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ABSTRACT

The Homotopy paradigm, a general principle for solving challenging problems,
appears across diverse domains such as robust optimization, global optimization,
polynomial root-finding, and sampling. Practical solvers for these problems typi-
cally follow a predictor-corrector (PC) structure, but rely on hand-crafted heuris-
tics for step sizes and iteration termination, which are often suboptimal and task-
specific. To address this, we unify these problems under a single framework,
which enables the design of a general neural solver. Building on this unified view,
we propose Neural Predictor-Corrector (NPC), which replaces hand-crafted
heuristics with automatically learned policies. NPC formulates policy selection
as a sequential decision-making problem and leverages reinforcement learning to
automatically discover efficient strategies. To further enhance generalization, we
introduce an amortized training mechanism, enabling one-time offline training for
a class of problems and efficient online inference on new instances. Experiments
on four representative homotopy problems demonstrate that our method gener-
alizes effectively to unseen instances. It consistently outperforms classical and
specialized baselines in efficiency while demonstrating superior stability across
tasks, highlighting the value of unifying homotopy methods into a single neural
framework.

1 INTRODUCTION

As a general principle for solving difficult problems, the Homotopy paradigm appears across diverse
domains under different names, for example, Graduated Non-Convexity (Yang et al., 2020a) and
Gaussian homotopy (Mobahi & Fisher III, 2015) for optimization, homotopy continuation (Bates
et al., 2013) for polynomial root-finding, and annealed Langevin dynamics (Song et al., 2020) for
sampling. Specifically, the Homotopy paradigm firstly construct an explicit homotopy interpola-
tion from a simple, easily solved source problem to a complex target problem. Then, the solution
of the complex problem is progressively approached by tracing the implicit trajectory along this
interpolation path, effectively circumventing the challenges of direct solution.

Practical solvers for these problems often follow a predictor-corrector (PC) structure, where a pre-
dictor advances along the outer homotopy interpolation and a corrector iteratively refines the so-
lution (Allgower & Georg, 2012). Despite their widespread use, these solvers rely on manually
designed heuristics for step sizes and termination rules, which are typically suboptimal and task-
specific. Furthermore, these methods have been independently developed in each domain, and no
prior work has systematically unified these efforts under a single framework. We argue that this
unification is crucial: it enables the design of a general solver that applies across problem instances,
rather than requiring ad-hoc, per-problem solutions.

Building on this perspective, we propose Neural Predictor-Corrector (NPC), a plug-and-play
framework that replaces heuristic rules with automatically learned policies. Instead of manually

∗Equal contribution. † Project lead. BCorresponding authors.

1



Published as a conference paper at ICLR 2026

Optimization Polynimial Root Finding Sampling

Source
Problem

Target
Problem

Homotopy
Interpolation

Figure 1: Homotopy paradigm across domains. The homotopy interpolation (blue loss functions
in optimization, green polynomial roots in polynomial root-finding, and red probability densities in
sampling) is explicitly defined, while the inner solution trajectory (orange curve) must be implicitly
tracked.

designed rules, NPC treats the choice of predictor and corrector strategies as a sequential decision-
making process (Barto et al., 1989) and employs reinforcement learning (RL) (Kaelbling et al.,
1996) to adaptively learn effective policies. Crucially, we adopt an amortized training regime: a
single offline training phase over a distribution of problem instances produces a policy that can be
directly deployed on new instances from the same problem without per-instance fine-tuning.

We evaluate NPC on four representative homotopy tasks: Graduated Non-Convexity for robust opti-
mization (Yang et al., 2020a), Gaussian homotopy for global optimization (Mobahi & Fisher III,
2015), homotopy continuation for polynomial root-finding (Bates et al., 2013), and annealed
Langevin dynamics for sampling (Song et al., 2020). Through experiments on four representa-
tive problems, our approach is validated for strong generalization to previously unseen instances.
Furthermore, the results reveal a dual advantage: our method not only consistently outperforms ex-
isting approaches in computational efficiency, but also demonstrates superior numerical stability,
thereby underscoring the benefits of our proposed architecture.

In summary, our main contributions are as follows:

• To the best of our knowledge, we are the first to unify diverse problems, including robust
optimization, global optimization, polynomial system root-finding, and sampling, under the
homotopy paradigm, thereby revealing their common predictor-corrector structure across
these problems. This enables a unified solver framework, rather than per-problem solutions.

• We introduce Neural Predictor-Corrector (NPC), the first reinforcement learning-based
framework that automatically learns predictor and corrector policies, replacing hand-
crafted heuristics with learned, adaptive strategies.

• Extensive experiments across multiple homotopy problems demonstrate that NPC signif-
icantly outperforms other methods in efficiency, while achieving higher stability and en-
abling efficient, training-free deployment on previously unseen instances.

2 RELATED WORKS

Although PC solvers appear across multiple domains, these lines of research have largely evolved
independently. We review them here and highlight gaps that motivate our work. A full discussion of
related works is provided in Appendix C.
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Classical PC algorithms. PC schemes trace solution trajectories along explicit homotopy interpo-
lations. In robust optimization, Graduated Non-Convexity (GNC) gradually increases non-convexity
to avoid poor local minima, with iterative solvers performing corrections (Yang et al., 2020a; Peng
et al., 2023). Gaussian homotopy methods construct progressively less smoothed objectives to
track minimizers along bandwidth reduction (Blake & Zisserman, 1987; Mobahi & Fisher III, 2015;
Iwakiri et al., 2022; Xu, 2024). Polynomial system root-finding uses homotopy continuation with
PC integration to trace roots from a simple start system (Bates et al., 2013; Breiding & Timme,
2018; Duff et al., 2019). In sampling, annealed Langevin dynamics and Sequential Monte Carlo de-
fine sequences of intermediate distributions with PC steps (Song & Ermon, 2019; Song et al., 2020;
Doucet et al., 2001). Across all these domains, predictor and corrector components are typically
hand-designed, requiring per-instance tuning and limiting generalization.

Learning-based improvements for homotopy workflows. Recent work has introduced learning
into homotopy pipelines, showing efficient and effective improvements on Gaussian homotopy (Lin
et al., 2023), sampling (Richter & Berner, 2024), combinatorial optimization (Ichikawa, 2024), and
polynomial root-finding (Hruby et al., 2022; Zhang et al., 2025). However, prior learning-based
methods either focus on a single homotopy component or require specialized per-instance training.

Reinforcement learning for optimization and sampling. RL has been applied to learn optimizers
or adapt algorithmic parameters, showing benefits on some optimization and sampling tasks (Li,
2019; Belder et al., 2023; Ye et al., 2025; Liu et al., 2025; Yan et al., 2025b; Wang et al., 2025).
However, these works do not address the full predictor–corrector control problem across diverse
homotopy classes, nor do they leverage amortized training to produce a single policy transferable
across instances.

