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ABSTRACT

We present a sparsely connected neural network architecture constructed using
the theory of Ramanujan graphs which provide comparable performance to a
dense network. The method can be considered as a before-training, determin-
istic, weight free, pruning at initialization (PaI) technique. The deterministic Ra-
manujan graphs occur either as Cayley graphs of certain algebraic groups or as
Ramanujan r-coverings of the full (k, l) bi-regular bipartite graph on k + l ver-
tices. Sparse networks are constructed for bipartite graphs representing both the
convolution and the fully connected layers. We experimentally show that the pro-
posed sparse architecture provides comparable accuracy with a lower sparsity ratio
than those achieved by previous approaches based on non-deterministic methods
for benchmark datasets. In addition, they retain other desirable properties such as
path connectivity and symmetricity.

1 INTRODUCTION

Sparsely connected neural architectures are becoming increasingly popular for their reduced train-
ing time and comparable accuracy with a dense network. Existence of sparse high performing
subnetworks of a backbone dense network forms the basis of the well known lottery ticket hypoth-
esis (Frankle & Carbin, 2019). Several approaches have been directed towards identifying winning
lottery tickets with a minimal effort. Initial research were based on applying established pruning
algorithms on a partially trained network (Renda et al., 2020; Fischer & Burkholz, 2022). In or-
der to reduce the effort even further, Pruning at Initialization (PaI) was suggested (Frankle et al.,
2020; Wang et al., 2021; Sreenivasan et al., 2022). These method use the structure of the initialized
network, in a data dependent or independent manner, to prune the network to a high sparsity ratio
(Sreenivasan et al., 2022; Lee et al., 2019a;b; Wang et al., 2020; Tanaka et al., 2020).

Expander graphs are connected sparse networks (Hoory et al., 2006) with bounded expansion fac-
tors. Higher spectral gap between the first and the second eigenvalues of a graph adjacency matrix
points towards a better expansion. Ramanujan graphs (Lubotzky et al., 1988) are a class of regular
spectral expanders with maximally high spectral gaps. It has been empirically shown that the expan-
sion property is strongly correlated with the performance of sparse neural networks (Prabhu et al.,
2018b; Pal et al., 2022).

Spectral sparsification is a method of obtaining such expander like neural networks (Laenen, 2023).
In general, the expander networks provide a sparse initialization architecture which may be trained
to a high accuracy (Stewart et al., 2023; Esguerra et al., 2023; Prabhu et al., 2018b). Most of the
expander networks used for this purpose are obtained by first generating random bipartite graphs for
each layer, and then selecting the ones with a large spectral gap. This is based on the fact that random
graphs are weakly Ramanujan (a conjecture of Alon, proved by Freidman). However, the expander
based techniques mentioned above often favors random network initialization which are sensitive to
random reinitialization and rewiring (Ma et al., 2021). Additional spectral measures are necessary
to arrest these possibilities (Hoang et al., 2023). The iterative mean difference of bound (IMDB)
score proposed for this purpose in (Hoang et al., 2023) is an elegant measure which correlates with
the performance of a sparse networks.

We propose a deterministic sparse network initialization technique based on Ramanujan graphs that
are constructed either as Cayley graphs of certain algebraic groups or as Ramanujan r-coverings
of the full (k, l) bi-regular bipartite graph on k + l vertices. Prior approaches to using Ramanujan
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expander graphs for PaI have predominantly relied on constructions based on random or iterated
magnitude pruning techniques. Unfortunately, this approach has led to the formation of irregular
graph networks that do not strictly adhere to the rigorous definition of Ramanujan graphs. Our
approach of constructing a deterministic Ramanujan network avoids the irregularity issues and thus
naturally have a high IMDB value. Ramanujan initializers using these bipartite graphs suitably
represent the fully connected as well as the convolutional layers.

Deterministic Ramanujan graph based sparse network initialization has several advantages. Path
connectedness and regularity is guaranteed by the Ramanujan graph construction technique. This
ensures good performance even at very low remaining weight ratios. The sparse networks generated
are data independent, structurally pre-defined, with a static mask across the training iterations. A
symmetry property of the sparse adjacency matrix is preserved in this process.

