



d > 3 | SAN- SAPR- SGCNs GATs TAGATSs BiLSTMs
RPRs RPRs

EN 2.68 78.26+040  78.11+042 | 79.94+027 | 79.81x019  79.07+0.19 | 76.86+0.34
AVG | - 52.73+040 52.64+038 | 52.52+038 | 52.66+014 52.78+0.14 | 51.85+0.09
TA 17.18 37.96+175  39.57+118 | 34.32+112 | 35.08+058 35.68+128 | 34.19+122
HI 8.46 47.51+062 45.04+035 | 48.24+061 | 48.25+033 47.65+033 | 46.63+0.38
ZH 8.41 50.37+117  50.96+088 | 45.77+067 | 46.12+039 46.80+064 | 47.56+089
JA 8.11 37.69+099 34.78+129 | 37.43+028 | 37.99+052 39.30+0.73 | 37.40+0.61
VI 7.89 28.69+079  29.10+045 | 27.95+056 | 28.06+059 28.31+oss | 28.18+o0ss
KO 6.88 42.61+184 45.24+123 | 42.92+064 | 43.22+056 44.57+024 | 41.77+161
ID 5.52 58.78+1.09 59.97+0s3 | 58.54+082 | 58.33+0690 59.11+087 | 56.11+084
HU 5.38 49.76+035  49.08+034 | 50.76+041 | 51.10+051  50.90+037 | 50.64=+0.39
RO 5.32 54231067 54.46+052 | 53.57+047 | 54.12+049  53.60+045 | 53.26+034
FR 4.55 62.19+041  62.11+047 | 60.93+038 | 61.64+044 61.13+022 | 61.22+027
MR 4.08 41.06+289 40.36+220 | 40.97+340 | 38.06+0.13  39.26+120 | 37.18+228
UK 4.06 58.92+026 59.36+072 | 59.66+076 | 59.49+056 59.72+0.31 | 58.96+0.07
PT 3.75 66.05+021  66.49+033 | 65.62+043 | 65.99+032  65.61+0.15 | 64.40+033
1T 3.73 58.11+033 57.80+039 | 57.43+042 | 58.00+042 57.34+034 | 58.02+0.27
ES 3.67 63.714+033  63.62+025 | 63.87+061 | 64.29+036 63.91+027 | 62.48+0.29
CS 3.66 56.87+027  55.80+051 | 57.95+052 | 58.02+021 57.62+028 | 56.59+036
EL 3.59 60.594023  60.23+040 | 60.56+069 | 60.74+048  60.86+0.34 | 59.76+045
FI 3.35 55.58+042 55.29+054 | 54.87+040 | 54.62+032 54.88+020 | 54.62+0.20
RU 3.07 60.184+044  61.13+0.50 | 59.98+034 | 60.14+0.16  60.30+022 | 59.73+025
NL 3.05 62.84+037 62.22+058 | 62.94+021 | 63.53+064 62.97+037 | 62.47+036
TE 2.49 44.66+200 43.88+157 | 46.08+1.07 | 46.96+149 46.96+182 | 45.95+051
DE 2.46 56.86+032 56.98+1.13 | 58.61+030 | 58.52+026 58.52+0.18 | 57.72+023
PL 1.71 57.67+036 57.28+046 | 59.08+031 | 59.00+044 58.92+052 | 57.73+023
SC - 13 18 9 16 15 1
PR - 12.2M 12.2M 5.99M 5.09M 6.31M 9.03M

Table 4: F1 scores (%) of best models evaluated on UPB v2 test set with predicted parsers. The bold score and
underlined score indicate the highest and second-highest scores. AVG indicates the average F1 scores of a specific
model evaluated in target languages. PR and SC are the number of parameters and the superiority score of each
model. d > 3 column indicates the proportion of gold arguments (%) that fall in > 3 dependency distance. We use
predicted dependency trees to measure the dependency distance.

riority score (SC) based on the model performance
in target languages. We allocate 2 points if the
model achieves the highest F1 score or 1 point if
the model achieves the second-highest F1 score for
a specific language.

TAGATSs have the best average F1 score among
the models with 52.78% average F1 score. How-
ever, SAPR-RPRs and GATs perform best among
the models in slightly more languages, indicated
by the higher SCs. Despite having the second-best
average F1 score of 52.73%, SAN-RPRs have a
lower SC than SAPR-RPRs, GATs, and TAGATS.
Overall, transformer-based and GAT-based mod-
els outperform SGCNs, indicating that the self-
attention mechanism is better at emphasizing the
essential dependency paths than the gating mecha-
nism. Finally, BILSTMs perform the worst as the
only network that encodes sentences sequentially.

According to hyperparameter search, stacking
two layers of GAT-based encoders performs best.
However, this approach has a drawback, as the in-
formation can only travel as far as two hops from
the origin node. On the other hand, stacking three

layers of transformer-based encoders does not af-
fect the traveling distance of the information. In
transformer-based models, we construct a fully-
connected graph of a sentence allowing the infor-
mation to travel from one node to every other node
despite how many layers are stacked together.

The second column in Table 4 shows the per-
centage of arguments in > 3 dependency distance,
i.e., the number of hops from the predicate node to
a specific node according to the sentence’s depen-
dency tree. Some languages like TA, HI, ZH, JA,
and VI have a relatively high number of arguments
(> 7%) in > 3 dependency distance. Transformer-
based models perform significantly better in TA
(> 3%) and ZH (> 4%), slightly better in VI
(< 1%), and slightly worse in HI (< 1%) and
JA (< 2%). This evidence proves that transformer-
based models are generally better in long-range
dependency distance than GAT-based models. On
the other hand, some languages have a relatively
low number of arguments (< 3%) in > 3 depen-
dency distance, i.e., EN, TE, DE, and PL. For these
languages, where most of the arguments lie in the
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Figure 3: Average F1 scores (%) of best models grouped
by the dependency distance evaluated on UPB v2 test
set with predicted parsers.

Model SAN-RPRs | SAPR-RPRs
base 52.73+0.40 52.64+0.38
w/o POSE | 52.73+0.32 51.91+046
w/o PIE 51.54+036 51.14+043
w/o SAPE | - 51.65+0.28
w/o DRE 51.65+0.28 -

Table 5: Average F1 scores (%) of SAN-RPRs and
SAPR-RPRs with certain embedding removed from the
node representation evaluated on UPB v2 test set with
predicted parsers.

1 — 2 dependency distance, GAT-based models per-
form better than transformer-based models.
Figure 3 shows the average F1 scores of each
model grouped by the dependency distance. Al-
though BiLSTMs perform worst among the mod-
els, BILSTMs are better in long-range dependency
distance than GCN-based and GAT-based mod-
els. The figure also shows the superiority of
transformer-based models as the dependency dis-
tance increases, even when compared to BiLSTMs.

4.7 Ablation Study

We conduct ablation studies for the best
transformer-based models, i.e., SAN-RPRs and
SAPR-RPRs, as shown in Table 5. We experi-
ment with removing DRE, POSE, or PIE from the
node representation in SAN-RPRs. Removing ei-
ther DRE or PIE from the node representation re-
duces the performance of SAN-RPRs. However,
SAN-RPRs without POSE perform better in most
languages (Appendix E.1.2).

Furthermore, we also experiment with removing
SAPE, POSE, or PIE from the node representation
in SAPR-RPRs. Removing SAPE, POSE, or PIE
from the node representation reduces the perfor-
mance of SAPR-RPRs. Unlike SAN-RPRs, SAPR-
RPRs do not have DRE in their node representation.
We conjecture that the combination of POSE and

SAPE in SAPR-RPRs is necessary to replace the
role of DRE.

In Table 4, according to the SC, we can see
that SAPR-RPRs perform best in more languages
than SAN-RPRs, even though the average F1 score
of SAN-RPRs is better than SAPR-RPRs. How-
ever, as discussed, SAN-RPRs without POSE per-
form better in most languages than SAN-RPRs
with POSE, which we use for comparison in Table
4. Therefore, we re-compare SAN-RPRs without
POSE with the other best models in Table 4. Af-
ter removing POSE from SAN-RPRs, we find that
the model performs best in more languages than
SAPR-RPRs (Appendix E.2.1).

5 Conclusions and Future Work

Through comprehensive experiments, we consis-
tently show that incorporating syntax from depen-
dency trees can improve the transferability of cross-
lingual SRL models across languages. Overall, we
show that the transformer-based model, i.e., SAN-
RPRs that encode DRE without POSE in the node
representation and RPR in the edge representation,
stacked in three layers, performs the best among
all models, especially as the dependency distance
increases. However, TAGATS that encode SAPE
in the node representation, and also DR and RPR
in the edge representation, stacked in two layers,
perform better than SAN-RPRs in languages where
most of the arguments lie in the 1 — 2 dependency
distance.

In the future, we can extend our model to incor-
porate language-specific components and modify
the objective function to maximize the learning
of universal features without ignoring the specific
features that appear in each language. This can
be useful if we want to extend the model training
to a few-shot setting where we include a certain
proportion of target sentences in the training set.

