
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NEURAL PREDICTOR-CORRECTOR: SOLVING HOMO-
TOPY PROBLEMS WITH REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

The Homotopy paradigm, a general principle for solving challenging problems,
appears across diverse domains such as robust optimization, global optimization,
polynomial root-finding, and sampling. Practical solvers for these problems typi-
cally follow a predictor-corrector (PC) structure, but rely on hand-crafted heuris-
tics for step sizes and iteration termination, which are often suboptimal and task-
specific. To address this, we unify these problems under a single framework,
which enables the design of a general neural solver. Building on this unified view,
we propose Neural Predictor-Corrector (NPC), which replaces hand-crafted
heuristics with automatically learned policies. NPC formulates policy selection
as a sequential decision-making problem and leverages reinforcement learning to
automatically discover efficient strategies. To further enhance generalization, we
introduce an amortized training mechanism, enabling one-time offline training for
a class of problems and efficient online inference on new instances. Experiments
on four representative homotopy problems demonstrate that our method gener-
alizes effectively to unseen instances. It consistently outperforms classical and
specialized baselines in efficiency while demonstrating superior stability across
tasks, highlighting the value of unifying homotopy methods into a single neural
framework.

1 INTRODUCTION

The Homotopy paradigm provides a powerful framework for solving difficult problems by construct-
ing an explicit homotopy interpolation from a simple, easily solved source problem to a complex
target problem. The solution of the complex problem is progressively approached by tracing the im-
plicit trajectory along this interpolation path, effectively circumventing the challenges of direct solu-
tion. This paradigm appears across diverse domains, for example, Graduated Non-Convexity (Yang
et al., 2020a) and Gaussian homotopy (Mobahi & Fisher III, 2015) for optimization, homotopy con-
tinuation (Bates et al., 2013) for polynomial root-finding, and annealed Langevin dynamics (Song
et al., 2020) for sampling.

Practical solvers for these problems often follow a predictor-corrector (PC) structure, where a pre-
dictor advances along the outer homotopy interpolation and a corrector iteratively refines the so-
lution (Allgower & Georg, 2012). Despite their widespread use, these solvers rely on manually
designed heuristics for step sizes and termination rules, which are typically suboptimal and task-
specific. Furthermore, these methods have been independently developed in each domain, and no
prior work has systematically unified these efforts under a single framework. We argue that this
unification is crucial: it enables the design of a general solver that applies across problem instances,
rather than requiring ad-hoc, per-problem solutions.

Building on this perspective, we propose Neural Predictor-Corrector (NPC), a plug-and-play
framework that replaces heuristic rules with automatically learned policies. Instead of manually
designed rules, NPC treats the choice of predictor and corrector strategies as a sequential decision-
making process (Barto et al., 1989) and employs reinforcement learning (RL) (Kaelbling et al.,
1996) to adaptively learn effective policies. Crucially, we adopt an amortized training regime: a
single offline training phase over a distribution of problem instances produces a policy that can be
directly deployed on new instances from the same problem without per-instance fine-tuning.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Optimization Polynimial Root Finding Sampling

Source
Problem

Target
Problem

Homotopy
Interpolation

Figure 1: Homotopy paradigm across domains. The homotopy interpolation (blue loss functions
in optimization, green polynomial roots in polynomial root-finding, and red probability densities in
sampling) is explicitly defined, while the inner solution trajectory (orange curve) must be implicitly
tracked.

We evaluate NPC on four representative homotopy tasks: Graduated Non-Convexity for robust opti-
mization (Yang et al., 2020a), Gaussian homotopy for global optimization (Mobahi & Fisher III,
2015), homotopy continuation for polynomial root-finding (Bates et al., 2013), and annealed
Langevin dynamics for sampling (Song et al., 2020). Through experiments on four representa-
tive problems, our approach is validated for strong generalization to previously unseen instances.
Furthermore, the results reveal a dual advantage: our method not only consistently outperforms ex-
isting approaches in computational efficiency, but also demonstrates superior numerical stability,
thereby underscoring the benefits of our proposed architecture.

In summary, our main contributions are as follows:

• To the best of our knowledge, we are the first to unify diverse problems, including robust
optimization, global optimization, polynomial system root-finding, and sampling, under the
homotopy paradigm, thereby revealing their common predictor-corrector structure across
these problems. This enables a unified solver framework, rather than per-problem solutions.

• We introduce Neural Predictor-Corrector (NPC), the first reinforcement learning-based
framework that automatically learns predictor and corrector policies, replacing hand-
crafted heuristics with learned, adaptive strategies.

• Extensive experiments across multiple homotopy problems demonstrate that NPC signif-
icantly outperforms other methods in efficiency, while achieving higher stability and en-
abling efficient, training-free deployment on previously unseen instances.

2 RELATED WORKS

Although PC solvers appear across multiple domains, these lines of research have largely evolved
independently. We review them here and highlight gaps that motivate our work. A full discussion of
related works is provided in Appendix C.

Classical PC algorithms. PC schemes trace solution trajectories along explicit homotopy interpo-
lations. In robust optimization, Graduated Non-Convexity (GNC) gradually increases non-convexity
to avoid poor local minima, with iterative solvers performing corrections (Yang et al., 2020a; Peng
et al., 2023). Gaussian homotopy methods construct progressively less smoothed objectives to
track minimizers along bandwidth reduction (Blake & Zisserman, 1987; Mobahi & Fisher III, 2015;
Iwakiri et al., 2022; Xu, 2024). Polynomial system root-finding uses homotopy continuation with
PC integration to trace roots from a simple start system (Bates et al., 2013; Breiding & Timme,
2018; Duff et al., 2019). In sampling, annealed Langevin dynamics and Sequential Monte Carlo de-
fine sequences of intermediate distributions with PC steps (Song & Ermon, 2019; Song et al., 2020;
Doucet et al., 2001). Across all these domains, predictor and corrector components are typically
hand-designed, requiring per-instance tuning and limiting generalization.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Learning-based improvements for PC workflows. Recent work has introduced learning into
homotopy pipelines, but usually in a narrow, task-specific manner. Some methods learn continuation
paths or schedules for Gaussian homotopy (Lin et al., 2023), while others predict start systems for
polynomial root-finding (Hruby et al., 2022; Zhang et al., 2025). In short, prior learning-based
methods either focus on a single PC component or require specialized per-instance training.

Reinforcement learning for optimization and sampling. RL has been applied to learn optimizers
or adapt algorithmic parameters, showing benefits on some optimization and sampling tasks (Li,
2019; Belder et al., 2023; Ye et al., 2025). However, these works do not address the full pre-
dictor–corrector control problem across diverse homotopy classes, nor do they leverage amortized
training to produce a single policy transferable across instances.

3 HOMOTOPY PARADIGM AS A UNIFIED PERSPECTIVE

In this section, we introduce a unified perspective on diverse problems. We begin in Sec. 3.1 by
introducing the homotopy paradigm, a general principle that underlies a wide range of problems.
Next, in Sec. 3.2, we show that the corresponding practical solvers can all be instantiated within a
common predictor-corrector (PC) framework. Finally, in Sec. 3.3, we discuss four representative
problems together with their homotopy formulations and PC implementations, thereby illustrating
the breadth and utility of this unified perspective.

3.1 HOMOTOPY PARADIGM

As shown in Fig. 1, the homotopy paradigm provides a general principle for solving complex prob-
lem g(x). Specifically, the homotopy paradigm defines a continuous interpolation H(x, t) from
a simple source problem H(x, 0) = f(x) with known solutions to a complex target problem
H(x, 1) = g(x). By tracing the implicit solution trajectory x∗(t) along this interpolation as t varies
from 0 to 1, one progressively transforms the source solution into the target solution. The source
problem and interpolation are explicitly defined by the user, while the target solution is implicitly
determined along the trajectory.