Experimental results on benchmark image classification data sets show that Ramanujan sparse net-
work initialization provides comparable performance with dense networks. The paper is organized
as follows. We present a brief literature survey in the next section. Contributions of the paper
are highlighted next. The mathematical formulation of deterministic Ramanujan graphs is then
presented, along with the construction techniques of sparse neural network layers. Finally, the ex-
perimental results are outlined.

2 RELATED WORK

Pruning at initialization (PaI) has been well studied in literature both in data dependent and data in-
dependent contexts (Cheng et al., 2023). The baseline consists of random pruning techniques based
on either uniform edge sampling or Erdos-Renyi graphs (Liu et al., 2022; Evci et al., 2020; Mocanu
et al., 2018; Gadhikar et al., 2023). More advanced techniques like SNIP use edge sensitivities (Lee
et al., 2019b). Gradient flows over the edge weights are used in state-of-art techniques like GraSP
Wang et al. (2020), and SynFlow (Tanaka et al., 2020). Other gradient sensitivity scores has also
been used for this purpose (Ramanujan et al., 2020).

Expander based random winning lottery ticket generation has been studied in (Stewart et al., 2023).
The methodology is based on generating random d-regular graphs for the bipartite layers. These
graphs are Ramanujan with a high probability. A deep expander sparse network, the X-Net, is
presented in (Prabhu et al., 2018b). It is constructed by sampling d-left regular graphs from the space
of all bipartite graphs. Ramanujan graph based sparsity aware network initialization is proposed in
(Esguerra et al., 2023). It uses an orthogonalization technique for block sparse bi-adjacency matrix
construction of the fully connected as well as convolutional layers. The method preserves path
connectedness and dynamical isometry of gradient descent.

One-shot neural network pruning using spectral sparsification is presented in (Laenen, 2023). It
is based on the effective resistance algorithm for obtaining spectrally sparse bipatite graphs. It
is shown that this is equivalent to global sparsification. RadiX-Net (Kepner & Robinett, 2019) is
a deterministic sparse neural architecture with mixed-radix topologies. It has desirable symmetry
properties that preserves path connectedness and eliminates training bias. Connectivity properties of
networks are used in other graph theoretic initialization schemes that define an initial sparse network
topology (Vysogorets & Kempe, 2023; Chen et al., 2022; 2023).

3 RESEARCH GAP AND CONTRIBUTIONS

Recently, there has been a flurry of works on the construction of pruned sparse networks based on
various graph theoretic properties including expansion, path-connectivity, symmetry etc. (Prabhu
et al., 2018a; Kepner & Robinett, 2019; Pal et al., 2022; Stewart et al., 2023; Hoang et al., 2023).
However, none of the above works could guarantee the following three properties at the same time:
(i) Ramanujan property - allows us to construct the best possible expanders given a set of vertices
and maintaining a high level of sparsity, (ii) Path-connectedness - a desirable property for all PaI
architectures, and, (iii) Highly symmetric - a desirable property for computational purposes.

Further, all the previous approaches based on random network initializations or existent pruning
strategies suffer from the issue of irregularity and are not guaranteed to be rigorously Ramanujan.
For instance, application of the work of Hoory (Hoory et al., 2006) as mentioned in (Hoang et al.,
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Figure 1: An example of a double layered regular bipartite graph where each layer is Ramanujan.

2023; Pal et al., 2022) etc depends on the crucial fact that the minimal degrees of the base bipartite
graphs needs to be ≥ 2 for the graphs to be called Ramanujan. Our architecture based on determinis-
tic regular Ramanujan graphs of degree ≥ 3 ensures that the initialized networks remain Ramanujan,
are path-connected and are highly symmetric being either Cayley graphs of certain algebraic groups
to replace the balanced dense bipartite graphs or the Ramanujan r-covering of full bi-regular bipar-
tite graphs to replace the unbalanced dense bipartite graphs. This is the first such implementation of
deterministic Ramanujan graph neural networks.

Path-connectedness: The fact that each layer of the bipartite graphs are either regular or bi-regular
with the regularity bigger than 3 ensures that the entire architecture remains path-connected, i.e.,
starting from any node in the first layer we can reach a node in the last layer by a connected path.
A proof of this is direct. In Figure 1, suppose there are 3 layers I, J,K. We wish to reach layer K
starting from any point in layer I by a connected path. Pick any ir, r ∈ {1, 2, 3, 4, 5}. Use the fact
that there is at least one edge going out from ir to reach some js and from js again use the same
fact of outgoing edges bigger than 1 to reach some point in layer K. The general case follows by
induction on the number of layers.