Limitations

The limitation of this work is that we focus on
argument detection and argument labeling in cross-
lingual SRL, assuming that the sentences’ gold
predicates are easy to obtain. Furthermore, we
focus on conducting experiments in a zero-shot set-
ting. The availability of target sentences in the train-
ing set might affect the models’ behavior, which
should be investigated further.
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raz Gerardi, Kim Gerdes, Filip Ginter, Gustavo
Godoy, Takes Goenaga, Koldo Gojenola, Memduh
Gokirmak, Yoav Goldberg, Xavier Gémez Guino-
vart, Berta Gonzdlez Saavedra, Bernadeta Griciute,
Matias Grioni, Loic Grobol, Normunds Griizitis,
Bruno Guillaume, Céline Guillot-Barbance, Tunga
Giingor, Nizar Habash, Hinrik Hafsteinsson, Jan Ha-
ji¢, Jan Haji¢ jr., Mika Hiamaldinen, Linh Ha MY,
Na-Rae Han, Muhammad Yudistira Hanifmuti, Sam
Hardwick, Kim Harris, Dag Haug, Johannes Hei-
necke, Oliver Hellwig, Felix Hennig, Barbora Hladk4,
Jaroslava Hlavacova, Florinel Hociung, Petter Hohle,
Eva Huber, Jena Hwang, Takumi Ikeda, Anton Karl
Ingason, Radu Ion, Elena Irimia, Ol4jidé Ishola,
Kaoru Ito, Siratun Jannat, Tomas Jelinek, Apoorva
Jha, Anders Johannsen, Hildur J6nsdoéttir, Fredrik
Jgrgensen, Markus Juutinen, Sarveswaran K, Hiiner
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Kagikara, Andre Kaasen, Nadezhda Kabaeva, Syl-
vain Kahane, Hiroshi Kanayama, Jenna Kanerva,
Neslihan Kara, Boris Katz, Tolga Kayadelen, Jes-
sica Kenney, Viclava Kettnerova, Jesse Kirchner,
Elena Klementieva, Elena Klyachko, Arne K&hn,
Abdullatif Koksal, Kamil Kopacewicz, Timo Korki-
akangas, Mehmet Kose, Natalia Kotsyba, Jolanta
Kovalevskaité, Simon Krek, Parameswari Krishna-
murthy, Sandra Kiibler, Oguzhan Kuyrukg¢u, Ash
Kuzgun, Sookyoung Kwak, Veronika Laippala,
Lucia Lam, Lorenzo Lambertino, Tatiana Lando,
Septina Dian Larasati, Alexei Lavrentiev, John Lee,
Phidng Lé Hong, Alessandro Lenci, Saran Lertpra-
dit, Herman Leung, Maria Levina, Cheuk Ying Li,
Josie Li, Keying Li, Yuan Li, KyungTae Lim, Bruna
Lima Padovani, Krister Lindén, Nikola Ljubesié,
Olga Loginova, Stefano Lusito, Andry Luthfi, Mikko
Luukko, Olga Lyashevskaya, Teresa Lynn, Vivien
Macketanz, Menel Mahamdi, Jean Maillard, Aibek
Makazhanov, Michael Mandl, Christopher Manning,
Ruli Manurung, Biisra Marsan, Caitidlina Mérén-
duc, David Marecek, Katrin Marheinecke, Héctor
Martinez Alonso, Lorena Martin-Rodriguez, An-
dré Martins, Jan Masek, Hiroshi Matsuda, Yuji
Matsumoto, Alessandro Mazzei, Ryan McDonald,
Sarah McGuinness, Gustavo Mendonga, Tatiana
Merzhevich, Niko Miekka, Karina Mischenkova,
Margarita Misirpashayeva, Anna Missild, Citdlin
Mititelu, Maria Mitrofan, Yusuke Miyao, AmirHos-
sein Mojiri Foroushani, Judit Molndr, Amirsaeid
Moloodi, Simonetta Montemagni, Amir More, Laura
Moreno Romero, Giovanni Moretti, Keiko Sophie
Mori, Shinsuke Mori, Tomohiko Morioka, Shigeki
Moro, Bjartur Mortensen, Bohdan Moskalevskyi,
Kadri Muischnek, Robert Munro, Yugo Murawaki,
Kaili Miitirisep, Pinkey Nainwani, Mariam Nakhlé,
Juan Ignacio Navarro Horfiiacek, Anna Nedoluzhko,
Gunta Nespore-Bérzkalne, Manuela Nevaci, Li6ng
Nguyén Thi, Huyén Nguyén Thi Minh, Yoshihiro
Nikaido, Vitaly Nikolaev, Rattima Nitisaroj, Alireza
Nourian, Hanna Nurmi, Stina Ojala, Atul Kr. Ojha,
Adédayo Oluokun, Mai Omura, Emeka Onwueg-
buzia, Petya Osenova, Robert Ostling, Lilja @vre-
lid, Saziye Betiil Ozates, Merve Ozcelik, Arzu-
can Ozgiir, Balkiz Oztiirk Basaran, Hyunji Hay-
ley Park, Niko Partanen, Elena Pascual, Marco
Passarotti, Agnieszka Patejuk, Guilherme Paulino-
Passos, Angelika Peljak-Lapinska, Siyao Peng,
Cenel-Augusto Perez, Natalia Perkova, Guy Per-
rier, Slav Petrov, Daria Petrova, Jason Phelan, Jussi
Piitulainen, Tommi A Pirinen, Emily Pitler, Bar-
bara Plank, Thierry Poibeau, Larisa Ponomareva,
Martin Popel, Lauma Pretkalnina, Sophie Prévost,
Prokopis Prokopidis, Adam Przepiérkowski, Ti-
ina Puolakainen, Sampo Pyysalo, Peng Qi, An-
driela Ridbis, Alexandre Rademaker, Mizanur Ra-
homan, Taraka Rama, Loganathan Ramasamy, Car-
los Ramisch, Fam Rashel, Mohammad Sadegh Ra-
sooli, Vinit Ravishankar, Livy Real, Petru Rebeja,
Siva Reddy, Mathilde Regnault, Georg Rehm, Ivan
Riabov, Michael RieBler, Erika Rimkuté, Larissa Ri-
naldi, Laura Rituma, Putri Rizqiyah, Luisa Rocha,
Eirikur Rognvaldsson, Mykhailo Romanenko, Rudolf



Rosa, Valentin Rosca, Davide Rovati, Olga Rud-
ina, Jack Rueter, Kristjan Rinarsson, Shoval Sadde,
Pegah Safari, Benoit Sagot, Aleksi Sahala, Shadi
Saleh, Alessio Salomoni, Tanja Samardzi¢, Stephanie
Samson, Manuela Sanguinetti, Ezgi Santyar, Dage
Sérg, Baiba Saulite, Yanin Sawanakunanon, Shefali
Saxena, Kevin Scannell, Salvatore Scarlata, Nathan
Schneider, Sebastian Schuster, Lane Schwartz,
Djamé Seddah, Wolfgang Seeker, Mojgan Seraji,
Syeda Shahzadi, Mo Shen, Atsuko Shimada, Hi-
royuki Shirasu, Yana Shishkina, Muh Shohibussirri,
Dmitry Sichinava, Janine Siewert, Einar Freyr Sig-
urd’sson, Aline Silveira, Natalia Silveira, Maria Simi,
Radu Simionescu, Katalin Simk6, Mdria Simkova,
Kiril Simov, Maria Skachedubova, Aaron Smith, Is-
abela Soares-Bastos, Shafi Sourov, Carolyn Spadine,
Rachele Sprugnoli, Steinhér Steingrimsson, Antonio
Stella, Milan Straka, Emmett Strickland, Jana Str-
nadovd, Alane Suhr, Yogi Lesmana Sulestio, Umut
Sulubacak, Shingo Suzuki, Zsolt Szanté, Chihiro
Taguchi, Dima Taji, Yuta Takahashi, Fabio Tam-
burini, Mary Ann C. Tan, Takaaki Tanaka, Dipta
Tanaya, Samson Tella, Isabelle Tellier, Marinella
Testori, Guillaume Thomas, Liisi Torga, Marsida
Toska, Trond Trosterud, Anna Trukhina, Reut Tsar-
faty, Utku Tiirk, Francis Tyers, Sumire Uematsu, Ro-
man Untilov, Zdenka UreSova, Larraitz Uria, Hans
Uszkoreit, Andrius Utka, Sowmya Vajjala, Rob
van der Goot, Martine Vanhove, Daniel van Niekerk,
Gertjan van Noord, Viktor Varga, Eric Villemonte
de la Clergerie, Veronika Vincze, Natalia Vlasova,
Aya Wakasa, Joel C. Wallenberg, Lars Wallin, Abi-
gail Walsh, Jing Xian Wang, Jonathan North Wash-
ington, Maximilan Wendt, Paul Widmer, Sri Hartati
Wijono, Seyi Williams, Mats Wirén, Christian Wit-
tern, Tsegay Woldemariam, Tak-sum Wong, Alina
Wréblewska, Mary Yako, Kayo Yamashita, Naoki
Yamazaki, Chunxiao Yan, Koichi Yasuoka, Marat M.
Yavrumyan, Arife Betiil Yenice, Olcay Taner Yildiz,
Zhuoran Yu, Arlisa Yuliawati, Zdenék Zabokrtsk}’/,
Shorouq Zahra, Amir Zeldes, He Zhou, Hanzhi Zhu,
Anna Zhuravleva, and Rayan Ziane. 2021a. Univer-
sal dependencies 2.9. LINDAT/CLARIAH-CZ dig-
ital library at the Institute of Formal and Applied
Linguistics (UFAL), Faculty of Mathematics and
Physics, Charles University.

