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Abstract

This work establishes a novel link between the problem of PAC-learning high-
dimensional graphical models and the task of (efficient) counting and sampling of
graph structures, using an online learning framework. The problem of efficiently
counting and sampling graphical structures, such as spanning trees and acyclic
orientations, has been a vibrant area of research in algorithms. We show that
this rich algorithmic foundation can be leveraged to develop new algorithms for
learning high-dimensional graphical models.
We present the first efficient algorithm for (both realizable and agnostic) learning
of Bayes nets with a chordal skeleton. In particular, we present an algorithm
that, given integers k, d > 0, error parameter ε > 0, an undirected chordal graph
G on n vertices, and sample access to a distribution P ∗ on [k]n; (1) returns a
Bayes net P̂ with skeleton G and indegree d, whose KL-divergence from P ∗ is
at most ε more than the optimal KL-divergence between P ∗ and any Bayes net
with skeleton G and indegree d, (2) uses Õ(n3kd+1/ε2) samples from P ∗ and
runs in time poly(n, k, ε−1) for constant d. Prior results in this spirit were for
only for trees (d = 1, tree skeleton) via Chow-Liu, and in the realizable setting for
polytrees (arbitrary d but tree skeleton). Thus, our result significantly extends the
state-of-the-art in learning Bayes net distributions. We also establish new results
for learning tree and polytree distributions.

1 Introduction

High-dimensional distributions are pivotal in contemporary machine learning, with widespread
applications across various domains such as gene regulation networks [46, 16, 17, 40], protein
signaling networks [39, 72, 75], brain connectivity networks [53, 78], and psychiatric symptom
networks [13, 67, 82]. Probabilistic graphical models provide succinct representations of high-
dimensional distributions over an exponentially large sample space such as Rn or {0, 1}n. These
models leverage the limited dependence between component variables, encoded by a dependency
graph, to describe joint probability distributions over a large set of variables in a succinct and
interpretable manner. Probabilistic graphical models such as Bayesian networks, Ising models, and
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Gaussian graphical models are extensively utilized to model a wide range of data generation processes
in practice (refer to [63, 79, 58] and the references therein). Learning distributions represented by
these graphical models is a central challenge with significant theoretical and practical implications.

The present work focuses on learning an unknown Bayesian network from sample data. A Bayesian
network (Bayes net) with n variables and alphabet size k is a probability distribution over [k]n
defined by a directed acyclic graph (DAG) G on [n]. Each node represents a random variable, which
is conditionally independent of non-descendants given its parents. By Bayes rule, the distribution
factorizes into n conditional probabilities. If G has in-degree at most d, it requires at most nkd+1

parameters to describe the distribution, significantly reducing the descriptional complexity from kn

parameters required for an arbitrary distribution.

Learning Bayesian network distributions involves two steps: structure learning (identifying the
dependency graph) and parameter learning (estimating conditional probability tables). Structure
learning methods fall into two categories: constraint-based, which iteratively removes edges by testing
for conditional independence, and score-based, which assigns scores to DAGs and frames structure
recovery as an optimization problem, often solved using heuristics like greedy hill climbing. The
current work broadly fits in the framework of score-based approach. However, instead of optimizing
the score directly, we use the framework of online learning to reduce the problem to sampling from a
family of high-dimensional structures.

In the online learning framework, the goal is to design a forecaster that observes a sequence of
examples x(1), x(2), . . . , x(T ), and at each time (or round) t, outputs a prediction p̂t based only on
x(1), . . . , x(t−1). After predicting p̂t, it observes x(t), and it incurs a loss ℓ(p̂t, x(t)) for a loss function
ℓ. The cumulative loss of the forecaster is benchmarked against that of a fixed and known set of
experts. The goal of the algorithm is to minimize the regret, defined as the difference between the
cumulative loss over all rounds and the loss it would incur if it were to follow the best expert. Online
learning is a well-established field with a wide range of applications in theoretical computer science,
including game theory, approximation algorithms, and complexity theory (see [42, 44, 8, 31, 69, 9, 60]
and the references therein).

