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Abstract

Sleep disorders in children are common yet often underdiagnosed, and manual1

scoring of overnight polysomnography (PSG) is slow while labels for key events2

are sparse. We study 30-second pediatric PSG epochs represented by fixed em-3

beddings from a multimodal masked-autoencoder. We investigate and augment4

these embeddings with (i) PHATE-derived per-epoch coordinates and whole-night5

movement descriptors, (ii) persistent-homology summaries computed on the high-6

dimensional embedding cloud, and (iii) routine EHR context. An AHI-stratified7

screen shows clinically coherent shifts in movement/topology. In predictive bench-8

marks, a late-fusion MLP that integrates all branches improves rare-event detection9

over a linear probe, leading in 3/4 binary tasks (Desaturation AUPRC = 0.370,10

EEG arousal = 0.484, Hypopnea = 0.290), while Apnea favors the EHR-only11

late-fusion variant (AUPRC = 0.147). Results suggest that clinical context and12

latent geometry/topology provide complementary signals beyond the generative13

embeddings, yielding interpretable links to disease burden and better performance14

under extreme imbalance.15

1 Introduction16

Pediatric sleep disorders affect cognition, behavior, and cardiometabolic health, yet real-world17

diagnosis is constrained by manual PSG scoring and highly imbalanced event labels [1–3]. We18

start from per-epoch PedSleepMAE [4] embeddings—fixed, multimodal representations learned19

generatively from raw PSG channels via masked-autoencoder [5]—and ask whether their (a) latent20

trajectory information, (b) topological shape, and (c) augmentation with EHR can (i) reflect disease21

burden across AHI strata and (ii) improve detection of apnea, hypopnea, desaturation, EEG arousal,22

and five-stage sleep under session-wise splits.23

To motivate, we mapped per-epoch PedSleepMAE embeddings to 2-D PHATE [6] (Fig. 1). Ped-24

SleepMAE was trained by treating every 30 seconds of PSG as an independent sample, i.e. it was25

reconstructing signals without knowing what time of the night it is or who it is from. Yet, Fig. 126

reveals that the embeddings captured time-dependent information despite not knowing it explicitly in27

training. PHATE maps each night to a smooth, time-ordered path whose geometry matches expert28

stages: lighter stages at the entrance, N3 near the center, and REM along peripheral arcs. Across the29

session we observe consistent curvature, drift, and occasional bifurcations that align with canonical30

sleep progressions. This motivates our novel research question of investigating the session-wide31

diagnostic information contained in the sequences of multimodal generative embeddings.32

Manifold learning is widely used to visualize high-dimensional trajectories [7]; PHATE’s diffusion33

geometry preserves local neighborhoods while maintaining global progression and denoises noisy34

biological measurements, making it suitable for sleep dynamics [8]. Prior PSG work more often35

models raw or time–frequency inputs with sequence architectures (e.g., SleepTransformer) [9].36
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Figure 1: Parallel PHATE views for one study: left colored by epoch index (time), right by sleep stages. The
2-D diffusion map reveals a smooth, time-ordered trajectory whose regions align with expert staging.

In parallel, topological data analysis (TDA) offers stable vectorizations that capture multiscale37

loop/cluster structure for learning [10–12]; pediatric sleep EEGs have related such structure to38

respiratory burden and desaturation [13]. Finally, combining signal representations with structured39

EHR via late fusion is a common and effective pattern in clinical prediction [14, 15].40

Ablations are ordered for interpretability and deployment: linear probe on embeddings (M0), add41

routine EHR via late-fusion MLP (M1), add PHATE point+time branches (M2), then add topological42

descriptors (M3). This isolates the incremental value of context, trajectory, and topology beyond the43

generative embeddings.44

2 Methods45

2.1 Data46

We use the Nationwide Children’s Hospital Sleep DataBank (NCHSDB), which contains pediatric47

overnight polysomnography (PSG) with technologist labels for sleep stages and respiratory events48

[2]. The analysis set includes 2,522 complete studies, each identified by a (person ID, session ID)49

pair. Signals include EEG, ECG, EMG, respiratory effort, airflow, and oxygen saturation. Recordings50

are divided into consecutive 30-second epochs in temporal order. Each epoch is represented by a51

