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Abstract

Text-Video Retrieval (TVR) aims to align rel-001
evant video content with natural language002
queries. To date, most of the state-of-the-003
art TVR methods learn image-to-video trans-004
fer learning based on large-scale pre-trained005
vision-language models (e.g., CLIP). However,006
fully fine-tuning these pre-trained models for007
TVR incurs prohibitively expensive computa-008
tion costs. To this end, we propose to conduct009
efficient text-video Retrieval with a sparse-and-010
correlated AdaPter (RAP), i.e., fine-tuning the011
pre-trained model with a few parameterized012
layers. To accommodate the text-video sce-013
nario, we equip our RAP with two indispens-014
able characteristics including temporal sparsity015
and correlation. Specifically, we propose a016
low-rank modulation module to refine the per-017
image features from the frozen CLIP backbone,018
which accentuates salient frames within the019
video features while alleviating temporal redun-020
dancy. Besides, we introduce an asynchronous021
self-attention mechanism that first selects the022
top responsive visual patches and augments023
the correlation modeling between them with024
learnable temporal and patch offsets. Extensive025
experiments on four TVR datasets demonstrate026
that our RAP achieves superior or comparable027
performance compared to the fully fine-tuned028
counterpart and other parameter-efficient fine-029
tuning methods.030

1 Introduction031

Text-Video Retrieval (TVR) (Gabeur et al., 2020;032

Gorti et al., 2022; He et al., 2021a; Lei et al., 2021;033

Luo et al., 2022; Ma et al., 2022; Wang et al., 2022)034

is a pivotal task in the realm of multimodal re-035

search, which aims to find the most relevant video036

content within a repository in response to the text037

query, and vice versa. With the rapid progress in038

large-scale image-text pre-training (Jia et al., 2021;039

Radford et al., 2021; Yu et al., 2022; Yuan et al.,040

2021), current research focuses on how to transfer041

modulation weights w/o low-rank decomposition

modulation weights w/ low-rank decomposition

Property #1: Temporal Saparsity

Query: A man is talking about his car’s features while inside his car.

Query: A cartoon shows two dogs talking to a bird.

Property #2: Temporal Correlation

w/ vanilla self-attention

w/ asynchronous self-attention

Figure 1: Top: Illustrations of temporal sparsity. We
visualize the modulation weight w/ or w/o low-rank
decomposition. Down: Illustrations of temporal cor-
relation. The query patch is marked by the yellow cross
and the similarity map within other frames are plotted.

pre-trained image-text models (e.g., CLIP (Radford 042

et al., 2021)) to the video-text domain. However, 043

fully fine-tuning the video model is computation- 044

ally expensive and may have the risk of overfitting. 045

To alleviate this dilemma, Parameter-Efficient 046

Fine-Tuning (PEFT) stemmed from natural lan- 047

guage processing (Houlsby et al., 2019; Lester 048

et al., 2021; Zaken et al., 2022; Hu et al., 2021) has 049

also aroused extensive research interest in the field 050

of computer vision (Chen et al., 2022b,a) and cross- 051

modal learning (Sung et al., 2022). Recently, some 052

exploratory work (Zhang et al., 2023; Jiang et al., 053

2022) has also attempted to introduce PEFT into 054

TVR. These methods, however, simply introduce 055

existing PEFT algorithms (Houlsby et al., 2019; 056

You et al., 2022; Karimi Mahabadi et al., 2021) 057
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Figure 2: Text-to-video retrieval performance on
MSR-VTT dataset. Marker sizes are proportional to
the number of tunable parameters.