In distribution learning, the experts are all the possible candidate Bayesian networks (up to a sufficient
discretization). The observations are random samples from the unknown distribution, and we set
the loss function to be the negative log-likelihood ℓ(p̂, x) = − log p̂(x). The primary obstacle in
applying the online approach to distribution learning lies in ensuring computational efficiency. All
the standard forecasting algorithms have running time at least linear in the number of experts. In
our case, the experts are all the discretization of all candidate Bayes nets, which is exponentially
many. A key insight of our work is the discovery of the close relationship between this computational
challenge and the task of efficient counting and sampling of DAGs from a class of DAGs. This link
allows us to transfer techniques and algorithms from the counting and sampling literature to the realm
of distribution learning, leading to significant new results in learning Bayes net distributions.

2 Our Results

We first set up the framework of PAC-learning [76] for distributions; formal definitions appear in
Appendix A. We use KL-divergence (denoted as DKL) as the notion of similarity between probability
distributions, and we will work with distributions on [k]n = {1, . . . , k}n. Let C be a class of such
distributions; in our applications, C will correspond to some family of Bayes nets.

For ε > 0, A ≥ 1 and two distributions P and P̂ over [k]n, we say P̂ is an (ε,A)-approximation for
P with respect to C if DKL(P∥P̂ ) ≤ A ·minQ∈C DKL(P∥Q) + ε. When A = 1, we simply say P̂ is
an ε-approximation of P . An algorithm is said to be an agnostic PAC-learner for C if for any ε, δ > 0

and access to i.i.d. samples from an input distribution P ∗, it outputs a distribution P̂ which is an
ε-approximation for P ∗ with probability at least 1− δ. If P̂ is not necessarily in C, the algorithm is
called improper; otherwise, it is called proper. Also, the realizable setting corresponds to the case
when the input P ∗ is guaranteed to be in C.

It is well-known (e.g., [12]) that given a DAG G, the minimum KL divergence between P ∗ and a
Bayes net over G can be written as JP∗ −

∑
i∈V (G) I(Xi;XpaG(i)), where X ∼ P ∗, I is the mutual

1There is a polylog(1/δ) dependency here (as opposed to 1/δ2 for the proper learner) hidden in Õ(·).
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Chordal graph with indegree ≤ d
and known skeleton Tree with unknown skeleton

Realizable
Proper Õ

(
max

{
n3

ε2δ2 ,
nkd+1

ε

})
Õ
(
max

{
n3

ε2δ2 ,
nk2

ε

})
Improper Õ

(
nkd+1

εδ

)
Õ
(

nk2

εδ

)
Agnostic

Proper Õ
(
max

{
n3

ε2δ2 ,
nkd+1

ε

})
Õ
(
max

{
n3

ε2δ2 ,
nk2

ε

})
Improper Õ

(
max

{
n4

ε4 ,
nkd+1

ε

})
1 Õ

(
max

{
n4

ε4 ,
nk2

ε

})
Table 1: Our results: Sample complexities for (ε, δ)-PAC learning (the Õ(·) notation hides polylog
factors)

information, and JP∗ is a constant independent of G. Hence, if C is the class of Bayes nets over
DAGs of in-degree d, a natural strategy for designing agnostic learning for C is the following: First
approximate the mutual information between any node and any set of d other nodes up to a suitable
additive error. Next, maximize the sum of mutual informations between a node and its d parents, over
all possible DAGs with in-degree d. Iterating over all possible DAG structures would then lead to an
algorithm with sample complexity Õ(n2kd+1ε−2). However, this algorithm has exponential time
complexity and the sample complexity is also suboptimal compared to known lower bounds.

In this work, we give an improper agnostic learning algorithm for Bayes nets with indegree d with sam-
ple complexity Õ(nkd+1ε−1), which is sample-optimal upto polylogarithmic factors. The algorithm
is computationally inefficient. Our main contribution is the design of sample and computational-
efficient algorithms for new natural classes of Bayes nets, extending the state of the art. In particular,
modifying our algorithm for general bounded-indegree Bayes nets, we give computational and time
efficient algorithms for learning chordal-structured Bayes nets with a known skeleton. Efficient
algorithms are currently known only for learning tree-structured distributions ([12, 30, 25]) and for
learning polytree-structured distributions with a given skeleton ([24]).

An undirected graph is chordal if every cycle of length four or more has a chord (an edge connecting
two non-adjacent vertices in the cycle). Chordal graphs form a significantly broader class than
trees and encompass several well-studied graph families, including interval graphs and k-trees.
Consequently, our results represent a major advancement in the state of the art for learning Bayesian
network distributions. Beyond their structural significance, chordal graphs play a crucial role in the
study of Bayesian networks particularly in causal Bayesian networks [4, 58]. We describe our results
next. The sample complexities of our results are summarized in Table 1.