3.2 PREDICTOR-CORRECTOR ALGORITHM

While the homotopy paradigm specifies the abstract principle, an effective algorithm is needed to
trace the implicit solution trajectory in practice. The PC method (Allgower & Georg, 2012) provides
such a concrete algorithmic framework. As shown in Fig. 2, PC decomposes trajectory tracking into
two complementary steps:

• Predictor: Determines the next level of the homotopy interpolation and predicts the solu-
tion’s position at that level.

• Corrector: Iteratively refines the predicted solution to align it with the true solution tra-
jectory, thereby preventing the accumulation of bias across levels.

The choice of predictor level schedule and corrector iteration count is often heuristic. Suboptimal
settings can lead to inefficiency, instability, or failure to follow the trajectory accurately, motivating
the development of adaptive or learning-based strategies for robust and efficient solution tracking.

3.3 REPRESENTATIVE HOMOTOPY PROBLEMS AND PRACTICAL SOLVERS

To illustrate the breadth of homotopy paradigm applications, we describe four representative prob-
lems together with their corresponding homotopy interpolations and PC implementations.

1) Robust Optimization (Graduated Non-Convexity, GNC): Robust loss functions (e.g., Ge-
man–McClure (Black & Rangarajan, 1996)) mitigate the effect of outliers. However, they introduce
strong non-convexity, increasing the risk of poor local minima. Graduated Non-Convexity Yang
et al. (2020a) (GNC) addresses this challenge by defining a homotopy interpolation:

H(x, t) =
∑
i

c̄2 r(x, yi)
2

c̄2 + t r(x, yi)2
, (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Source
Problem

Target
Problem

Homotopy
Interpolation

Predict

Predict

Correct
Correct

Predict

Correct

Figure 2: Illustration of the Predictor-Corrector algorithm. Predictor proposes the next level
and provides an initial solution estimate, while Corrector iteratively refines this estimate to project it
back onto the solution trajectory. Orange curve denotes the implicit solution trajectory, as in Fig. 1.

where c̄ is a predefined parameter that controls the robustness of the GM loss, r(·, ·) represents the
residual function, and yi denotes the measurements. This interpolation smoothly transitions from a
convex quadratic loss (H(x, 0) =

∑
i=1 r(x, yi)

2) to the original non-convex Geman–McClure loss

(H(x, 1) = g(x) =
∑

i=1
c̄2 r(x,yi)

2

c̄2+r(x,yi)2
). The predictor gradually increases non-convexity according

to a predefined schedule, while the corrector refines the solution at each stage, often via a non-linear
least squares optimizer (e.g., Levenberg–Marquardt algorithm (Levenberg, 1944)). This homotopy
strategy has proven highly effective in problems such as point cloud registration under severe outlier
contamination (Yang et al., 2020b). Details are provided in Appendix A.1.

2) Global Optimization (Gaussian Homotopy, GH): Many optimization problems suffer from
highly non-convex landscapes with narrow basins of attraction, making it difficult for solvers to
converge to global or high-quality local minima. Iwakiri et al. (2022) addresses this challenge by
progressively smoothing the target function through convolution with a Gaussian kernel N (0, tσ2):

H(x, t) = g(x) ⋆N (0, tσ2), (2)

where ⋆ denotes the convolution operator. This Gaussian smoothing enlarges the basin of attraction,
allowing solvers to approach promising regions more reliably. The predictor progressively reduces
the kernel bandwidth, while the corrector refines the solution at each stage. Details are provided
in Appendix A.2.

3) Polynomial Root-Finding (Homotopy Continuation, HC): Root-finding for polynomial sys-
tems is challenging due to multiple solutions and computational complexity. Bates et al. (2013)
addresses this by starting from a source system f(x) = 0 with known roots and defining a linear
homotopy:

H(x, t) = (1− t)f(x) + tg(x), (3)
tracing the solution trajectory from the source roots to the target roots. The predictor extrapolates
the next solution along this path, while the corrector refines it using Gauss-Newton (Björck, 2024)
iteration at each step, ensuring accuracy along the trajectory. Details are provided in Appendix A.3.

4) Sampling (Annealed Langevin Dynamics, ALD): Sampling from complex, high-dimensional
distributions is challenging due to multi-modality and slow mixing. Song et al. (2020) addresses
this by constructing a homotopy between a simple source distribution (e.g., Gaussian) and the target
distribution:

H(x, t) ∝ exp
(
− (1− t)f(x)− tg(x)

)
. (4)

The predictor schedules the intermediate distributions, while Langevin dynamics acts as the correc-
tor at each step, iteratively refining samples to match the current intermediate distribution. Details
are provided in Appendix A.4.

These examples collectively highlight the broad applicability of homotopy paradigm and the central
role of predictor-corrector strategies, motivating the need for learning-based policy optimization.

4 NEURAL PREDICTOR-CORRECTOR WITH REINFORCEMENT LEARNING

This section introduces the Neural Predictor-Corrector (NPC) framework, a general approach for
homotopy problems that replaces heuristic step-size and termination rules with neural parameter-
izations learned via RL. As shown in Fig. 3, NPC reformulates the predictor-corrector process as

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

External Action: Predictor’s Next Level

Internal Action: Corrector’s Tolerance

NPC
Reward: Accuracy + Efficiency Bonus

1. Predictor’s Homotopy Level
State: 2. Corrector Statistics (Tolerance, Iteration)

3. Convergence Velocity

Figure 3: RL formulation of the proposed Neural Predictor-Corrector (NPC). At each homo-
topy level, the agent observes the current state (including homotopy level, corrector statistics, and
convergence velocity), outputs actions that adapt the predictor’s step size and the corrector’s toler-
ance, and receives rewards designed to balance accuracy and efficiency.

a sequential decision problem: the predictor advances the homotopy level, while the corrector en-
sures accuracy, both guided by adaptive policies. We first present the NPC formulation (Sec. 4.1),
followed by its training with reinforcement learning (Sec. 4.2).

4.1 NEURAL PREDICTOR-CORRECTOR

Classical PC algorithms differ across homotopy problems in how they define prediction and cor-
rection, yet share a key limitation: their step-size schedules and termination criteria are governed
by fixed heuristics. Such heuristics fail to adapt to varying solution trajectories, where small steps
are needed for sharp transitions but larger steps improve efficiency when the trajectory is smooth.
The NPC addresses this limitation
by parameterizing the decision rules
with a neural network (NN). Instead
of hand-crafted heuristics, NPC
learns flexible and adaptive strate-
gies that generalize across problem
instances. The entire PC process is
modeled as a Markov Decision Pro-
cess (MDP), in which, at each ho-
motopy interpolation level, an agent
observes the state and selects ac-
tions that govern the procedure.
The state s encodes both progress
and dynamics:

Algorithm 1 Neural Predictor-Corrector Solver
Input: Homotopy problem H
1: Warm up for initialization.
2: while tn ≤ 1 do
3: NPC: {∆tn, ϵn or imax

n } = NN(tn−1, ϵn−1, in−1, τn−1)
4: Predictor: Update interpolation level tn = tn−1 +∆tn
5: Predictor: Predict xtn at level tn
6: while H(xtn , tn) ≤ ϵn and in ≤ imax

n do
7: Corrector: Perform one step correction
8: end while
9: Collect corrector statistics ϵn, in

10: Collect convergence velocity τn
11: end while
Output: Optimal solution x∗

t=1

• Homotopy Level: Current position along the interpolation path.
• Corrector Statistics: Iteration count and attained tolerance from the previous step, captur-

ing both convergence efficiency and deviation from the predicted trajectory.
• Convergence Velocity: Relative change in an optimality metric between consecutive lev-

els, reflecting the speed of convergence. For optimization and root-finding, this is the
relative change in the objective value. For sampling, it is the change in a statistical dis-
tance such as Kernelized Stein Discrepancy (KSD) (Liu et al., 2016) between the empirical
sample distribution and the target distribution across consecutive levels.

