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Abstract

Sleep disorders in children are common yet often underdiagnosed, and manual
scoring of overnight polysomnography (PSG) is slow while labels for key events
are sparse. We study 30-second pediatric PSG epochs represented by fixed em-
beddings from a multimodal masked-autoencoder. We investigate and augment
these embeddings with (i) PHATE-derived per-epoch coordinates and whole-night
movement descriptors, (ii) persistent-homology summaries computed on the high-
dimensional embedding cloud, and (iii) routine EHR context. An AHI-stratified
screen shows clinically coherent shifts in movement/topology. In predictive bench-
marks, a late-fusion MLP that integrates all branches improves rare-event detection
over a linear probe, leading in 3/4 binary tasks (Desaturation AUPRC = 0.370,
EEG arousal = 0.484, Hypopnea = 0.290), while Apnea favors the EHR-only
late-fusion variant (AUPRC = 0.147). Results suggest that clinical context and
latent geometry/topology provide complementary signals beyond the generative
embeddings, yielding interpretable links to disease burden and better performance
under extreme imbalance.

1 Introduction

Pediatric sleep disorders affect cognition, behavior, and cardiometabolic health, yet real-world
diagnosis is constrained by manual PSG scoring and highly imbalanced event labels [1H3]. We
start from per-epoch PedSleepMAE [4] embeddings—fixed, multimodal representations learned
generatively from raw PSG channels via masked-autoencoder [5]—and ask whether their (a) latent
trajectory information, (b) topological shape, and (c) augmentation with EHR can (i) reflect disease
burden across AHI strata and (ii) improve detection of apnea, hypopnea, desaturation, EEG arousal,
and five-stage sleep under session-wise splits.

To motivate, we mapped per-epoch PedSleepMAE embeddings to 2-D PHATE [6] (Fig. [T). Ped-
SleepMAE was trained by treating every 30 seconds of PSG as an independent sample, i.e. it was
reconstructing signals without knowing what time of the night it is or who it is from. Yet, Fig.
reveals that the embeddings captured time-dependent information despite not knowing it explicitly in
training. PHATE maps each night to a smooth, time-ordered path whose geometry matches expert
stages: lighter stages at the entrance, N3 near the center, and REM along peripheral arcs. Across the
session we observe consistent curvature, drift, and occasional bifurcations that align with canonical
sleep progressions. This motivates our novel research question of investigating the session-wide
diagnostic information contained in the sequences of multimodal generative embeddings.

Manifold learning is widely used to visualize high-dimensional trajectories [7]; PHATE’s diffusion
geometry preserves local neighborhoods while maintaining global progression and denoises noisy
biological measurements, making it suitable for sleep dynamics [§]. Prior PSG work more often
models raw or time—frequency inputs with sequence architectures (e.g., SleepTransformer) [9].

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



37
38
39
40

41
42
43
44

45

46

47
48
49
50
51
52
53
54

55
56
57

58

59
60
61

62
63
64
65
66
67

68
69
70

PHATE (Time Color) PHATE (Sleep Stages)

0.01 < Sleep Stages

Wake (W)

REM (R)

N1 (Light Sleep)
N2 (Deeper Sleep)
N3 (Deep Sleep)

Time Index

0.02 0.00 0.02 0.04 0.06 -0.02 0.00 0.02 0.04 0.06

Figure 1: Parallel PHATE views for one study: left colored by epoch index (time), right by sleep stages. The
2-D diffusion map reveals a smooth, time-ordered trajectory whose regions align with expert staging.

In parallel, topological data analysis (TDA) offers stable vectorizations that capture multiscale
loop/cluster structure for learning [10H12]; pediatric sleep EEGs have related such structure to
respiratory burden and desaturation [13]]. Finally, combining signal representations with structured
EHR via late fusion is a common and effective pattern in clinical prediction [14} [15]].

Ablations are ordered for interpretability and deployment: linear probe on embeddings (MO0), add
routine EHR via late-fusion MLP (M1), add PHATE point+time branches (M2), then add topological
descriptors (M3). This isolates the incremental value of context, trajectory, and topology beyond the
generative embeddings.

2  Methods

2.1 Data

We use the Nationwide Children’s Hospital Sleep DataBank (NCHSDB), which contains pediatric
overnight polysomnography (PSG) with technologist labels for sleep stages and respiratory events
[2. The analysis set includes 2,522 complete studies, each identified by a (person ID, session ID)
pair. Signals include EEG, ECG, EMG, respiratory effort, airflow, and oxygen saturation. Recordings
are divided into consecutive 30-second epochs in temporal order. Each epoch is represented by a
7,680-dimensional PedSleepMAE embedding (120x 64) learned generatively from raw PSG channels
[4]. Labels for sleep stage, apnea, hypopnea, desaturation, and EEG arousal align one-to-one with
the embeddings. We use session-wise, stratified splits (70/10/20% train/val/test) per label.