High-symmetricity: The adjacency matrices of Cayley graphs and that of covers of Cayley graphs
have much more symmetry than that of general regular graphs. Often computations are optimised to
use such symmetry viz. in the case of the software GAP (Group, 2022) for instance. This may lead
to fast computation on sparse Ramanujan Cayley graphs. In the above graph, the adjacency matrix
of the first layer (which can be represented as a Cayley graph on the group Z2 × Z5 = {(x, y) :

0 ≤ x ≤ 1, 0 ≤ y ≤ 4} with generating set S = {(1, 0), (1, 1), (1, 4)}) is Adj =

(
05×5 B5×5

BT
5×5 05×5

)

where B =


1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1
1 1 0 0 1

.

The principal contributions of the paper are:

1. We present a deterministic Ramanujan graph construction technique for initializing sparse
neural networks. To the best of our knowledge, no other work exists towards this direction.

2. The construction technique is adapted for both fully connected and convolution layers.
3. Experimental results demonstrate the effectiveness of deterministic Ramanujan graph ini-

tialized networks on benchmark datasets at very high sparsity.

4 FORMULATION OF SPARSE NEURAL RAMANUJAN GRAPHS

In this section we present the mathematical framework which allows us to construct in a determinis-
tic manner the sparse sub-network of the original dense neural networks. This forms the basis of our
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strategy of pruning at initialization. Recall that a Ramanujan graph is an extremal expander graph in
the sense that its spectral gap is almost as large as possible. For this article, we shall be concerned
with bipartite Ramanujan graphs.

Definition 1 (Bipartite Ramanujan graphs) Let Γ = (V,E) be a d-regular (d ≥ 3) bipartite
graph. Let the eigenvalues of its adjacency matrix be λn ≤ λn−1 ≤ . . . ≤ λ2 ≤ λ1. Then Γ is said
to be Ramanujan iff |λi| ≤ 2

√
d− 1, for i = 2, . . . , (n− 1).

Note that we are considering undirected graphs, so the adjacency matrix is a 0 − 1 symmetric
matrix and the eigenvalues are all real. A non-bipartite graph is said to be Ramanujan if in addition
|λn| ≤ 2

√
d− 1. For an unbalanced (d1, d2)−biregular bipartite graph (d1, d2 ≥ 3), the condition

of being Ramanujan changes to |λi| ≤
√
d1 − 1 +

√
d2 − 1, for i = 2, . . . , (n − 1). We see that

when d1 = d2, it transforms to the usual definition. A detailed description of Ramanujan graphs can
be found in (Hoory et al., 2006, sec. 5.3).

The above graphs are excellent spectral expanders. They are also notoriously difficult to construct.
In fact, even the question of existence of (infinite families of) Ramanujan graphs is a non-trivial
one and it is not yet fully resolved for the non-bipartite case. The first such construction of graphs
are due to Lubotzky–Phillips–Sarnak (LPS) (Lubotzky et al., 1988) (and independently by Margulis
(Margulis, 1988)). We shall modelise our initial pruned network according to these constructions.

4.1 MATHEMATICAL PRELIMINARIES

For the construction of the deterministic Ramanujan networks, we shall need the following notions
from arithmetic.

Definition 2 (Quadratic residue and Legendre symbol) An integer q is called a quadratic residue
modulo n if there exists an integer x such that x2 ≡ q (mod n). Otherwise, q is called a quadratic
non-residue modulo n.
Let p be an odd prime number and a be an integer. The Legendre symbol of a and p is defined as(

a

p

)
=


1 if a is a quadratic residue modulo p and a ̸≡ 0 (mod p),

−1 if a is a quadratic non-residue modulo p,

0 if a ≡ 0 (mod p).