Daniel Zeman, Joakim Nivre, Mitchell Abrams, Elia

Ackermann, Noémi Aepli, Hamid Aghaei, Zeljko
Agié, Amir Ahmadi, Lars Ahrenberg, Chika Kennedy
Ajede, Gabrielé Aleksandraviciiité, Ika Alfina, Lene
Antonsen, Katya Aplonova, Angelina Aquino, Car-
olina Aragon, Maria Jesus Aranzabe, Bilge Nas
Arican, Hérunn Arnardétti, Gashaw Arutie, Jes-
sica Naraiswari Arwidarasti, Masayuki Asahara,
Deniz Baran Aslan, Luma Ateyah, Furkan Atmaca,
Mohammed Attia, Aitziber Atutxa, Liesbeth Au-
gustinus, Elena Badmaeva, Keerthana Balasubra-
mani, Miguel Ballesteros, Esha Banerjee, Sebastian
Bank, Verginica Barbu Mititelu, Starkadur Barkar-
son, Victoria Basmov, Colin Batchelor, John Bauer,
Seyyit Talha Bedir, Kepa Bengoetxea, Gozde Berk,
Yevgeni Berzak, Irshad Ahmad Bhat, Riyaz Ah-
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mad Bhat, Erica Biagetti, Eckhard Bick, Agné
Bielinskiené, Kristin Bjarnadéttir, Rogier Blok-
land, Victoria Bobicev, Loic Boizou, Emanuel
Borges Volker, Carl Borstell, Cristina Bosco, Gosse
Bouma, Sam Bowman, Adriane Boyd, Anouck Brag-
gaar, Kristina Brokaité, Aljoscha Burchardt, Marie
Candito, Bernard Caron, Gauthier Caron, Lauren
Cassidy, Tatiana Cavalcanti, Giilsen Cebiroglu Ery-
igit, Flavio Massimiliano Cecchini, Giuseppe G. A.
Celano, Slavomir ééplé, Neslihan Cesur, Savas Cetin,
Ozlem Cetinoglu, Fabricio Chalub, Shweta Chauhan,
Ethan Chi, Taishi Chika, Yongseok Cho, Jinho
Choi, Jayeol Chun, Alessandra T. Cignarella, Silvie
Cinkov4, Aurélie Collomb, Cagr1 Coltekin, Miriam
Connor, Marine Courtin, Mihaela Cristescu, Phile-
mon. Daniel, Elizabeth Davidson, Marie-Catherine
de Marneffe, Valeria de Paiva, Mehmet Oguz De-
rin, Elvis de Souza, Arantza Diaz de Ilarraza, Carly
Dickerson, Arawinda Dinakaramani, Elisa Di Nuovo,
Bamba Dione, Peter Dirix, Kaja Dobrovoljc, Timo-
thy Dozat, Kira Droganova, Puneet Dwivedi, Hanne
Eckhoff, Sandra Eiche, Marhaba Eli, Ali Elkahky,
Binyam Ephrem, Olga Erina, TomaZz Erjavec, Aline
Etienne, Wograine Evelyn, Sidney Facundes, Richard
Farkas, Marilia Fernanda, Hector Fernandez Alcalde,
Jennifer Foster, Cldudia Freitas, Kazunori Fujita,
Katarina GajdoSova, Daniel Galbraith, Marcos Gar-
cia, Moa Girdenfors, Sebastian Garza, Fabricio Fer-
raz Gerardi, Kim Gerdes, Filip Ginter, Gustavo
Godoy, Iakes Goenaga, Koldo Gojenola, Memduh
Gokirmak, Yoav Goldberg, Xavier Gémez Guino-
vart, Berta Gonzalez Saavedra, Bernadeta Gricitité,
Matias Grioni, Loic Grobol, Normunds Griizitis,
Bruno Guillaume, Céline Guillot-Barbance, Tunga
Glingor, Nizar Habash, Hinrik Hafsteinsson, Jan Ha-
ji¢, Jan Haji¢ jr., Mika Haméldinen, Linh Ha My,
Na-Rae Han, Muhammad Yudistira Hanifmuti, Sam
Hardwick, Kim Harris, Dag Haug, Johannes Hei-
necke, Oliver Hellwig, Felix Hennig, Barbora Hladk4,
Jaroslava Hlavacov4, Florinel Hociung, Petter Hohle,
Eva Huber, Jena Hwang, Takumi Ikeda, Anton Karl
Ingason, Radu Ion, Elena Irimia, Ol4jidé Ishola,
Kaoru Ito, Tom4s Jelinek, Apoorva Jha, Anders
Johannsen, Hildur Jonsdottir, Fredrik Jgrgensen,
Markus Juutinen, Sarveswaran K, Hiiner Kasikara,
Andre Kaasen, Nadezhda Kabaeva, Sylvain Ka-
hane, Hiroshi Kanayama, Jenna Kanerva, Neslihan
Kara, Boris Katz, Tolga Kayadelen, Jessica Ken-
ney, Véclava Kettnerova, Jesse Kirchner, Elena Kle-
mentieva, Arne Kohn, Abdullatif Koksal, Kamil
Kopacewicz, Timo Korkiakangas, Natalia Kotsyba,
Jolanta Kovalevskaité, Simon Krek, Parameswari
Krishnamurthy, Oguzhan Kuyrukc¢u, Ashh Kuzgun,
Sookyoung Kwak, Veronika Laippala, Lucia Lam,
Lorenzo Lambertino, Tatiana Lando, Septina Dian
Larasati, Alexei Lavrentiev, John Lee, Phuong
Leé Héng, Alessandro Lenci, Saran Lertpradit, Her-
man Leung, Maria Levina, Cheuk Ying Li, Josie
Li, Keying Li, Yuan Li, KyungTae Lim, Bruna
Lima Padovani, Krister Lindén, Nikola Ljubesié,
Olga Loginova, Andry Luthfi, Mikko Luukko, Olga
Lyashevskaya, Teresa Lynn, Vivien Macketanz,
Aibek Makazhanov, Michael Mandl, Christopher


http://hdl.handle.net/11234/1-4611
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Manning, Ruli Manurung, Biisra Marsan, Cétdlina
Maranduc, David Marecek, Katrin Marheinecke,
Héctor Martinez Alonso, André Martins, Jan Masek,
Hiroshi Matsuda, Yuji Matsumoto, Alessandro
Mazzei, Ryan McDonald, Sarah McGuinness, Gus-
tavo Mendonga, Niko Miekka, Karina Mischenkova,
Margarita Misirpashayeva, Anna Missild, Citélin
Mititelu, Maria Mitrofan, Yusuke Miyao, AmirHos-
sein Mojiri Foroushani, Judit Molnar, Amirsaeid
Moloodi, Simonetta Montemagni, Amir More, Laura
Moreno Romero, Giovanni Moretti, Keiko Sophie
Mori, Shinsuke Mori, Tomohiko Morioka, Shigeki
Moro, Bjartur Mortensen, Bohdan Moskalevskyi,
Kadri Muischnek, Robert Munro, Yugo Murawaki,
Kaili Miiiirisep, Pinkey Nainwani, Mariam Nakhlé,
Juan Ignacio Navarro Horfiiacek, Anna Nedoluzhko,
Gunta Nespore-Beérzkalne, Manuela Nevaci, Ludong
Nguyén Thi, Huyén Nguyén Thi Minh, Yoshihiro
Nikaido, Vitaly Nikolaev, Rattima Nitisaroj, Alireza
Nourian, Hanna Nurmi, Stina Ojala, Atul Kr. Ojha,
Adédayé Oliokun, Mai Omura, Emeka Onwueg-
buzia, Petya Osenova, Robert Ostling, Lilja @vre-
lid, Saziye Betiil Ozates, Merve Ozcelik, Arzu-
can Ozgiir, Balkiz Oztiirk Bagaran, Hyunji Hay-
ley Park, Niko Partanen, Elena Pascual, Marco
Passarotti, Agnieszka Patejuk, Guilherme Paulino-
Passos, Angelika Peljak-Lapifiska, Siyao Peng,
Cenel-Augusto Perez, Natalia Perkova, Guy Per-
rier, Slav Petrov, Daria Petrova, Jason Phelan, Jussi
Piitulainen, Tommi A Pirinen, Emily Pitler, Bar-
bara Plank, Thierry Poibeau, Larisa Ponomareva,
Martin Popel, Lauma Pretkalnina, Sophie Prévost,
Prokopis Prokopidis, Adam Przepiérkowski, Tiina
Puolakainen, Sampo Pyysalo, Peng Qi, Andriela
Réibis, Alexandre Rademaker, Taraka Rama, Lo-
ganathan Ramasamy, Carlos Ramisch, Fam Rashel,
Mohammad Sadegh Rasooli, Vinit Ravishankar, Livy
Real, Petru Rebeja, Siva Reddy, Georg Rehm, Ivan
Riabov, Michael RieBler, Erika Rimkuté, Larissa Ri-
naldi, Laura Rituma, Luisa Rocha, Eirikur Rognvalds-
son, Mykhailo Romanenko, Rudolf Rosa, Valentin
Rosca, Davide Rovati, Olga Rudina, Jack Rueter,
Kristjan Runarsson, Shoval Sadde, Pegah Safari,
Benoit Sagot, Aleksi Sahala, Shadi Saleh, Alessio
Salomoni, Tanja SamardZi¢, Stephanie Samson,
Manuela Sanguinetti, Ezgi Saniyar, Dage Sérg, Baiba
Saulite, Yanin Sawanakunanon, Shefali Saxena,
Kevin Scannell, Salvatore Scarlata, Nathan Schnei-
der, Sebastian Schuster, Lane Schwartz, Djamé Sed-
dah, Wolfgang Seeker, Mojgan Seraji, Mo Shen,
Atsuko Shimada, Hiroyuki Shirasu, Yana Shishk-
ina, Muh Shohibussirri, Dmitry Sichinava, Janine
Siewert, Einar Freyr Sigurd’sson, Aline Silveira,
Natalia Silveira, Maria Simi, Radu Simionescu,
Katalin Simké, Méria Simkov4, Kiril Simov, Maria
Skachedubova, Aaron Smith, Isabela Soares-Bastos,
Carolyn Spadine, Rachele Sprugnoli, Steinhér Ste-
ingrimsson, Antonio Stella, Milan Straka, Emmett
Strickland, Jana Strnadova, Alane Suhr, Yogi Les-
mana Sulestio, Umut Sulubacak, Shingo Suzuki,
Zsolt Szantd, Dima Taji, Yuta Takahashi, Fabio Tam-
burini, Mary Ann C. Tan, Takaaki Tanaka, Sam-
son Tella, Isabelle Tellier, Marinella Testori, Guil-
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laume Thomas, Liisi Torga, Marsida Toska, Trond
Trosterud, Anna Trukhina, Reut Tsarfaty, Utku Tiirk,
Francis Tyers, Sumire Uematsu, Roman Untilov,
Zdenka UreSov4, Larraitz Uria, Hans Uszkoreit, An-
drius Utka, Sowmya Vajjala, Rob van der Goot,
Martine Vanhove, Daniel van Niekerk, Gertjan van
Noord, Viktor Varga, Eric Villemonte de la Clerg-
erie, Veronika Vincze, Natalia Vlasova, Aya Wakasa,
Joel C. Wallenberg, Lars Wallin, Abigail Walsh,
Jing Xian Wang, Jonathan North Washington, Max-
imilan Wendt, Paul Widmer, Seyi Williams, Mats
Wirén, Christian Wittern, Tsegay Woldemariam, Tak-
sum Wong, Alina Wréblewska, Mary Yako, Kayo
Yamashita, Naoki Yamazaki, Chunxiao Yan, Koichi
Yasuoka, Marat M. Yavrumyan, Arife Betiil Yenice,
Olcay Taner Yildiz, Zhuoran Yu, Zden¢k Zabokrt-
sky, Shorouq Zahra, Amir Zeldes, Hanzhi Zhu, Anna
Zhuravleva, and Rayan Ziane. 2021b. Universal de-
pendencies 2.8. LINDAT/CLARIAH-CZ digital li-
brary at the Institute of Formal and Applied Linguis-
tics (UFAL), Faculty of Mathematics and Physics,
Charles University.