without considering the inherent characteristics of058

video data.059

To this end, we argue that an ideal PEFT method060

for VTR should be equipped with two characteris-061

tics: 1) Temporal Sparsity: As shown in Figure062

1, the video data inherently contains lots of redun-063

dancies or repetitions in the temporal perspective.064

The visualized frame-by-frame embedded CLIP065

features are over-smooth, resulting in the loss of im-066

portant details or nuances within the video data. In067

contrast, the video feature adapted from pre-trained068

CLIP should capture the most informative frames,069

allowing for a more sparse representation. 2) Tem-070

poral Correlation: The desired video adapter is071

supposed to incorporate the dependencies and rela-072

tionships between consecutive frames, especially073

when dealing with actions or events that unfold074

over several frames, as the features can encapsu-075

late the evolving context over time. For example076

in Figure 1, the query sentence includes two en-077

tities including dog and bird. Given the query078

patch ( in frame #3), we visualize the similarity079

distribution within the other patches. The vanilla080

self-attention can only attend to the dog instance081

while the other bird instance is overlooked.082

In the realm of video processing and analysis, the083

temporal dimension often contains redundancies084

due to the inherent correlation between adjacent085

frames. This redundancy can lead to inefficiencies086

in computational resources and storage when deal-087

ing with large-scale video data. Therefore, there088

is a need to extract meaningful and informative089

features while reducing temporal redundancy.090

To alleviate these aforementioned issues, we091

propose an efficient text-video Retrieval frame-092

work with sparse-and-correlated AdaPter (dubbed 093

as RAP). Our proposed RAP not only streamlines 094

the trainable parameters, enhancing efficiency in 095

computational resources but also tailors the archi- 096

tecture to adeptly capture and model the nuanced 097

temporal characteristics of video data. 098

To achieve temporal sparsity, we propose a Low- 099

Rank Modulation (LoRM) module to refine the 100

pre-trained CLIP feature (Radford et al., 2021) on 101

the principle of redundancy reduction and essential 102

information extraction. This design stems from 103

a simple hypothesis that the change in temporal 104

weights resides on a low intrinsic rank (Zhang and 105

Tao, 2012). Therefore, we introduce layer-wise 106

low-rank scale parameters and shift parameters, 107

which could be considered as variance and mean 108

to modulate the CLIP feature. Specifically, both 109

scale and shift parameters are instantiated by the 110

multiplication of two low-rank trainable matrices. 111

These parameters are input-independent and there- 112

fore more flexible. LoRM allows us to calibrate 113

the video features to highlight salient frames and 114

mitigate temporal redundancy. 115

For temporal correlation modeling, we replace 116

vanilla self-attention with the proposed Asyn- 117

chronous Self-Attention (ASA), which introduces 118

temporal dynamics among video frames to capture 119

temporal relationships. Since the attention comput- 120

ing in pre-trained CLIP is constrained within each 121

frame feature, it is challenging to apply to the video 122

domain due to the temporally dynamic nature of 123

video frames. Previous methods employ either tem- 124

poral Transformer (Jiang et al., 2022; Yang et al., 125

2022; Zhang et al., 2023) or 3D convolution net- 126

works (Yao et al., 2023; Liu et al., 2023) to encode 127

temporal dependencies. Instead of introducing ad- 128

ditional modules, we propose an asynchronous self- 129

attention that only warps partial patch tokens in a 130

parameterized way. Firstly, for each frame, we filter 131

semantically significant patches via a parameter- 132

free text-conditioned selection mechanism. Specif- 133

ically, we compute the similarities between patch 134

features and the corresponding sentence and se- 135

lect the patches with the highest responses. Sec- 136

ondly, each selected patch within the current frame 137

is dynamically warped to attend to the temporally 138

related patches in other frames. The proposed asyn- 139

chronous self-attention empowers the flexibility in 140

capturing correlations between video frames at the 141

fine-grained patch level. 142

Overall, the main contributions of this work are: 143

• We propose RAP to adapt the pre-trained CLIP 144
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to efficient TVR, which not only reduces the tun-145