7,680-dimensional PedSleepMAE embedding (120×64) learned generatively from raw PSG channels52

[4]. Labels for sleep stage, apnea, hypopnea, desaturation, and EEG arousal align one-to-one with53

the embeddings. We use session-wise, stratified splits (70/10/20% train/val/test) per label.54

Structured EHR from NCHSDB [2] is linked to each session. Routine EHR provides low-overhead55

clinical context that can reduce confounding and improve generalization when fused with signal56

features. We include a demographic and comorbidity set to our analysis; see Appendix A for the list.57

2.2 Feature Sets58

Our features mirror the ablation order: per-epoch PedSleepMAE embeddings as baselines, EHR59

(Sec. 2.1), then (i) PHATE-based trajectory features and (ii) topological descriptors. See Appendix A60

for formal definitions.61

PHATE trajectory features. PHATE is fit on training sessions and applied out of sample to62

validation/test. We use (a) trajectory-local per-epoch coordinates/derivatives and (b) trajectory-63

global session summaries of movement/fragmentation: mean and max inter-epoch step, mean turning64

angle, directional entropy of turns, tortuosity (path-length vs. end-to-end), and a change-point65

count on the step-length series using RUPTURES with PELT (Pruned Exact Linear Time) [16, 17].66

Session-level quantities are broadcast to all epochs of that session.67

Topological features. To quantify shape directly in representation space, we compute persistent68

homology on the original 7,680-D PedSleepMAE point cloud via a Vietoris–Rips filtration and sum-69

marize with a compact six-statistic panel: H0_sum_pers, H0_n_bars, H1_n_bars, H1_max_pers,70
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Figure 2: AHI associations for a representative movement metric (time_std). Top-left: ECDF; top-right:
mean±95% CI; bottom: KDE density. Groups: healthy (<1), mild (1–5), moderate (5–10), severe (≥10).

Betti–1 L2 norm, and the H1/H0 lifetime ratio. These capture cluster spread/fragmentation (H0),71

loop prevalence/strength (H1/Betti–1 energy), and loop-vs-cluster balance, producing stable, fixed-72

length vectors for learning [10–12].73

2.3 AHI-stratified feature analysis (pre-specification)74

We used an AHI-stratified screen to decide which session-level descriptors advance to modeling.75

Sessions were grouped by pediatric AHI thresholds into healthy (<1), mild (1–5), moderate (5–76

10), and severe (≥10), following commonly used pediatric criteria [3, 18]. For each session-level77

candidate we ran a Kruskal–Wallis omnibus test [19], Dunn post-hoc comparisons [20] with Holm78

correction [21], reported Cliff’s δ as an effect size [22], and visualized box/ECDF/KDE with adjusted79

q values. Because AHI is defined per session, the screen applied only to trajectory-global PHATE80

features and to TDA summaries. Trajectory-local features are per-epoch and do not align to a session81

label; they were not screened. EHR features were pre-specified and likewise not AHI-screened to82

avoid label leakage and to preserve a stable confounder block across all tasks.83

2.4 Diagnostic models84

We compare four epoch-level classifiers on identical session-wise, stratified splits and a shared training85

recipe. M0 (Linear Probe) applies a single linear layer to each 7,680-D PedSleepMAE embedding86

to set a lower bound on representation quality [4]. M1 (Emb+EHR, late-fusion MLP) replaces the87

linear head with a two-branch MLP: embeddings and EHR are encoded separately and concatenated.88

M2 (Emb+EHR+Trajectory, late-fusion MLP) keeps capacity matched to M1 and adds two PHATE89

trajectory branches: (i) per-epoch point features and (ii) per-session global summaries, to expose90

local state and whole-night structure to the classifier [6, 8, 16]. M3 (Emb+EHR+Trajectory+TDA,91

late-fusion MLP) further adds a session-level topological branch built from persistent-homology92

statistics, allowing loop/cluster structure to inform decisions [10–12]. All architectural/optimization93

details are specified in Appendix B.94

3 Results95

3.1 Clinical association with AHI96

Trajectory movement and topology co-vary with AHI. Permutation omnibus tests are significant97

for all six TDA descriptors and several PHATE movement metrics, showing monotone shifts98
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Figure 3: PR curves for the four binary tasks (test set), M0–M3 overlaid; legend reports AUPRC for each model.