3 HOMOTOPY PARADIGM AS A UNIFIED PERSPECTIVE

In this section, we introduce a unified perspective on diverse problems. We begin in Sec. 3.1 by
introducing the homotopy paradigm, a general principle that underlies a wide range of problems.
Next, in Sec. 3.2, we show that the corresponding practical solvers can all be instantiated within a
common predictor-corrector (PC) framework. Finally, in Sec. 3.3, we discuss four representative
problems together with their homotopy formulations and PC implementations, thereby illustrating
the breadth and utility of this unified perspective.

3.1 HOMOTOPY PARADIGM

As shown in Fig. 1, the homotopy paradigm provides a general principle for solving complex prob-
lem g(x). Specifically, the homotopy paradigm defines a continuous interpolation H(x, t) from
a simple source problem H(x, 0) = f(x) with known solutions to a complex target problem
H(x, 1) = g(x). By tracing the implicit solution trajectory x∗(t) along this interpolation as t varies
from 0 to 1, one progressively transforms the source solution into the target solution. The source
problem and interpolation are explicitly defined by the user, while the target solution is implicitly
determined along the trajectory.

3.2 PREDICTOR-CORRECTOR ALGORITHM

While the homotopy paradigm specifies the abstract principle, an effective algorithm is needed to
trace the implicit solution trajectory in practice. The PC method (Allgower & Georg, 2012) provides
such a concrete algorithmic framework. As shown in Fig. 2, PC decomposes trajectory tracking into
two complementary steps:

• Predictor: Determines the next level of the homotopy interpolation and predicts the solu-
tion’s position at that level.

• Corrector: Iteratively refines the predicted solution to align it with the true solution tra-
jectory, thereby preventing the accumulation of bias across levels.

The choice of predictor level schedule and corrector iteration count is often heuristic. Suboptimal
settings can lead to inefficiency, instability, or failure to follow the trajectory accurately, motivating
the development of adaptive or learning-based strategies for robust and efficient solution tracking.
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Figure 2: Illustration of the Predictor-Corrector algorithm. Predictor proposes the next level
and provides an initial solution estimate, while Corrector iteratively refines this estimate to project it
back onto the solution trajectory. Orange curve denotes the implicit solution trajectory, as in Fig. 1.

3.3 REPRESENTATIVE HOMOTOPY PROBLEMS AND PRACTICAL SOLVERS

To illustrate the breadth of homotopy paradigm applications, we describe four representative prob-
lems together with their corresponding homotopy interpolations and PC implementations.

1) Robust Optimization (Graduated Non-Convexity, GNC): Robust loss functions (e.g., Ge-
man–McClure (Black & Rangarajan, 1996)) mitigate the effect of outliers. However, they intro-
duce strong non-convexity, increasing the risk of poor local minima. Graduated Non-Convexity
(GNC) (Yang et al., 2020a) addresses this challenge by defining a homotopy interpolation:

H(x, t) =
∑
i

c̄2 r(x, yi)
2

c̄2 + t r(x, yi)2
, (1)

where c̄ is a predefined parameter that controls the robustness of the GM loss, r(·, ·) represents the
residual function, and yi denotes the measurements. This interpolation smoothly transitions from a
convex quadratic loss (H(x, 0) =

∑
i=1 r(x, yi)

2) to the original non-convex Geman–McClure loss

(H(x, 1) = g(x) =
∑

i=1
c̄2 r(x,yi)

2

c̄2+r(x,yi)2
). The predictor gradually increases non-convexity according

to a predefined schedule, while the corrector refines the solution at each stage, often via a non-linear
least squares optimizer (e.g., Levenberg–Marquardt algorithm (Levenberg, 1944)). This homotopy
strategy has proven highly effective in problems such as point cloud registration under severe outlier
contamination (Yang et al., 2020b). Details are provided in Appendix A.1.

2) Global Optimization (Gaussian Homotopy, GH): Many optimization problems suffer from
highly non-convex landscapes with narrow basins of attraction, making it difficult for solvers to
converge to global or high-quality local minima. Iwakiri et al. (2022) address this challenge by
progressively smoothing the target function through convolution with a Gaussian kernel N (0, tσ2):

H(x, t) = g(x) ⋆N (0, tσ2), (2)

where ⋆ denotes the convolution operator. This Gaussian smoothing enlarges the basin of attraction,
allowing solvers to approach promising regions more reliably. The predictor progressively reduces
the kernel bandwidth, while the corrector refines the solution at each stage. Details are provided
in Appendix A.2.

3) Polynomial Root-Finding (Homotopy Continuation, HC): Root-finding for polynomial sys-
tems is challenging due to multiple solutions and computational complexity. Bates et al. (2013)
address this by starting from a source system f(x) = 0 with known roots and defining a linear
homotopy:

H(x, t) = (1− t)f(x) + tg(x), (3)
tracing the solution trajectory from the source roots to the target roots. The predictor extrapolates
the next solution along this path, while the corrector refines it using Gauss-Newton (Björck, 2024)
iteration at each step, ensuring accuracy along the trajectory. Details are provided in Appendix A.3.

4) Sampling (Annealed Langevin Dynamics, ALD): Sampling from complex, high-dimensional
distributions is challenging due to multi-modality and slow mixing. Song et al. (2020) address this
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Figure 3: RL formulation of the proposed Neural Predictor-Corrector (NPC). At each homo-
topy level, the agent observes the current state (including homotopy level, corrector statistics, and
convergence velocity), outputs actions that adapt the predictor’s step size and the corrector’s toler-
ance, and receives rewards designed to balance accuracy and efficiency.

by constructing a homotopy between a simple source distribution (e.g., Gaussian) and the target
distribution:

H(x, t) ∝ exp
(
− (1− t)f(x)− tg(x)

)
. (4)

The predictor schedules the intermediate distributions, while Langevin dynamics acts as the correc-
tor at each step, iteratively refining samples to match the current intermediate distribution. Details
are provided in Appendix A.4.

These examples collectively highlight the broad applicability of homotopy paradigm and the central
role of predictor-corrector strategies, motivating the need for learning-based policy optimization.

4 NEURAL PREDICTOR-CORRECTOR WITH REINFORCEMENT LEARNING

This section introduces the Neural Predictor-Corrector (NPC) framework, a general approach for
homotopy problems that replaces heuristic step-size and termination rules with neural parameter-
izations learned via RL. As shown in Fig. 3, NPC reformulates the predictor-corrector process as
a sequential decision problem: the predictor advances the homotopy level, while the corrector en-
sures accuracy, both guided by adaptive policies. We first present the NPC formulation (Sec. 4.1),
followed by its training with reinforcement learning (Sec. 4.2).