Zhisong Zhang, Emma Strubell, and Eduard Hovy. 2021.

On the benefit of syntactic supervision for cross-
lingual transfer in semantic role labeling. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 6229-6246,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.
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Lang Train Dev Test
English (EN) 12,542 1,974 2,062
Chinese (ZH) 3,997 500 500
Czech (CS) 102,993 11,311 12,203
Dutch (NL) 18,078 1,394 1,472
Finnish (FI) 27,198 3,239 3,422
French (FR) 17,968 2,970 1,712
German (DE) 166,849 19,233 19,436
Greek (EL) 1,662 403 456
Hindi (HI) 13,304 1,659 1,684
Hungarian (HU) | 910 441 449
Indonesian (ID) 4,482 559 557
Italian (IT) 29,685 2,277 2,518
Japanese (JA) 14,100 1,014 1,086
Korean (KO) 27,410 3,016 3,276
Marathi (MR) 373 46 47
Polish (PL) 31,496 3,960 3,942
Portuguese (PT) | 16,633 2,376 2,367
Romanian (RO) | 35911 2,247 2,272
Russian (RU) 19,894 1,525 1,482
Spanish (ES) 28,474 3,054 2,147
Tamil (TA) 400 80 120
Telugu (TE) 1,051 131 146
Ukrainian (UK) 5,496 672 892
Vietnamese (VI) | 1,400 800 800

Table 6: Number of sentences available in each language
in UPB v2.

A Artifacts

A.1 Corpus Distribution

Table 6 shows the corpus distribution in UPB v2.
Since we run our experiments in a zero-shot setting,
we only use the dev set and test set for languages
other than English.

A.2 Corpus Preprocessing

Some treebanks have enhanced dependency tree
annotations that cause new tokens to be added to
the sentences. These tokens are called enhanced
tokens. The enhanced tokens cause some SRL an-
notations in UPB v2 to be shifted when merged
with UD v2.9, resulting in the wrong predicate or
semantic role annotations. For example, look at the
example of wrong predicate annotation taken from
the dev set in Finnish-TDT (UPB v2). Token
10.1 is an enhanced token.

# sent_id = w063.9
# text = Osasto..........
1

2 _ _ _
3 be.0l A1:2|AM-LOC:7
Al:1-2|AM-LOC:6-7

4

5
6
7

8

9 _ _ _

10 _ _ _

10.1 _ _

11 be.01 AI1:9 A1:9-10
12 _ _ _

13 _ _ _

The corresponding annotation in UD v2.9 is as
follows. Note that we only present the tokenized
words, lemmas, and POS tags here since we only
present the UD annotation to highlight the shifted
annotation problem.

# sent_id = w063.9

# text = Osasto N7 sijaitsee

samassa korttelissa

Naistenklinikan rakennuksessa

ja osasto LV37 Katildopiston

sairaalassa.

Osasto osasto NOUN

N7 N7 SYM

sijaitsee sijaita VERB

samassa sama PRON

korttelissa kortteli NOUN

Naistenklinikan nais#klinikka

NOUN

7 rakennuksessa rakennus NOUN

8 ja ja CCONJ

9 osasto osasto NOUN

10 LVv37 LV37 SYM

10.1 sijaitsee sijaita VERB

11 Katiloopiston k&tild#opisto
NOUN

12 sairaalassa sairaala NOUN

13 . . PUNCT

o U w N

If we compare the two annotations from UPB v2
and UD v2.9, we can see that the first predicate
annotated on token 3, i.e., “sijaitsee”, is correct.
However, the second predicate annotated on the
token 11, i.e., “Kétiloopiston”, is wrong. The cor-
rect second predicate is token 10.1, i.e., “sijaitsee”.
The annotation is somehow shifted because of the
enhanced token added, token 10.1. Therefore, we
fix the annotation in UPB v2 to be as follows.

# sent_id = w063.9

# text = Osasto..........
1 _ _

2 _ _ _

3 be.01l A1:2|AM-LOC:7
Al:1-2|AM-LOC:6-7



o 1 o

9

10 _

10.1 be.01 A1:9 A1:9-10
11

12
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In some cases, not only the predicate annotations
indicated in the third column but also the semantic
role annotations indicated in the fourth column
are shifted. We run a script to fix the annota-
tion problems in all treebanks with enhanced
dependency tree annotations. The treebanks
with enhanced dependency tree annotations are
Czech-CAC, Czech-FicTree, Czech-PDT,
Dutch-Alpino, Dutch-LassySmall,
Finnish-TDT, Italian—-ISDT,
Spanish-AnCora, and Ukrainian—-1IU.

After we fix the shifted predicate and se-
mantic role annotations, we notice that some
predicates and their semantic roles are anno-
tated in the enhanced tokens that do not appear
in the original sentence. The treebanks that
contain this phenomenon are Dutch-Alpino,
Dutch-LassySmall, Finnish-TDT,
Ukrainian-1IU, and Spanish-AnCora. We
cannot accommodate these annotations since we
build the models based on the sentence’s original
tokens. Therefore, we omit the predicates and
their corresponding semantic roles annotated on
enhanced tokens in our experiments.

A.3 License

Complete UPB v2 contains annotations from UD
v2.9. Table 7 shows the license for each treebank in
UD v2.9. Despite licenses inherited from UD v2.9,
UPB v2 also has a CDLA-Sharing-1.0 license.

We refer to publicly available codes to build the
corpus and models for experiments. We provide the
list of GitHub repositories with their corresponding
licenses, as follows.

1. UniversalPropositions/tools: Apache-2.0

2. diegma/neural-dep-srl (Marcheggiani and
Titov, 2017): Apache-2.0

3. AnWang-Al/towe-eacl (Jiang et al., 2021): No
License

4. dmlc/dgl (Wang et al., 2019a): Apache-2.0

Treebank License
English-EWT CCBY-SA 4.0
Chinese—-GSD CCBY-SA 4.0
Czech-CAC CCBY-SA 4.0
Czech-CLTT CCBY-SA 4.0
Czech-FicTree CCBY-NC-SA 4.0
Czech-PDT CCBY-NC-SA 3.0
Dutch-Alpino CCBY-SA 4.0
Dutch-LassySmall CCBY-SA 4.0
Finnish-FTB CCBY 4.0
Finnish-TDT CCBY-SA 4.0
French-GSD CCBY-SA 4.0
French-Rhapsodie CCBY-SA 4.0
French-Sequoia LGPL-LR
German—-GSD CCBY-SA 4.0
German—HDT CCBY-SA 4.0

CCBY-NC-SA 3.0
CCBY-NC-SA 4.0
CCBY-NC-SA 3.0
CCBY-SA 4.0

CCBY-NC-SA 3.0
CCBY-NC-SA 4.0
CCBY-NC-SA 4.0

Greek-GDT
Hindi-HDTB
Hungarian-Szeged
Indonesian-GSD
Italian—-ISDT
Italian-ParTUT
Italian-PoSTWITA

Italian-TWITTIRO CCBY-SA 4.0
Italian-VIT CCBY-NC-SA 3.0
Japanese—-GSD CCBY-SA 4.0
Japanese—-GSDLUW CCBY-SA 4.0
Korean-GSD CCBY-SA 4.0
Korean-Kaist CCBY-SA 4.0
Marathi-UFAL CCBY-SA 4.0
Polish-LFG GNU GPL 3.0
Polish-PDB CC BY-NC-SA 4.0
Portuguese-Bosque CCBY-SA 4.0
Portuguese-GSD CCBY-SA 4.0
Romanian—-Nonstandard | CC BY-SA 4.0
Romanian—RRT CCBY-SA 4.0
Romanian—-SiMoNERoO CCBY-SA 4.0
Russian—-GSD CCBY-SA 4.0
Russian-Taiga CCBY-SA 4.0
Spanish-AnCora CCBY 4.0
Spanish-GSD CCBY-SA 4.0
Tamil-TTB CCBY-NC-SA 3.0
Telugu-MTG CCBY-SA 4.0
Ukrainian-IU CCBY-NC-SA 4.0
Vietnamese-VTB CCBY-SA 4.0

Table 7: License for each treebank in UD v2.9.