Given a prime a, there are infinitely many primes p such that Legendre symbol of a and p is −1 (and
also there are infinite many primes p such that it is +1)

Definition 3 (PGL2(K)) Let K be a field. Let us denote by GL2(K) the group of invertible 2-by-2
matrices with coefficients in K, ie, the matrices with non-zero determinant. Let PGL2(K) be the
quotient group

PGL2(K) = GL2(K)/Z(K)

where

GL2(K) =

{(
a b
c d

)
: ad− bc ̸= 0 (in K)

}
, Z(K) =

{(
a 0
0 a

)
: a ̸= 0(in K)

}
Remark: If K = Fq , then |PGL2(K)| = q(q2 − 1). In Section 4.3, we shall use this property to
construct bipartite q(q2−1)

2 by q(q2−1)
2 Ramanujan networks.

4.2 REGULAR RAMANUJAN GRAPHS

Let p, q ≡ 1(mod 4) be distinct odd primes (the condition of 1(mod 4) can be removed at the cost
of making the analysis more technical and complicated, we shall mention later how it is achieved).
The graph Xp,q is constructed using the following general method.

1. It is a Cayley graph on the subgroup of 2 by 2 matrices, PGL2(Fq) where Fq is the finite
field of characteristic q.
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2. Consider the equation a20 + a21 + a22 + a23 = p. Jacobi’s four square theorem states that
there are p + 1 solutions to the equation a20 + a21 + a22 + a23 = p with a0 > 0 odd (i.e.,
a0 ≡ 1 (mod 2)) and a1, a2, a3 even. Now, for each such solution (a0, a1, a2, a3) consider

the matrix
(

a0 + ia1 a2 + ia3
−a2 + ia3 a0 − ia1

)
where i is some fixed solution to i2 = −1 (mod q).

This matrix belongs to PGL2(Fq). This can be checked from the definition of PGL2(Fq).

3. Form the generating set S of the Cayley graph to be the set of these (p+1) matrices. Thus
Xp,q = Cay(PGL2(Fq), S).

4. The graphs are bipartite iff p is not a quadratic residue modulo q or in other words the
Legendre symbol

(
q
p

)
= −1. The bipartite graphs Xp,q will be (p + 1)-regular, of size

q(q2−1)
2 by q(q2−1)

2 and are Ramanujan (Lubotzky et al., 1988).

Remark: If p ≡ 3 (mod 4), then a similar strategy is employed, except in this case one looks at
solutions of a20 + a21 + a22 + a23 = p with a0 ≡ 0 (mod 2) (Musitelli & de la Harpe, 2006, sec. 2).

4.3 CONSTRUCTION OF THE FULLY CONNECTED LAYERS

For the fully connected layers consisting of balanced bipartite graphs, we prune them at initialization
in accordance with the Ramanujan graph structure of LPS. For this we select a prime q such that
q(q2−1)

2 by q(q2−1)
2 is closest to the size of the original bipartite layer. We then select the prime p

such that the Legendre symbol
(

q
p

)
= −1 (note that this choice is always possible as given a prime

q there are infinite number of primes p satisfying this property). Selecting the minimum possible
value of p will give us the sparsest Ramanujan graph. For a 4096 by 4096 original network, our
choice of (p, q) = (5, 17) giving rise to 6 regular bipartite sparse Ramanujan networks. Note that
here we have taken p ≡ 1 (mod 4), but we could have also chosen p = 3 or even p = 2 (see
construction of cubic Ramanujan graphs (Chiu, 1992)) resulting in even sparser networks.

4.4 BI-REGULAR RAMANUJAN GRAPHS

A bipartite graph is said to be (d1, d2) bi-regular if each bi-partition has fixed regularity d1, d2
respectively. Note that a simple computation reveals that if (n1, n2) are the bi-partition sizes, then
n1d1 = n2d2. Thus three parameters are needed to specify these types of graphs. One way to
construct bi-regular Ramanujan graphs is the following, see (Burnwal et al., 2021):
Fix a prime q and a q×q cyclic shift permutation matrix P = [P ]ij with [P ]ij = 1 if j = i−1 (mod
q) and 0 otherwise. Recall that the adjacency matrix of any m × n bipartite graph can be written

as Adj =

(
0m×m Bm×n

BT
m×n 0n×n

)
, where B is called the bi-adjacency matrix. Define the bi-adjacency

matrix of this bipartite graph to be B =


Iq Iq . . . Iq
Iq P . . . P l−1

Iq P 2 . . . P 2(l−1)

...
Iq P q−1 . . . P (q−1)(l−1)

 where Iq is the q × q

identity matrix and P is as above. B is a q2 × lq matrix and the bipartite graph is either q2 × lq with
bi-regularity (l, q) or symmetrically lq×q2 with bi-regularity (q, l). The graphs whose bi-adjacency
matrices are represented as B (or BT ) are Ramanujan. These graphs are explicit realisations of the
Ramanujan r-coverings of the full (k, l) bi-regular bipartite graph on k+ l vertices as shown in (Hall
et al., 2018, cor 2.2).