from healthy→mild→moderate→severe. Severe nights exhibit reduced topological richness (fewer99

components/loops, lower Betti energy), larger average/variable steps on the manifold, and higher100

H1_max_pers—fewer but more persistent loops. Healthy nights show the opposite pattern. We101

therefore retain the six PHATE-global and six TDA summaries for prediction. Pairwise “3-vs-all”102

and “0-vs-all” contrasts are strongly significant (Appendix C). See Fig. 2 for an example.103

3.2 Predictive performance (Models 0–3)104

We report AUPRC as the primary metric for imbalanced tasks [23]. Fig. 3 shows clear separation105

from the linear probe (M0) once contextual branches are added. The full late-fusion model (M3) is106

best on three of four labels— Desaturation 0.370, EEG arousal 0.484, Hypopnea 0.290—while Apnea107

favors the EHR-only late-fusion model (M1; 0.147 vs. 0.141–0.140 for M2–M3). The M0→M1108

jump reflects both capacity (linear→MLP) and genuine value from EHR, which is particularly109

helpful for the rarest outcomes. Adding PHATE trajectory features (M2) yields further gains on110

Desaturation, EEG, and Hypopnea—consistent with Sec. 3.1 where directional entropy and step111

statistics tracked AHI—and is competitive on secondary metrics (e.g., top accuracy for Desaturation112

0.8877 and Hypopnea 0.9730; top ROC-AUC for Hypopnea 0.8963; Appendix D). Adding topology113

(M3) provides small, label-dependent lifts, most notable for Hypopnea, suggesting complementary114

loop-geometry signals. For Apnea, EHR and local waveform cues dominate at very low recall;115

trajectory/TDA add little and can trade precision for recall.116

4 Conclusion117

We investigated diagnostic information contained in the sequences of per-epoch PedSleepMAE118

embeddings, and presented a late-fusion pipeline that augments the embeddings with PHATE-based119

temporal descriptors, topological summaries of the latent trajectory, and EHR context. On 2.5k+120

pediatric sleep studies, these time/shape features showed AHI-stratified shifts and improved rare-121

event detection beyond a linear probe. The full model (M3) led in three of four tasks—Desaturation122

AUPRC 0.370, EEG arousal 0.484, Hypopnea 0.290—while Apnea favored the EHR-only variant123

(M1; AUPRC 0.147). These results highlight that latent geometry, topology, and clinical context124

provide meaningful signals that capture disease burden and reduce reliance on manual scoring. Future125

work will refine an embeddings-only MLP for clearer baselines and explore end-to-end integration of126

manifold/topological structure to ensure robustness under severe imbalance.127

4



References128

[1] T. F. Anders and L. A. Eiben, “Pediatric sleep disorders: A review of the past 10 years,” Journal129

of the American Academy of Child & Adolescent Psychiatry, vol. 36, no. 1, pp. 9–20, 1997.130

[Online]. Available: https://www.sciencedirect.com/science/article/pii/S0890856709636947131

[2] H. Lee, B. Li, S. DeForte, M. L. Splaingard, Y. Huang, Y. Chi, and S. L. Linwood, “A large132

collection of real-world pediatric sleep studies,” Scientific Data, vol. 9, no. 1, p. 421, jul 2022.133

[Online]. Available: https://doi.org/10.1038/s41597-022-01545-6134

[3] A. A. of Sleep Medicine et al., “Aasm manual for the scoring of sleep and associated events135

american academy of sleep medicine,” Darien, IL.[Google Scholar], 2007.136

[4] S. R. Pandey, A. Saeed, and H. Lee, “Pedsleepmae: Generative model for multimodal pediatric137

sleep signals,” 2024. [Online]. Available: https://arxiv.org/abs/2411.00718138

[5] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked autoencoders are scalable139

vision learners,” in Proceedings of the IEEE/CVF conference on computer vision and pattern140

recognition, 2022, pp. 16 000–16 009.141

[6] K. R. Moon, D. van Dijk, Z. Wang, S. Gigante, D. B. Burkhardt, W. S. Chen,142