5. gordicaleksa/pytorch-GAT (Gordié, 2020):
MIT

6. deepakn97/relationPrediction (Nathani et al.,
2019): No License

7. thudm/hgb (Lv et al., 2021): No License

8. shenwzh3/RGAT-ABSA (Wang et al., 2020):
MIT

9. wasiahmad/GATE (Ahmad et al., 2021b):
MIT

We access all the resources we mentioned above
solely for academic research. We make sure that
we obey the intended usage of each artifact.


https://github.com/UniversalPropositions/tools
https://github.com/diegma/neural-dep-srl
https://github.com/AnWang-AI/towe-eacl
https://github.com/dmlc/dgl
https://github.com/gordicaleksa/pytorch-GAT
https://github.com/deepakn97/relationPrediction
https://github.com/thudm/hgb
https://github.com/shenwzh3/RGAT-ABSA
https://github.com/wasiahmad/GATE

Treebank Dev Test

Flpos UAS LAS | Flpos UAS LAS
English-EWT 96.79 92.46 90.86 | 96.80 91.42 89.82
Chinese-GSD 95.35 85.11 83.19 | 95.52 87.06 85.13
Czech-CAC 99.26 92.97 91.62 | 98.70 93.43 91.68
Czech-CLTT 99.44 89.13 86.98 | 98.98 88.32 86.09
Czech-FicTree 98.43 94.68 93.11 | 98.34 94.61 92.76
Czech-PDT 98.77 93.74 9224 | 98.63 93.50 91.87
Dutch-Alpino 98.36 94.53 9224 | 97.33 92.87 90.42
Dutch-LassySmall 97.03 90.77 87.62 | 96.31 92.12 89.11
Finnish-FTB 96.90 93.77 9229 | 96.87 94.03 92.41
Finnish-TDT 98.08 91.97 9041 | 97.78 9224 90.74
French-GSD 98.45 95.66 94.45 | 98.20 93.47 91.87
French-Rhapsodie 98.12 87.75 83.25 | 97.64 86.42 81.88
French-Sequoia 99.03 93.54 9223 | 99.12 93.10 91.70
German—GSD 96.19 91.78 88.61 | 95.37 89.65 85.62
German—HDT 98.08 95.18 93.64 | 98.30 95.30 93.72
Greek-GDT 97.74 91.77 9043 | 97.71 9293 91.19
Hindi-HDTB 97.89 96.62 9449 | 97.93 96.68 94.43
Hungarian-Szeged 96.66 87.64 84.10 | 96.06 86.72  83.25
Indonesian—-GSD 94.64 86.49 76.25 | 94.73 87.31 77.33
Italian—-ISDT 98.54 9441 92.84 | 98.62 94.37 93.16
Italian-ParTUT 97.86 92.76  90.52 | 98.54 93.10 91.40
Italian-PoSTWITA 97.35 87.21 83.20 | 96.96 88.33 84.41
Italian-TWITTIRO 96.79 87.25 81.64 | 96.20 84.85 79.77
Italian-VIT 98.12 90.63 88.82 | 98.16 91.54 89.05
Japanese—-GSD 98.34 96.09 9547 | 98.10 95.11 94.21
Japanese—GSDLUW 98.54 96.12  95.82 | 98.58 95.35 95.12
Korean-GSD 95.79 88.22 8541 | 96.27 89.65 87.07
Korean-Kaist 96.19 91.35 90.39 | 95.58 90.41 89.45
Marathi-UFAL 89.32 74.55 64.32 | 90.53 79.85 70.63
Polish-LFG 98.94 97.56  96.73 | 99.05 97.80 96.92
Polish-PDB 98.75 94.17 92.69 | 98.74 94.58 93.16
Portuguese-Bosque 97.92 94.25 92.51 | 98.10 94.85 93.54
Portuguese-GSD 98.36 9444 93.34 | 98.28 9421 93.23
Romanian—-Nonstandard | 96.77 93.18 90.04 | 96.40 91.43 87.75
Romanian-RRT 98.06 9196 88.60 | 97.92 91.93 88.45
Romanian-SiMoNERoO 98.19 93.38 91.21 | 98.23 93.78 91.86
Russian—-GSD 98.38 90.55 87.80 | 98.09 90.44 87.21
Russian—-Taiga 95.80 83.94 79.32 | 97.06 84.42 81.41
Spanish-AnCora 98.99 93.83 92.16 | 98.96 93.82  92.00
Spanish-GSD 97.13 91.91 89.79 | 97.26 91.93 89.58
Tamil-TTB 87.17 81.24 73.48 | 86.93 80.89 72.30
Telugu-MTG 94.41 9290 86.25 | 94.45 93.07 85.58
Ukrainian—-IU 98.08 91.14 89.34 | 97.67 90.10 88.24
Vietnamese-VTB 92.84 78.92 7499 | 92.81 77.58 74.16

Table 8: Flppg, UAS, and LAS of each treebank’s POS tagger and dependency parser in UPB v2. Flpog indicates
the F1 score of the POS tagger.
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Figure 4: Dependency graph of a sentence converted
from its dependency tree.

B Dependency Tree to Dependency
Graph

Marcheggiani and Titov (2017) convert a depen-
dency tree to a dependency graph in the following
steps:

1. Add the edges from the dependency tree to
the graph. These edges flow from the heads
to the dependents. Label each edge with the
corresponding dependency relation from the
dependency tree.

Add new edges that flow in the opposite di-
rections of the original dependency directions.
These new edges flow from the dependents to
the heads.

3. Assign a unique dependency relation, derived
from the original dependency relation, to each
new edge added in step 2. For example, if
the original dependency relation is “nsubj”,
the edge that flows in the opposite direction is

i}

labeled as “nsubj~".

4. Add new edges that flow from each node to it-
self (self-connection) and label them as “self”.

Figure 4 displays the dependency graph derived
from the dependency tree at the bottom of Figure
1.

C Two-Attention Relational Graph
Attention Networks

Similar to RGATs (Wang et al., 2020), two-
attention relational GATs (TAGATSs) also apply
two types of attention weights to measure the in-
fluence of neighbor nodes when updating the cor-
responding node representation. However, instead
of using position-wise FFN to calculate the sec-
ond attention weight as in RGATs (Wang et al.,
2020), two-attention relational GATs (TAGATS)
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apply dot-product equation proposed by Velickovié
et al. (2018) to calculate both attention weights. We
explain the modification that we made to RGATs
in this section.

TAGATSs calculate the first attention weight,
a, using Equation 3 in the original GAT paper
(Velickovié et al., 2018). To calculate the second
attention weight, 3, TAGATs slightly modify the
equation to incorporate the DR, 7;;, as shown in
Equation 5, where k is the current attention head,
[ is the current layer, ) is the neighbor nodes of
node 7, W, is a weight matrix to linearly transform
the DR, 7;;, and LR is a Leaky ReLU.

T
ﬁf]k :softmaxjeM(LR(al’k [Wfkrij])) 5)

Furthermore, TAGATS obtain node representa-
tion from attention weight o using Equation 5 and
Equation 6 in the original GAT paper (Veli¢kovi¢
et al., 2018). To obtain node representation from at-
tention weight 3, TAGATs employ Equation 6 and
Equation 7. TAGATSs concatenate node representa-
tions from K heads in the intermediate layers, as
shown in Equation 6. Meanwhile, in the final layer,
TAGATS take the average of node representations
from K heads, as shown in Equation 7, where L is
the number of layers.

hi:&-l -0 ”k ) Z 6llekhl 1< L (6)
JEN;

ZZﬁlkW““hl I=L (7)

k: 1jeN;

hl-+1

Finally, TAGATSs calculate the node representa-
tion for layer (I + 1), hi?, by applying a linear
transformation to the concatenation of node repre-
sentation hlijg} and node representation hligl and
optionally apply an activation function, a,’on top
of the linear transformation, as shown in Equation
8.

l+1 [hl+1 hl+1]

1,00 ) (8)

+bi+1)

+1
A = o(Wip 2l

D Experiments

D.1 Dependency Parsers and POS Taggers

Table 8 shows the POS tagger and depen-
dency parser evaluation results on each tree-
bank in UPB v2. For Japanese-GSDLUW,



Hyperparameter Value
num_epochs 100
batch_size 32
optimizer SGD
learning_rate 0.1
num_early_stop 20
num_decay_epoch | 5
lr_decay 0.9
min_lr 0.00001
pos_dim 30
pred_ind_dim 30
emb_dropout 0.5
hid_dim 512
num_heads 8
d_k 64
d_v 64
d_ff 2048

Table 9: Basic hyperparameters applied in the experi-
ments.