4.1 NEURAL PREDICTOR-CORRECTOR

Classical PC algorithms differ across homotopy problems in how they define prediction and cor-
rection, yet share a key limitation: their step-size schedules and termination criteria are governed
by fixed heuristics. Such heuristics fail to adapt to varying solution trajectories, where small steps
are needed for sharp transitions but larger steps improve efficiency when the trajectory is smooth.
The NPC addresses this limitation
by parameterizing the decision rules
with a neural network (NN). Instead
of hand-crafted heuristics, NPC
learns flexible and adaptive strate-
gies that generalize across problem
instances. The entire PC process is
modeled as a Markov Decision Pro-
cess (MDP), in which, at each ho-
motopy interpolation level, an agent
observes the state and selects ac-
tions that govern the procedure.
The state s encodes both progress
and dynamics:

Algorithm 1 Neural Predictor-Corrector Solver
Input: Homotopy problem H
1: Warm up for initialization.
2: while tn ≤ 1 do
3: NPC: {∆tn, ϵn or imax

n } = NN(tn−1, ϵn−1, in−1, τn−1)
4: Predictor: Update interpolation level tn = tn−1 +∆tn
5: Predictor: Predict xtn at level tn
6: while H(xtn , tn) ≤ ϵn and in ≤ imax

n do
7: Corrector: Perform one step correction
8: end while
9: Collect corrector statistics ϵn, in

10: Collect convergence velocity τn
11: end while
Output: Optimal solution x∗

t=1

• Homotopy Level: Current position along the interpolation path.
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• Corrector Statistics: Iteration count and attained tolerance from the previous step, captur-
ing both convergence efficiency and deviation from the predicted trajectory.

• Convergence Velocity: Relative change in an optimality metric between consecutive lev-
els, reflecting the speed of convergence. For optimization and root-finding, this is the
relative change in the objective value. For sampling, it is the change in a statistical dis-
tance such as Kernelized Stein Discrepancy (KSD) (Liu et al., 2016) between the empirical
sample distribution and the target distribution across consecutive levels.

Given the state s, NPC outputs a two-part action a:

• Step Size ∆t: Controls the predictor’s advance along the homotopy path.
• Corrector Termination: Convergence threshold ϵ or maximum number of updates, bal-

ancing accuracy and efficiency.

As shown in Algorithm 1, the NPC solver operates in an iterative loop to trace the solution path of a
given homotopy problem H . Each iteration consists of three key stages. First, a neural network (the
NPC module) dynamically determines next actions for both the predictor and corrector. Second, the
predictor advances the homotopy level to tn and predicts the solution xn at this level. Third, the cor-
rector iteratively refines this prediction until the convergence criteria are met. Finally, performance
statistics are collected and fed back to the NPC module to inform its decisions in the next iteration,
creating an adaptive, closed-loop system.

4.2 REINFORCEMENT LEARNING FOR NPC

Because the predictor-corrector procedure is non-differentiable and early decisions influence the en-
tire trajectory, supervised or self-supervised training is inadequate. These approaches would require
assuming that local geometric structures of the solution trajectory remain consistent across instances,
which rarely holds in practice. We instead employ RL, which inherently evaluates sequential deci-
sions by their cumulative effect and enables learning policies that generalize across instances within
the same problem class. The reward function is designed to promote both accuracy and efficiency:

• Step-wise Accuracy (racc
t ): Encourages faithful trajectory tracking, based on convergence

velocity or relative error change in the target problem.
• Terminal Efficiency Bonus (reff): Rewards shorter corrector sequences, formulated as
Tmax − T , where Tmax is a predefined upper bound and T is the total corrector iterations.

Consequently, the cumulative reward R for an episode is defined as: R = (
∑T

t=1 λ1r
acc
t ) + λ2r

eff,
where λ1, λ2 are scaling coefficients detailed in Appendix A. This reward design enables agent to
balance accuracy and efficiency across the homotopy trajectory.

Remarks on amortized training for generalization. Sequential decision-making in homotopy
problems entails that early step-size choices affect all subsequent levels. Self-supervised learning
fails in this context because measuring the future contribution of a step size is infeasible: it depends
on the local geometric properties of the trajectory at future homotopy levels, which are unknown in
advance. Relying on such assumptions risks overfitting to the training landscapes. This challenge is
analogous to the dilemma discussed in (Li, 2019), where although the problem domains differ, the
core issue of long-term dependency and overfitting is similar.

Reinforcement learning, by contrast, inherently evaluates actions based on cumulative outcomes,
allowing NPC to adapt to diverse solution trajectories without assuming consistent local geome-
try. Amortized training further improves generalization: by training over a distribution of problem
instances, NPC learns a policy that can be applied efficiently to unseen instances within the same
problem class.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Following the RL formulation in Sec. 4, we employ Proximal Policy Optimization (PPO) (Schulman
et al., 2017), an on-policy algorithm well-suited for continuous state and action spaces. Implemen-
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Table 1: Performance on the GNC point cloud
registration task. Rotation and translation errors
(ER and Et) are reported on a log10 scale.

Sequence Method log(ER) ↓ log(Et) ↓ Iter Time

bunny
Classic GNC -0.85 -2.76 783 161.00
IRLS GNC -0.85 -2.75 309 61.59
Ours1+GNC -0.85 -2.71 169 19.15

cube
Classic GNC -1.12 -2.89 486 89.34
IRLS GNC -1.10 -2.90 141 26.13
Ours1+GNC -1.11 -2.86 86 7.86

dragon
Classic GNC -0.80 -2.82 859 177.11
IRLS GNC -0.80 -2.82 486 95.93
Ours1+GNC -0.80 -2.80 201 26.42

1 The agent is trained on the Aquarius sequence for the
point cloud registration task.

Table 2: Performance on the GNC multi-
view triangulation task. Reconstructed 3D
point errors (Ep) are reported on a log10 scale.

Sequence Method log(Ep) ↓ Iter Time

reichstag
Classic GNC -4.62 142 81.98
IRLS GNC 1.74 37 10.72
Ours1+GNC -4.72 21 14.18

sacre coeur
Classic GNC -5.15 195 91.23
IRLS GNC 0.50 16 21.31
Ours1+GNC -4.84 20 14.14

st pt sq
Classic GNC -4.81 136 80.50
IRLS GNC 1.00 19 27.92
Ours1+GNC -4.98 18 15.55

1 The agent is trained on the Aquarius sequence
for the point cloud registration task.

tation is based on the open-source Stable Baselines3 library (Raffin et al., 2021). The policy and
value functions are parameterized as multi-layer perceptrons (MLPs) with two hidden layers of 16
units each and ReLU activations. All other hyperparameters use the default values provided by Sta-
ble Baselines3. To account for varying problem formulations and noise levels across tasks, reward
signals are scaled appropriately to ensure stable learning and comparability across tasks. Details
are provided in Appendix A. All experiments are conducted on a 12-core 5.0 GHz Intel Core i7-
12700KF CPU and an NVIDIA GeForce RTX 3060 GPU, unless otherwise specified.

In all tables, Iter ↓ records the total number of corrector iterations (rather than predictor iterations,
which are more commonly used to measure progress in homotopy problems), and Time ↓ reports
runtime in milliseconds. The best results are bolded and the second-best results in Tab. 3 are under-
lined. All results represent the average over 50 independent trials.