able parameters but also generates temporally146

sparse and correlated video features.147

• To alleviate the temporal redundancy, a low-rank148

modulation module is introduced to calibrate the149

frame-wise representation linearly.150

• We propose an asynchronous self-attention that151

captures long-range dependencies with negligi-152

ble computational overheads.153

• Extensive experiments show that our RAP is154

on par with or even superior to previous PEFT155

methods and the fully fine-tuned counterpart.156

2 Related Work157

Text-Video Retrieval. TVR (Yu et al., 2018;158

Croitoru et al., 2021; Yang et al., 2021; Wang et al.,159

2021; Chen et al., 2020; Wang and Shi, 2023; Jin160

et al., 2022, 2023a,b; Liu et al., 2022) is a fun-161

damental research topic in the video-language do-162

main which aims to retrieval the relevant video/text163

based on the given text/video query. The pioneer164

works (Yu et al., 2018; Gabeur et al., 2020) rely on165

pre-extracted features from frozen video and text166

encoders. To facilitate the end-to-end training, Clip-167

BERT (Lei et al., 2021) proposes a sparse sampling168

strategy for efficient text-video training. With the169

great success of large-scale image-text pretraining170

model CLIP (Radford et al., 2021), the majority of171

the state-of-the-art TVR methods (Luo et al., 2022;172

Ma et al., 2022; Wang et al., 2023; Hannan et al.,173

2023; Jin et al., 2022) focus on transferring the174

powerful CLIP encoder to the video-text domain175

by designing various cross-modal alignment strate-176

gies. As the first attempt, CLIP4Clip (Luo et al.,177

2022) employs mean-pooling or Transformer to ag-178

gregate video features and conduct coarse-grained179

(video-sentence level) contrastive alignment. In-180

stead of using the text-agnostic aggregation man-181

ner, X-CLIP (Ma et al., 2022) proposes to aggre-182

gate video representations conditioned on the text’s183

attention weight and conduct the multi-grained con-184

trastive learning at the frame-word, video-sentence,185

video-word and sentence-frame levels. For more186

comprehensive alignment, UCOFIA (Wang et al.,187

2023) unifies the coarse-grained and fine-grained188

alignment to capture both the high-level and low-189

level correspondence between text and video.190

Most of the current TVR methods follow the191

fully fine-tuning paradigm. This scheme, however,192

is computation-intensive and may have the risk of193

overfitting. Besides, additional temporal model-194

ing models are required to bridge the image and 195

video gap. In this paper, we propose RAP which 196

conducts parameter-efficient fine-tuning for TVR 197

which provides a more computationally efficient 198

and potentially more robust approach. Besides, the 199

tunable parameters in our RAP also bear the respon- 200

sibility for temporal modeling, thus eliminating the 201

need for external temporal modules. 202

Parameter-Efficient Transfer Learning. PEFT 203

(Houlsby et al., 2019; Hu et al., 2021; Lester et al., 204

2021; He et al., 2021b; Zaken et al., 2022; Sung 205

et al., 2021) is firstly introduced in the NLP domain 206

to reduce the number of trainable parameters while 207

maintaining the comparable performance with the 208

fully fine-tuning setting. Inheriting the merit from 209

NLP, PEFT in computer vision (Jia et al., 2022; 210

Bahng et al., 2022; Jie and Deng, 2022; Sung 211

et al., 2022) also gained extensive research atten- 212

tion. VPT (Jia et al., 2022) follows the prompt tun- 213

ing strategy by introducing the task-specific learn- 214

able prompts on the vision Transformer. To be 215

more compatible with vision tasks, Convpass (Jie 216

and Deng, 2022) introduces the inductive bias of 217

convolutional layers by reconstructing the spatial 218

structure of the token sequence via convolution op- 219

erations. VL-Adapter (Sung et al., 2022) pioneer- 220

ingly benchmarks different types of PEFT tech- 221

niques including Adapter (Houlsby et al., 2019), 222

Hyperformer (Mahabadi et al., 2021), and Com- 223

pacter (Karimi Mahabadi et al., 2021) in the multi- 224

task setting. 225

There also exist several works (Yang et al., 2022; 226

Pan et al., 2022; Lin et al., 2022; Li and Wang, 227

2023; Yao et al., 2023; Jiang et al., 2022; Zhang 228

et al., 2023; Lu et al., 2023) focusing on the image- 229

to-video transfer learning. Based on the pre-trained 230

CLIP model, these methods either introduce tem- 231

poral convolution (Pan et al., 2022) or Transformer 232

(Lu et al., 2023) in sequential (Zhang et al., 2023; 233

Jiang et al., 2022) or parallel (Yao et al., 2023) 234

ways. However, they overlook the inherent tempo- 235

ral structure of video data while our RAP pinpoints 236

two key issues in video feature modeling and gen- 237

erate more representative video features. 238

3 Method 239

Text-video retrieval aims to search for and retrieve 240

relevant videos/texts based on textual/video queries 241

by evaluating the similarity between the video- 242

sentence pairs. Our proposed RAP is devoted to 243

bridging the gap between the frozen CLIP feature 244
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Figure 3: An overview of RAP. (a) LoRM sets up learnable shift parameters cv and scale parameters sv to calibrate
the vanilla CLIP features. For the temporally sparse requirement, cv and sv are generated by low-rank decomposition
on the temporal dimension. (b) Asynchronous self-attention first filters out patch set St via text-conditioned selection.
Then, the filtered patches are warped based on the learnable patch offset γ and temporal offset δ.

and the dynamic video scenario by introducing neg-245

ligible parameter overheads.246

The schematic illustration of our RAP is illus-247

trated in Figure 3. In Sec. 3.1, we present the248

preliminaries of RAP including the video and text249

feature embedding. Then we describe the proposed250

low-rank modulation and the asynchronous self-251

attention in Sec. 3.2 and Sec. 3.3, respectively.252

3.1 Feature Embedding253

Video Embedding. We utilize the visual back-254

bone (ViT (Dosovitskiy et al., 2020)) of CLIP as255

the video encoder. Given the video data, we fol-256

low ViT (Dosovitskiy et al., 2020) to process each257

frame independently. Specifically, each frame with258

shape H ×W is split into non-overlapping patches259

with shape P × P and then linearly projected into260

the embedding space. Such linear projection gener-261

ates N = HW/P 2 patch features for each frame.262

Besides, a learnable [CLS] token is prepended to263

each frame patch feature sequence to represent the264

global frame representations. The positional em-265

bedding is also added to incorporate positional in-266

formation explicitly. Through the above process,267

we obtain the tth frame feature x0
t ∈ R(N+1)×Dv ,268

t ∈ [1, T ], where Dv is visual feature dimension.269

The residual structure with serially connected270

multi-head self-attention (MHSA) and multilayer271

perceptron (MLP) is applied to capture sequential272

dependencies and contextual relationships within273

each frame patch sequence. Repeating the above274

steps for each frame, we obtain the video embed-275

ding at lth layer xl ∈ RT×(N+1)×Dv , l ∈ [1, L].276

Specifically, we decompose xl = [f l,pl], where277

f l ∈ RT×Dv represent the frame-wise features 278

(i.e., [CLS] token feature) while pl ∈ RT×N×Dv is 279

patch-wise representation at the lth layer. 280

Text Embedding. For text embedding, we directly 281

use the text encoder of CLIP to generate the textual 282

representation. The text encoder is a Transformer 283

(Vaswani et al., 2017) with the architecture mod- 284

ifications as described in (Radford et al., 2019). 285

The [EOS] token is also appended to encode the 286

global sentence feature. Concretely, we denote the 287

sentence features at the lth layer as wl ∈ R1×Dt , 288

where Dt is the text feature dimension. 289

3.2 Low-rank Modulation 290

In this section, we elaborate on the feature modula- 291

tion for both video and text features. Since all the 292

layers share the same modulation process, we omit 293

the superscript of layer index l for brevity. 294

Low-rank Modulation for Video. The frame-by- 295

frame encoded video features x cannot reflect the 296

characteristics of the video data. The redundancy in 297

the temporal dimension is a major feature that dis- 298

tinguishes videos from static images. To this end, 299

we introduce low-rank scale parameters and shift 300

parameters, which serve as the variance and mean 301

values to modulate the pre-trained CLIP feature. 302

These parameters are input-independent, rendering 303

them comparatively lightweight in nature and hope- 304

fully more scalable. Specifically, the video scale 305

parameter cv ∈ RT×Dv and video shift parameter 306

sv ∈ RT×Dv are decomposed as follows: 307

cv = ca · cb, sv = sa · sb, (1) 308

where ca, sa ∈ RT×R, cb, sb ∈ RR×Dv are learn- 309
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able parameters and we set rank R≪ min(T,Dv)310