Learning with Known Chordal Skeleton The skeleton of a DAG refers to its underlying undirected
graph. We consider Bayes nets having a known chordal skeleton with bounded indegree and present
an efficient algorithm for learning such distributions.

Theorem 2.1. Let G be an undirected chordal graph on n nodes, and suppose d is a fixed constant.
Consider the problem of agnostically learning a distribution w.r.t the class of Bayes nets having
skeleton G with indegree ≤ d. There exist (i) an agnostic improper PAC-learner for this problem
using Õ

(
n4

ε4 + nkd+1

ε

)
samples that returns an efficiently-samplable mixture of such Bayes nets, and

(ii) an agnostic proper PAC-learner using Õ
(

n3

ε2δ2 + nkd+1

ε

)
samples that returns a single Bayes

net. Both algorithms have poly(n, k, 1/ε, 1/δ) running time.

This is the first result yielding efficient algorithms for agnostic learning Bayes nets on non-tree
skeletons without further distributional assumptions; see Section 4 for discussion of previous work.

For efficiently learning chordal and polytree distributions, we need to know the correct skeleton
(underlying undirected graph). To the best of our knowledge, there is currently no computational
hardness result regarding this. Additionally, there have been several works with the known skeleton
assumption, even in the context beyond PAC distribution learning. [71] designed an FPT algorithm
(in terms of total degree and treewidth) for counting the Markov Equivalence Classes with a given
skeleton. On the practical side, several works for Bayes net structure learning first learn a skeleton
from the data and then fix the orientations (e.g., see the survey [27], section 4.9.1). However, the
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approach of first learning the skeleton and then performing the distribution learning does not have
sound theoretical guarantees, since the distance measures in these two contexts are different.

A well-investigated class of Bayes nets is the class of polytree distributions: whose DAGs have tree
(acyclic) skeletons. Polytrees are especially interesting because they admit fast exact inference [66].
[29] investigated the problem of learning polytree distributions in terms of the negative log-likelihood
cost, and showed that it is NP-hard to get a 2-polytree (where indegree is ≤ 2) whose cost is at most c
times that of the optimal 2-polytree for some constant c > 1, even if we have oracle access to the true
entropies (equivalently, infinite samples). Our distribution learning algorithms in contrast achieve an
additive approximation in the reverse-KL cost. As a direct corollary of the above theorem, we have
the following result for bounded indegree polytrees with known skeleton.
Corollary 2.2. Let d > 0 be a fixed constant and G be a given undirected tree. Consider the
problem of agnostically learning a distribution w.r.t the class of Bayes nets having skeleton G with
indegree ≤ d, i.e. d-polytrees with skeleton G. There exist (i) an agnostic improper PAC-learner for
this problem using Õ

(
n4

ε4 + nkd+1

ε

)
samples that returns an efficiently-samplable mixture of such

polytrees, and (ii) an agnostic proper PAC-learner using Õ
(

n3

ε2δ2 + nkd+1

ε

)
samples that returns a

single polytree. Both algorithms have poly(n, k, 1/ε, 1/δ) running time.

The closest related result is that of [24] who designed a PAC-learner in the realizable setting for
polytrees with optimal2 sample complexity Õ(nkd+1ε−1 log δ−1). However, their analysis crucially
uses the realizability assumption, and it was left as an open question in that work to find an efficient
agnostic learner for polytrees. The above corollary answers this question.
Remark 2.3. We can bound the running time of our learning algorithms for chordal-structured Bayes
nets (with known skeleton) as follows: At the outset, for every node i ∈ [n] and for every choice of
the ≤ d parents pa(i), we learn the conditional distribution associated with node i given that choice
of parents pa(i). These are add-one conditional distributions computed from a sufficiently-large
(Õ(nkd/ε)) set of samples. Subsequently, the learning algorithm focuses only on the combinatorial
problem of learning an acyclic orientation. The running time contribution from the node-distribution
learning part is Õ((∆k)ddn2/ε), where ∆ is the maximum (undirected) degree of the skeleton.
Here, n

(
∆
d

)
≤ n∆d (for d ≪ n) bounds the number of all possible (node, parent-set) pairings

and Õ(dnkd/ε) is the time for computing a “good” add-one conditional distribution for a given
node and parent-set. Note that the runtime is polynomial even if both ∆ and d are O(log n). If d is
unbounded, then the runtime can grow at an exponential 2d log(∆k) rate. Note that, for unbounded d, an
exponential dependence on the runtime and sample complexity is inevitable since chordal-structured
indegree-(n− 1) Bayes nets with a fixed skeleton (the complete graph on [n]) can capture arbitrary
n-dimensional distributions (we do not use faithfulness or similar assumptions for distribution
learning).