5.2 PROBLEM 1 : ROBUST OPTIMIZATION VIA GNC

We evaluate NPC in the context of robust optimization using the GNC framework, comparing it
against the classical GNC (Classic GNC) approach and the iteratively reweighted least-squares
(IRLS) version (Peng et al., 2023). The evaluation covers two spatial perception tasks with high
outlier ratios: point cloud registration (Alexiou et al., 2018) (95% outliers) and multi-view triangu-
lation (Jin et al., 2021) (50% outliers). Our NPC model is trained solely on the Aquarius dataset
from the EPFL Geometric Computing Laboratory, demonstrating its cross-instance generalization
capabilities.

Following the metrics defined in (Yang & Carlone, 2019), we report the rotation error (ER) and
translation error (Et) in Tab. 1 for each method. Additionally, Tab. 2 presents the 3D point recon-
struction error (Ep), defined as the Euclidean distance between reconstructed and ground-truth 3D
points. As shown in Tabs. 1 and 2, NPC achieves accuracy comparable to Classic GNC, whereas
IRLS, tailored for a specific task, performs poorly on triangulation and lacks generalization. In
terms of efficiency, NPC significantly boosts GNC’s performance: on point cloud registration, it re-
duces iterations by approximately 70-80% and runtime by 80-90% without compromising accuracy.
These results demonstrate that NPC preserves the robustness of Classic GNC while substantially
improving efficiency and generalization.

5.3 PROBLEM 2 : GLOBAL OPTIMIZATION VIA GH

We evaluate NPC in the GH setting for non-convex function minimization. We compare our method
with two categories of baselines: (i) the single loop GH methods, SLGHr (γ = 0.995) and SLGHd

(η = 10−4) (Iwakiri et al., 2022), (ii) the Gaussian smoothing method, PGS (N = 20) (Xu, 2024),
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and (iii) the learning-based method, CPL (Lin
et al., 2023). Performance is evaluated
on three 2-dimension non-convex bench-
marks: the Ackley (Ackley, 1987), Himmel-
blau (Himmelblau et al., 1972), and Rastri-
gin (Rastrigin, 1974) functions. The optimal
value f(x∗) is 0 for all problems.
As summarized in Tab. 3, NPC-accelerated
GH achieves a substantial reduction in it-
erations and runtime compared to Classic
GH, while maintaining comparable solution
quality. SLGHd and PGS occasionally fail
to reach the optimum, especially on Him-
melblau, highlighting the challenge these
landscapes pose for fixed-schedule homotopy
methods. CPL is designed to learn the solu-
tion path for a specific, fixed-coefficient prob-
lem instance. Consequently, training time
must be factored into the runtime, negat-
ing any efficiency advantage. Overall, these
results show that NPC provides an notable
trade-off between efficiency and robustness. It
generalizes well to unseen problem instances
while accelerating convergence.

Table 3: Performance on GH non-convex func-
tion minimization benchmarks.

Problems Method f(x∗) ↓ Iter Time

2d Ackley

Classic GH 0.07 501 16.25
SLGHr 0.12 1839 56.71
SLGHd 0.26 568 28.45
PGS 0.07 200 14.32
CPL 0.01 - 1701.61
Ours2+GH 0.05 359 12.31

Himmelblau

Classic GH 0.00 501 11.39
SLGHr 0.00 1839 41.70
SLGHd 2.57 75 2.57
PGS 1.18 200 11.33
CPL 0.00 - 2160.17
Ours2+GH 0.00 345 8.91

Rastrigin

Classic GH 0.00 501 23.76
SLGHr 0.00 1839 78.21
SLGHd 0.34 319 19.64
PGS 0.14 200 11.94
CPL 0.57 - 790.38
Ours2+GH 0.00 247 11.84

2 The agent is trained on the Ackley functions with
randomized parameters and evaluated on the canonical
fixed-parameter version.

5.4 PROBLEM 3 : POLYNOMIAL ROOT-FINDING VIA HC

We evaluate NPC in the context of polynomial system root-finding using HC. Experiments are con-
ducted on two categories of tasks: polynomial system benchmarks (Katsura, 1990; Himmelblau
et al., 1972; Rastrigin, 1974) and a computer vision problem (UPnP (Kneip et al., 2014)) for gen-
eralized camera pose estimation from 2D–3D correspondences. Tab. 4 lists the specific polynomial
systems used, with the first entries as classical benchmarks and the last as computer vision task. We
compare NPC-accelerated HC with Classic HC and Simulator HC (Zhang et al., 2025). Both Classic
HC and NPC-accelerated HC use the monodromy
module in Macaulay2 to generate start systems
following (Duff, 2021), while Simulator HC pre-
trains a regression neural network to predict the
start system, relying on physical modeling of
each problem. Consequently, Simulator HC is
inapplicable to standard polynomial benchmarks.
The NPC agent is trained on polynomial systems
from the 4-view triangulation task with random-
ized coefficients to learn generalizable policies.
As shown in Tab. 4, NPC consistently tracks all
target solutions successfully while reducing the
number of iterations and runtime compared to
Classic HC. Notably, Simulator HC relies on a
task-specific pre-trained network, which limits its
generality, and its runtime is not directly compa-
rable since it is implemented in C++. In con-
trast, NPC provides a general-purpose, adaptive
solver that achieves accelerated convergence with-
out per-task pre-training.

Table 4: Performance on HC polynomial sys-
tem benchmarks. Succ. denotes the success
rate of tracking to a root, and Time reports the
average tracking time per solution path.

Problems Method Succ. Iter Time

katsura10 Classic HC 100% 39 2.22
Ours3+HC 100% 7 0.65

cyclic7 Classic HC 100% 41 1.96
Ours3+HC 100% 8 0.64

UPnP
Classic HC 100% 53 8.25
Simulator HC 100% 100 -
Ours3+HC 100% 29 3.86

-: Runtimes are not directly comparable, as Sim-
ulator HC is implemented in C++, while the other
methods are in Python.
3 The agent is trained on polynomial systems from
the 4-view triangulation task with randomized coef-
ficients.

5.5 PROBLEM 4 : SAMPLING VIA ANNEALED LANGEVIN DYNAMICS (ALD)

We evaluate NPC in the context of ALD for sampling from complex distributions. Target dis-
tributions include a 40-mode Gaussian mixture model (GMM), a 10-dimensional funnel distribu-
tion (Neal, 2003), and a 4-particle double-well (DW-4) potential (Köhler et al., 2020). The NPC

8



Published as a conference paper at ICLR 2026

agent is trained on the 10-mode GMM with randomly sampled coefficients to learn generalizable
policies for accelerating ALD. We compare our method against classic ALD (Song et al., 2020)
and, where applicable, iDEM (Akhound-
Sadegh et al., 2024) for GMM and DW-
4 with 103 saved samples. Evaluation
metrics are the Wasserstein-2 distance
(W2) (Peyré et al., 2019) and the Ker-
nelized Stein Discrepancy (KSD) (Liu
et al., 2016). As shown in Tab. 5,
NPC-accelerated ALD requires signifi-
cantly fewer iterations while achieving
W2 and KSD values comparable to clas-
sical ALD. Although iDEM attains lower
W2 on some tasks, it relies on extensive
per-task computation and is not directly
comparable in runtime. Overall, these
results demonstrate that NPC effectively
accelerates sampling while maintaining
high-quality approximations of the target
distributions.