Given the state s, NPC outputs a two-part action a:

• Step Size ∆t: Controls the predictor’s advance along the homotopy path.
• Corrector Termination: Convergence threshold ϵ or maximum number of updates, bal-

ancing accuracy and efficiency.

As shown in Algorithm 1, the NPC solver operates in an iterative loop to trace the solution path of a
given homotopy problem H . Each iteration consists of three key stages. First, a neural network (the
NPC module) dynamically determines next actions for both the predictor and corrector. Second, the
predictor advances the homotopy level to tn and predicts the solution xn at this level. Third, the cor-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

rector iteratively refines this prediction until the convergence criteria are met. Finally, performance
statistics are collected and fed back to the NPC module to inform its decisions in the next iteration,
creating an adaptive, closed-loop system.

4.2 REINFORCEMENT LEARNING FOR NPC

Because the predictor-corrector procedure is non-differentiable and early decisions influence the en-
tire trajectory, supervised or self-supervised training is inadequate. These approaches would require
assuming that local geometric structures of the solution trajectory remain consistent across instances,
which rarely holds in practice. We instead employ RL, which inherently evaluates sequential deci-
sions by their cumulative effect and enables learning policies that generalize across instances within
the same problem class.

The reward function is designed to promote both accuracy and efficiency:

• Step-wise Accuracy: Encourages faithful trajectory tracking, based on convergence ve-
locity or relative error change in the target problem.

• Terminal Efficiency Bonus: Rewards shorter corrector sequences, formulated as Tmax −
T , where Tmax is a predefined upper bound for the task and T is the total corrector itera-
tions.

This reward design enables agent to balance accuracy and efficiency across the homotopy trajectory.

Remarks on amortized training for generalization. Sequential decision-making in homotopy
problems entails that early step-size choices affect all subsequent levels. Self-supervised learning
fails in this context because measuring the future contribution of a step size is infeasible: it depends
on the local geometric properties of the trajectory at future homotopy levels, which are unknown in
advance. Relying on such assumptions risks overfitting to the training landscapes. This challenge is
analogous to the dilemma discussed in (Li, 2019), where although the problem domains differ, the
core issue of long-term dependency and overfitting is similar.

Reinforcement learning, by contrast, inherently evaluates actions based on cumulative outcomes,
allowing NPC to adapt to diverse solution trajectories without assuming consistent local geome-
try. Amortized training further improves generalization: by training over a distribution of problem
instances, NPC learns a policy that can be applied efficiently to unseen instances within the same
problem class.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Following the RL formulation in Sec. 4, we employ Proximal Policy Optimization (PPO) (Schulman
et al., 2017), an on-policy algorithm well-suited for continuous state and action spaces. Implemen-
tation is based on the open-source Stable Baselines3 library (Raffin et al., 2021). The policy and
value functions are parameterized as multi-layer perceptrons (MLPs) with two hidden layers of 16
units each and ReLU activations. All other hyperparameters use the default values provided by Sta-
ble Baselines3. To account for varying problem formulations and noise levels across tasks, reward
signals are scaled appropriately to ensure stable learning and comparability across tasks. Details
are provided in Appendix A. All experiments are conducted on a 12-core 5.0 GHz Intel Core i7-
12700KF CPU and an NVIDIA GeForce RTX 3060 GPU, unless otherwise specified.

In all tables, Iter ↓ records the total number of corrector iterations (rather than predictor iterations,
which are more commonly used to measure progress in homotopy problems), and Time ↓ reports
runtime in milliseconds. The best results are bolded and the second-best results in Tab. 3 are under-
lined.

5.2 PROBLEM 1 : ROBUST OPTIMIZATION VIA GNC

We evaluate NPC in the context of robust optimization using the GNC framework, comparing it
against the classical GNC (Classic GNC) approach and the iteratively reweighted least-squares

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance on the GNC point cloud
registration task. Rotation and translation errors
(ER and Et) are reported on a log10 scale.

Sequence Method log(ER) ↓ log(Et) ↓ Iter Time

bunny
Classic GNC -0.85 -2.76 783 161.00
IRLS GNC -0.85 -2.75 309 61.59
Ours1+GNC -0.85 -2.71 169 19.15

cube
Classic GNC -1.12 -2.89 486 89.34
IRLS GNC -1.10 -2.90 141 26.13
Ours1+GNC -1.11 -2.86 86 7.86

dragon
Classic GNC -0.80 -2.82 859 177.11
IRLS GNC -0.80 -2.82 486 95.93
Ours1+GNC -0.80 -2.80 201 26.42

1 The agent is trained on the Aquarius sequence for the
point cloud registration task.

Table 2: Performance on the GNC multi-
view triangulation task. Reconstructed 3D
point errors (Ep) are reported on a log10 scale.

Sequence Method log(Ep) ↓ Iter Time

reichstag
Classic GNC -4.62 142 81.98
IRLS GNC 1.74 37 10.72
Ours1+GNC -4.72 21 14.18

sacre coeur
Classic GNC -5.15 195 91.23
IRLS GNC 0.50 16 21.31
Ours1+GNC -4.84 20 14.14

st pt sq
Classic GNC -4.81 136 80.50
IRLS GNC 1.00 19 27.92
Ours1+GNC -4.98 18 15.55

1 The agent is trained on the Aquarius sequence
for the point cloud registration task.

(IRLS) version (Peng et al., 2023). The evaluation covers two spatial perception tasks with high
outlier ratios: point cloud registration (Alexiou et al., 2018) (95% outliers) and multi-view triangu-
lation (Jin et al., 2021) (50% outliers). Our NPC model is trained solely on the Aquarius dataset
from the EPFL Geometric Computing Laboratory, demonstrating its cross-instance generalization
capabilities.

Following the metrics defined in (Yang & Carlone, 2019), we report the rotation error (ER) and
translation error (Et) in Tab. 1 for each method. Additionally, Tab. 2 presents the 3D point recon-
struction error (Ep), defined as the Euclidean distance between reconstructed and ground-truth 3D
points. As shown in Tabs. 1 and 2, NPC achieves accuracy comparable to Classic GNC, whereas
IRLS, tailored for a specific task, performs poorly on triangulation and lacks generalization. In
terms of efficiency, NPC significantly boosts GNC’s performance: on point cloud registration, it re-
duces iterations by approximately 70-80% and runtime by 80-90% without compromising accuracy.
These results demonstrate that NPC preserves the robustness of Classic GNC while substantially
improving efficiency and generalization.