to implement the low-rank requirement. The low-311

rank modulation is applied as follows.312

u = cv ⊙ x+ sv, (2)313

where ⊙ denotes the element-wise multiplication314

with broadcast. During training, the vanilla feature315

x is extracted through frozen CLIP backbone and316

the learnable cv and sv help modify x to be of317

temporally low-rank. u ∈ RT×(N+1)×Dv is the318

modulated video feature.319

Modulation for Text. We also modulate the textual320

embedding w with parameters ct and st as follows.321

z = ct ⊙w + st, (3)322

where ct, st ∈ R1×Dv are learnable parameters. We323

do not conduct modulation at the word level or use324

parameter low-rank decomposition since the tex-325

tual data do not exhibit the sparsity characteristic.326

3.3 Asynchronous Self-Attention327

Let’s review the vanilla self-attention in the video328

encoder. For clarity, we take the tth frame of the329

input video for illustration. The corresponding330

modulated feature is denoted as ut ∈ RN×Dv , t ∈331

[1, T ] (c.f . Equation (2)). Note that here we define332

ut as the patch-wise feature which does not contain333

the global [CLS] token features. We also omit the334

superscript of layer index l.335

The vanilla self-attention first performs three336

different linear projections on the input feature ut337

to obtain the triplet of query, key, and value.338

qt = ut ·Wq, kt = ut ·Wk, vt = ut ·Wv, (4)339

where Wq,Wk,Wv ∈ RDv×Dv are frozen trans-340

formation weights. Then the scaled dot-product341

attention is computed to achieve the contextual in-342

formation.343

The vanilla self-attention only attends to the344

intra-frame correlation modeling, which leads to345

the modality gap between video and image. In-346

stead of introducing an additional serial or parallel347

temporal modeling module (temporal Transformer348

(Liu et al., 2023; Yang et al., 2022) or 3D Convolu-349

tion (Pan et al., 2022)), we propose a novel asyn-350

chronous self-attention which introduces patch-351

wise temporal offset to model inter-frame relation-352

ship. Besides, to stabilize the training process, we353

propose a text-conditioned selection mechanism.354

Text-conditioned Selection. Here we take the355

video-to-text retrieval as an example to illustrate356

this. For the given frame-wise video feature 357

f ∈ RT×Dv , we conduct mean pooling on the 358

frame dimension to obtain the video-level features 359

f ∈ R1×Dv . Then we select the most similar sen- 360

tence w∗ ∈ W as follows. 361

w∗ = argmax
w∈W

(
Proj(f) ·w⊺) , (5) 362

where w ∈ R1×Dt is the candidate sentence fea- 363

tures. Proj(·) is a linear projection layer to trans- 364

form the visual dimension Dv to the textual dimen- 365

sion Dt. 366

Then, we compute the sentence-patch similarity 367

and select the top K responded patches. 368

St = arg topk
t∈[1,T ]

(Proj(ut) ·w∗⊺) , (6) 369

where St is the filtered patch index set. 370

Asynchronous Self-Attention. Then we only ap- 371

ply the proposed asynchronous self-attention on 372

patches indexed by the set of St. Specifically, the 373

query features are adapted as follows. 374

k̂
n

t , v̂
n
t =

{
k
n+γn
t+δt

,v
n+γn
t+δt

, n ∈ St
kn
t ,v

n
t , n /∈ St

(7) 375

where γ ∈ RN×1, δ ∈ RT×1 are layer-shared 376

learnable parameters representing the offset dis- 377

tance in the patch and temporal dimension, respec- 378

tively. kn+γn
t+δt

and v
n+γn
t+δt

denote the key and value 379

features of the (n + γn)
th patch in the (t + δt)

th 380

frame, respectively. k̂t, v̂t ∈ RN×Dv represents 381

the adapted features. Finally, asynchronous self- 382

attention is computed as follows. 383

Atten(qt, k̂t, v̂t) = softmax(
qtk̂

⊺
t√

Dv
)v̂t, (8) 384

where qt is illustrated in Equation (4) while k̂t and 385

v̂t are defined in Equation (7). 386

4 Experiments 387

4.1 Experimental Settings 388

Datasets. We validate the performance of our pro- 389

posed RAP on four benchmarked datasets. 1) MSR- 390

VTT (Xu et al., 2016) contains 10,000 YouTube 391

videos and each video is associated with 20 textual 392

descriptions. We follow the 1k-A split (Yu et al., 393

2018) where 9,000 videos are used for training 394

and 1,000 videos for testing. 2) MSVD (Chen and 395

Dolan, 2011) is composed of 1,970 videos. Fol- 396

lowing the official split, we used 1,200 videos for 397
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Table 1: Comparisons with state-of-the-art methods on MSR-VTT dataset. µ denotes using the frozen visual
encoder. RAP∗ denotes the RAP model with DSL post-processing (Cheng et al., 2021). b refers to the text-encoder
being trainable. The best performance is in bold and the second best is underlined.