Structured EHR from NCHSDB [2]] is linked to each session. Routine EHR provides low-overhead
clinical context that can reduce confounding and improve generalization when fused with signal
features. We include a demographic and comorbidity set to our analysis; see Appendix [A]for the list.

2.2 Feature Sets

Our features mirror the ablation order: per-epoch PedSleepMAE embeddings as baselines, EHR
(Sec.[2.1)), then (i) PHATE-based trajectory features and (ii) topological descriptors. See Appendix [A]
for formal definitions.

PHATE trajectory features. PHATE is fit on training sessions and applied out of sample to
validation/test. We use (a) trajectory-local per-epoch coordinates/derivatives and (b) trajectory-
global session summaries of movement/fragmentation: mean and max inter-epoch step, mean turning
angle, directional entropy of turns, tortuosity (path-length vs. end-to-end), and a change-point
count on the step-length series using RUPTURES with PELT (Pruned Exact Linear Time) [16} [17].
Session-level quantities are broadcast to all epochs of that session.

Topological features. To quantify shape directly in representation space, we compute persistent
homology on the original 7,680-D PedSleepMAE point cloud via a Vietoris—Rips filtration and sum-
marize with a compact six-statistic panel: HO_sum_pers, HO_n_bars, H1 _n_bars, H1_max_pers,
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Figure 2: AHI associations for a representative movement metric (time_std). Top-left: ECDF; top-right:
mean+95% CI; bottom: KDE density. Groups: healthy (<1), mild (1-5), moderate (5-10), severe (>10).

Betti—1 L? norm, and the H; /Hj lifetime ratio. These capture cluster spread/fragmentation (Hy),
loop prevalence/strength (H;/Betti—1 energy), and loop-vs-cluster balance, producing stable, fixed-
length vectors for learning [[10H12].

2.3 AHI-stratified feature analysis (pre-specification)

We used an AHI-stratified screen to decide which session-level descriptors advance to modeling.
Sessions were grouped by pediatric AHI thresholds into healthy (<1), mild (1-5), moderate (5—
10), and severe (>10), following commonly used pediatric criteria 3} [18]. For each session-level
candidate we ran a Kruskal-Wallis omnibus test [19], Dunn post-hoc comparisons [20] with Holm
correction [21]], reported Cliff’s ¢ as an effect size [22]], and visualized box/ECDF/KDE with adjusted
q values. Because AHI is defined per session, the screen applied only to trajectory-global PHATE
features and to TDA summaries. Trajectory-local features are per-epoch and do not align to a session
label; they were not screened. EHR features were pre-specified and likewise not AHI-screened to
avoid label leakage and to preserve a stable confounder block across all tasks.

2.4 Diagnostic models

We compare four epoch-level classifiers on identical session-wise, stratified splits and a shared training
recipe. MO (Linear Probe) applies a single linear layer to each 7,680-D PedSleepMAE embedding
to set a lower bound on representation quality [4]. M1 (Emb+EHR, late-fusion MLP) replaces the
linear head with a two-branch MLP: embeddings and EHR are encoded separately and concatenated.
M2 (Emb+EHR+Trajectory, late-fusion MLP) keeps capacity matched to M1 and adds two PHATE
trajectory branches: (i) per-epoch point features and (ii) per-session global summaries, to expose
local state and whole-night structure to the classifier [6} 8] [16]. M3 (Emb+EHR+Trajectory+TDA,
late-fusion MLP) further adds a session-level topological branch built from persistent-homology
statistics, allowing loop/cluster structure to inform decisions [10H12]. All architectural/optimization
details are specified in Appendix

3 Results

3.1 Clinical association with AHI

Trajectory movement and topology co-vary with AHI. Permutation omnibus tests are significant
for all six TDA descriptors and several PHATE movement metrics, showing monotone shifts
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Figure 3: PR curves for the four binary tasks (test set), MO-M3 overlaid; legend reports AUPRC for each model.

from healthy—mild—moderate—severe. Severe nights exhibit reduced topological richness (fewer
components/loops, lower Betti energy), larger average/variable steps on the manifold, and higher
H1_max_pers—fewer but more persistent loops. Healthy nights show the opposite pattern. We
therefore retain the six PHATE-global and six TDA summaries for prediction. Pairwise “3-vs-all”
and “0-vs-all” contrasts are strongly significant (Appendix [C). See Fig. [2]for an example.