Learning Tree-structured Distributions By tree-structured distributions (or simply, trees when
the meaning is clear), we mean Bayes nets whose underlying DAG has in-degree 1. They can be
equivalently defined as undirected Markov models over (undirected) trees. The celebrated work
of [25] developed a polynomial time algorithm for learning tree-structured distributions, if the
algorithm is provided the exact mutual information between each pair of variables. PAC-learning
guarantees with sample complexity bounds came later [30, 12], In particular, the highlight of these
works was establishing that in the realizable setting, i.e., when the samples are being generated by a
tree-structured distribution on [k]n, the Chow-Liu algorithm is a PAC-learner with sample complexity
Õ(nk3/ε). While the dependence on n and ε is tight, it was left as an open question whether a better
dependence on k is possible.

Our work answers this in the affirmative:
Theorem 2.4. Let C be the family of tree-structured distributions over [k]n. There exists an algorithm
that for any ε > 0, given sample access to a distribution P ∗ ∈ C, returns an ε-approximation P̂ of
P ∗ with probability at least 2/3 and uses m = Õ(nk2ε−1) samples and poly(m) running time. The
distribution P̂ is a mixture of distributions from C and is samplable in polynomial time.

2Although not stated in the corollary above, in the realizable setting, our techniques also yield sample
complexity with the optimal dependence on n, k, and ε.
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Note that in contrast to Theorem 2.1, here, the algorithm does not know the true skeleton a priori.
The output distribution P̂ is a mixture of exponentially many trees but can nevertheless be sampled in
polynomial time by using the matrix-tree theorem, as we explain later. We note that the dependence
of k2 on the sample complexity is tight. This follows from [14, Theorem 13] (see also [33]), which
proves that learning a Bayes net with in-degree d requires Ω(nkd+1) samples, and for tree Bayes
nets, the in-degree being d = 1, requiring Ω(nk2) samples. Learning with mixtures of trees has been
studied before ([64, 61, 3, 70]) but in other contexts.

We also note that going beyond trees, the same approach allows us to develop polynomial sample
and time algorithms for learning Bayes nets on an unknown DAG whose moralization is promised to
have constant vertex cover size. Here, instead of sampling using the matrix-tree theorem, we can
utilize a recent result of [50] to sample such DAGs. Details appear in Appendix F.

Why KL divergence? We briefly discuss why learning in KL divergence is relevant. The study of
agnostic learning of distributions in KL divergence goes back to at least three decades ago by the works
of [2] and [28, 29]. The authors argued that given random samples from an unknown distribution P ,
minimizing the KL divergence is the same as maximizing the log-likelihood in expectation, due to
the following equation: DKL(P ||Q) = −H(P )− Ex∼P [logQ(x)], where H(P ) is the entropy of P .
KL divergence also appears in the study of density estimation such as Yang-Barron’s construction and
covering complexity ([84, 81]). [56] also studied the complexity of distribution learning in terms of
KL divergence and gave a coding-theoretic interpretation to choosing KL divergence as the distance
function. Finally, several recent works have investigated the problem of learning high-dimensional
distributions in this stronger KL divergence guarantee, such as [12, 32, 24, 11, 80].

3 Our Techniques

Online Learning Framework to Learning in reverse KL Given i.i.d. samples from a distribution
P ∗, we are trying to learn it. Roughly, for a random x ∼ P ∗, a good approximate Bayes net
P should maximize the probability P (x), or equivalently, minimize the expected log-likelihood
Ex∼P∗

[
log 1

P (x)

]
. Keeping this in mind, we define the loss of any Bayes net P̂ predicted by the

algorithm to be log 1

P̂ (x)
for a sample x.