Trainable Text → Video Video → Text
Type Methods Params (MB) ↓ R@1↑ R@5↑ R@10↑ MnR↓ R@1↑ R@5↑ R@10↑ MnR↓

with CLIP-ViT-B/32

Fine-tune
CLIP4Clip (Luo et al., 2022) 151.28 42.6 70.8 79.9 16.1 43.9 70.0 81.4 11.7
CLIP4Clip (µ CLIP) 0 31.1 53.7 63.4 41.6 26.5 50.1 61.7 39.9

Prompt

VPT (Jia et al., 2022) 0.21 37.5 63.0 73.9 21.6 36.5 62.8 74.3 20.0
VPT b (Jia et al., 2022) 63.43 40.5 67.3 78.6 17.9 40.9 70.0 79.2 12.5
CoOp (Zhou et al., 2022) 0.02 38.3 62.3 73.4 18.9 41.0 66.6 77.4 13.4
VoPP (Huang et al., 2023) 0.50 40.1 65.7 77.7 16.9 42.5 70.0 79.9 12.4
VoPC (Huang et al., 2023) 14.30 40.8 68.1 79.0 15.8 42.3 70.1 81.1 11.4

Adapter

ST-Adapter (Pan et al., 2022) 14.22 39.5 65.1 74.2 20.0 37.1 64.5 75.9 19.7
ST-Adapter b (Pan et al., 2022) 77.45 42.5 70.0 80.1 17.0 42.1 70.0 81.2 11.4
LoRA (Hu et al., 2021) 0.49 40.5 67.1 78.9 16.4 42.1 70.0 79.8 13.5
SSF (Lian et al., 2022) 0.34 40.8 68.2 78.6 17.0 42.0 68.6 80.2 13.2
RAP (Ours) 1.06 44.8 71.4 81.5 14.4 44.0 71.9 82.4 10.1

with CLIP-ViT-B/16
CLIP4Clip (Luo et al., 2022) 149.62 45.4 72.1 81.1 14.5 44.9 72.2 81.8 10.4
VoPP (Huang et al., 2023) 0.50 43.9 70.0 80.9 12.9 - - - -
VoPC (Huang et al., 2023) 14.30 44.6 71.8 80.2 14.6 - - - -
MV-Adapter (Zhang et al., 2023) 3.87 46.0 72.0 82.1 - 45.6 74.0 83.8 -
RAP (Ours) 1.06 46.5 73.9 82.0 12.1 45.3 76.4 84.8 9.1
RAP∗ (Ours) 1.06 52.1 77.3 86.7 10.0 51.6 78.7 86.9 8.0

training and 670 videos for testing, respectively. 3)398

ActivityNet Captions (Krishna et al., 2017) cov-399

ers 20,000 untrimmed videos of complex human400

activities with an average duration of two minutes.401

We report results on the “val1” split (10,009 train-402

ing videos and 4,917 testing videos) as in (Gabeur403

et al., 2020). 4) DiDemo (Anne Hendricks et al.,404

2017) consists of 10,464 unedited, personal videos405

in diverse visual settings annotated with 40,543 text406

descriptions. We follow the training and evaluation407

protocol in (Luo et al., 2022).408

Evaluation Metrics. Following the previous work409

(Luo et al., 2022), we evaluate the performance410

with standard retrieval metrics: recall at rank K411

(R@K, higher is better), median rank (MdR, lower412

is better) and mean rank (MnR, lower is better).413

R@K is defined as the percentage of samples for414

which the correct result is found in the top-K re-415

trieved results. We set K to {1, 5, 10} in our exper-416

iments. MdR calculates the median of the ground-417

truth results in the ranking while MnR calculates418

the mean rank of all the correct results.419

Implementation Details. We set the input frame420

length to 12, 64, 12, 64 and the caption token length421

to 32, 64, 32, 64 for MSR-VTT, DiDeMo, MSVD,422

and ActivityNet Captions, respectively. The pre-423

trained CLIP (Radford et al., 2021) was adopted424

as the video and text encoders. BertAdam was425

used as the optimizer, with 0.1 proportion warm-426

up cosine annealing, and a learning rate of 1e-4. 427

All the models were trained for 5 epochs except 428

on DiDeMo which was fine-tuned with 10 epochs. 429

The temporal rank R and the number of selected 430

tokens K were both set to 3. All experiments were 431

carried out on 4 NVIDIA Tesla A100 GPUs. 432

4.2 Comparisons with State-of-the-Arts 433

The comparison results are summarized in Table 1 434

and Table 2. Specifically, we set three sets of com- 435

parison experiments: 1) Fine-tuning: We take the 436

fully fine-tuned CLIP4clip (Luo et al., 2022) for 437

comparisons. Besides, we also list the zero-shot 438

performance of CLIP4clip, i.e., µ CLIP in Table 1, 439

for comparisons; 2) Prompt-tuning: We compare 440

our proposed RAP to prompt-tuning methods in- 441

cluding CoOp (Zhou et al., 2022), VPT (Jia et al., 442

2022) and VoP (Huang et al., 2023). Since VPT 443

is tailored for purely visual tasks, we experiment 444

by fine-tuning or freezing the textual branch of 445

CLIP, respectively; 3) Adapter: We conduct experi- 446

ments with the state-of-the-art adapters including 447

ST-Adapter (Pan et al., 2022), LoRA (Hu et al., 448

2021) and SSF (Lian et al., 2022). Notably, ST- 449

Adapter is applied on the visual branch and the 450

textual branch is either fine-tuned or freezed. For 451

the experiments with CoOP, we insert 32 learnable 452

prompt tokens at the input of the textual encoder. 453

The comparison results demonstrate the superior 454

performance of our proposed RAP. For example, 455
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Table 2: Comparisons with state-of-the-art methods on DiDeMo, MSVD, and ActivityNet Datasets. µ denotes
using the frozen visual encoder. RAP∗ denotes the RAP model with DSL post-processing (Cheng et al., 2021).