Table 5: Performance on ALD sampling.
Wasserstein-2 distance (W2) and Kernelized Stein
Discrepancy (KSD) evaluate sample quality.

Distributions Method W2 ↓ KSD ↓ Iter Time

40-mode GMM
Classic ALD 11.57 0.0037 410 1353.16
iDEM 7.42 0.0037 1000 -
Ours4+ALD 11.91 0.0040 110 772.34

funnel (d=10) Classic ALD 30.91 0.0382 410 754.48
Ours4+ALD 31.02 0.0343 105 686.55

DW-4
Classic ALD 3.77 0.0911 410 1337.70
iDEM 2.13 0.0911 1000 -
Ours4+ALD 3.47 0.0899 105 711.66

-: Runtimes are not directly comparable, as iDEM is mea-
sured on a more powerful NVIDIA RTX A6000 GPU.
4 The agent is trained on the 10-mode GMM with randomly
sampled coefficients.

5.6 ABLATION STUDY OF RL STATE COMPONENTS

To assess the contribution of each component in the RL state, we perform an ablation study on
the six datasets used for the GNC point cloud registration task, retraining the NPC agent with one
component removed at a time. As summarized in Tab. 6, removing any single state component
causes the agent to adopt a more conservative strategy, resulting in an increased number of corrector
iterations relative to the full state. This tendency typically manifests as the agent selecting smaller
predictor step sizes or stricter corrector tolerances to ensure convergence in the absence of complete
information. This indicates that each
state component, i.e., homotopy level,
corrector tolerance, corrector iteration
count, and convergence velocity, pro-
vides essential information for efficiently
guiding the homotopy solver. Notably,
the results suggest that corrector statis-
tics (i.e., corrector tolerance and itera-
tion) are the most informative parts of the
state, as their removal leads to the largest
performance drop.

Table 6: Effect of each RL state component on NPC
performance.

Homotopy
Level

Corrector’s
Tolerance

Corrector’s
Iteration

Convergence
Velocity ∆Iter

✓ ✓ ✓ ✓ 0
× ✓ ✓ ✓ +21
✓ × ✓ ✓ +64
✓ ✓ × ✓ +52
✓ ✓ ✓ × +38

5.7 ANALYSIS OF EFFICIENCY-PRECISION TRADE-OFF

We analyze the efficiency-precision trade-off by benchmarking our NPC-accelerated method against
classical GNC and ALD. Classical approaches require manual tuning of homotopy parameters, re-
sulting in a performance curve where higher precision typically demands more iterations. By con-
trast, our NPC-accelerated method bypasses this manual exploration by learning a policy that di-
rectly identifies an optimal operating point. This learned policy inherently balances the predictor
step size and corrector tolerance to maximize efficiency at a given precision level. The practical
benefit is visualized in Fig. 4. For both GNC and ALD tasks, the single point representing our
method lies well below the classical trade-off curves, clearly illustrating a substantial reduction in
iterations at comparable precision.

6 CONCLUSION

This paper introduces Neural Predictor–Corrector (NPC), a reinforcement learning framework for
homotopy solvers. By unifying diverse problems, including robust optimization, global optimiza-
tion, polynomial system root-finding, and sampling, under the homotopy paradigm, their solvers

9
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Figure 4: Trade-off between efficiency and precision. Efficiency is measured in terms of corrector
iterations, and precision reflects solution accuracy, for NPC-accelerated versus classical methods.

are shown to universally follow a PC structure. NPC replaces handcrafted heuristics with adaptive
learned policies and employs an amortized training regime, enabling one-time offline training and
efficient, training-free deployment on new instances. Extensive experiments demonstrate that NPC
generalizes effectively to unseen instances, consistently outperforms existing approaches in compu-
tational efficiency, and exhibits superior numerical stability. These findings position learning-based
policy search as a practical, generalizable, and efficient alternative to traditional heuristic strategies.
Looking ahead, this paradigm opens promising avenues for extending homotopy methods to broader
classes of optimization and sampling problems. Nonetheless, we also acknowledge its current limi-
tation, which is discussed in Appendix D.
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las Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, et al. Pot: Python
optimal transport. Journal of Machine Learning Research, 22(78):1–8, 2021.

David M Himmelblau et al. Applied nonlinear programming. McGraw-Hill, 1972.

Petr Hruby, Timothy Duff, Anton Leykin, and Tomas Pajdla. Learning to solve hard minimal prob-
lems. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 5532–5542, 2022.

Yuma Ichikawa. Controlling continuous relaxation for combinatorial optimization. Advances in
Neural Information Processing Systems, 37:47189–47216, 2024.

11



Published as a conference paper at ICLR 2026

Hidenori Iwakiri, Yuhang Wang, Shinji Ito, and Akiko Takeda. Single loop gaussian homotopy
method for non-convex optimization. Advances in Neural Information Processing Systems, 35:
7065–7076, 2022.

Yuhe Jin, Dmytro Mishkin, Anastasiia Mishchuk, Jiri Matas, Pascal Fua, Kwang Moo Yi, and Ed-
uard Trulls. Image matching across wide baselines: From paper to practice. International Journal
of Computer Vision, 129(2):517–547, 2021.

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A
survey. Journal of artificial intelligence research, 4:237–285, 1996.

Shlgetoshl Katsura. Spin glass problem by the method of integral equation of the effective field.
New Trends in Magnetism, pp. 110–121, 1990.

CT Kelley. Solution of the chandrasekhar h-equation by newton’s method. Journal of Mathematical
Physics, 21(7):1625–1628, 1980.

Laurent Kneip, Hongdong Li, and Yongduek Seo. Upnp: An optimal o (n) solution to the absolute
pose problem with universal applicability. In European conference on computer vision, pp. 127–
142. Springer, 2014.
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A IMPLEMENTATION DETAILS

A.1 DETAILS OF PROBLEM 1 : ROBUST OPTIMIZATION VIA GNC ( SEC. 5.2)

A.1.1 THE GRADUATED NON-CONVEXITY ALGORITHM

Optimization problems that can be formulated as least-squares can utilize the robust kernel from
Eq. (1), which is represented as:

x∗ = min
x∈X ,t∈T

H(x, t). (5)

The GNC algorithm utilizes Black-Rangarajan Duality (Black & Rangarajan, 1996) to reformulate
Eq. (5) into:

x∗ = min
x∈X

∑
i=1

[
wir

2(yi,x) + ΦHt
(wi)

]
, (6)

where wi is the weight of the ith measurement yi, and the function ΦHt(·), whose expression
depends on the choice of the robust cost function Ht, defines a penalty on the weight wi. When Ht

is defined by Eq. (1), ΦHt(wi) is defined by ΦHt(wi) =
1
t c̄

2(
√
wi − 1)2. Moreover, the weight can

be solved in closed form as a function of only t and residual r.