We follow the online learning framework. Here the algorithm A observes a set of samples
x(1), . . . , x(T ) ∼ P ∗ over T rounds from an unknown Bayes net P ∗. The goal of the algorithm
is to learn a distribution P̂ which is close to P ∗. After observing each sample x(t), A predicts
a Bayes net P̂t and incurs a loss of log 1

P̂t(x(t))
for this round. However, there is a set of experts

E to help A. For simplicity, we can assume each expert E ∈ E is simply one Bayes net among
all possible Bayes nets. Had A stuck to any particular expert E ∈ E , it would incur a total loss∑T

t=1 log
1

E(x(t))
over all the T rounds. The algorithm can change the experts in between or do some

randomized strategy for choosing the expert among E . Let P̂t be its prediction after round t. The
regret is defined to be the difference between the loss of the algorithm and that of the best expert:∑T

t=1 log
1

E(x(t))
−minE∈E

∑T
t=1 log

1
E(x(t))

.

In our setting, the expert set consists of one Bayes net per DAG from the class of DAGs under
consideration (e.g., acyclic orientations of a given skeleton). To associate a Bayes net with a DAG,
we approximately learn the conditional distributions at each node using the add-one or Laplace
estimator on a separate set of samples. We have the guarantee that these finitely many Bayes nets
form a “cover” for the class of Bayes nets we wish to learn.

We relate the regret mentioned above to the expected average of the KL divergence over the rounds:
E[ 1T DKL(P

∗||P̂t)]. Once we control the average KL divergence, using the convexity of KL, we can
show that the mixture distribution 1

T

∑T
t=1 P̂t is also close to P ∗. Finally, we translate the above

bounds from expectation to high probability using McDiarmid’s bounded difference inequality.

We use known bounds on the regret for two classic online learning algorithms: the Exponential
Weighted Average (EWA) algorithm and the Randomized Weighted Majority (RWM) algorithm.
EWA returns us the mixture 1

T

∑T
t=1 P̂t which improperly learns P ∗ in (reverse) KL. RWM returns a
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random Bayes net P̂ which properly learns P ∗ in expected KL. The pseudocode for these algorithms
is given in Algorithm 1 and Algorithm 2.

Algorithm 1: EWA-based learning for
Bayes nets
Input : N = {P1, . . . , PN}, T ,

hyperparameter η > 0.
Output : Sampler for P̂ .

1 wi,0 ← 1 for each i ∈ [N ].
2 for t← 1 to T do
3 Observe sample x(t) ∼ P ∗.
4 Update wi,t ← wi,t−1 · Pi(x

(t))η

for each i ∈ [N ].
5 function EWA-SAMPLER()
6 Sample t← [T ] uniformly, then

sample i ∼ [N ] with probability
wi,t−1∑

j∈[N] wj,t−1
.

7 return x ∼ Pi.
8 return EWA-SAMPLER /* This is

a sampler for P̂. */

Algorithm 2: RWM-based learning for
Bayes nets
Input : N = {P1, . . . , PN}, T ,

hyperparameter η > 0.
Output : P̂ ∈ N .

1 wi,0 ← 1 for each i ∈ [N ].
2 for t← 1 to T do
3 Sample it from [N ] with

Pr(it = i) =
wi,t−1∑

j∈[N] wj,t−1
.

4 Observe sample x(t) ∼ P ∗.
5 for i ∈ [N ] do
6 wi,t ← wi,t−1 · Pi(x

(t))η .

7 Sample t uniformly from [T ].
8 return P̂ ← Pit .

Efficient Learning of Restricted Classes of Bayes Nets Our learning algorithm for Bayes nets
mentioned above is sample-optimal but not time-efficient in general since the number of experts to
be maintained is of exponential size. However, we observe that for special cases of Bayes nets, we
can efficiently sample from the experts according to the randomized strategy of the algorithm. As a
remark, the idea that the computational barrier of RWM or EWA may be side-stepped by developing
efficient sampling schemes was also used in a recent work on fast equilibrium computation in
structured games [8] and partly motivated our work.