K. Yim, A. van den Elzen, M. J. Hirn, R. R. Coifman, N. B. Ivanova, G. Wolf, and143

S. Krishnaswamy, “Visualizing structure and transitions in high-dimensional biological data,”144

Nature Biotechnology, vol. 37, no. 12, pp. 1482–1492, dec 2019. [Online]. Available:145

https://doi.org/10.1038/s41587-019-0336-3146

[7] E. Becht, L. McInnes, J. Healy, C.-A. Dutertre, I. W. H. Kwok, L. G. Ng, F. Ginhoux,147

and E. W. Newell, “Dimensionality reduction for visualizing single-cell data using148

UMAP,” Nature Biotechnology, vol. 37, no. 1, pp. 38–44, jan 2019. [Online]. Available:149

https://doi.org/10.1038/nbt.4314150

[8] M. Kuchroo, J. Huang, P. Wong, J.-C. Grenier, D. Shung, A. Tong, C. Lucas, J. Klein,151

D. Burkhardt, S. Gigante et al., “Multiscale phate exploration of sars-cov-2 data reveals multi-152

modal signatures of disease,” BioRxiv, pp. 2020–11, 2020.153

[9] H. Phan, K. Mikkelsen, O. Y. Chén, P. Koch, A. Mertins, and M. De Vos, “Sleeptransformer:154

Automatic sleep staging with interpretability and uncertainty quantification,” IEEE Transactions155

on Biomedical Engineering, vol. 69, no. 8, pp. 2456–2467, 2022.156

[10] P. Bubenik et al., “Statistical topological data analysis using persistence landscapes.” J. Mach.157

Learn. Res., vol. 16, no. 1, pp. 77–102, 2015.158

[11] H. Adams, T. Emerson, M. Kirby, R. Neville, C. Peterson, P. Shipman, S. Chepushtanova,159

E. Hanson, F. Motta, and L. Ziegelmeier, “Persistence images: A stable vector representation of160

persistent homology,” Journal of Machine Learning Research, vol. 18, no. 8, pp. 1–35, 2017.161

[12] N. Atienza, R. González-Díaz, and M. Soriano-Trigueros, “On the stability of persistent entropy162

and new summary functions for tda,” arXiv preprint arXiv:1803.08304, 2018.163

[13] A. Sathyanarayana, S. Manjunath, and J. A. Perea, “Topological data analysis based characteris-164

tics of electroencephalogram signals in children with sleep apnea,” Journal of sleep research, p.165

e70017, 2025.166

[14] C. Xiao, E. Choi, and J. Sun, “Opportunities and challenges in developing deep learning167

models using electronic health records data: a systematic review,” Journal of the American168

Medical Informatics Association, vol. 25, no. 10, pp. 1419–1428, 06 2018. [Online]. Available:169

https://doi.org/10.1093/jamia/ocy068170

[15] S.-C. Huang, A. Pareek, R. Zamanian, I. Banerjee, and M. P. Lungren, “Multimodal fusion with171

deep neural networks for leveraging ct imaging and electronic health record: a case-study in172

pulmonary embolism detection,” Scientific reports, vol. 10, no. 1, p. 22147, 2020.173

[16] C. Truong, L. Oudre, and N. Vayatis, “Selective review of offline change point detection174

methods,” Signal Processing, vol. 167, p. 107299, 2020.175

5

https://www.sciencedirect.com/science/article/pii/S0890856709636947
https://doi.org/10.1038/s41597-022-01545-6
https://arxiv.org/abs/2411.00718
https://doi.org/10.1038/s41587-019-0336-3
https://doi.org/10.1038/nbt.4314
https://doi.org/10.1093/jamia/ocy068


[17] R. Killick, P. Fearnhead, and I. A. Eckley, “Optimal detection of changepoints with a linear176

computational cost,” Journal of the American Statistical Association, vol. 107, no. 500, pp.177

1590–1598, 2012.178

[18] C. L. Marcus, L. J. Brooks, S. D. Ward, K. A. Draper, D. Gozal, A. C. Halbower, J. Jones,179

C. Lehmann, M. S. Schechter, S. Sheldon et al., “Diagnosis and management of childhood180

obstructive sleep apnea syndrome,” Pediatrics, vol. 130, no. 3, pp. e714–e755, 2012.181