Predictor Reformulating the problem as Eq. (6) simplifies the prediction step to updating the each
weight wi using Eq. (7), rather than predicting the optimization variable x.

wi =

(
c̄2

tr2(x,yi) + c̄2

)2

(7)

Corrector We correct x using a nonlinear optimization method defined by Eq. (8).

x∗ = min
x∈X

∑
i=1

wir
2(yi,x) (8)

In our experiments, point cloud registration employs a Gauss-Newton corrector, while multi-view
triangulation uses a more robust Levenberg-Marquardt (LM) algorithm.

Details of experiment. For the point cloud registration task, the reward scaling is set to λ1 = 103,
and λ2 = 10−3. For the multi-view triangulation task, the reward scaling is set to λ1 = 10−1 and
λ2 = 10−3 due to its noise scale being significantly larger than that of point cloud registration.

A.2 DETAILS OF PROBLEM 2 : GLOBAL OPTIMIZATION VIA GH (SEC. 5.3)

A.2.1 THE GAUSSIAN HOMOTOPY ALGORITHM

The equivalent expression for Eq. (2) is given by:

H(x, t) =

∫
g(x+ t ∗ σ)k(σ)dσ = Eσ∼N (0,Id)[g(x+ t ∗ σ)] (9)

where k(σ) = (2π)−
d
2 e

−∥σ∥2
2 is referred to as the kernel.

Predictor. The prediction process in Gaussian homotopy is implicit, as we only modify the shape
of H(x, t) by varying the predictor’s homotopy level t.

Corrector. The correction for x is performed using a momentum method (Polyak, 1964), with the
gradient update formulated as

vt+1 = ∇xH(xt, t) + βvt

xt+1 = xt − αvt+1
(10)

where vt is the velocity vector, with the initial velocity v0 set to the zero vector, β is momentum
coefficients, controlling the influence of past gradients, and α is the learning rate, which determines
the step size of the update. We set α = 0.01 and β = 0.8 in our experiment. As the analytical
computation of the gradient ∇xH(xt, t) is not feasible for some Gaussian homotopy functions, we
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employ a zeroth-order method to obtain a numerical approximation. The calculation formula is as
follows (Nesterov & Spokoiny, 2017):

∇xH(xt, t) = ∇xEσ∼N (0,Id)[g(x+ t ∗ σ)] = 1

t
Eσ [(g(x+ t ∗ σ)− g(x)) ∗ σ] (11)

Details of experiment. The reward scaling is set to λ1 = 1, and λ2 = 10−3.

A.2.2 THE NON-CONVEX FUNCTION MINIMIZATION BENCHMARKS

Ackley Optimization Problem (n-dimensions) (Ackley, 1987):

f(x) = −20 exp

−0.2

√√√√ 1

n

n∑
i=1

x2i

− exp

(
1

n

n∑
i=1

cos(2πxi)

)
+ 20 + e. (12)

Himmelblau Optimization Problem (Himmelblau et al., 1972):

f(x, y) = (x2 + y − 11)2 + (x+ y2 − 7)2. (13)

Rastrigin Optimization Problem (Rastrigin, 1974):

f(x, y) = 10 + x2 + y2 − 9 cos(2πx)− cos(2πy) (14)

A.3 DETAILS OF PROBLEM 3 : POLYNOMIAL ROOT-FINDING VIA HC (SEC. 5.4)

A.3.1 THE HOMOTOPY-CONTINUATION ALGORITHM

The polynomial system root-finding problem is modeled in the form of Eq. (3).

Predictor. The prediction of x(t + ∆t) is performed using the Padé approximation. The Padé
approximation polynomial Rn,m(x) = Rn(x)

Qm(x) has the following form:

Rn,m(x) =
p0 + p1x+ · · ·+ pnx

n

1 + q1x+ · · ·+ qmxm
=

∑n
j=0 pjx

j

1 +
∑m

k=1 qkx
k
. (15)

It is equivalent to the power series given in Eq. (16).

ψ(x) :=

∞∑
k=1

ckx
k. (16)

The basic Padé approximation principle is that, given two integers m,n ∈ N ∪ {0}, we can find
two polynomials Pn(x) of degree at most n and Qm(x) of degree at most m, such that the differ-
ence Qm(x)f(x) − Pn(x) has an order of approximation of at least n + m + 1. In fact, this is
mathematically equivalent to the requirement:

Qm(x)f(x)− Pn(x) = O(xn+m+1), (17)

where O(xN ) denotes a power series of the form
∑∞

n=N cnx
n.

In our implementation, we set n = 2 and m = 1. we can derive the following coefficients based on
Eq. (17):

q1 = −c3
c2
,

p0 = c0,

p1 = c1 + q1c0,

p2 = c2 + q1c1,

(18)
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where c0 = x(t), c1 = x′(t), c2 = 1
2x

′′(t), c3 = 1
6x

′′′(t). We obtain the derivative of x by
differentiating H(x(t), t) with respect to t:

∂H

∂x
x′(t) = −∂H

∂t
,

∂H

∂x
x′′(t) = −

(
∂2H

∂x∂t
x′(t) +

∂2H

∂t2

)
,

∂H

∂x
x′′′(t) = −

(
2
∂2H

∂x∂t
x′′(t) +

∂3H

∂x∂t2
x′′(t) +

∂3H

∂t3

)
.

(19)

Consequently, x(t+∆t) is according to the following equation:

x(t+∆t) =
p0 + p1∆t+ p2∆t

2

1 + q1∆t
. (20)

If the denominator in Eq. (20) approaches zero, we revert to using a power series to predict x(t+∆t).
In this case, the prediction takes the form x(t+∆t) = c0 + c1∆t+ c2∆t

2 + c3∆t
3.

Corrector. We employ a Newton corrector in our experimental setup. At each iteration, x is
updated according to the following equation until the convergence criterion ∆x < ϵ is met.

∂H(x, t+∆t)

∂x
∆x = −H(x, t+∆t),

x = x+∆x.
(21)

Details of experiment. The reward scaling is set to λ1 = 10−3, and λ2 = 10−1.

A.3.2 THE POLYNOMIAL SYSTEM BENCHMARKS

The Katsura-n Polynomial System (Katsura, 1990):

f0 :

(
n∑

i=−n

xi

)
− 1 = 0

fk+1 : x−nxn +

(
n∑

i=−n+1

xixk−i

)
− xk = 0 (for k = 0, 1, . . . , n− 1)

(22)

The Cyclic-n Polynomial System (Davenport, 1987):

f0 :

n−1∑
j=0

xj = 0

f1 :

n−1∑
j=0

xjx(j+1) (mod n) = 0

...
...

fn−2 :

n−1∑
j=0

(
n−2∏
k=0

x(j+k) (mod n)

)
= 0

fn−1 :

n−1∏
j=0

xj

− 1 = 0

(23)

The Noon-n Polynomial System (Noonburg, 1989):

xi

 n∑
j=1
j ̸=i

x2j

− cxi + 1 = 0 for i = 1, . . . , n (24)
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In our implementation, we set c = 1.1.

The Chandra-n Polynomial System (Kelley, 1980):

2nxk − cxk

(
1 +

n−1∑
i=1

k

i+ k
xi

)
− 2n = 0 for k = 1, . . . , n (25)

In our implementation, we set c = 0.51234.