To see the simplest example of this idea, suppose P = {P1, . . . , PN} is a set of distributions over
[k], and let P⊗n = P × P × · · · × P be a set of product distributions over [k]n. Each element of
P⊗n is indexed as Pi for i = (i1, . . . , in), so that Pi(x) =

∏n
j=1 Pij (xj). The size of P⊗n is clearly

Nn, so it is infeasible to work with it directly. The RWM algorithm maintains a distribution over
P⊗n, so that the probability that RWM picks Pi for its prediction P̂t at time t is proportional to∏t−1

s=1 Pi(x
(s))η , where x(s) is the observed sample at time s and η > 0 is a parameter. Therefore:

Pr
RWM

[P̂t = Pi] =

∏t−1
s=1 Pi(x

(s))η∑
i′
∏t−1

s=1 Pi′(x(s))η
=

n∏
j=1

∏t−1
s=1 Pij (x

(s)
j )η∑

i′j

∏t−1
s=1 Pi′j

(x
(s)
j )η

.

The crucial observation is that RWM maintains a product distribution over product distributions, and
so we can sample each Pij from P independently.

When the underlying Bayes net is a tree, i.e. of indegree 1, we show that RWM samples a random
rooted spanning arborescence from a weighted complete graph. The probability to output a particular
arborescence A is proportional to

∏
e∈A we where each we is a weight that can be explicitly computed

in terms of the observed samples and the parameters of the algorithm. It is well-known that the matrix-
tree theorem (more precisely, Tutte’s theorem) for counting weighted arborescences can be used
for this purpose, and hence, we obtain an alternative to the Chow-Liu algorithm for approximately
learning a tree Bayes net efficiently and sample-optimally.

Next, we generalize our algorithm to polytree-structured Bayes nets where the underlying skeleton
is acyclic. Here, we are assuming that the skeleton is given, so that the goal of the algorithm is to
learn an acyclic orientation of the skeleton. For simplicity, suppose the skeleton is known to be the
path. Given a particular orientation of the edges, we obtain a particular Bayes net structure. Once the
structure is fixed, the conditional probability distribution corresponding to each edge parent→child is
set according to the empirical statistics in a separate batch of samples. This will completely specify
a Bayes net P , which can assign probability P (x(t)) for the sample x(t). Therefore, we can also
compute the total loss ℓP =

∑T
t=1 logP (x(t))−1. Then, each structure P will be chosen proportional
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to e−ηℓP in the RWM algorithm. In order to sample a particular Bayes net among the entire class
using RWM, we need to first compute the normalization constant of the RWM sampler’s distribution:
Z :=

∑
P∈P e−ηℓP over the class P of all (discretized) path Bayes nets. A particular path Bayes net

P will be chosen with probability e−ηℓP /Z by the RWM’s sampler. We first show how to compute
Z efficiently using dynamic programming.

We now show how to compute Z by induction on the set of vertices of the path. Suppose Zj is the
normalization constant obtained by only restricting to the first j + 1 nodes in the path. That is, if
Pj is the class of Bayes nets corresponding to all orientations of the undirected path on j + 1 nodes,
then Zj =

∑
P∈Pj

e−ηℓP , where ℓP only computes the loss based on the first j + 1 variables. For
the induction, we maintain more refined information for each j. Let Pj,← and Pj,→ be the class of
all discretized Bayes nets on j + 1 variables with a path skeleton and the last edge pointing left and
right, respectively. Correspondingly, define Zj,← and Zj,→; clearly, Zj = Zj,← + Zj,→. Inductively,
assume that Zj,← and Zj,→ are already computed. We then need to compute Zj+1,← and Zj+1,→.

If the (j+1)-th edge orients rightward, then the parents of nodes 1, . . . , j+1 do not change, while the
new node j + 2 has parent j + 1. We can accommodate this new edge by simply adding the negative
log of the conditional probability due to this new edge to the loss restricted to the first j + 1 variables.
We can compute Zj+1,→ = (Zj,← + Zj,→)e−η∆, by computing ∆ =

∑T
t=1 logP (x

(t)
j+2 | x

(t)
j+1)

−1.

If the (j + 1)-th edge orients leftward, the adjustment is slightly trickier as node j + 1 will get a new
parent j + 2, while the new node j + 2 has no parent. In that case, we need to first subtract out the
previous sum of negative log conditional probabilities at j + 1. Let us define:

∆1 =

T∑
t=1

logP (x
(t)
j+1 | x

(t)
j )−1, ∆2 =

T∑
t=1

logP (x
(t)
j+1)

−1, ∆3 =

T∑
t=1

logP (x
(t)
j+1 | x

(t)
j , x

(t)
j+2)

−1,

∆4 =

T∑
t=1

logP (x
(t)
j+1 | x

(t)
j+2)

−1,∆5 =

T∑
t=1

logP (x
(t)
j+2)

−1.