French-Rhapsodie, and English-EWT
treebanks, we train the POS taggers and depen-
dency parsers from scratch using Stanza (Qi et al.,
2020) with a 0.0005 learning rate, 70,000 max
steps, and 10,000 max steps before stopping.
We measure the performance of POS taggers
with the F1 score. Meanwhile, we measure the
performance of dependency parsers with the
unlabeled attachment score (UAS) and the labeled
attachment score (LAS).

D.2 Hyperparameter Search

We take the representative models from
transformer-based models (i.e., SAN-RPRs),
GCN-based models (i.e., ARGCNs and SGCNs),
GAT-based models (i.e., GATs), and BiLSTM-
based model (i.e., BILSTMs), to experiment with
the optimizers. We experiment with SGD (Kiefer
and Wolfowitz, 1952), Adam (Kingma and Ba,
2015), and AdamW (Loshchilov and Hutter, 2019)
as the optimizer. We also try different learning
rates for each optimizer, i.e., 0.1, 0.01, and 0.001.
The SGD optimizer with a 0.1 learning rate works
the best in all the representative models. Therefore,
we apply this setting to the rest of our experiments.
Table 9 summarizes the fixed hyperparameters
we use throughout our experiments. Algorithm
1 shows the logic for model training. Below, we
explain each hyperparameter:

1. num_epochs: Number of epochs for model
training.

2. batch_size: Batch size for model train-
ing.
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3. optimizer: Type of optimizer for model
training.
4. learning_rate: Initial learning rate for

model training.

. num_early_stop: Stop the training if
there is no improvement after a certain num-
ber of consecutive epochs.

. num_decay_epoch: The upper limit of
epoch before we start decaying the learning
rate.

. 1r_decay: The ratio to decay the learning
rate.

. min_1lr: Minimum learning rate allowed.
We stop the model training if the learning rate
falls below this threshold.

. pos_dim: Dimension of POSE, o (Equation
1). If the dimension is 0, we will not concate-
nate o in the input layer.

10. pred_ind_dim: Dimension of PIE, p
(Equation 1). If the dimension is 0, we will

not concatenate p in the input layer.

11. emb_dropout: Dropout applied in the in-

put layer (Equation 1).

12. hid_dim: The dimension of the node repre-

sentation that the encoder accepts.

13. num_heads: Number of heads applied in the
multi-head self-attention mechanism present
in transformer-based models, GAT-based mod-

els, and ARGCN:s.

14. d_k: The dimension of keys applied in

transformer-based models.

15. d_v: The dimension of values applied in

transformer-based models.

16. d_f£: The output dimension of the first linear
transformation in transformer-based model’s

position-wise FFN.

The following sections will explain the hyper-
parameter search and hyperparameter values that
work best in each model. Table 11, Table 12, Ta-
ble 13, and Table 10 describe the hyperparameter
search for transformer-based models, GCN-based
models, GAT-based models, and BiLSTM-based



Algorithm 1 Pseudocode of the model training.

Require: num_early_stop,num_decay_epoch,min_1lr,lr_decay,num_epochs, learning_rate

best_f1 <+ 0
no_improvement < 0
for curr_epoch « 1,num_epochs do
curr_fl < train(learning_rate)
if curr_f1 > best_f1 then
best_f1l < curr_f1l
no_improvement < 0
else
no_improvement < no_improvement + 1

if no_improvement > num_early_stop then

break
end if
if curr_epoch > num_decay_epoch then

learning_rate <- lr_decay * learning_rate

if learning_rate < min_1r then
break
end if
end if
end if
end for

models, respectively. Due to the number of hyper-
parameters, we divide the hyperparameter search
into groups indicated by the leftmost column, i.e.,
the column with a "No" header. We will search
for the best combination between the hyperparame-
ters in the same group. For example, in Table 11,
num_enc_layers and enc_dropout belong
to group 1, which means we experiment with dif-
ferent dropouts, i.e., 0.1, 0.2, 0.3, 0.4, and 0.5, for
each number of layers, i.e., 1, 2, 3, and 4. Below,
we explain each hyperparameter involved in the
hyperparameter search.

1. num_enc_layers: Number of layers

stacked together.

2. enc_dropout: Dropout applied in the mod-
els, including dropout applied in the encoder
(Section 3.1.2).

3. 1stm_num_layers: Number of BiLSTM
layers stacked together.

4. 1stm_dropout_net: Dropout applied in
BiLSTMs, including dropout applied in the
encoder (Section 3.1.2).

5. gnn_activation: Activation function
used in GCN-based and GAT-based models,
applied in the encoder (Section 3.1.2).

6. gnn_activation_at_final_layer:
Whether to apply the activation function in
the last layer, especially if we stack more than
one layer.
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10.

11.

12.

13.

14.

15.

lstm_activation: Activation function
used in BiLSTMs (Section 3.1.2).

lstm_hidden_size: Hidden size of BilL-
STMs. Since the network is bidirectional, the
dimension of the final hidden representation
is2 X 1stm_hidden_size.

deprel_dim: Dimension of DRE, d (Equa-
tion 1). If the dimension is 0, we will not
concatenate d in the input layer.

abs_position_dim: Dimension of APE,
a, and SAPE, s (Equation 1).

use_dep_abs_position: Boolean
value which indicates whether to concatenate
SAPE, s, in the input layer (Equation 1).

use_word_abs_position: Boolean
value which indicates whether to concatenate
APE, a, in the input layer (Equation 1).

att_dim: Dimension of a trainable vector
a in ARGCNs (Equation 7 in Jiang et al.
(2021)).

base_size: Base size, B, in RGCNs
(Equation 3 in Schlichtkrull et al. (2018)).

rel_pos_dim: Dimension of RPR in GCN-
based and GAT-based models. We do not use
this parameter for transformer-based models
because the RPR in transformer-based models
must have the same dimension as dj, and d,,
(Vaswani et al., 2017).



16. num_embed_graph_heads: Number of
heads where we modify M matrix according
to distance matrix, D, in GATEs (Equation 3
in Ahmad et al. (2021b)). We apply a zero
matrix for M for the other heads to connect

all the nodes in the graph.

17. max_tree_dists: The § parameter
applied to each head in GATEs (Equa-
tion 3 in Ahmad et al. (2021b)). The
length of this parameter must equal

num_embed_graph_heads.

18. max_relative_positions: The maxi-
mum absolute value for relative position (k
in Shaw et al. (2018)) or structural relative

position (r in Section Wang et al. (2019b)).

19. use_dep_rel_pos: The boolean value in-
dicates whether to incorporate SRPR in the

edge representation.

20. use_word_rel_pos: The boolean value
indicates whether to incorporate RPR in the

edge representation.

21. deprel_edge_dim: Dimension of repre-
sentation for dependency relation, d,, when

we use B-DR.

22. deparc_edge_dim: Dimension of repre-
sentation for direction, d;, when we use B-

DR.

23. deprel_ext_edge_dim: Dimension of
dependency relation representation when we

use A-DR.

There are two ways of generating APE, SAPE,
RPR, and SRPR, i.e., using learned positional em-
bedding (Gehring et al., 2017) and using sine and
cosine functions (Vaswani et al., 2017). We con-
duct preliminary experiments and find that sine and
cosine functions work better than learned positional
embedding. Therefore, we generate the represen-
tation for each type of position in the experiments
using sine and cosine functions.

D.2.1 Transformer-Based Models

Table 11 shows the hyperparameter search in
transformer-based models.

D.2.2 GCN-Based Models

Table 12 shows the hyperparameter search in GCN-
based models.

20

No | Hyperparameter Value
lstm_num_layers 1,2,3,4
1 lstm_dropout_net 0.1,0.2, 0.3,
0.4,0.5
’ lstm_activation ReLU, Leaky
RelLU, ELU
3 lstm_hidden_size 256, 512
deprel_dim 0,30
4 abs_position_dim 0, 30
use_dep_abs_position | T

Table 10: Hyperparameter search in BiLSTM-based
models. The search is divided into groups shown in the
"No" header. We search for the best combination of
hyperparameters in the same group. The bold values
indicate the results of the hyperparameter search.

D.2.3 GAT-Based Models

Table 13 shows the hyperparameter search in GAT-
based models.

D.2.4 BiLSTM-Based Models

Table 10 shows the hyperparameter search in
BiLSTM-based models.

D.3 Computational Resource

We use Tesla P100 to train the models. Train-
ing time for GCN-based and GAT-based models
takes around 5 hours. Meanwhile, training time
for BILSTM-based and transformer-based models
takes around 10 hours. Hyperparameter search in
GCN-based models costs around 775 GPU hours.
Hyperparameter search in GAT-based models costs
around 910 GPU hours. Hyperparameter search
in transformer-based models costs around 1,720
GPU hours. Hyperparameter search in BiILSTM-
based models costs around 290 GPU hours. After
searching for the best hyperparameter setting for
each model, we run the training five times for each
model, spending around 1,075 GPU hours. There-
fore, in total, we spend around 4,770 hours.