A.4 DETAILS OF PROBLEM 4 : SAMPLING VIA ALD (SEC. 5.5)

A.4.1 THE ANNEALED LANGEVIN DYNAMIC SAMPLING ALGORITHM

Annealed Langevin dynamics sampling obtains initial sample points from a simple distribution and
uses a series of time-dependent potentials to control the update of the samples, as shown in Eq. (4).
Let the time-dependent potentials be H(x, t) ∝ exp

(
− (1− t)f(x)− tg(x)

)
.

Predictor. The prediction process in ALD sampling is implicit, as we only modify the shape of
H(x, t) by varying the predictor’s homotopy level t.

Corrector. In each iteration of the corrector, the positions of the samples are updated using the
following formula:

x = x− ξ

2
∇xH(xt, t) +

√
ξσ, (26)

where ξ is a Langevin step size, and σ ∼ N (0, Id) is a Gaussian noise vector.

Details of experiment. The reward scaling is set to λ1 = 10, and λ2 = 10−3.

A.4.2 DISTRIBUTIONS

The 10-dimensional funnel distribution. The 10 dimensions Funnel distribution defined as

x0 ∼ N (0, σ2)

xi|x0 ∼ N (0, ex0), for i = 1, . . . , 9.
(27)

The funnel potential given as

g(x) =
x20
2σ2

+
1

2

9∑
i=1

e−x0x2i (28)

The 4-particle double-well (DW-4) potential. The DW-4 potential defined as

g(x) =
1

2τ

∑
ij

a(dij − d0) + b(dij − d0)
2 + c(dij − d0)

4, (29)

where dij = ∥xi − xj∥2 is the Euclidean distance between particles i and j. In our implementation,
we set τ = 1, a = 0, b = −4, and c = 0.9.

A.4.3 METRIC

Wasserstein-2 distance (W2). The Wasserstein-2 distance (Peyré et al., 2019) is given by

W2(µ, ν) =

(
inf
π

∫
π(x, y)d(x, y)2 dxdy

) 1
2

, (30)

where π is the transport plan with marginals constrained to µ and ν respectively. In our implemen-
tation, we we use the Python Optimal Transport (POT) package (Flamary et al., 2021) to compute
this metric.
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Kernelized Stein Discrepancy (KSD). The Kernelized Stein Discrepancy (Liu et al., 2016) is
defined as

uq(x, x
′) = sq(x)

⊤k(x, x′)sq(x
′) + sq(x)

⊤∇x′k(x, x′)

+∇xk(x, x
′)⊤sq(x

′) + trace(∇x,x′k(x, x′)),

S(p, q) = Ex,x′∼p[uq(x, x
′)],

(31)

where sq = −∇xg(x), and k(x, x′) is a positive definite kernel. Specifically, we use the standard
RBF kernel for KSD computation in this work.

B BACKGROUND ON REINFORCEMENT LEARNING

Reinforcement learning (RL) (Kaelbling et al., 1996) provides a natural framework for learning
adaptive strategies. It formulates sequential decision-making as an Markov Decision Process (MDP)
with state space S, action space A, transition dynamics p(st+1|st, at), initial state distribution
p0(s0), reward function r(st, at), and discount factor γ ∈ (0, 1]. The goal is to find an optimal policy
π∗ : S → A that maximizes the expected cumulative reward along a trajectory (s0, a0, . . . , sT ):

E

[
T∑

t=0

γtr(st, at)

]
. (32)

C FULL RELATED WORK

Although we mentioned in previous sections that methods from different fields essentially share
the same predictor-corrector spirit, they have long evolved independently of each other. Our work
is the first to unify these methods. In this section, we will review 1) classical predictor-corrector
methods; 2) learning-based improvements on predictor-corrector methods; 3) efficient optimization
and sampling methods via reinforcement learning.

Classical PC algorithms. 1) Robust optimization: A core related technique is Graduated Non-
Convexity (GNC), first proposed by (Yang et al., 2020a). This method employs a predictor-corrector
approach with non-linear least-squares solvers to compute robust solutions. However, it relies on
a hand-crafted, fixed iteration schedule, making it unsuitable for real-time robotics applications.
Building on this work, Peng et al. (2023) established a connection between GNC and the iteratively
reweighted least-squares (IRLS) framework, based on which they designed a novel iteration strategy
that achieved faster speeds in point cloud registration tasks (Liu et al., 2023; Yan et al., 2025a; Chen
et al., 2025a; Liao et al., 2024). Nevertheless, this strategy’s lack of generalizability to other prob-
lems remains its primary limitation. 2) Gaussian homotopy optimization: The underlying principle
of this area was first introduced in (Blake & Zisserman, 1987). More recently, Iwakiri et al. (2022)
proposed a novel single-loop framework for the Gaussian homotopy method that simultaneously
performs prediction and correction. Subsequently, Xu (2024) improved the algorithm’s convergence
rate by adding an exponential power-N transformation prior to the Gaussian homotopy process.
3) Polynomial root-finding: Homotopy continuation (Bates et al., 2013), a numerical method for
finding the roots of polynomial systems, uses a predictor-corrector scheme to track solution paths.
Subsequent methods by (Breiding & Timme, 2018) and (Duff et al., 2019) analyzed the properties of
polynomials to introduce various improvements, enhancing the algorithm’s speed. 4) Sampling: In
generative modeling, annealed Langevin dynamics (Song & Ermon, 2019; Song et al., 2020) utilizes
a predictor-corrector method to sample from image probability distributions, where the correction
step uses Langevin dynamics to restore samples to an equilibrium state. Similarly, Sequential Monte
Carlo (SMC) methods (Doucet et al., 2001) also apply a predictor-corrector approach to sample from
posterior probability distributions, with a correction step that employs importance sampling to re-
weight the samples.

Learning-based improvements for homotopy workflows. 1) Gaussian homotopy optimization:
Lin et al. (2023) is a novel model-based method that learns the entire continuation path for Gaus-
sian homotopy. However, this approach requires specialized training for each problem. 2) Polyno-
mial root-finding: Focusing on the more specific sub-problem of polynomial system root-finding,
both (Hruby et al., 2022) and (Zhang et al., 2025) propose learning-based methods to determine
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the optimal starting system for homotopy continuation. 3) Combinatorial optimization: Ichikawa
(2024) proposes the Continuous Relaxation Annealing strategy, aiming to enhance unsupervised
learning solvers for combinatorial optimization problems. 4) Sampling: Richter & Berner (2024)
establishes a unifying framework based on path space measures and time-reversals, and proposes a
novel log-variance loss that avoids differentiation through the SDE solver.