If node j is not a parent of node j + 1, then node j + 1 contributed ∆2 loss to Zj,← while now it
contributes ∆4 loss to Zj+1,←. Otherwise, it contributed ∆1 loss to Zj,→ while now it contributes
∆3 loss to Zj+1,←. The new node j +2 contributes ∆5 loss to Zj+1,← independent of what happens
to the other variables. Summarizing:

Zj+1,← = Zj,← · e−η(∆4−∆2+∆5) + Zj,→ · e−η(∆3−∆1+∆5).

It is easy to see that these updates can be performed efficiently using an appropriate dynamic
programming table. Once we have computed the total sum Z = Zn,← + Zn,→, sampling a structure
according to the sampler’s distribution can simply be done by suitably unrolling the DP table.

Figure 1: Given a rooted polytree skeleton, for each node v, and for each fixed orientation of edges incident to
v, we maintain the total weight of all consistent orientations of the subtree rooted at v. Above, the orientations
of edges incident to B and C are fixed. This is needed when computing the weight for the subtree rooted at
A, since in the first two panels, the in-degree of C change from 1 to 2, while in the second two panels, C’s
in-degree does not change.
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The argument described above extends to learning bounded indegree polytrees and bounded indegree
chordal graphs. For polytrees, the idea is illustrated in Figure 1. For chordal graphs, the algorithm
first builds a clique tree decomposition and uses this structure for dynamic programming. The obvious
issue with chordal graphs is that some orientations may lead to cycles, unlike the case for polytrees.
However, chordal graphs enjoy certain nice property (see Lemma C.6) that allows us to independently
perform weighted counting/sampling of acyclic orientations in each subtree of the clique tree.
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Agnostic Learning via Maximum Likelihood Estimation An arguably more natural approach to
PAC learning in KL divergence is to maximize the empirical log-likelihood (MLE) over a suitably-
discretized class of distributions (e.g., see [41], Theorem 17). The Chow-Liu algorithm for tree
distributions can also be viewed through this lens. Note however that, despite a long history of study,
Chow-Liu is not known to attain the sample complexity bound in theorem 2.4 for learning trees in
the realizable setting.

For the problem of learning polytrees and chordal-structured distributions, we can in fact adapt our
algorithm to maximize likelihood and thus, get a sample complexity bound which is comparable to
our Theorem B.12 (up to log factors) for proper learning in KL. But it does not yield the near-optimal
bounds (for constant failure probability) that we get for improper learning (Theorem B.11) in the
realizable case. The challenge of implementing the Maximum Likelihood (ML) algorithm over an
exponential-sized class of distributions is efficiency — a naive approach would take exponential time.
The dynamic programming algorithms that we develop for efficient weighted counting and sampling
of DAG structures (which we use to implement EWA / RWM) can also be used to implement MLE
efficiently for polytree/chordal-structured distributions given the skeleton. We give an outline of this
in Appendix G.

4 Related Works

[51] gave the first sample complexity bounds for agnostic learning of a Bayes net with known
structure from samples in KL divergence. This work also gave an efficient algorithm for special cases
such as trees using the classical Chow-Liu algorithm. Subsequently, [28] gave an efficient algorithm
for learning an unknown Bayes net (discrete and Gaussian) on a fixed structure. This result was
improved to a sample-optimal learning of fixed-structure Bayes nets in [10, 12].

The general problem of distribution learning of Bayes networks with unknown DAG structure has
remained elusive so far. It has not been shown to be NP-hard, although some related problems and
specific approaches are NP-hard [21, 23, 26, 55]. Many of the early approaches required faithfulness,
a condition which permits learning of the Markov equivalence class, e.g. [73, 22, 47]. Finite sample
complexity of such algorithms has also been studied, e.g. [45]. Specifically for polytrees, [68, 49]
studied recovery of the DAG for polytrees under the infinite sample regime and in the realizable
setting, while [24] gave finite sample complexity for this problem. [48] studied the more general
problem of learning Bayes nets, and their sufficient conditions simplified in the setting of polytrees.