DiDeMo MSVD ActivityNet
Type Methods R@1↑ R@5↑ R@10↑ MnR↓ R@1↑ R@5↑ R@10↑ MnR↓ R@1↑ R@5↑ R@10↑ MnR↓

Fine-tune
CLIP4Clip (Luo et al., 2022) 42.3 69.1 78.2 18.6 45.5 75.4 84.1 10.3 39.4 71.1 83.3 7.9
CLIP4Clip (µ CLIP) 26.8 52.7 62.7 47.0 36.6 64.5 73.9 20.4 21.6 46.5 60.3 37.6

Prompt

VPT (Jia et al., 2022) 32.6 59.7 71.3 30.3 40.8 69.8 79.8 13.7 27.8 56.0 70.0 20.2
CoOp (Zhou et al., 2022) 29.7 56.9 67.9 34.9 38.9 69.2 78.9 14.0 29.1 57.3 72.2 14.2
VoPP (Huang et al., 2023) 38.9 67.7 78.1 17.2 - - - - 32.8 62.3 75.4 12.3
VoPC (Huang et al., 2023) 40.0 68.0 78.5 18.3 - - - - 32.6 62.5 76.5 12.0

Adapter

ST-Adapter (Pan et al., 2022) 36.6 63.4 72.0 26.7 42.5 72.0 81.7 12.4 29.8 59.5 73.7 14.5
LoRA (Hu et al., 2021) 38.4 65.9 75.7 22.6 45.1 75.0 84.0 10.8 27.7 55.8 69.3 18.8
SSF (Lian et al., 2022) 38.3 65.8 77.7 21.8 43.9 73.3 82.8 11.2 33.2 63.6 77.0 11.3
RAP (Ours) 42.6 70.4 79.6 18.0 44.9 73.7 83.1 11.1 40.8 71.0 82.2 8.3
RAP∗ (Ours) 47.1 74.1 82.4 13.9 49.8 78.2 86.1 9.7 48.4 76.2 86.4 7.0

Table 3: Comparisons of the memory footprint and
GFLOPs. The input frame number is set to 12 and the
ViT-B/32 is employed as the backbone. b refers to the
text-encoder being trainable.

Method #Params (M) Memory (G) GFLOPs R@1

CLIP4clip 151.3 12.9 54.4 42.6
ST-Adapter 14.2 10.3 62.8 39.5
ST-Adapter b 77.5 11.2 62.8 42.5
LoRA 0.5 9.5 67.6 40.5
SSF 0.3 17.1 54.5 40.8
RAP_light (Ours) 0.4 12.2 55.3 43.2

on the MSR-VTT dataset, our RAP surpasses the456

fully fine-tuned CLIP4clip by 2.2% (42.6 vs. 44.8)457

on R@1 with only 0.7% parameters (1.06 M vs.458

151.28 M) using CLIP-ViT-B/32 backbone. Be-459

sides, we also achieve superior performance com-460

pared to current prompt-tuning and adapter-tuning461

methods. Although the parameters of our RAP are462

slightly higher than LoRA and SSF, considering463

the considerable performance improvement, our464

RAP strikes a better balance between parameters465

and performance.466

Besides, to further probe the memory usage and467

computational complexity of the proposed model,468

we summarize the GPU memory usage during the469

training process and GFLOPs of the model in Table470

3. For fair comparisons, we coequally set the num-471

ber of input frames of each model to 12 frames and472

experiment with the ViT-B/32 backbone. We set up473

a lightweight RAP which only applies LoRM and474

ASA at the last four layers. As shown, compared to475

the fully fine-tuned Clip4clip, RAP_light remark-476

ably reduces the tunable parameters, slightly lowers477

the memory footprint and boosts the performance.478

In brief, our RAP_light achieves the balance be-479

tween computational overhead and performance,480

i.e., paying affordable overhead while obtaining481

considerable performance gains.482

Table 4: Ablations of model components of RAP.

Mode LoRM ASA R@1 R@5 R@10 #Params (M)

#1 ✓ ✓ 44.8 71.4 81.5 1.06
#2 ✓ ✗ 43.3 70.9 81.8 0.76
#3 ✗ ✓ 42.5 70.1 80.3 0.64
#4 ✗ ✗ 40.8 68.2 78.6 0.34

Table 5: Ablations of decomposition manners. ∅ de-
notes RAP without any variants of LoRM. “T", “S" and
“L" represent temporal, spatial, and layer, respectively.

Mode R@1 R@5 R@10 MdR MnR

#1 ∅ 40.8 68.2 78.6 2.0 17.0
#2 T 43.3 70.9 81.8 2.0 14.7
#3 S-T 43.2 69.4 80.7 2.0 15.1
#4 S-T-L 42.0 67.8 80.3 2.0 14.5

4.3 Ablations Study 483

We conduct all the ablation studies on the MSR- 484

VTT dataset with the ViT-B/32 backbone. The 485

input frame number is set to 12. 486

Component Ablations. We ablate the proposed 487

low-rank modulation module and the asynchronous 488

self-attention. The results are summarized in Ta- 489

ble 4. We can conclude that both components are 490

crucial to superior performance at the cost of neg- 491

ligible parameter overhead. For example, LoRM 492

yields a 2.3% performance boost on R@1 with the 493

cost of 0.42 M parameter (mode #1 vs. mode #3). 494

Ablations on the low-rank decompose manner 495

of LoRM. In Equation (1), we conduct the low- 496

rank decomposition in the temporal dimension, 497

and the modulation weights are with the dimen- 498

sion of RT×Dv , i.e., RT×Dv ← RT×R · RR×Dv . 499

Here we ablate more decomposition options: i) 500

the spatial-temporal decomposition: The modula- 501

tion is applied at the spatial-temporal dimension 502

with the weight of RT×N×Dv , i.e., RT×N×Dv ← 503

RT×N×R · RR×Dv , where T and N denote and 504
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Table 6: Ablations of selection manners. ∅ indicates
that none of the token selection policies is used.