E Supporting Results
E.1 Transformer-Based Models

E.1.1 Comparison

Table 14 shows the detailed comparison of
transformer-based models in each language. We
calculate the superiority score (SC) of each model
based on the model performance in target lan-
guages. We allocate 2 points if the model achieves
the highest F1 score or 1 point if the model achieves
the second-highest F1 score for a specific language.



No [ Hyperparameter Value
General
1 num_enc_layers 1,2,3,4
enc_dropout 0.1,0.2,0.3,0.4, 0.5
Transformers
1 [ deprel_dim 0, 30
GATEs
num_embed_graph_heads 4

max_tree_dists

<1,1,2,2>,<2,2,4,4>,
<4,4,8,8>,<1,2,4,8>

deprel_dim
abs_position_dim

0,30
0,30

2 <use_dep_abs_position, <T,F>, <F, T>
use_word_abs_position>
SAN-RPRs
1 max_relative_positions 1,2,4,8,16
2 deprel_dim 0,30
SAN-SAPRs
1 [ deprel_dim 0,30
SAN-SRPRs
1 max_relative_positions 1,2,4,8,16
2 deprel_dim 0, 30
Trans-SRPRs
1 [ deprel_dim [ 0,30
Trans-SRPR-DRs
deprel_dim 0, 30
abs_position_dim 0,30
1 use_word_abs_position T
use_dep_rel_pos T,F

<deprel_edge_dim, deparc_edge_dim,
deprel_ext_edge_dim>

<32, 32,0>, <48, 16, 0>,
<56, 8, 0>, <60, 4, 0>,
<62,2,0>, <63, 1, 0>
<0, 0, 64>

SAPR-RPRs
1 [ deprel_dim [ 0,30
SAPR-RPR-DRs
deprel_dim 0, 30
abs_position_dim 0,30
1 use_dep_abs_position T
use_word_rel_pos T,F

<deprel_edge_dim, deparc_edge_dim,
deprel_ext_edge_dim>

<32,32,0>, <48, 16, 0>,
<56, 8, 0>, <60, 4, 0>,
<62,2,0>, <63, 1, 0>
<0, 0, 64>

Table 11: Hyperparameter search in transformer-based models. The search is divided into groups shown in the "No"
header. We search for the best combination of hyperparameters in the same group. The bold values indicate the
results of the hyperparameter search.
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No [ Hyperparameter | Value
SGCNs

1 num_enc_layers 1,2,3,4
enc_dropout 0.1,0.2,0.3,0.4, 0.5

2 gnn_activation ReLU, Leaky ReLLU, ELU
gnn_activation_at_final_layer | T,F
deprel_dim 0,30

3 abs_position_dim 0, 30
<use_dep_abs_position, <T,F>, <F, T>
use_word_abs_position>

RGCNs

1 num_enc_layers 1,2,3,4
enc_dropout 0.1,0.2,0.3,0.4, 0.5

2 gnn_activation ReLLU, Leaky ReLLU, ELU
gnn_activation_at_final_layer | T,F

3 base_size 1,2,4,8,16,32,80
deprel_dim 0, 30

4 abs_position_dim 0, 30
<use_dep_abs_position, <T,F>, <F, T>
use_word_abs_position>

ARGCNs

| num_enc_layers 1,2,3,4
enc_dropout 0.1,0.2,0.3,0.4, 0.5

’ gnn_activation ReLU, Leaky ReL.U, ELU
gnn_activation_at_final_layer | T,F
deprel_ext_edge_dim 1,2,4,8,16

3 att_dim 1,2,4,8,16
rel_pos_dim 64, 128
use_word_rel_pos T
deprel_dim 0,30

4 abs_position_dim 0, 30
use_dep_abs_position T

Table 12: Hyperparameter search in GCN-based models. The search is divided into groups shown in the "No"
header. We search for the best combination of hyperparameters in the same group. The bold values indicate the

results of the hyperparameter search.

E.1.2 Ablation Study of SAN-RPRs

We experiment with removing either DRE, d,
POSE, o, or PIE, p, from the node representation
in SAN-RPRs. Table 15 shows the results of the
ablation study. Removing either DRE or PIE from
the node representation reduces the performance of
SAN-RPRs. However, SAN-RPRs without POSE
perform better in most languages.

E.2 Best Models

E.2.1 Comparison with SAN-RPRs w/o POSE

In Table 4, according to the superiority score, we
can see that SAPR-RPRs perform best in more lan-
guages than SAN-RPRs, even though the average
F1 score of SAN-RPRs is better than SAPR-RPRs.
However, as discussed before, SAN-RPRs without
POSE perform better in most languages than SAN-
RPRs with POSE, which we use for comparison
in Table 4. Therefore, in Table 16, we re-compare
SAN-RPRs without POSE with the other best mod-
els. After removing POSE from SAN-RPRs, we
find that the model performs best in more languages

22

than SAPR-RPRs with 18 and 16 superiority scores,
respectively.

E.2.2 Fine-Tuned Models

We fine-tune the contextualized word embedding
in SAN-RPRs and SAPR-RPRs, i.e., multilingual
BERT (mBERT). Table 17 compares the average
F1 scores of models with frozen and fine-tuned
mBERT. Overall, fine-tuning increases the perfor-
mance of both models. However, in the fine-tuned
models, the variability of the average F1 score in
each run increases, indicated by the higher stan-
dard deviation in fine-tuned mBERT. This is ex-
pected as when we fine-tune the mBERT, many
parameters from mBERT are involved in the train-
ing process, increasing the randomness variable
in model training. The behavior of the models is
similar before and after the fine-tuning. The fine-
tuned SAN-RPRs perform better than SAPR-RPRs
with 54.01% and 53.82% average F1 scores, re-
spectively.



No [ Hyperparameter [ Value
General
1 gnn_activation ReLU, Leaky ReLLU, ELU
gnn_activation_at_final_layer T, F
GATs
1 num_enc_layers 1,2,3,4
enc_dropout 0.1,0.2,0.3,04, 0.5
deprel_dim 0, 30
2 abs_position_dim 0,30
<use_dep_abs_position, <T,F>, <F, T>
use_word_abs_position>
SHGNs
) num_enc_layers 1,2,3,4
enc_dropout 0.1,0.2,0.3,04, 0.5
deprel_ext_edge_dim 16, 32, 64, 128
2 rel_pos_dim 16, 32, 64, 128
use_word_rel_pos T
deprel_dim 0,30
3 abs_position_dim 0, 30
use_word_rel_pos T,F
use_dep_abs_position T
4 <deprel_edge_dim, deparc_edge_dim, | <8§,8,0>, <12,4, 0>,
deprel_ext_edge_dim> <14,2,0>, <15, 1, 0>, <0, 0, 16>
TAGATSs
1 num_enc_layers 1,2,3,4
enc_dropout 0.1,0.2,0.3,0.4, 0.5
deprel_ext_edge_dim 16, 32, 64, 128
2 rel_pos_dim 16, 32, 64, 128
use_word_rel_pos T
deprel_dim 0, 30
3 abs_position_dim 0, 30
use_word_rel_pos T,F
use_dep_abs_position T
4 <deprel_edge_dim, deparc_edge_dim, | <8§,8,0>, <12,4, 0>,
deprel_ext_edge_dim> <14,2,0>, <15, 1, 0>, <0,0, 16>
KBGATSs
| num_enc_layers 1,2,3,4
enc_dropout 0.1,0.2,0.3,0.4, 0.5
deprel_ext_edge_dim 16, 32, 64, 128
2 rel_pos_dim 16, 32, 64, 128
use_word_rel_pos T
deprel_dim 0,30
3 abs_position_dim 0, 30
use_word_rel_pos T,F
use_dep_abs_position T
<deprel_edge_dim, deparc_edge_dim, | <16, 16, 0>, <24, 8, 0>,
4 deprel_ext_edge_dim> <28, 4,0>, <30, 2,0>,
<31, 1, 0>, <0, 0, 32>

Table 13: Hyperparameter search in GAT-based models. The search is divided into groups shown in the "No" header.
We search for the best combination of hyperparameters in the same group. The bold values indicate the results of
the hyperparameter search.
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GATEs Trans SAN- SAN- SAN- Trans- SAPR- Trans- SAPR-
RPRs SAPRs SRPRs SRPRs RPRs SRPR- RPR-
DRs DRs
EN 78.96+0.31 76.1640.51 78.264+040  75.93+047  78.274+0.50  79.034+032  78.11+042  79.8540.21 79.83+0.19
AVG | 52.57+023  52.0740.21 52.73+040  51.98+0.10  51.514+027 52214030  52.64+038  50.604+0.14  50.69+0.21
TA 36.72+0.89 35324156  37.96+1.75  38.07+147  3593+2.16  35.74+147  39.57+1.18  32.2341.14  3291+1.22

HI 48.56+0.37  47.40+0.18  47.514+062  45.074+0.52  45.70+0.63  47.80+0.57  45.04+035  48.04+£045  47.57+0.65
ZH 48.09+0.64  48.8610.31 50.37+1.17  50.064+0.15  46.96+0.54  46.51+0.53  50.96+0.88  43.63+£1.09  43.12+0.87
JA 37.45+0.86  38.38+0.37  37.694+099  37.91+0.88  36.29+1.60  36.46+120  34.78+129  33.8640.61 33.56+1.47
VI 28.01+0.91 28254057  28.69+0.79  29.70+0.50  27.7040.61 27344059  29.10+£045  25.72+022  25.3740.23
KO 43444090  43.13+226  42.61+1.84  46.09+1.02  43.38+0.84  43.62+0.57 45244123  39.34+1.19  40.76+0.51
1D 57.884+047 55364042  58.78+1.09  57.95+£056  59.79+027  58.41+035  59.97+053  53.41+0.69  52.89+0.25