4.5 CONSTRUCTION OF THE CONVOLUTION LAYERS

For pruning the convolution layers, we utilise the bi-regular Ramanujan graphs. Let q ≥ l. We
analyse the size of the pruned network compared to the original fully connected network. The total
number of edges in the q2 × lq Ramanujan graph is lq2 whereas the original network has lq3 edges.
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Choosing the value of q to be as large as possible ensures that the pruned network has a small
percentage of edges remaining while still being a Ramanujan network.

The condition q ≥ l is not a necessary requirement for implementing the technique outlined in Sec-
tion 4.3. The reason behind this flexibility lies in the specific properties of the unbalanced bipartite
graph B, which has dimensions q2 by lq. The critical insight is that if the unbalanced bipartite graph
B is Ramanujan, then its transpose, denoted as BT (with dimensions lq by q2), is also Ramanujan.

A m by n bipartite graph connects two network layers with m and n nodes respectively. The
technique for convolution layers to generate bi-regular bipartite graphs (of order m by n) has
complexity O(mn). This complexity is due to the creation of the pruning mask which is of
size m × n. The LPS technique to generate p + 1 regular Ramanujan graphs has complexity
O(q5 + p4) = O(q5) = O(m5/3). Here m = n = O(q3). This complexity is due to the creation of
the PGL2 group in which first we need to create the generator matrix and then find the equivalence
classes which takes time O(q4q). The solution to the four square problem has complexity O(p4).
Since the number of nodes are much less compared to the total parameters, the complexity is low.

4.6 GENERAL BIPARTITE NETWORKS

In the case of bipartite networks with arbitrary sizes, one can achieve as sparse Ramanujan graphs as
possible. It has recently been proven by Marcus, Spielman and Srivastava that for the regular case,
for each degree d ≥ 3, infinite families of bipartite Ramanujan graphs exist. This is also true for the
bi-regular case, for each pair (d1, d2) with d1, d2 ≥ 3, d2 = kd1, k ≥ 2. Further they showed the
existence of these types of graphs of all sizes. Their method of proof is probabilistic and existential
in nature. It does not give explicit families of bipartite Ramanujan graphs. However there now exist
polynomial time algorithms (Cohen, 2016) (for the regular case) (Gribinski & Marcus, 2021) (for
the bi-regular case) with which we can extract explicit Ramanujan graphs. For the regular case, we
fix an integer n ≥ 3 and a degree d ≥ 3 and in the output we shall obtain a d-regular n× n bipartite
Ramanujan graph while for the bi-regular case, we fix three integers n, k, d with n > 2, d > 2, k ≥ 2
and obtain (d, kd) bi-regular Ramanujan graph of size kn× n.

5 EXPERIMENTAL METHODOLOGY AND RESULTS

The goal of our experiments is to study the effectiveness of deterministic Ramanujan graph based
sparse network initialization. We compare the classification accuracy of the models at very low
remaining weight percentages. It is desirable that the sparse networks have a small accuracy drop
(δacc) as compared to the dense networks. We now present details of our experimental studies.

5.1 DATASETS AND ARCHITECTURES

The datasets used for the experiments are Cifar-10 and Cifar-100 (Krizhevsky, 2009). The experi-
ments are performed over a variety of architectures including VGG13, VGG16, VGG19 (Simonyan
& Zisserman, 2014), AlexNet (Krizhevsky et al., 2012), ResNet18 and ResNet34 (He et al., 2016)
to show the robustness of our PaI method. We proceed in two parts. In the first part we replace
the intermediate Fully Connected Layer by sparse Ramanujan layers. This is applicable to the fol-
lowing architectures VGG13, VGG16, VGG19 and AlexNet, on both the Cifar-10 and Cifar-100
datasets. In the second part while pruning the whole network including the convolution layers, the
experiments have been performed on Cifar-10 dataset for architectures VGG13, VGG16, VGG19,
AlexNet, ResNet18, ResNet34 and on Cifar-100 dataset for architectures ResNet18 and ResNet34.