5.3 PROBLEM 2 : GLOBAL OPTIMIZATION VIA GH

We evaluate NPC in the GH setting for non-convex
function minimization. We compare our method
with two categories of baselines: (i) the single loop
GH methods, SLGHr (γ = 0.995) and SLGHd

(η = 10−4) (Iwakiri et al., 2022), and (ii) the
Gaussian smoothing method, PGS (N = 20) (Xu,
2024). Performance is evaluated on three non-
convex benchmarks: the Ackley (Ackley, 1987),
Himmelblau (Himmelblau et al., 1972), and Rast-
rigin (Rastrigin, 1974) functions. The optimal value
f(x∗) is 0 for all problems. The NPC agent is
trained on a family of Ackley functions with ran-
domized parameters and evaluated on the canonical
fixed-parameter version. As summarized in Tab. 3,
NPC-accelerated GH achieves a substantial reduc-
tion in iterations and runtime compared to Classic
GH, while maintaining comparable solution quality.
SLGHd and PGS occasionally fail to reach the op-
timum, especially on Himmelblau, highlighting the
challenge these landscapes pose for fixed-schedule
homotopy methods. Overall, these results show
that NPC provides an notable trade-off between effi-
ciency and robustness. It generalizes well to unseen
problem instances while accelerating convergence.

Table 3: Performance on GH non-convex
function minimization benchmarks.

Problems Method f(x∗) ↓ Iter Time

Ackley

Classic GH 0.07 501 16.25
SLGHr 0.12 1839 56.71
SLGHd 0.26 568 28.45
PGS 0.07 200 14.32
Ours2+GH 0.05 359 12.31

Himmelblau

Classic GH 0.00 501 11.39
SLGHr 0.00 1839 41.70
SLGHd 2.57 75 2.57
PGS 1.18 200 11.33
Ours2+GH 0.00 345 8.91

Rastrigin

Classic GH 0.00 501 23.76
SLGHr 0.00 1839 78.21
SLGHd 0.34 319 19.64
PGS 0.14 200 11.94
Ours2+GH 0.00 247 11.84

2 The agent is trained on the Ackley functions
with randomized parameters and evaluated on the
canonical fixed-parameter version.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5.4 PROBLEM 3 : POLYNOMIAL ROOT-FINDING VIA HC

We evaluate NPC in the context of polynomial system root-finding using HC. Experiments are con-
ducted on two categories of tasks: polynomial system benchmarks (Katsura, 1990; Himmelblau
et al., 1972; Rastrigin, 1974) and a computer vision problem (UPnP (Kneip et al., 2014)) for gen-
eralized camera pose estimation from 2D–3D correspondences. Tab. 4 lists the specific polynomial
systems used, with the first entries as classical benchmarks and the last as computer vision task. We
compare NPC-accelerated HC with Classic HC and Simulator HC (Zhang et al., 2025). Both Classic
HC and NPC-accelerated HC use the monodromy
module in Macaulay2 to generate start systems
following (Duff, 2021), while Simulator HC pre-
trains a regression neural network to predict the
start system, relying on physical modeling of
each problem. Consequently, Simulator HC is
inapplicable to standard polynomial benchmarks.
The NPC agent is trained on polynomial systems
from the 4-view triangulation task with random-
ized coefficients to learn generalizable policies.
As shown in Tab. 4, NPC consistently tracks all
target solutions successfully while reducing the
number of iterations and runtime compared to
Classic HC. Notably, Simulator HC relies on a
task-specific pre-trained network, which limits its
generality, and its runtime is not directly compa-
rable since it is implemented in C++. In con-
trast, NPC provides a general-purpose, adaptive
solver that achieves accelerated convergence with-
out per-task pre-training.

Table 4: Performance on HC polynomial sys-
tem benchmarks. Succ. denotes the success
rate of tracking to a root, and Time reports the
average tracking time per solution path.

Problems Method Succ. Iter Time

katsura10 Classic HC 100% 39 2.22
Ours3+HC 100% 7 0.65

cyclic7 Classic HC 100% 41 1.96
Ours3+HC 100% 8 0.64

UPnP
Classic HC 100% 53 8.25
Simulator HC 100% 100 -
Ours3+HC 100% 29 3.86

-: Runtimes are not directly comparable, as Sim-
ulator HC is implemented in C++, while the other
methods are in Python.
3 The agent is trained on polynomial systems from
the 4-view triangulation task with randomized coef-
ficients.

5.5 PROBLEM 4 : SAMPLING VIA ANNEALED LANGEVIN DYNAMICS (ALD)

We evaluate NPC in the context of ALD for sampling from complex distributions. Target dis-
tributions include a 40-mode Gaussian mixture model (GMM), a 10-dimensional funnel distribu-
tion (Neal, 2003), and a 4-particle double-well (DW-4) potential (Köhler et al., 2020). The NPC
agent is trained on the 10-mode GMM with randomly sampled coefficients to learn generalizable
policies for accelerating ALD. We compare our method against classic ALD (Song et al., 2020)
and, where applicable, iDEM (Akhound-
Sadegh et al., 2024) for GMM and DW-
4 with 103 saved samples. Evaluation
metrics are the Wasserstein-2 distance
(W2) (Peyré et al., 2019) and the Ker-
nelized Stein Discrepancy (KSD) (Liu
et al., 2016). As shown in Tab. 5,
NPC-accelerated ALD requires signifi-
cantly fewer iterations while achieving
W2 and KSD values comparable to clas-
sical ALD. Although iDEM attains lower
W2 on some tasks, it relies on extensive
per-task computation and is not directly
comparable in runtime. Overall, these
results demonstrate that NPC effectively
accelerates sampling while maintaining
high-quality approximations of the target
distributions.

Table 5: Performance on ALD sampling.
Wasserstein-2 distance (W2) and Kernelized Stein
Discrepancy (KSD) evaluate sample quality.

Distributions Method W2 ↓ KSD ↓ Iter Time

40-mode GMM
Classic ALD 11.57 0.0037 410 1353.16
iDEM 7.42 0.0037 1000 -
Ours4+ALD 11.91 0.0040 110 772.34

funnel (d=10) Classic ALD 30.91 0.0382 410 754.48
Ours4+ALD 31.02 0.0343 105 686.55

DW-4
Classic ALD 3.77 0.0911 410 1337.70
iDEM 2.13 0.0911 1000 -
Ours4+ALD 3.47 0.0899 105 711.66

-: Runtimes are not directly comparable, as iDEM is mea-
sured on a more powerful NVIDIA RTX A6000 GPU.
4 The agent is trained on the 10-mode GMM with randomly
sampled coefficients.

5.6 ABLATION STUDY OF RL STATE COMPONENTS

To assess the contribution of each component in the RL state, we perform an ablation study on
the six datasets used for the GNC point cloud registration task, retraining the NPC agent with one

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

component removed at a time. As summarized in Tab. 6, removing any single state component
causes the agent to adopt a more conservative strategy, resulting in an increased number of cor-
rector iterations relative to the full state. This tendency typically manifests as the agent selecting
smaller predictor step sizes or stricter
corrector tolerances to ensure conver-
gence in the absence of complete in-
formation. This indicates that each
state component, i.e., homotopy level,
corrector tolerance, corrector iteration
count, and convergence velocity, pro-
vides essential information for effi-
ciently guiding the homotopy solver.

Table 6: Effect of each RL state component on NPC
performance.

Homotopy
Level

Corrector’s
Tolerance

Corrector’s
Iteration

Convergence
Velocity ∆Iter

✓ ✓ ✓ ✓ 0
× ✓ ✓ ✓ +21
✓ × ✓ ✓ +64
✓ ✓ × ✓ +52
✓ ✓ ✓ × +38

5.7 ANALYSIS OF EFFICIENCY-PRECISION TRADE-OFF

We analyze the efficiency-precision trade-off by benchmarking our NPC-accelerated method against
classical GNC and ALD. Classical approaches require manual tuning of homotopy parameters, re-
sulting in a performance curve where higher precision typically demands more iterations. By con-
trast, our NPC-accelerated method bypasses this manual exploration by learning a policy that di-
rectly identifies an optimal operating point. This learned policy inherently balances the predictor
step size and corrector tolerance to maximize efficiency at a given precision level. The practical
benefit is visualized in Fig. 4. For both GNC and ALD tasks, the single point representing our
method lies well below the classical trade-off curves, clearly illustrating a substantial reduction in
iterations at comparable precision.