Mode R@1 R@5 R@10 MdR MnR

text-top-K 44.8 71.4 81.5 2.0 14.4
text-bottom-K 43.0 70.7 80.3 2.0 14.8
vision-top-K 44.5 71.3 80.7 2.0 14.8

vision-bottom-K 43.5 70.6 80.3 2.0 15.1
random 43.2 70.8 81.2 2.0 14.9

∅ 41.4 68.9 79.9 2.0 15.7

frame number and the patch number within each505

frame, respectively. ii) the spatial-temporal-layer506

decomposition: We uniformly decompose all the507

modulation weights across all the layers. Specif-508

ically, the modulation weights are of the shape509

of RM×T×N×Dv , i.e., RM×T×N×Dv ← RM×R ·510

RR×T×N×R · RR×Dv , where M denotes the in-511

serted module number of all layers.512

The comparison results are summarized in Table513

5. From the comparison results, we observe that514

using temporal decomposition alone brings about515

the optimum performance. Additionally introduc-516

ing decomposition on the spatial and layer-wise di-517

mension leads to the performance degrade. These518

results manifest our motivation that video data ex-519

hibits a substantial degree of redundancy in the520

temporal dimension.521

Ablations on the text-conditioned selection man-522

ners. To stabilize the training process of ASA,523

we propose a text-conditioned selection strategy to524

constrain the asynchronous attention computation525

within the selected top-related patch features (c.f .526

Sec.3.3). For clarity, we denote this filter manner527

as text-top-K. Here we experiment with more vi-528

sual token selection manners: i) random: randomly529

select K patch feature within each frame; ii) text-530

bottom-K: For each patch token feature, we com-531

pute the sentence-patch similarity and select lowest532

K responded patches; iii) vision-top-K: Instead533

of using sentence features, we compute the simi-534

larities between each patch feature and the [CLS]535

token feature of the frame. The filtered set is con-536

stituted by selecting the top K responsive patches;537

iv) vision-bottom-K: Similar to vision-top-K, we538

compute patch-wise similarities with [CLS] token539

and select lowest K responded patches; v) ∅: none540

of the selection strategies are used and all the patch541

features are wrapped.542

The comparison results of the above selection543

strategies are summarized in Table 6. We have the544

following findings. Firstly, not using the token se-545

Table 7: Ablations of warping in Asynchronous at-
tention. T-Warp and S-Warp denote warping only on
the temporal and spatial dimensions, respectively.

T-Warp S-Warp R@1 R@5 R@10 MdR MnR

✓ ✓ 44.8 71.4 81.5 2.0 14.4
✗ ✓ 44.0 70.4 81.4 2.0 14.8
✓ ✗ 44.2 70.9 81.2 2.0 14.8

Table 8: Ablations on hyper-parameters including the
temporal rank R and the number of selected token K.

R 1 3 5 7 9

R@1 42.6 44.8 44.0 43.2 43.0

K 1 3 5 7 9

R@1 44.5 44.8 43.8 43.6 42.9

lection strategy (i.e., ∅ in Table 6) causes substan- 546

tial performance degradation, e.g., reaching only 547

41.4% on R@1. This is probably because warping 548

each patch tokens wreaks havoc on the well-trained 549

CLIP weights. Secondly, our proposed text-top-K 550

policy outperforms the other ones on all five met- 551

rics. This demonstrates that selectively warping 552

partial patch tokens in a parameterized way can 553

better adapt the vanilla CLIP to the video scenario. 554

Ablations on the warping manner of ASA. In 555

Sec. 3.3, we predict the patch-wise warping dis- 556

tance in both the temporal and spatial dimensions. 557

Here we ablate either of the two dimensions to 558

see the difference. As shown in Table 7, restrict- 559

ing warping in either temporal or spatial dimen- 560

sion will lead to performance degradation, which 561

demonstrates that free-form patch-wise warping is 562

crucial to the final performance. 563

Ablations on hyper-parameters. We conduct ab- 564

lation studies on the temporal rank R and selected 565

token number K in Table 8. We set R = 3 and 566

K = 3 to achieve the best retrieval performance. 567

5 Conclusions 568

In this work, we present RAP to efficiently transfer 569

the pre-trained CLIP model to TVR. To accom- 570

modate the inherent video structure and the cross- 571

modality setting, we introduce a low-rank mod- 572

ulation module to achieve the frame-wise sparse 573

representation and an asynchronous self-attention 574

module to enhance the cross-frame correlations. 575

Extensive experiments illustrate that RAP achieves 576

comparable or even better performance than previ- 577

ous arts and the fully fine-tuned counterpart. 578
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Impact Statements579

Ethics Statement. Our RAP aims to conduct580

parameter-efficient text-video retrieval through a581

temporally sparse and correlated adapter. The ethi-582

cal issues may exist in the following two perspec-583

tives. Firstly, similar to many data-driven methods,584

there are concerns about the issue of data privacy,585

anonymization, and compliance with relevant data586

protection regulations. Secondly, the considera-587

tions related to potential bias in the dataset and the588

retrieval model, especially concerning sensitive top-589

ics, should be acknowledged. We are transparent590

about the ethical considerations in our research to591

uphold the integrity of the academic process and to592

ensure that this work aligns with ethical standards593

and norms in the field.594

Limitation. Despite the remarkable progress,595

our RAP still faces several limitations. Firstly, we596

use the text-conditioned selection to filter the most597

representative visual patches. Due to the seman-598

tic gap conveyed by the textual and visual signals,599

the alignment of complex concepts and contexts600

across different modalities should be conducted601

in a more fine-grained manner. Secondly, due to602

the limitations of computing resources, we experi-603

ment with the backbone of ViT-B/32 and ViT-B/16.604

The salable experiments on ViT-L/14 and ViT-E/14605

backbones are left for future work.606
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A Appendix902

A. More Experiments903

Table 9: Video-to-text retrieval results on DiDeMo, MSVD, and ActivityNet Datasets. µ denotes using the
frozen visual encoder.