5.2 EXPERIMENTAL METHODOLOGY

The experiments are conducted in two parts: 1) Only pruning the Fully Connected Layer, 2) Pruning
the whole network including the Convolution layers. For the first part, the construction of Ramanu-
jan graphs as given in Section 4.3 is used. Only the VGG and AlexNet architectures have a dedicated
fully connected layer in-between the network and the values used for p and q (Section 4.2) are given
in Table 1. This results in the fully connected layer becoming of size 2448× 2448 = q× (q2− 1)/2
with the effective number of connections between the bipartite graph being equal to 2448× (p+1).
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Table 1: Values of p and q used to generate the sparse fully connected layer
Model VGG13, VGG16, VGG19, AlexNet

FC Layer Size 4096 × 4096
p 5, 29, 109
q 17

For the second part of the experiment, the convolution layers are pruned according to the con-
struction given in Section 4.5. The convolution layer can be thought of as a matrix of dimensions
|Nout| × |Nin| × |Kw| × |Kh| where |Nout| is the number of output channels, |Nin| is the number
of input channels, |Kw| is the kernel width and |Kh| is the kernel height. This is considered to be a
bipartite graph with |Vleft| = |Nin| × |Kw| × |Kh| and Vright = |Nout| where each vertex of Vleft

has an edge with each vertex of Vright. The size of convolution layer being pruned and the choice
of l and q for different architectures is given in Table 2.

Table 2: Values of q and l to generate Ramanujan graphs for layers of VGG, AlexNet and ResNet
VGG13 VGG16 VGG19

Conv Size q l Conv Size q l Conv Size q l
[256× 256× 3× 3]× 1 13 177 [256× 256× 3× 3]× 2 13 177 [256× 256× 3× 3]× 3 13 177
[512× 256× 3× 3]× 1 19 121 [512× 256× 3× 3]× 1 19 121 [512× 256× 3× 3]× 1 19 121
[512× 512× 3× 3]× 3 19 242 [512× 512× 3× 3]× 5 19 242 [512× 512× 3× 3]× 7 19 242

Conv to Linear Size q l Conv to Linear Size q l Conv to Linear Size q l
2448× 25088 47 533 2448× 25088 47 533 2448× 25088 47 533

AlexNet ResNet18 ResNet34
Conv Size q l Conv Size q l Conv Size q l

[384× 256× 3× 3]× 1 19 121 [64× 64× 3× 3]× 4 7 82 [64× 64× 3× 3]× 6 7 82
[384× 384× 3× 3]× 1 19 181 [128× 64× 3× 3]× 1 11 52 [128× 64× 3× 3]× 1 11 52
[256× 384× 3× 3]× 1 13 265 [128× 128× 3× 3]× 3 11 104 [128× 128× 3× 3]× 7 11 104

[256× 128× 3× 3]× 1 13 88 [256× 128× 3× 3]× 1 13 88
[256× 256× 3× 3]× 3 13 177 [256× 256× 3× 3]× 11 13 177
[512× 256× 3× 3]× 1 19 121 [512× 256× 3× 3]× 1 19 121
[512× 512× 3× 3]× 3 19 242 [512× 512× 3× 3]× 5 19 242

Conv to Linear Size q l
2448× 25088 47 533

The pruning mask thus obtained is a matrix of size q2 × lq with the effective connections being
q2× l. The original pruning mask of the convolution layer has size |Nout| × [|Nin| × |Kw| × |Kh|].
By construction the obtained Ramanujan graph is actually a subgraph of the original pruning mask
and thus the entries in the original mask not part of the constructed Ramanujan graph are set to 0.

The network density reported in the tables of Section 5.4 is calculated by dividing the number of
effective connections which is equal to the sum of q × (q2 − 1)/2 × (p + 1) (effective number of
connections in fully connected layer) and q2 × l (effective number of connections in each of the
convolution layers) divided by the total number of connections present in the unpruned network.