10-1 10-0.8 10-0.6 10-0.4 10-0.2 1 100.2

Rotation Error (Deg)

0

200

400

600

800

1000

It
er

at
io

n
s

NPC + GNC
GNC
Fitted Curve

(a) GNC point cloud registration.

11 12 13 14 15 16 17 18
Wasserstein-2 Distance

-100

0

100

200

300

400

500

It
er

at
io

n
s

NPC + ALD
ALD
Fitted Curve

(b) ALD sampling.

Figure 4: Trade-off between efficiency and precision. Efficiency is measured in terms of corrector
iterations, and precision reflects solution accuracy, for NPC-accelerated versus classical methods.

6 CONCLUSION

This paper introduces Neural Predictor–Corrector (NPC), a reinforcement learning framework for
homotopy solvers. By unifying diverse problems, including robust optimization, global optimiza-
tion, polynomial system root-finding, and sampling, under the homotopy paradigm, their solvers
are shown to universally follow a PC structure. NPC replaces handcrafted heuristics with adaptive
learned policies and employs an amortized training regime, enabling one-time offline training and
efficient, training-free deployment on new instances. Extensive experiments demonstrate that NPC
generalizes effectively to unseen instances, consistently outperforms existing approaches in compu-
tational efficiency, and exhibits superior numerical stability. These findings position learning-based
policy search as a practical, generalizable, and efficient alternative to traditional heuristic strategies.
Looking ahead, this paradigm opens promising avenues for extending homotopy methods to broader
classes of optimization and sampling problems. Nonetheless, we also acknowledge its current limi-
tation, which is discussed in Appendix D.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

Our work unifies diverse problem domains governed by the homotopy paradigm into a single frame-
work and, based on it, proposes a general, learning-based solver NPC. Our experiments are con-
ducted on publicly available academic benchmarks and synthetic data, involving no human subjects
or sensitive personal information. We do not foresee any direct negative societal impacts or dual-use
concerns, as the primary application of our work is to provide a more efficient and robust tool for
scientific inquiry.

8 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we specify the sources for all real-world datasets and the parameters used
to generate synthetic data. In addition, Appendix A provides additional implementation details,
covering the specific problem formulations and the hyperparameters used in our experiments. Our
code and pretrained models will also be released to the public.

REFERENCES

David Ackley. A connectionist machine for genetic hillclimbing, volume 28. Springer science &
business media, 1987.

Tara Akhound-Sadegh, Jarrid Rector-Brooks, Avishek Joey Bose, Sarthak Mittal, Pablo Lemos,
Cheng-Hao Liu, Marcin Sendera, Siamak Ravanbakhsh, Gauthier Gidel, Yoshua Bengio, et al.
Iterated denoising energy matching for sampling from boltzmann densities. arXiv preprint
arXiv:2402.06121, 2024.

Evangelos Alexiou, Touradj Ebrahimi, Marco V Bernardo, Manuela Pereira, Antonio Pinheiro, Luis
A Da Silva Cruz, Carlos Duarte, Lovorka Gotal Dmitrovic, Emil Dumic, Dragan Matkovics, et al.
Point cloud subjective evaluation methodology based on 2d rendering. In 2018 Tenth international
conference on quality of multimedia experience (QoMEX), pp. 1–6. IEEE, 2018.

Eugene L Allgower and Kurt Georg. Numerical continuation methods: an introduction, volume 13.
Springer Science & Business Media, 2012.

Andrew Gehret Barto, Richard S Sutton, and CJCH Watkins. Learning and sequential decision
making, volume 89. University of Massachusetts Amherst, MA, 1989.

Daniel J Bates, Andrew J Sommese, Jonathan D Hauenstein, and Charles W Wampler. Numerically
solving polynomial systems with Bertini. SIAM, 2013.

Amir Belder, Refael Vivanti, and Ayellet Tal. A game of bundle adjustment-learning efficient con-
vergence. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
8428–8437, 2023.

Åke Björck. Numerical methods for least squares problems. SIAM, 2024.

Michael J Black and Anand Rangarajan. On the unification of line processes, outlier rejection, and
robust statistics with applications in early vision. International journal of computer vision, 19(1):
57–91, 1996.

Andrew Blake and Andrew Zisserman. Visual reconstruction. MIT press, 1987.

Paul Breiding and Sascha Timme. Homotopycontinuation. jl: A package for homotopy continuation
in julia. In International congress on mathematical software, pp. 458–465. Springer, 2018.

James H Davenport. Looking at a set of equations. Thechnical report, pp. 87–06, 1987.

Arnaud Doucet, Nando De Freitas, and Neil Gordon. An introduction to sequential monte carlo
methods. In Sequential Monte Carlo methods in practice, pp. 3–14. Springer, 2001.

Timothy Duff. Applications of monodromy in solving polynomial systems. PhD thesis, Georgia
Institute of Technology Atlanta, Georgia, USA, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Timothy Duff, Cvetelina Hill, Anders Jensen, Kisun Lee, Anton Leykin, and Jeff Sommars. Solving
polynomial systems via homotopy continuation and monodromy. IMA Journal of Numerical
Analysis, 39(3):1421–1446, 2019.

Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z Alaya, Aurélie Boisbunon, Stanis-
las Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, et al. Pot: Python
optimal transport. Journal of Machine Learning Research, 22(78):1–8, 2021.

David M Himmelblau et al. Applied nonlinear programming. McGraw-Hill, 1972.

Petr Hruby, Timothy Duff, Anton Leykin, and Tomas Pajdla. Learning to solve hard minimal prob-
lems. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 5532–5542, 2022.

Hidenori Iwakiri, Yuhang Wang, Shinji Ito, and Akiko Takeda. Single loop gaussian homotopy
method for non-convex optimization. Advances in Neural Information Processing Systems, 35:
7065–7076, 2022.

Yuhe Jin, Dmytro Mishkin, Anastasiia Mishchuk, Jiri Matas, Pascal Fua, Kwang Moo Yi, and Ed-
uard Trulls. Image matching across wide baselines: From paper to practice. International Journal
of Computer Vision, 129(2):517–547, 2021.

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A
survey. Journal of artificial intelligence research, 4:237–285, 1996.

Shlgetoshl Katsura. Spin glass problem by the method of integral equation of the effective field.
New Trends in Magnetism, pp. 110–121, 1990.

CT Kelley. Solution of the chandrasekhar h-equation by newton’s method. Journal of Mathematical
Physics, 21(7):1625–1628, 1980.

Laurent Kneip, Hongdong Li, and Yongduek Seo. Upnp: An optimal o (n) solution to the absolute
pose problem with universal applicability. In European conference on computer vision, pp. 127–
142. Springer, 2014.

Jonas Köhler, Leon Klein, and Frank Noé. Equivariant flows: exact likelihood generative learning
for symmetric densities. In International conference on machine learning, pp. 5361–5370. PMLR,
2020.

Kenneth Levenberg. A method for the solution of certain non-linear problems in least squares.
Quarterly of applied mathematics, 2(2):164–168, 1944.