3.2 Predictive performance (Models 0-3)

We report AUPRC as the primary metric for imbalanced tasks [23]. Fig. [3|shows clear separation
from the linear probe (MO) once contextual branches are added. The full late-fusion model (M3) is
best on three of four labels— Desaturation 0.370, EEG arousal 0.484, Hypopnea 0.290—while Apnea
favors the EHR-only late-fusion model (M1; 0.147 vs. 0.141-0.140 for M2-M3). The M0—M1
jump reflects both capacity (linear—MLP) and genuine value from EHR, which is particularly
helpful for the rarest outcomes. Adding PHATE trajectory features (M2) yields further gains on
Desaturation, EEG, and Hypopnea—consistent with Sec. [3.1] where directional entropy and step
statistics tracked AHI—and is competitive on secondary metrics (e.g., top accuracy for Desaturation
0.8877 and Hypopnea 0.9730; top ROC-AUC for Hypopnea 0.8963; Appendix D). Adding topology
(M3) provides small, label-dependent lifts, most notable for Hypopnea, suggesting complementary
loop-geometry signals. For Apnea, EHR and local waveform cues dominate at very low recall;
trajectory/TDA add little and can trade precision for recall.

4 Conclusion

We investigated diagnostic information contained in the sequences of per-epoch PedSleepMAE
embeddings, and presented a late-fusion pipeline that augments the embeddings with PHATE-based
temporal descriptors, topological summaries of the latent trajectory, and EHR context. On 2.5k+
pediatric sleep studies, these time/shape features showed AHI-stratified shifts and improved rare-
event detection beyond a linear probe. The full model (M3) led in three of four tasks—Desaturation
AUPRC 0.370, EEG arousal 0.484, Hypopnea 0.290—while Apnea favored the EHR-only variant
(M1; AUPRC 0.147). These results highlight that latent geometry, topology, and clinical context
provide meaningful signals that capture disease burden and reduce reliance on manual scoring. Future
work will refine an embeddings-only MLP for clearer baselines and explore end-to-end integration of
manifold/topological structure to ensure robustness under severe imbalance.
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A Feature definitions

A.1 Branch inventory

Table 1: Hand-crafted branches (input dims per scope) used in late-fusion. Session-level vectors are broadcast to

epochs.

Branch Scope Dim Contents

EHR-Demographics per-session 11 Age (z), gender (3), race (6), ethnicity (1).

EHR-Comorbidities per-session 12 Asthma, obesity, diabetes, hypertension, de-
pression/mood, anxiety, ADHD, seizure disor-
der/epilepsy, GERD, cerebral palsy, autism, develop-
mental delay. (Sleep apnea excluded to avoid label
leakage.)

Trajectory-local (PHATE) per-epoch 6 delta_dist, cum_dist, turn, curv,
dist_start, segment_id (PELT).

Trajectory-global per-session 6 mean/max step, mean turn, dir_entropy (20-bin),

(PHATE) tortuosity, #segments.

TDA (embedding cloud)  per-session 6 HO_sum_pers, HO_n_bars, Hi_n_bars,

H1_max_pers, Betti-L2, ratio_sum_H1_HO.

A.2 PHATE trajectory quantities

Let p, € R? be the PHATE coordinates at epoch ¢.

delta_dist; = ||p: — pe—1]l2
t

cum_dist; = Z delta_dist;

1=2

0, = atan2(p{ — p!_,, pf
turn; = wrap(f; — 6;—1)

|turn,|

curvy =

dist_start; = ||pt - P1||2

~ delta_dist; +¢

—pf—1)

20
dir_entropy = — Z]ﬁb log(pp) (20-bin histogram of turn;)
b=1

tortuosity =

> ,delta_dist,
lpr = p1ll2 + €

n_segments = #{PELT change points on delta_dist;}

A.3 Topological descriptors

Let X = {z;} be the 7,680-D embedding cloud for a session; we compute Vietoris—Rips persistence
with Hy and H; barcodes having lifetimes {K;O)} and {6,(61)} using the giotto-tda library [24].