HU 50.69+0.25  50.13+0.85  49.76+035  49.684+0.56  49.28+0.20  50.60+0.49  49.084+034  49.51+047  49.31+0.72
RO 53.86+£0.57  52.90+039  54.2340.67  52.11+£023  52.444033  53.754+055  54.46+0.52  52.5040.31 52.50+0.49
FR 61.67+£030  60.23+039  62.194+041  60.52+£0.27  60.34+037  61.304+050  62.11+£047  60.82+020  60.9140.28
MR 37494174  42.85+2.67  41.06+£2.89 41224165  37.37+127  36.58+1.68  40.36+220  36.75+1.67  37.40+1.56
UK 58.89+0.53  58.83+020  58.924+026  58.87+048  58.23+0.69  58.93+0.72  59.36+0.72  57.94+042  58.2340.39
PT 65.49+024  64.05+026  66.0540.21 64.76+048  65.16+041  65.3440.15  66.49+0.33  64.61+024  64.8440.17
IT 57.52+038 57424043  58.11+0.33  56.35+£045  56.09+033  57.424032  57.80+£039  56.6040.31 56.72+0.42
ES 63.36+0.24  62.04+042  63.71+£033  61.53+0.31 62.70£0.20  63.47+027  63.624+0.25  61.78+£0.14  61.68+0.22
CS 57.69+0.39  56.19+048  56.874+027  55.274+0.57  56.58+027  57.61+£0.34  55.80+0.51 56.444026  56.354+0.49
EL 60.37+£0.59  59.03+0.34  60.59+0.23  57.30+£0.69  58.98+0.82  59.314+030  60.23+040  57.89+033  58.3340.33
FI 55.00+£0.34  54.72+033  55.584+042  54.74+£047  53.91+037  54.86+0.31 55294054  54.11+0.17  54.1540.25
RU 59.36+0.24  59.31+047  60.18+044  60.33+£037  59.09+£030  59.29+040  61.13+£0.50  58.60+039  58.56+0.25
NL 63.73+0.53  62.484+0.76  62.844+037  61.754+026  61.731+0.41 63.07+049  62.2240.58  62.234+0.20  62.43+0.39
TE 46.324+0.98  44.94+138  44.66+2.00  41.64+1.81 41.88+1.17  46.10+£1.10  43.88+1.57 42484128  43.09+1.26
DE 58.88+0.40  58.29+0.70  56.86+0.32  58.394034  58.14+030  58.84+030  56.98+1.13  58.21+026  58.30+0.34
PL 58.73+0.64  57.58+025  57.674+036  56.254+035  57.144+040  58.60+0.29  57.28+046  57.18+£0.62  56.85+0.64
SC 15 4 13 8 1 7 20 1 0

PR 12.2M 12.2M 12.2M 12.2M 12.1IM 12.2M 12.2M 12.2M 12.2M

Table 14: F1 scores (%) of transformer-based models evaluated on UPB v2 test set with predicted parsers. The bold
score and underlined score indicate the highest and second-highest scores. AVG indicates the average F1 scores of a
specific model evaluated in target languages. PR and SC are the number of parameters and the superiority score of
each model.

base w/o DRE  w/o POSE w/o PIE

EN 78.26+040 77.56+041  78.32+032  77.66+038
AVG | 52.73+040 51.65+028 52.73+032  51.54+036
TA 37.96+175  37.59+195 36.53+132 32.03+1.68
HI 47.51+062 42224085 47.69+110  43.89+0s1
ZH 50.37+117  50.42+0338  50.81+o.51 49.83+0.54
JA 37.69+099 33.25+201  36.07+1.20 30.67+2.90
VI 28.69+079  29.18+105  28.30+092  29.34+0.96
KO 42.61+18¢ 42.73+152  42.06+150  40.13+0.65
1D 58.78+1.09 58.41+089 57.77+083 57.06+0.78
HU 49.76+035 48.25+062  50.02+042  49.27+0s6
RO 54.23+067 54.11+037 54.94+0.50 54.19+0.76
FR 62.19+041  61.74+032  62.36+0.59 61.85+0.60
MR 41.06+289 39.45+176  41.83+350  41.15+262
UK 58.92+026  58.75+094  58.84+0.59 59.64+0.15
PT 66.05+021  66.67+053 66.65+0.44 65.46+0.44
1T 58.11+033  57.43+024  58.65+0.49 58.34+0.32
ES 63.71+033  63.18+033  64.07+0.51 63.63+0.34
CS 56.87+027 54.94+040 57.20+0.14 56.40+0.28
EL 60.59+023  59.40+023  60.86+0.56 59.87+1.11
FI 55.58+042 54.78+025 55.40+0.16 55.18+024
RU 60.18+044 60.05+067 60.12+0.36 60.00=+0.28
NL 62.84+037 60.97+0s4 63.21+0.38 60.76+0.68
TE 44.66+200 42.41+263 43.46+202 44.40+3.32
DE 56.86+032 55.34+144  57.70+043 54.36+0.52
PL 57.67+036 56.68+063 58.16+0.35 58.01+031

Table 15: F1 scores (%) of SAN-RPRs with certain embedding removed from the node representation evaluated on
UPB v2 test set with predicted parsers. The bold score and underlined score indicate the highest and second-highest
scores. AVG indicates the average F1 scores of a specific model evaluated in target languages.
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SAN- SAPR- SGCNs GATs TAGATSs BIiLSTMs

RPRs RPRs

(w/o POSE)
EN 78.32+0.32 78114042 | 79.944027 | 79.81+019  79.07+0.19 | 76.86+034
AVG | 52.73+032 52.644038 | 52.524038 | 52.66+0.14 52.78+014 | 51.85+0.09
TA 36.53+1.32 39.57+118 | 34.32+1.12 | 35.08+058 35.68+128 | 34.19+1.22
HI 47.69+1.10 45.04+035 | 48.24+061 | 48.25+033 47.65+033 | 46.63+038
ZH 50.81+0.51 50.96+0.88 | 45.77+067 | 46.12+039 46.80+064 | 47.56+0.89
JA 36.07+1.20 34.78+129 | 37.43+028 | 37.99+052 39.30+0.73 | 37.40+061
VI 28.30+0.92 29.10+045 | 27.95+056 | 28.06+059 28.31+055 | 28.18+0.38
KO 42.06+1.50 45.24 14123 | 42.92+064 | 43.224056 44.57+024 | 41.77 %161
ID 57.77+033 59.97+0.53 | 58.54+082 | 58.33+069 59.11+087 | 56.11+0.384
HU 50.02+0.42 49.08+034 | 50.76+041 | 51.10+051  50.90+037 | 50.64+039
RO 54.94 +0.50 54464052 | 53.57+047 | 54.124+049  53.60+045 | 53.26+034
FR 62.36-0.59 62.11+047 | 60.93+038 | 61.64+044 61.13+022 | 61.22+027
MR 41.83+3.50 40.364+220 | 40.97+340 | 38.06+0.13 39.26+120 | 37.18+228
UK 58.84+0.59 59.36+072 | 59.66+076 | 59.49+056 59.72+031 | 58.96+0.07
PT 66.65+0.44 66.49+033 | 65.62+043 | 65.99+032 65.61+0.15 | 64.40+033
IT 58.65-+0.49 57.80+039 | 57.43+042 | 58.00+042 57.34+034 | 58.02+027
ES 64.07+0.51 63.62+025 | 63.87+061 | 64.29+036 63.91+027 | 62.48+029
CS 57.20+0.14 55.80+051 | 57.95+052 | 58.02+021 57.62+028 | 56.59+036
EL 60.86+0.56 60.23+040 | 60.56+069 | 60.74+048 60.86+034 | 59.76+045
FI 55.40-+0.16 55.29+054 | 54.87+040 | 54.62+032 54.88+020 | 54.62+020
RU 60.12+0.36 61.13+050 | 59.98+034 | 60.14+016 60.30+022 | 59.73+0.25
NL 63.2140.38 62.22+058 | 62.94+021 | 63.53+064 62.97+037 | 62.47+036
TE 43.46+2.02 43.88+157 | 46.08+1.07 | 46.96+1.49 46.96+182 | 45.95+051
DE 57.70+0.43 56.98+1.13 | 58.61+030 | 58.52+026 58.52+0.18 | 57.72+023
PL 58.16=+0.35 57.28+046 | 59.08+031 | 59.00+044 58.92+052 | 57.73+023
SC 18 16 - - - -

Table 16: F1 scores (%) of best models evaluated on UPB v2 test set with predicted parsers. The bold score and
underlined score indicate the highest and second-highest scores. AVG indicates the average F1 scores of a specific
model evaluated in target languages. SC indicates the superiority score of each model.

Frozen mBERT Fine-Tuned mBERT

SAN-RPRs SAPR-RPRs | SAN-RPRs SAPR-RPRs
EN 78.2640.40 78.11+0.42 79.37+0.60 79.04+0.57
AVG | 52.73+040 52.64+0.38 54.01+0.95 53.82+1.17

Table 17: F1 scores (%) of SAN-RPRs and SAPR-RPRs with frozen mBERT and fine-tuned mBERT. AVG indicates
the average F1 scores of a specific model evaluated in target languages.
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