Ke Li. Advances in Machine Learning: Nearest Neighbour Search, Learning to Optimize and
Generative Modelling. PhD thesis, University of California, Berkeley, 2019.

Xi Lin, Zhiyuan Yang, Xiaoyuan Zhang, and Qingfu Zhang. Continuation path learning for homo-
topy optimization. In International Conference on Machine Learning, pp. 21288–21311. PMLR,
2023.

Qiang Liu, Jason Lee, and Michael Jordan. A kernelized stein discrepancy for goodness-of-fit tests.
In International conference on machine learning, pp. 276–284. PMLR, 2016.

Hossein Mobahi and John W Fisher III. On the link between gaussian homotopy continuation and
convex envelopes. In International Workshop on Energy Minimization Methods in Computer
Vision and Pattern Recognition, pp. 43–56. Springer, 2015.

Radford M Neal. Slice sampling. The annals of statistics, 31(3):705–767, 2003.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527–566, 2017.

VW Noonburg. A neural network modeled by an adaptive lotka-volterra system. SIAM Journal on
Applied Mathematics, 49(6):1779–1792, 1989.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Liangzu Peng, Christian Kümmerle, and René Vidal. On the convergence of irls and its variants in
outlier-robust estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 17808–17818, 2023.

Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
science. Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. Ussr compu-
tational mathematics and mathematical physics, 4(5):1–17, 1964.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

LA Rastrigin. Extreme control systems (moscow: Nauka). 1974.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Chen Xu. Global optimization with a power-transformed objective and gaussian smoothing. arXiv
preprint arXiv:2412.05204, 2024.

Heng Yang and Luca Carlone. A polynomial-time solution for robust registration with extreme
outlier rates. arXiv preprint arXiv:1903.08588, 2019.

Heng Yang, Pasquale Antonante, Vasileios Tzoumas, and Luca Carlone. Graduated non-convexity
for robust spatial perception: From non-minimal solvers to global outlier rejection. IEEE Robotics
and Automation Letters, 5(2):1127–1134, 2020a.

Heng Yang, Jingnan Shi, and Luca Carlone. Teaser: Fast and certifiable point cloud registration.
IEEE Transactions on Robotics, 37(2):314–333, 2020b.

Zilyu Ye, Zhiyang Chen, Tiancheng Li, Zemin Huang, Weijian Luo, and Guo-Jun Qi. Schedule on
the fly: Diffusion time prediction for faster and better image generation. In Proceedings of the
Computer Vision and Pattern Recognition Conference, pp. 23412–23422, 2025.

Xinyue Zhang, Zijia Dai, Wanting Xu, and Laurent Kneip. Simulator hc: Regression-based on-
line simulation of starting problem-solution pairs for homotopy continuation in geometric vision.
In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 27103–27112,
2025.

12

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A IMPLEMENTATION DETAILS

A.1 DETAILS OF PROBLEM 1 : ROBUST OPTIMIZATION VIA GNC (SEC. 5.2)

A.1.1 THE GRADUATED NON-CONVEXITY ALGORITHM

Optimization problems that can be formulated as least-squares can utilize the robust kernel from
Eq. (1), which is represented as:

x∗ = min
x∈X ,t∈T

H(x, t). (5)

The GNC algorithm utilizes Black-Rangarajan Duality (Black & Rangarajan, 1996) to reformulate
Eq. (5) into:

x∗ = min
x∈X

∑
i=1

[
wir

2(yi,x) + ΦHt
(wi)

]
, (6)

where wi is the weight of the ith measurement yi, and the function ΦHt(·), whose expression
depends on the choice of the robust cost function Ht, defines a penalty on the weight wi. When Ht

is defined by Eq. (1), ΦHt(wi) is defined by ΦHt(wi) =
1
t c̄

2(
√
wi − 1)2. Moreover, the weight can

be solved in closed form as a function of only t and residual r.

Predictor Reformulating the problem as Eq. (6) simplifies the prediction step to updating the each
weight wi using Eq. (7), rather than predicting the optimization variable x.

wi =

(
c̄2

tr2(x,yi) + c̄2

)2

(7)

Corrector We correct x using a nonlinear optimization method defined by Eq. (8).

x∗ = min
x∈X

∑
i=1

wir
2(yi,x) (8)

In our experiments, point cloud registration employs a Gauss-Newton corrector, while multi-view
triangulation uses a more robust Levenberg-Marquardt (LM) algorithm.

Details of Experiment For the point cloud registration task, the reward scaling is set to λ1 = 103,
and λ2 = 10−3. For the multi-view triangulation task, the reward scaling is set to λ1 = 10−1 and
λ2 = 10−3 due to its noise scale being significantly larger than that of point cloud registration.

A.2 DETAILS OF PROBLEM 2 : GLOBAL OPTIMIZATION VIA GH (SEC. 5.3)

A.2.1 THE GAUSSIAN HOMOTOPY ALGORITHM

The equivalent expression for Eq. (2) is given by:

H(x, t) =

∫
g(x+ t ∗ σ)k(σ)dσ = Eσ∼N (0,Id)[g(x+ t ∗ σ)] (9)

where k(σ) = (2π)−
d
2 e

−∥σ∥2
2 is referred to as the kernel.

Predictor The prediction process in Gaussian homotopy is implicit, as we only modify the shape
of H(x, t) by varying the predictor’s homotopy level t.

Corrector The correction for x is performed using a momentum method (Polyak, 1964), with the
gradient update formulated as

vt+1 = ∇xH(xt, t) + βvt

xt+1 = xt − αvt+1
(10)

where vt is the velocity vector, with the initial velocity v0 set to the zero vector, β is momentum
coefficients, controlling the influence of past gradients, and α is the learning rate, which determines
the step size of the update. We set α = 0.01 and β = 0.8 in our experiment. As the analytical
computation of the gradient ∇xH(xt, t) is not feasible for some Gaussian homotopy functions, we

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

employ a zeroth-order method to obtain a numerical approximation. The calculation formula is as
follows (Nesterov & Spokoiny, 2017):

∇xH(xt, t) = ∇xEσ∼N (0,Id)[g(x+ t ∗ σ)] = 1

t
Eσ [(g(x+ t ∗ σ)− g(x)) ∗ σ] (11)

Details of Experiment The reward scaling is set to λ1 = 1, and λ2 = 10−3.

A.2.2 THE NON-CONVEX FUNCTION MINIMIZATION BENCHMARKS

Ackley Optimization Problem (Ackley, 1987):

f(x, y) = −20e−0.2
√

0.5(x2+y2) − e0.5(cos 2πx+cos 2πy) + e+ 20. (12)

Himmelblau Optimization Problem (Himmelblau et al., 1972):
f(x, y) = (x2 + y − 11)2 + (x+ y2 − 7)2. (13)

Rastrigin Optimization Problem (Rastrigin, 1974):
f(x, y) = 10 + x2 + y2 − 9 cos(2πx)− cos(2πy) (14)

A.3 DETAILS OF PROBLEM 3 : POLYNOMIAL ROOT-FINDING VIA HC (SEC. 5.4)

A.3.1 THE HOMOTOPY-CONTINUATION ALGORITHM

The polynomial system root-finding problem is modeled in the form of Eq. (3).

Predictor The prediction of x(t + ∆t) is performed using the Padé approximation. The Padé
approximation polynomial Rn,m(x) = Rn(x)

Qm(x) has the following form:

Rn,m(x) =
p0 + p1x+ · · ·+ pnx

n

1 + q1x+ · · ·+ qmxm
=

∑n
j=0 pjx

j

1 +
∑m

k=1 qkx
k
. (15)

It is equivalent to the power series given in Eq. (16).