In code we extracted a wide panel of persistence-derived statistics, including lifetime sums, maxima,
entropy-based measures, midlife and birth/death summaries, Betti curve energies, and persistence
image ratios. For stability and interpretability in the late-fusion model, we retained six robust statistics

as the TDA branch:
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HO_sum_pers = ng‘o) HO_n_bars = #{65»0) > 0}
J
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Betti-L? = Hﬁl (T)H2 (Betti-1 curve L? norm)
(1)
ratio_sum_H1_HO = 2:’“(7:;’“
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B Model specifics

Training protocol. All models were trained under the same protocol. We used the AdamW
optimizer (learning rate 103, weight decay 10~?), batch size 256, and automatic mixed precision. A
ReduceLROnPlateau scheduler (factor 0.5, patience 3) controlled learning rate decay, and training
stopped early if validation performance did not improve for 8 epochs. Splits were stratified at
the session level (70/10/20 for train/validation/test, seed = 42). Binary decision thresholds were
chosen by maximizing F1-score on the validation set, while multiclass tasks (sleep staging) reported
macro-F1.

Normalization. All branches were normalized using train-only mean and standard deviation. For
numerical stability, features were clipped to the range [—8, 8]. Time-series inputs (embeddings and
PHATE-point features) were standardized over all epochs, while session-level vectors (EHR, PHATE-
time, and TDA) were standardized across sessions and then broadcast to all epochs. Non-finite values
were replaced with zeros before standardization.

Loss functions and imbalance handling. To account for severe class imbalance, we applied class-
weighted losses with weights wy, oc 1/freq,,. Binary tasks used focal cross-entropy with focusing
parameter v = 1.5, while multiclass sleep staging used weighted cross-entropy.

Branch encoders. Each modality was encoded separately by a shallow MLP block. An encoder con-
sisted of a linear layer mapping the raw input dimension to 128 units, followed by layer normalization
and a ReL.U activation:

L) — ReLU(LN(W(k’)x(k) n b(k’))), L0 ¢ R128.

The five input modalities used in the full model (M3) were: per-epoch embeddings (7680-D), session-
level EHR features (23-D), per-epoch PHATE-point features (6-D), session-level PHATE-time
features (6-D), and session-level TDA features (6-D). Each branch produced its own 128-dimensional
latent representation.

Fusion and classifier head. The encoded features were concatenated into a single latent vector.
In M3, this produced a fused representation of size 640 (five times 128). This vector was then
passed through a two-layer classifier head: a linear transformation to 256 units, ReL.U activation,
and dropout with probability 0.30, followed by a final linear layer mapping to logits. In summary,
the head contained two linear layers with one hidden nonlinearity, while each branch contributed an
additional encoder block upstream.

Model variants. The linear probe baseline (MO0) consisted only of a direct linear mapping from
embeddings (7680-D) to logits, without an encoder. M1 combined embeddings and EHR, producing
a 256-dimensional fused vector before classification. M2 added both PHATE-time and PHATE-
point, producing a 512-dimensional fused vector. M3 incorporated all five branches, producing a
640-dimensional vector before the classifier. Removing branches yielded the simpler models without
changing the classifier head.
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Figure 4: Late-fusion MLP (M3). Each branch input is encoded with Linear—LayerNorm—ReLU (128-
D). Latents are concatenated (5x128=640-D) and passed through a classifier head: Linear 640—256, ReLLU,
Dropout(0.30), and Linear 256—K. Per-epoch branches are Embeddings and PHATE-point; session-level
branches are EHR, PHATE-time, and TDA (broadcast across epochs).

241 C AHI Tests

Table 2: Permutation Kruskal-Wallis omnibus tests across AHI groups for candidate session-level descriptors.
Larger H (with small g after Holm correction) indicates stronger distributional differences across AHI strata.

Feature H q

HO_n_bars 54.0954 0.00237
H1_n_bars 23.2657 0.00237
H1_max_pers 13.1744  0.00237
betti_L1 29.7612  0.00237
betti_L2 29.0318 0.00237
ratio_sum_H1_HO 21.9597 0.00237
time_std 19.2169  0.00237
time_12 17.0812  0.00237
time_mean 16.1793  0.00633
PI_HI1_long_short_ratio  13.4909  0.00949
HO_sum_pers 12.2354  0.00949
PI_HI1_long 13.0261 0.00949

BettiH1_peak_loc_norm  8.7578  0.04526




Table 3: Permutation Mann—-Whitney contrasts for AHI extremes. Effect is median(group)—median(others); § is
Cliff’s delta. “Direction” summarizes whether the feature tends to be higher or lower in the target group.