DiDeMo MSVD ActivityNet
Type Methods R@1↑ R@5↑ R@10↑ MnR↓ R@1↑ R@5↑ R@10↑ MnR↓ R@1↑ R@5↑ R@10↑ MnR↓

Fine-tune
CLIP4Clip (Luo et al., 2022) 42.2 70.3 79.3 11.8 56.6 79.7 84.3 7.6 41.9 72.2 84.6 7.3
CLIP4Clip (µ CLIP) 20.2 44.2 55.0 43.1 56.3 82.6 89.8 4.8 17.7 40.7 54.1 42.5

Prompt

VPT (Jia et al., 2022) 33.1 59.8 69.9 22.7 59.5 82.9 88.8 5.9 28.4 56.7 69.4 19.7
CoOp (Zhou et al., 2022) 32.3 57.0 68.2 23.4 53.8 78.3 82.9 12.4 29.0 57.6 72.4 14.0
VoPP (Huang et al., 2023) 40.6 68.3 78.6 11.6 - - - - 34.8 65.0 78.2 10.7
VoPC (Huang et al., 2023) 39.1 65.3 76.7 13.8 - - - - 34.2 64.8 78.4 10.7

Adapter

ST-Adapter (Pan et al., 2022) 35.9 61.0 72.0 20.1 53.6 80.5 87.3 5.8 29.7 58.8 73.1 15.5
LoRA (Hu et al., 2021) 39.7 66.8 77.3 13.9 64.3 87.3 92.5 4.1 30.8 60.0 73.2 15.2
SSF (Lian et al., 2022) 40.0 67.1 77.4 13.2 61.9 87.0 90.7 4.5 36.2 66.9 79.0 10.4
RAP (Ours) 44.0 69.2 80.1 10.5 65.2 88.7 93.1 4.2 41.9 73.0 84.0 7.5
RAP∗ (Ours) 47.7 74.4 83.2 9.5 69.6 91.9 95.7 2.9 48.2 76.5 86.2 6.8

904

905

Video-to-text Performance: We supplement the906

video-to-text performance on the DiDeMo, MSVD907

and ActivityNet Captions datasets in Table 9. The908

experimental results consistently demonstrate the909

superiority of our RAP. For example on MSVD910

dataset, RAP surpasses the fully fine-tuned method911

by 8.6% on R@1.912

Low-rank modulation on textual features: In913

Sec. 3.2, we apply the low-rank decomposition914

modulation in the visual branch, specifically in915

the temporal dimension. Here we apply the low-916

rank modulation on the textual branch to see the917

differences. Concretely, the modulation weights918

are with the shape of RW×Dt ← RW×Rt · RRt×Dt ,919

where W denotes the total word length, Rt is the920

low-rank hyper-parameter and Dt is the textual921

feature dimension. We set Rt = 3.922

The ablation results are shown in Table 10.923

As shown, applying the low-rank modulation on924

textual features causes performance degradation,925

which may be because word-level representations926

do not exhibit the same redundancy as frame-level927

visual features.928

Table 10: Ablations of the low-rank modulation
on the textual branch.

LoRM on Text R@1 R@5 R@10 MnR #Param

✗ 44.8 71.4 81.5 14.4 1.06M
✓ 44.3 72.1 81.0 14.4 1.48M

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

B. Visualization Results 953

We visualize the per-frame modulation weights 954

with or without the low-rank decomposition. As 955

shown in Figure 4, the modulation weights with de- 956

composition demonstrate more salient distributions, 957

which manifests the temporal sparsity characteris- 958

tic of video data. 959

Besides, we visualize the effect of the asyn- 960

chronous self-attention. We randomly select one 961

patch feature ( ) in the frame and computes its sim- 962

ilarity distribution with the patches in other frames. 963

The results in Figure 5 show that the proposed 964

asynchronous self-attention can adaptively attend 965

to patch-of-interest, which leads to effective tem- 966

poral correlation modeling. 967
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modulation weights w/o low-rank decomposition

modulation weights w/ low-rank decomposition

Query: A man is showing off a new vehicle.

modulation weights w/o low-rank decomposition

modulation weights w/ low-rank decomposition

Query: A man talking about the two cars he test drove.

modulation weights w/o low-rank decomposition

modulation weights w/ low-rank decomposition

Query: Someone giving demo for some game.

modulation weights w/o low-rank decomposition

modulation weights w/ low-rank decomposition

Query: Bill murray is being interviewed by David letterman 
while talking about bill’s past roles.

Figure 4: Illustrations of temporal sparsity. We visualize the modulation weight w/ or w/o low-rank decomposition.
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Query: Cartoon show for kids.
w/ vanilla self-attention

w/ asynchronous self-attention

Query: A puppy is crawling down some stairs.
w/ vanilla self-attention

w/ asynchronous self-attention

Query: A man extinguishes a fire outside.
w/ vanilla self-attention

w/ asynchronous self-attention

Figure 5: Illustrations of temporal correlation. The query patch is marked by the yellow cross and the similarity
map within other frames are plotted.
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