Training parameters for all of the architectures are same and are summarized in Table 3. We train
the networks for 30 epochs for our methods in contrast to 250 epochs used by (Hoang et al., 2023).

Table 3: Training parameters for the architectures compared
Train Epochs Batch Size Learning Rate Optimizer Weight Decay Momentum Initialization

30 64 0.003 SGD 0.005 0.9 Kaiming Uniform

5.3 METHODS COMPARED

The performance of the pruned networks are compared with that of similar dense networks. We
have also compared our method against various Pruning at Initialization (PaI) techniques such as
Random (Liu et al., 2022), ERK (Evci et al., 2020; Mocanu et al., 2018), SNIP (Lee et al., 2019b),
GraSP (Wang et al., 2020), and SynFlow (Tanaka et al., 2020).
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5.4 RESULTS AND DISCUSSION

We study the accuracy of the sparse networks obtained by our technique for various architectures
and dataset at different levels of sparsification. The accuracy are compared with those of the corre-
sponding unpruned network with similar number of nodes. The unpruned and the pruned networks
are both trained for 30 epochs using the parameters reported in Table 3.

For the first part of the experiment where only the intermediate fully connected layer is pruned,
the results are summarized in Table 4 for the Cifar-10 and Cifar-100 datasets. It can be observed
that the Ramanujan graph construction allows us to extremely prune the fully connected layer upto
0.08% while still retaining the accuracy as of the unpruned model. It can also be seen that for 1.6%
pruning the accuracy tends to actually beat the unpruned one suggesting that pruning also leads to a
reduction in the overfitting of data for the smaller Cifar-10 dataset.

Table 4: Accuracy of VGG and AlexNet when only the intermediate fully connected layer is pruned

Model Cifar-10: FC Size / Network Density
4096× 4096 / Unpruned 2448× 110 / 1.6% 2448× 30 / 0.43% 2448× 6 / 0.08%

VGG13 83% 83% 82% 83%
VGG16 84% 86% 84% 83%
VGG19 85% 86% 84% 83%
AlexNet 81% 82% 81% 81%

Model Cifar-100: FC Size / Network Density
4096× 4096 / Unpruned 2448× 110 / 1.6% 2448× 30 / 0.43% 2448× 6 / 0.08%

VGG13 54% 54% 52% 52%
VGG16 57% 55% 55% 53%
VGG19 55% 55% 52% 53%
AlexNet 53% 52% 52% 51%

In the second part of the experiment wherein we prune the complete model including the convolution
layers, we could achieve an overall pruning percentage of 1.7% for VGG, 2.3% for AlexNet and
around 5% for the ResNet architectures. The accuracy of the models on the Cifar-10 and Cifar-100
datasets are summarized in Table 5. It can be observed that pruned networks still maintain their
accuracy with a slight reduction of around 2− 3% compared to the unpruned networks.

Table 5: Accuracy of various architectures when the complete network is pruned including the
Convolution and the FC layers.