ψ(x) :=

∞∑
k=1

ckx
k. (16)

The basic Padé approximation principle is that, given two integers m,n ∈ N ∪ {0}, we can find
two polynomials Pn(x) of degree at most n and Qm(x) of degree at most m, such that the differ-
ence Qm(x)f(x) − Pn(x) has an order of approximation of at least n + m + 1. In fact, this is
mathematically equivalent to the requirement:

Qm(x)f(x)− Pn(x) = O(xn+m+1), (17)
where O(xN) denotes a power series of the form

∑∞
n=N cnx

n.

In our implementation, we set n = 2 and m = 1. we can derive the following coefficients based on
Eq. (17):

q1 = −c3
c2
,

p0 = c0,

p1 = c1 + q1c0,

p2 = c2 + q1c1,

(18)

where c0 = x(t), c1 = x′(t), c2 = 1
2x

′′(t), c3 = 1
6x

′′′(t). We obtain the derivative of x by
differentiating H(x(t), t) with respect to t:

∂H

∂x
x′(t) = −∂H

∂t
,

∂H

∂x
x′′(t) = −

(
∂2H

∂x∂t
x′(t) +

∂2H

∂t2

)
,

∂H

∂x
x′′′(t) = −

(
2
∂2H

∂x∂t
x′′(t) +

∂3H

∂x∂t2
x′′(t) +

∂3H

∂t3

)
.

(19)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Consequently, x(t+∆t) is according to the following equation:

x(t+∆t) =
p0 + p1∆t+ p2∆t

2

1 + q1∆t
. (20)

If the denominator in Eq. (20) approaches zero, we revert to using a power series to predict x(t+∆t).
In this case, the prediction takes the form x(t+∆t) = c0 + c1∆t+ c2∆t

2 + c3∆t
3.

Corrector We employ a Newton corrector in our experimental setup. At each iteration, x is updated
according to the following equation until the convergence criterion ∆x < ϵ is met.

∂H(x, t+∆t)

∂x
∆x = −H(x, t+∆t),

x = x+∆x.
(21)

Details of Experiment The reward scaling is set to λ1 = 10−3, and λ2 = 10−1.

A.3.2 THE POLYNOMIAL SYSTEM BENCHMARKS

The Katsura-n Polynomial System (Katsura, 1990):

f0 :

(
n∑

i=−n

xi

)
− 1 = 0

fk+1 : x−nxn +

(
n∑

i=−n+1

xixk−i

)
− xk = 0 (for k = 0, 1, . . . , n− 1)

(22)

The Cyclic-n Polynomial System (Davenport, 1987):

f0 :

n−1∑
j=0

xj = 0

f1 :

n−1∑
j=0

xjx(j+1) (mod n) = 0

...
...

fn−2 :

n−1∑
j=0

(
n−2∏
k=0

x(j+k) (mod n)

)
= 0

fn−1 :

n−1∏
j=0

xj

− 1 = 0

(23)

The Noon-n Polynomial System (Noonburg, 1989):

xi

 n∑
j=1
j ̸=i

x2j

− cxi + 1 = 0 for i = 1, . . . , n (24)

In our implementation, we set c = 1.1.

The Chandra-n Polynomial System (Kelley, 1980):

2nxk − cxk

(
1 +

n−1∑
i=1

k

i+ k
xi

)
− 2n = 0 for k = 1, . . . , n (25)

In our implementation, we set c = 0.51234.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.4 DETAILS OF PROBLEM 4 : SAMPLING VIA ALD (SEC. 5.5)

A.4.1 THE ANNEALED LANGEVIN DYNAMIC SAMPLING ALGORITHM

Annealed Langevin dynamics sampling obtains initial sample points from a simple distribution and
uses a series of time-dependent potentials to control the update of the samples, as shown in Eq. (4).
Let the time-dependent potentials be H(x, t) ∝ exp

(
− (1− t)f(x)− tg(x)

)
.

Predictor The prediction process in ALD sampling is implicit, as we only modify the shape of
H(x, t) by varying the predictor’s homotopy level t.

Corrector In each iteration of the corrector, the positions of the samples are updated using the
following formula:

x = x− ξ

2
∇xH(xt, t) +

√
ξσ, (26)

where ξ is a Langevin step size, and σ ∼ N (0, Id) is a Gaussian noise vector.

Details of Experiment The reward scaling is set to λ1 = 10, and λ2 = 10−3.

A.4.2 DISTRIBUTIONS

The 10-dimensional funnel distribution The 10 dimensions Funnel distribution defined as

x0 ∼ N (0, σ2)

xi|x0 ∼ N (0, ex0), for i = 1, . . . , 9.
(27)

The funnel potential given as

g(x) =
x20
2σ2

+
1

2

9∑
i=1

e−x0x2i (28)

The 4-particle double-well (DW-4) potential The DW-4 potential defined as

g(x) =
1

2τ

∑
ij

a(dij − d0) + b(dij − d0)
2 + c(dij − d0)

4, (29)

where dij = ∥xi − xj∥2 is the Euclidean distance between particles i and j. In our implementation,
we set τ = 1, a = 0, b = −4, and c = 0.9.

A.4.3 METRIC

Wasserstein-2 distance (W2) The Wasserstein-2 distance (Peyré et al., 2019) is given by

W2(µ, ν) =

(
inf
π

∫
π(x, y)d(x, y)2 dxdy

) 1
2

, (30)

where π is the transport plan with marginals constrained to µ and ν respectively. In our implemen-
tation, we we use the Python Optimal Transport (POT) package (Flamary et al., 2021) to compute
this metric.

Kernelized Stein Discrepancy (KSD) The Kernelized Stein Discrepancy (Liu et al., 2016) is de-
fined as

uq(x, x
′) = sq(x)

⊤k(x, x′)sq(x
′) + sq(x)

⊤∇x′k(x, x′)

+∇xk(x, x
′)⊤sq(x

′) + trace(∇x,x′k(x, x′)),

S(p, q) = Ex,x′∼p[uq(x, x
′)],

(31)

where sq = −∇xg(x), and k(x, x′) is a positive definite kernel.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B BACKGROUND ON REINFORCEMENT LEARNING

Reinforcement learning (RL) (Kaelbling et al., 1996) provides a natural framework for learning
adaptive strategies. It formulates sequential decision-making as an Markov Decision Process (MDP)
with state space S, action space A, transition dynamics p(st+1|st, at), initial state distribution
p0(s0), reward function r(st, at), and discount factor γ ∈ (0, 1]. The goal is to find an optimal policy
π∗ : S → A that maximizes the expected cumulative reward along a trajectory (s0, a0, . . . , sT):

E

[
T∑

t=0

γtr(st, at)

]
. (32)

C FULL RELATED WORK

Although we mentioned in previous sections that methods from different fields essentially share the
same predictor-corrector spirit, they have long evolved independently of one another. Our work
is the first to unify these methods. In this section, we will review 1) classical predictor-corrector
methods; 2) learning-based improvements on predictor-corrector methods; 3) efficient optimization
and sampling methods via reinforcement learning.