Severe (group 3) vs all others

Feature Effect (A) 1) q Direction in severe
HO_n_bars —16.5 —0.227  0.00271 lower
H1_n_bars —20.5 —0.168 0.00271 lower
betti_L2 —23.66 —0.166  0.00271 lower
betti_L1 —170.0 —0.166  0.00271 lower
ratio_sum_H1_HO —0.00414 —0.153  0.00271 lower
PI_H1_long_short_ratio —0.00920 —0.109 0.00271 lower
time_mean +0.104 +0.137  0.00271 higher
PI_H1_long —0.3119 —0.112  0.00844 lower
ratio_count_H1_HO —0.02274  —0.095 0.00844 lower
H1_max_pers +0.1968 +0.108 0.01035 higher
time_12 +0.0885 +0.103  0.01035 higher
time_std +0.0503 +0.109  0.01582 higher
HO_sum_pers +33.51 +0.087  0.02482 higher
Healthy (group 0) vs all others
HO_n_bars +8.0 4+0.107  0.00475 higher
betti_L1 +84.0 4+0.089  0.00475 higher
betti_I.2 +10.64 +0.089  0.00475 higher
time_12 —0.1407 —0.085  0.00475 lower
time_std —0.0540 —0.092  0.00542 lower
HO_sum_pers —22.25 —0.0697 0.00542 lower
ratio_sum_H1_HO +0.00250 +0.0763 0.00542 higher
H1_max_pers —0.0669 —0.0645 0.01661 lower
PI_H1_long +0.24295 +0.0611 0.01898 higher
H1_n_bars +5.0 +0.0594 0.01898 higher
time_mean —0.0180 —0.0581 0.02416 lower
PI_HI1_long_short_ratio 40.00419 +40.0542 0.03638 higher

22 D Full Test-Set Metrics

243 Label prevalences

Table 4: Class distributions by split. Sleep staging shows % for {W, REM, N1, N2, N3}; binary tasks list positive
prevalence (%). Use these to contextualize AUPRC baselines.

Task Train Val Test

Sleep staging [17.77, 3.55, 39.01, [18.51, 3.70, 39.30, [17.60, 3.72, 38.84,
22.48,17.19] 22.09, 16.40] 22.97, 16.87]

Desaturation (+) 8.738 8.843 9.419

EEG arousal (+) 4.676 4.741 4.746

Apnea (+) 0.846 0.622 0.808

Hypopnea (+) 1.969 1.797 2.054
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244 Sleep staging (5-class)

Table 5: Sleep staging metrics (test set). Macro-F1 is the primary multi-class metric; higher is better.

Model Accuracy F1 (macro)
MO Linear probe 0.6860 0.6594
M1 MLP+EHR (late) 0.6916 0.6657
M2 +Trajectory 0.7047 0.6779
M3 +TDA 0.7076 0.6800

245 Binary tasks

Table 6: Desaturation (test set). AUPRC is the primary metric under imbalance; ROC-AUC and F1 are provided
for completeness.

Model Accuracy Fl1 ROC-AUC AUPRC
MO Linear probe 0.8260  0.3520 0.7797 0.2793
M1 MLP+EHR (late)  0.8663  0.3760 0.7887 0.3537
M2 +Trajectory 0.8877  0.3799 0.7907 0.3626
M3 +TDA 0.8760  0.3923 0.7974 0.3700

Table 7: EEG arousal (test set). Late-fusion models progressively improve AUPRC and ROC-AUC over the
linear probe.

Model Accuracy F1 ROC-AUC AUPRC
MO Linear probe 0.9384  0.4186 0.8507 0.3300
M1 MLP+EHR (late)  0.9472  0.4795 0.9054 0.4349
M2 +Trajectory 0.9477  0.5024 0.9191 0.4776
M3 +TDA 0.9486  0.5184 0.9285 0.4836

Table 8: Apnea (test set). The EHR-only late-fusion variant (M1) attains the highest AUPRC, consistent with the

main text.
Model Accuracy F1 ROC-AUC AUPRC
MO Linear probe 0.9842  0.1255 0.7164 0.0506
M1 MLP+EHR (late)  0.9868  0.2361 0.8998 0.1472
M2 +Trajectory 0.9886  0.2282 0.8974 0.1409
M3 +TDA 0.9896  0.2479 0.8725 0.1397

Table 9: Hypopnea (test set). Adding trajectory (M2) and topology (M3) yields gains in AUPRC over M1, with
small trade-offs on secondary metrics.

Model Accuracy F1 ROC-AUC AUPRC
MO Linear probe 0.9425  0.1681 0.7843 0.0931
M1 MLP+EHR (late)  0.9686  0.3269 0.8813 0.2782
M2 +Trajectory 0.9730  0.3676 0.8963 0.2798
M3 +TDA 0.9729  0.3524 0.8934 0.2901
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