Reinforcement learning for optimization and sampling. 1) Optimization: Li (2019) proposes a
general framework by formulating an optimization algorithm as a reinforcement learning problem,
where the optimizer is represented as a policy that learns to generate update steps directly, aim-
ing to converge faster and find better optima than hand-engineered method. Belder et al. (2023)
utilizes reinforcement learning (Chen et al., 2025b) to train an agent that dynamically selects the
damping factor in the Levenberg-Marquardt algorithm (Levenberg, 1944) to accelerate convergence
by reducing the number of iterations. 2) Sampling: Ye et al. (2025) employs reinforcement learn-
ing to adaptively predict the denoising schedule via optimizing a reward function that encourages
high image quality while penalizing an excessive number of denoising steps. Wang et al. (2025)
proposes a general framework named Reinforcement Learning Metropolis-Hastings, which aims to
automatically design and optimize Markov Chain Monte Carlo (MCMC) samplers.

D LIMITATION AND FUTURE WORK

One limitation of our work is that the NPC agent’s reward scale currently requires manual tuning for
each problem instance based on its noise level to ensure stable and efficient training. The scale of
step-wise rewards influences the training process’s convergence time, while an oversized terminal
reward can nullify the guidance from step-wise rewards. This imbalance can prevent the agent from
correctly tracking the solution trajectory, causing it to adopt myopic strategies to prematurely reach
a terminal state. We conduct experiments on the point cloud registration task with different reward
scaling factors. The results are shown in Tab. 7.

Table 7: Comparison of results under different reward scaling settings. Convergence Steps
(Training) denotes the approximate step count where the cumulative reward stabilizes during train-
ing.

Method Reward Scaling Convergence Steps
(Training) log(ER) ↓ log(Et) ↓ Iter

Ours+GNC

λ1 = 103, λ2 = 10−3 (*) 3M -1.11 -2.86 86
λ1 = 102, λ2 = 10−3 2M -1.08 -2.67 70
λ1 = 103, λ2 = 10−4 6M -1.08 -2.91 74
λ1 = 102, λ2 = 10−2 Fail - - -

Classic GNC - - -1.12 -2.89 486

IRLS GNC - - -1.10 -2.90 141

(*): The settings used in the paper.

To address this, two avenues for future work are promising. The first is to develop a mechanism
that automatically adapts the reward scale. A more fundamental solution would be to investigate
adaptive normalization techniques for the reward function, making the learning process inherently
robust and eliminating manual tuning.

E FULL EXPERIMENTAL RESULTS

This section provides complete experimental results, which are summarized in Secs. 5.2 to 5.4 due
to limited space. Tab. 8 shows the full results for the point cloud registration experiments via GNC,
Tab. 9 shows the full results for the non-convex function minimization experiments via GH, and
Tab. 10 presents the detailed results for the root-finding experiments on polynomial systems via HC.
In addition, we present box plots for a subset of the experimental results in Fig. 5 to visually compare
the different methods.
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Table 8: Performance on the GNC point cloud registration task. Rotation and translation errors
(ER and Et) are reported on a log10 scale.

Sequence Method log(ER) ↓ log(Et) ↓ Iter Time

bunny
Classic GNC -0.85 -2.76 783 161.00
IRLS GNC -0.85 -2.75 309 61.59
Ours1+GNC -0.85 -2.71 169 19.15

cube
Classic GNC -1.12 -2.89 486 89.34
IRLS GNC -1.10 -2.90 141 26.13
Ours1+GNC -1.11 -2.86 86 7.86

dragon
Classic GNC -0.80 -2.82 859 177.11
IRLS GNC -0.80 -2.82 486 95.93
Ours1+GNC -0.80 -2.80 201 26.42

egyptian mask
Classic GNC -0.88 -2.73 770 160.05
IRLS GNC -0.86 -2.75 264 53.51
Ours1+GNC -0.87 -2.69 158 16.94

sphere
Classic GNC -0.98 -2.87 713 148.55
IRLS GNC -0.98 -2.88 220 45.73
Ours1+GNC -0.99 -2.77 143 13.63

vase
Classic GNC -0.86 -2.84 765 159.25
IRLS GNC -0.87 -2.86 288 58.08
Ours1+GNC -0.86 -2.77 160 17.05

1 The agent is trained on the Aquarius sequence for the point cloud regis-
tration task.

Table 9: Performance on GH non-convex function minimization benchmarks.

Problems Method f(x∗) ↓ Iter Time

2d Ackley

Classic GH 0.07 501 16.25
SLGHr 0.12 1839 56.71
SLGHd 0.26 568 28.45
PGS 0.07 200 14.32
CPL 0.01 - 1701.61
Ours2+GH 0.05 359 12.31

Himmelblau

Classic GH 0.00 501 11.39
SLGHr 0.00 1839 41.70
SLGHd 2.57 75 2.57
PGS 1.18 200 11.33
CPL 0.00 - 2160.17
Ours2+GH 0.00 345 8.91

Rastrigin

Classic GH 0.00 501 23.76
SLGHr 0.00 1839 78.21
SLGHd 0.34 319 19.64
PGS 0.14 200 11.94
CPL 0.57 - 790.38
Ours2+GH 0.00 247 11.84

10d Ackley

Classic GH 0.01 501 27.58
SLGHr 0.02 1839 91.90
SLGHd 0.37 435 33.58
Ours2+GH 0.47 398 10.88

2 The agent is trained on the Ackley functions with ran-
domized parameters and evaluated on the canonical fixed-
parameter version.
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(a) Rotation error of the bunny sequence in the point
cloud registration task.

(b) Runtime of the bunny sequence in the point cloud
registration task.

(c) Rotation error of the cube sequence in the point
cloud registration task.

(d) Runtime of the cube sequence in the point cloud
registration task.

(e) Error of the reichstag sequence in the multi-view
triangulation task.

(f) Runtime of the reichstag sequence in the multi-
view triangulation task.

(g) Error of the sacre coeur sequence in the multi-view
triangulation task.

(h) Runtime of the sacre coeur sequence in the multi-
view triangulation task.

(i) Function value of the Ackley problem in the non-
convex function minimization task.

(j) Runtime of the Ackley problem in the non-convex
function minimization task.

(k) Function value of the Himmelblau problem in the
non-convex function minimization task.

(l) Runtime of the Himmelblau problem in the non-
convex function minimization task.

Figure 5: Supplementary box plots of performance metrics. These visualizations illustrate the
result distributions over 50 independent trials, providing a more intuitive understanding of the sta-
bility and efficiency of each method.
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Table 10: Performance on HC polynomial system benchmarks. Succ. denotes the success rate of
tracking to a root, and Time reports the average tracking time per solution path.

Problems Method Succ. Iter Time

katsura10 Classic HC 100% 39 2.22
Ours3+HC 100% 7 0.65

cyclic7 Classic HC 100% 41 1.96
Ours3+HC 100% 8 0.64

noon5 Classic HC 100% 41 1.69
Ours3+HC 100% 10 0.69

chandra9 Classic HC 100% 31 3.24
Ours3+HC 100% 5 0.76

UPnP
Classic HC 100% 53 8.25
Simulator HC 100% 100 -
Ours3+HC 100% 29 3.86

-: Runtimes are not directly comparable, as Simulator
HC is implemented in C++, while the other methods are
in Python.
3 The agent is trained on a separate set of polynomial

systems with randomized coefficients.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use LLMs to polish writing.
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