[19] W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion variance analysis,” Journal of182

the American statistical Association, vol. 47, no. 260, pp. 583–621, 1952.183

[20] O. J. Dunn, “Multiple comparisons using rank sums,” Technometrics, vol. 6, no. 3, pp. 241–252,184

1964.185

[21] S. Holm, “A simple sequentially rejective multiple test procedure,” Scandinavian journal of186

statistics, pp. 65–70, 1979.187

[22] N. Cliff, Ordinal methods for behavioral data analysis. Psychology Press, 2014.188

[23] T. Saito and M. Rehmsmeier, “The precision-recall plot is more informative than the roc plot189

when evaluating binary classifiers on imbalanced datasets,” PloS one, vol. 10, no. 3, p. e0118432,190

2015.191

[24] G. Tauzin, U. Lupo, L. Tunstall, J. B. Pérez, M. Caorsi, A. Medina-Mardones, A. Dassatti,192

and K. Hess, “giotto-tda: A topological data analysis toolkit for machine learning and data193

exploration,” 2020.194

6



A Feature definitions195

A.1 Branch inventory196

Table 1: Hand-crafted branches (input dims per scope) used in late-fusion. Session-level vectors are broadcast to
epochs.

Branch Scope Dim Contents

EHR–Demographics per-session 11 Age (z), gender (3), race (6), ethnicity (1).
EHR–Comorbidities per-session 12 Asthma, obesity, diabetes, hypertension, de-

pression/mood, anxiety, ADHD, seizure disor-
der/epilepsy, GERD, cerebral palsy, autism, develop-
mental delay. (Sleep apnea excluded to avoid label
leakage.)

Trajectory-local (PHATE) per-epoch 6 delta_dist, cum_dist, turn, curv,
dist_start, segment_id (PELT).

Trajectory-global
(PHATE)

per-session 6 mean/max step, mean turn, dir_entropy (20-bin),
tortuosity, #segments.

TDA (embedding cloud) per-session 6 H0_sum_pers, H0_n_bars, H1_n_bars,
H1_max_pers, Betti–L2, ratio_sum_H1_H0.

A.2 PHATE trajectory quantities197

Let pt ∈ R2 be the PHATE coordinates at epoch t.198

delta_distt = ∥pt − pt−1∥2

cum_distt =
t∑

i=2

delta_disti

θt = atan2(pyt − pyt−1, p
x
t − pxt−1)

turnt = wrap(θt − θt−1)

curvt =
|turnt|

delta_distt + ε

dist_startt = ∥pt − p1∥2

dir_entropy = −
20∑
b=1

p̂b log(p̂b) (20-bin histogram of turnt)

tortuosity =

∑
t delta_distt

∥pT − p1∥2 + ε

n_segments = #{PELT change points on delta_distt}

A.3 Topological descriptors199

Let X = {xi} be the 7,680-D embedding cloud for a session; we compute Vietoris–Rips persistence200

with H0 and H1 barcodes having lifetimes {ℓ(0)j } and {ℓ(1)k } using the giotto-tda library [24].201

In code we extracted a wide panel of persistence-derived statistics, including lifetime sums, maxima,202

entropy-based measures, midlife and birth/death summaries, Betti curve energies, and persistence203

image ratios. For stability and interpretability in the late-fusion model, we retained six robust statistics204

as the TDA branch:205
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H0_sum_pers =
∑
j

ℓ
(0)
j H0_n_bars = #{ℓ(0)j > 0}

H1_n_bars = #{ℓ(1)k > 0} H1_max_pers = max
k

ℓ
(1)
k

Betti–L2 =
∥∥β1(r)

∥∥
2

(Betti-1 curve L2 norm)

ratio_sum_H1_H0 =

∑
k ℓ

(1)
k∑

j ℓ
(0)
j + ε

B Model specifics206

Training protocol. All models were trained under the same protocol. We used the AdamW207

optimizer (learning rate 10−3, weight decay 10−5), batch size 256, and automatic mixed precision. A208

ReduceLROnPlateau scheduler (factor 0.5, patience 3) controlled learning rate decay, and training209

stopped early if validation performance did not improve for 8 epochs. Splits were stratified at210

the session level (70/10/20 for train/validation/test, seed = 42). Binary decision thresholds were211

chosen by maximizing F1-score on the validation set, while multiclass tasks (sleep staging) reported212

macro–F1.213

Normalization. All branches were normalized using train-only mean and standard deviation. For214

numerical stability, features were clipped to the range [−8, 8]. Time-series inputs (embeddings and215