Model Unpruned accuracy Accuracy / Network Density
Cifar-10 dataset

VGG13 83% 81%/1.7%
VGG16 84% 82%/1.7%
VGG19 85% 83%/1.7%
AlexNet 81% 77%/2.3%

ResNet18 83% 82%/5.6%
ResNet34 83% 84%/5.2%

Cifar-100 dataset
ResNet18 56% 54%/5.6%
ResNet34 57% 56%/5.2%

Next, we compare the performance of the proposed Ramanujan sparse network initializations with
other state-of-art pruning at initialization techniques. The comparison of accuracy and drop in accu-
racy from the unpruned model (δacc) at remaining weight percentages of 1.7% and 5.2% are shown
in Table 6 for the VGG16 (Cifar-10) and ResNet34 (Cifar-10 and Cifar-100). The results for the re-
lated PaI methods, namely, Random pruning, ERK, SNIP, SynFlow and GraSP, have been reported
from (Hoang et al., 2023). The accuracy of the unpruned network is also reported. Note that some
of the base models of the architectures considered in their paper are different. For instance, in the
case of VGG16, at least two different models are coined by the same term in the literature.
The original VGG16 architecture has 135M parameters and the accuracy of the trained original
VGG network is around 84% in the unpruned case. This is the network with which the accuracy of
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our pruned network is compared. There is at least one other VGG16 network sometimes referred
to by some authors as CIFAR-VGG, see for instance Giuste & Vizcarra, 2020 which is a modi-
fied (pretrained) VGG16 architecture with additional dropout and weight decay to reduce overfitting
potential. These changes lead to higher classification accuracy of 94% on the CIFAR-10 testing
dataset, on which the results of (Hoang et al., 2023) were reported. We use the term VGG-base
for the 135M parameter model. This choice was made to emphasize our ability to implement the
method without additional information on dropout and pretraining, which the smaller VGG (15M
parameters) utilizes. Since the original starting networks are different, instead of a direct accuracy
comparison of our PaI networks with those reported in (Hoang et al., 2023), it is more helpful to
compare the drop (or gain) in accuracy from the trained unpruned networks after a certain period of
training epochs of the sparse initial Ramanujan networks. This is denoted by δacc. In terms of the
drop in accuracy (δacc) as compared with the unpruned network, we can see that our method remains
close to the accuracy of the original VGG architectures even at 1.7% sparsity, whereas it performs
at par and or sometimes even better for the ResNet architectures at low sparsity. The drop in accu-
racy with respect to a dense network is less or comparable for our proposed method as compared to
related techniques for a lower remaining weight ratio.

Table 6: Comparing performance of various PaI methods
Cifar-10 / CIFAR-VGG (15M) VGG-base (135M)

Reported Results (Hoang et al., 2023) (Network Density ∼ 1.7%) Our Results (Network Density ∼ 1.7%)
Method Unpruned Random ERK SNIP SynFlow Method Unpruned Our method

Accuracy 94% 83% 90% 92% 92% Accuracy 84% 82%
δacc 11% 4% 2% 2% δacc 2%

IMDB −0.116971 0.128288 0.163364 0.347729 IMDB 3.463054
Cifar-10 / ResNet34 / Network Density = 5.2%

Reported Results (Hoang et al., 2023) (250 epochs) Our Results (30 epochs)
Method Unpruned Random ERK SNIP GraSP Method Unpruned Our method

Accuracy 89% 81% 86% 87% 86% Accuracy 83% 84%
δacc 8% 3% 2% 3% δacc -1% (better)

IMDB −0.018530 0.181492 0.297726 0.188965 IMDB 3.098840
Cifar-100 / ResNet34 / Network Density = 5.2%

Reported Results (Hoang et al., 2023) (250 epochs) Our Results (30 epochs)
Method Unpruned Random ERK SNIP GraSP Method Unpruned Our method

Accuracy 62% 52% 59% 60% 59% Accuracy 57% 56%
δacc 10% 3% 2% 3% δacc 1%

IMDB −0.018530 0.101492 0.297726 0.188965 IMDB 3.098840

Next, we also compare the IMDB (iterative mean difference of bound) as used by (Hoang et al.,
2023) to compare the constructed Ramanujan graph network with the sparse networks obtained by
other PaI techniques reported in Table 6. The value is computed as IMDB =

∑
K(

√
dleft − 1 +√

dright − 1 − λ2). Here, dleft and dright are the degrees of the left and right side of the bipartite
Ramanujan Graph that we have constructed and λ2 is the second largest eigenvalue by magnitude.
K represents the number of layers that we have pruned in our model. The IMDB values for various
methods along with our method is also given in Table 6. It can be seen that a much higher IMDB
value is obtained in the proposed method as compared to existing PaI techniques. This shows that
deterministic Ramanujan graph construction generates better connected sparse networks.

6 CONCLUSION

We present a deterministic method for constructing sparse neural network structures which upon
weight initialization can be trained to a high accuracy. The method is based on a Ramanujan graph
construction technique using Cayley graphs and Ramanujan coverings. Unlike random graph gen-
eration, this always results in a structured, symmetric, and regular sparse network. The method is
adapted for masking both the fully connected and convolution layers. Experimental results on popu-
lar architectures and datasets demonstrate that close to unpruned network accuracy can be achieved
using a very sparse network structure.

In future, we would like to exploit the structured sparsity of the graph adjacency matrices for efficient
implementation of the training algorithms. We would also extend the method to other recurrent
neural architectures.
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