Predictor-Corrector Algorithm 1) Robust Optimization: A core related technique is Graduated
Non-Convexity (GNC), first proposed by (Yang et al., 2020a). This method employs a predictor-
corrector approach with non-linear least-squares solvers to compute robust solutions. However, it
relies on a hand-crafted, fixed iteration schedule, making it unsuitable for real-time robotics ap-
plications. Building on this work, (Peng et al., 2023) established a connection between GNC and
the iteratively reweighted least-squares (IRLS) framework, based on which they designed a novel
iteration strategy that achieved faster speeds in point cloud registration tasks. Nevertheless, this
strategy’s lack of generalizability to other problems remains its primary limitation. 2) Gaussian
Homotopy Optimization: The underlying principle of this area was first introduced in (Blake & Zis-
serman, 1987). More recently, (Iwakiri et al., 2022) proposed a novel single-loop framework for the
Gaussian homotopy method that simultaneously performs prediction and correction. Subsequently,
(Xu, 2024) improved the algorithm’s convergence rate by adding an exponential power-N transfor-
mation prior to the Gaussian homotopy process. 3) Polynomial Root-Finding: Homotopy contin-
uation (Bates et al., 2013), a numerical method for finding the roots of polynomial systems, uses
a predictor-corrector scheme to track solution paths. Subsequent methods by (Breiding & Timme,
2018) and (Duff et al., 2019) analyzed the properties of polynomials to introduce various improve-
ments, enhancing the algorithm’s speed. 4) Sampling: In generative modeling, annealed Langevin
dynamics (Song & Ermon, 2019; Song et al., 2020) utilizes a predictor-corrector method to sample
from image probability distributions, where the correction step uses Langevin dynamics to restore
samples to an equilibrium state. Similarly, Sequential Monte Carlo (SMC) methods (Doucet et al.,
2001) also apply a predictor-corrector approach to sample from posterior probability distributions,
with a correction step that employs importance sampling to re-weight the samples.

Learning for Predictor-Corrector Algorithm 1) Gaussian Homotopy Optimization: One ap-
proach from (Lin et al., 2023) is a novel model-based method that learns the entire continuation
path for Gaussian homotopy. However, this approach requires specialized training for each prob-
lem. 2) Polynomial Root-Finding: Focusing on the more specific sub-problem of polynomial system
root-finding, both (Hruby et al., 2022) and (Zhang et al., 2025) propose learning-based methods to
determine the optimal starting system for homotopy continuation.

Reinforcement Learning for Optimization and Sampling 1) Optimization: (Li, 2019) proposes a
general framework by formulating an optimization algorithm as a reinforcement learning problem,
where the optimizer is represented as a policy that learns to generate update steps directly, aim-
ing to converge faster and find better optima than hand-engineered method. (Belder et al., 2023)
utilizes reinforcement learning to train an agent that dynamically selects the damping factor in the
Levenberg-Marquardt (Levenberg, 1944) algorithm to accelerate convergence by reducing the num-
ber of iterations. 2) Sampling: (Ye et al., 2025) employs reinforcement learning to adaptively predict
the denoising schedule via optimizing a reward function that encourages high image quality while
penalizing an excessive number of denoising steps.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D LIMITATION AND FUTURE WORK

One limitation of our work is that the NPC agent’s reward scale currently requires manual tuning
for each problem instance based on its noise level to ensure stable and efficient training. The scale
of step-wise rewards critically influences the training process’s convergence time, while an over-
sized terminal reward can nullify the guidance from step-wise rewards. This imbalance can prevent
the agent from correctly tracking the solution trajectory, causing it to adopt myopic strategies to
prematurely reach a terminal state.

To address this, two avenues for future work are promising. The first is to develop a mechanism
that automatically adapts the reward scale. A more fundamental solution would be to investigate
adaptive normalization techniques for the reward function, making the learning process inherently
robust and eliminating manual tuning.

E FULL EXPERIMENTAL RESULTS

This section provides the complete experimental results, which are summarized in Sec. 5.2 due to
limited space. Tab. 7 and Sec. 5.4 shows the full results for the point cloud registration experiments
via GNC, and Tab. 8 presents the detailed outcomes for the root-finding experiments on polynomial
systems via HC.

Table 7: Performance on the GNC point cloud registration task. Rotation and translation errors
(ER and Et) are reported on a log10 scale.

Sequence Method log(ER) ↓ log(Et) ↓ Iter Time

bunny
Classic GNC -0.85 -2.76 783 161.00
IRLS GNC -0.85 -2.75 309 61.59
Ours1+GNC -0.85 -2.71 169 19.15

cube
Classic GNC -1.12 -2.89 486 89.34
IRLS GNC -1.10 -2.90 141 26.13
Ours1+GNC -1.11 -2.86 86 7.86

dragon
Classic GNC -0.80 -2.82 859 177.11
IRLS GNC -0.80 -2.82 486 95.93
Ours1+GNC -0.80 -2.80 201 26.42

egyptian mask
Classic GNC -0.88 -2.73 770 160.05
IRLS GNC -0.86 -2.75 264 53.51
Ours1+GNC -0.87 -2.69 158 16.94

sphere
Classic GNC -0.98 -2.87 713 148.55
IRLS GNC -0.98 -2.88 220 45.73
Ours1+GNC -0.99 -2.77 143 13.63

vase
Classic GNC -0.86 -2.84 765 159.25
IRLS GNC -0.87 -2.86 288 58.08
Ours1+GNC -0.86 -2.77 160 17.05

1 The agent is trained on the Aquarius sequence for the point cloud regis-
tration task.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use LLMs to polish writing.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 8: Performance on HC polynomial system benchmarks. Succ. denotes the success rate of
tracking to a root, and Time reports the average tracking time per solution path.

Problems Method Succ. Iter Time

katsura10 Classic HC 100% 39 2.22
Ours3+HC 100% 7 0.65

cyclic7 Classic HC 100% 41 1.96
Ours3+HC 100% 8 0.64

noon5 Classic HC 100% 41 1.69
Ours3+HC 100% 10 0.69

chandra9 Classic HC 100% 31 3.24
Ours3+HC 100% 5 0.76

UPnP
Classic HC 100% 53 8.25
Simulator HC 100% 100 -
Ours3+HC 100% 29 3.86

-: Runtimes are not directly comparable, as Simulator
HC is implemented in C++, while the other methods are
in Python.
3 The agent is trained on a separate set of polynomial

systems with randomized coefficients.

19

	Introduction
	Related Works
	Homotopy Paradigm as a Unified Perspective
	Homotopy Paradigm
	Predictor-Corrector Algorithm
	Representative Homotopy Problems and Practical Solvers

	Neural Predictor-Corrector with Reinforcement Learning
	Neural Predictor-Corrector
	Reinforcement Learning for NPC

	Experiments
	Implementation Details
	Problem 1 : Robust Optimization via GNC
	Problem 2 : Global Optimization via GH
	Problem 3 : Polynomial Root-Finding via HC
	Problem 4 : Sampling via Annealed Langevin Dynamics (ALD)
	Ablation Study of RL State Components
	Analysis of Efficiency-Precision Trade-off

	Conclusion
	Ethics statement
	Reproducibility statement
	Implementation details
	Details of Problem 1 : Robust Optimization via GNC (subsec:GNC)
	The Graduated Non-Convexity algorithm

	Details of Problem 2 : Global Optimization via GH (subsec:GH)
	The Gaussian Homotopy algorithm
	The non-convex function minimization benchmarks

	Details of Problem 3 : Polynomial Root-Finding via HC (subsec:HC)
	The Homotopy-Continuation algorithm
	The polynomial system benchmarks

	Details of Problem 4 : Sampling via ALD (subsec:sampling)
	The annealed Langevin dynamic sampling algorithm
	Distributions
	Metric

	Background on Reinforcement Learning
	Full Related Work
	limitation and future work
	Full Experimental Results
	The Use of Large Language Models (LLMs)