PHATE-point features) were standardized over all epochs, while session-level vectors (EHR, PHATE-216

time, and TDA) were standardized across sessions and then broadcast to all epochs. Non-finite values217

were replaced with zeros before standardization.218

Loss functions and imbalance handling. To account for severe class imbalance, we applied class-219

weighted losses with weights wk ∝ 1/freqk. Binary tasks used focal cross-entropy with focusing220

parameter γ = 1.5, while multiclass sleep staging used weighted cross-entropy.221

Branch encoders. Each modality was encoded separately by a shallow MLP block. An encoder con-222

sisted of a linear layer mapping the raw input dimension to 128 units, followed by layer normalization223

and a ReLU activation:224

z(k) = ReLU
(
LN

(
W (k)x(k) + b(k)

))
, z(k) ∈ R128.

The five input modalities used in the full model (M3) were: per-epoch embeddings (7680-D), session-225

level EHR features (23-D), per-epoch PHATE-point features (6-D), session-level PHATE-time226

features (6-D), and session-level TDA features (6-D). Each branch produced its own 128-dimensional227

latent representation.228

Fusion and classifier head. The encoded features were concatenated into a single latent vector.229

In M3, this produced a fused representation of size 640 (five times 128). This vector was then230

passed through a two-layer classifier head: a linear transformation to 256 units, ReLU activation,231

and dropout with probability 0.30, followed by a final linear layer mapping to logits. In summary,232

the head contained two linear layers with one hidden nonlinearity, while each branch contributed an233

additional encoder block upstream.234

Model variants. The linear probe baseline (M0) consisted only of a direct linear mapping from235

embeddings (7680-D) to logits, without an encoder. M1 combined embeddings and EHR, producing236

a 256-dimensional fused vector before classification. M2 added both PHATE-time and PHATE-237

point, producing a 512-dimensional fused vector. M3 incorporated all five branches, producing a238

640-dimensional vector before the classifier. Removing branches yielded the simpler models without239

changing the classifier head.240
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Figure 4: Late-fusion MLP (M3). Each branch input is encoded with Linear→LayerNorm→ReLU (128-
D). Latents are concatenated (5×128=640-D) and passed through a classifier head: Linear 640→256, ReLU,
Dropout(0.30), and Linear 256→K. Per-epoch branches are Embeddings and PHATE-point; session-level
branches are EHR, PHATE-time, and TDA (broadcast across epochs).

C AHI Tests241

Table 2: Permutation Kruskal–Wallis omnibus tests across AHI groups for candidate session-level descriptors.
Larger H (with small q after Holm correction) indicates stronger distributional differences across AHI strata.

Feature H q

H0_n_bars 54.0954 0.00237
H1_n_bars 23.2657 0.00237
H1_max_pers 13.1744 0.00237
betti_L1 29.7612 0.00237
betti_L2 29.0318 0.00237
ratio_sum_H1_H0 21.9597 0.00237
time_std 19.2169 0.00237
time_l2 17.0812 0.00237
time_mean 16.1793 0.00633
PI_H1_long_short_ratio 13.4909 0.00949
H0_sum_pers 12.2354 0.00949
PI_H1_long 13.0261 0.00949
BettiH1_peak_loc_norm 8.7578 0.04526
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Table 3: Permutation Mann–Whitney contrasts for AHI extremes. Effect is median(group)−median(others); δ is
Cliff’s delta. “Direction” summarizes whether the feature tends to be higher or lower in the target group.

Severe (group 3) vs all others

Feature Effect (∆) δ q Direction in severe

H0_n_bars −16.5 −0.227 0.00271 lower
H1_n_bars −20.5 −0.168 0.00271 lower
betti_L2 −23.66 −0.166 0.00271 lower
betti_L1 −170.0 −0.166 0.00271 lower
ratio_sum_H1_H0 −0.00414 −0.153 0.00271 lower
PI_H1_long_short_ratio −0.00920 −0.109 0.00271 lower
time_mean +0.104 +0.137 0.00271 higher
PI_H1_long −0.3119 −0.112 0.00844 lower
ratio_count_H1_H0 −0.02274 −0.095 0.00844 lower
H1_max_pers +0.1968 +0.108 0.01035 higher
time_l2 +0.0885 +0.103 0.01035 higher
time_std +0.0503 +0.109 0.01582 higher
H0_sum_pers +33.51 +0.087 0.02482 higher

Healthy (group 0) vs all others

H0_n_bars +8.0 +0.107 0.00475 higher
betti_L1 +84.0 +0.089 0.00475 higher
betti_L2 +10.64 +0.089 0.00475 higher
time_l2 −0.1407 −0.085 0.00475 lower
time_std −0.0540 −0.092 0.00542 lower
H0_sum_pers −22.25 −0.0697 0.00542 lower
ratio_sum_H1_H0 +0.00250 +0.0763 0.00542 higher
H1_max_pers −0.0669 −0.0645 0.01661 lower
PI_H1_long +0.24295 +0.0611 0.01898 higher
H1_n_bars +5.0 +0.0594 0.01898 higher
time_mean −0.0180 −0.0581 0.02416 lower
PI_H1_long_short_ratio +0.00419 +0.0542 0.03638 higher

D Full Test-Set Metrics242

Label prevalences243

Table 4: Class distributions by split. Sleep staging shows % for {W, REM, N1, N2, N3}; binary tasks list positive
prevalence (%). Use these to contextualize AUPRC baselines.

Task Train Val Test

Sleep staging [17.77, 3.55, 39.01,
22.48, 17.19]

[18.51, 3.70, 39.30,
22.09, 16.40]

[17.60, 3.72, 38.84,
22.97, 16.87]

Desaturation (+) 8.738 8.843 9.419
EEG arousal (+) 4.676 4.741 4.746
Apnea (+) 0.846 0.622 0.808
Hypopnea (+) 1.969 1.797 2.054
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Sleep staging (5-class)244

Table 5: Sleep staging metrics (test set). Macro-F1 is the primary multi-class metric; higher is better.

Model Accuracy F1 (macro)

M0 Linear probe 0.6860 0.6594
M1 MLP+EHR (late) 0.6916 0.6657
M2 +Trajectory 0.7047 0.6779
M3 +TDA 0.7076 0.6800

Binary tasks245

Table 6: Desaturation (test set). AUPRC is the primary metric under imbalance; ROC-AUC and F1 are provided
for completeness.

Model Accuracy F1 ROC-AUC AUPRC

M0 Linear probe 0.8260 0.3520 0.7797 0.2793
M1 MLP+EHR (late) 0.8663 0.3760 0.7887 0.3537
M2 +Trajectory 0.8877 0.3799 0.7907 0.3626
M3 +TDA 0.8760 0.3923 0.7974 0.3700

Table 7: EEG arousal (test set). Late-fusion models progressively improve AUPRC and ROC-AUC over the
linear probe.

Model Accuracy F1 ROC-AUC AUPRC

M0 Linear probe 0.9384 0.4186 0.8507 0.3300
M1 MLP+EHR (late) 0.9472 0.4795 0.9054 0.4349
M2 +Trajectory 0.9477 0.5024 0.9191 0.4776
M3 +TDA 0.9486 0.5184 0.9285 0.4836

Table 8: Apnea (test set). The EHR-only late-fusion variant (M1) attains the highest AUPRC, consistent with the
main text.

Model Accuracy F1 ROC-AUC AUPRC

M0 Linear probe 0.9842 0.1255 0.7164 0.0506
M1 MLP+EHR (late) 0.9868 0.2361 0.8998 0.1472
M2 +Trajectory 0.9886 0.2282 0.8974 0.1409
M3 +TDA 0.9896 0.2479 0.8725 0.1397

Table 9: Hypopnea (test set). Adding trajectory (M2) and topology (M3) yields gains in AUPRC over M1, with
small trade-offs on secondary metrics.

Model Accuracy F1 ROC-AUC AUPRC

M0 Linear probe 0.9425 0.1681 0.7843 0.0931
M1 MLP+EHR (late) 0.9686 0.3269 0.8813 0.2782
M2 +Trajectory 0.9730 0.3676 0.8963 0.2798
M3 +TDA 0.9729 0.3524 0.8934 0.2901
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