A notable prior work in the context of the current paper is the work by [1], which also explores the
improper learning of Bayesian networks with polynomial sample and time complexities. However,
our research diverges from theirs in three critical ways: firstly, their study does not offer any proper
learning algorithms; secondly, it lacks agnostic learning guarantees; and thirdly, their approach
does not achieve optimal sample complexity in the realizable setting. While they do demonstrate a
“graceful degradation” as inputs deviate from the hypothesis class, this does not equate to a definitive
agnostic learning guarantee as provided in our work. On a positive note, their research does attain
polynomial sample and time complexities for learning any Bayesian network with a bounded total
degree in the realizable setting. It is worth noting that our results for distributions with chordal
skeleton are applicable even when the total degree is unbounded, provided that the indegree remains
bounded, a scenario where the findings of Abbeel, Koller, and Ng would not be applicable.

Online Learning of Structured Distributions The approach of using the online learning frame-
work for distribution learning has been considered in the literature [18, 83, 77]. These works use
EWA algorithm and output the mixture distribution. However, they primarily focus on minimizing
the number of samples, and are not computationally efficient in general. Since we are interested in
computationally efficient learning of high-dimensional distributions, their approaches do not directly
translate to our context. The closest we get is the Sparsitron algorithm by Klivans and Meka ([57])
which learns an unknown Ising model from samples. However, Sparsitron is typical to Ising models
where the conditional distribution at any component follows a logistic regression model which the
Sparsitron algorithm learns.

Although not for distribution learning, a similar use of the multiplicative weights update method
appears in Freund and Schapire’s well-known AdaBoost algorithm ([43]) where the algorithm

3This work studies a more general notion of factor graphs.

8



Structure Efficient? Agnostic? Additional assumptions

[12] Tree Yes Yes None

[24] Polytree Yes No Known skeleton

[1] Bounded total degree 3 Yes No None

[14] Bounded in-degree No No None

Our results
Tree Yes Yes None
Chordal skeleton,
bounded in-degree Yes Yes Known skeleton

Table 2: Comparison with existing works.

implicitly creates a sequence of probability measures. Later work on the hard-core lemma, such as
[7], explicitly focus on efficient sampling from the iterates of multiplicative weights update.

Robust Learning In the field of distribution learning, it is commonly assumed that all samples are
consistently coming from an unknown distribution. However, real-world conditions often challenge
this assumption, as samples may become corrupted—either removed or substituted by samples from an
alternate distribution. Under such circumstances, the theoretical assurances of traditional algorithms
may no longer apply. This discrepancy has spurred interest in developing robust learning algorithms
capable of tolerating sample corruption. Recent years have seen notable advancements in this area,
including the development of algorithms for robustly learning Bernoulli product distributions [37],
and enhancing the robustness of learning Bayes nets [20]. See [62, 34, 35, 6, 52, 59, 35, 36, 19, 15]
and the references therein for a sample of current works in this area. These works primarily focus on
guarantees with respect to the total variation distance.

Of particular relevance is the TV-contamination model. Here, if the distribution to be learnt is P , one
gets samples from a ‘contaminated’ distribution Q with dTV(P,Q) ≤ η. Note that this is a stronger
model than Huber contamination ([54]), where the noise is restricted to be additive, meaning that an
adversary adds a limited number of noisy points to a set of uncontaminated samples from P .

One can interpret our results using a KL-contamination model. If the distribution to be learnt is an
unknown P promised to belong to a class C, the contaminated distribution Q is some distribution
satisfying DKL(Q∥P ) ≤ η. The noise is again non-additive, but the model is weaker than TV-
contamination. Any (η,A) approximation for Q with respect to C yields a distribution P̂ such that
DKL(Q∥P̂ ) ≤ (A+ 1)η. Therefore, we get that for Hellinger distance:

H(P, P̂ ) ≤ H(P,Q) + H(P̂ , Q) ≤ √η +
√
(A+ 1)η ≤

√
(2A+ 3)η.

Similarly, one can also bound dTV(P, P̂ ) = O(
√
η) for constant A. To the best of our knowledge, the

KL-contamination model has not been explicitly considered before, but if one were to directly apply
the results of [20] with the assumption that DKL(Q∥P ) ≤ η, one would obtain a distribution P̂ such
that dTV(P, P̂ ) = O(

√
η log 1/η), worse than ours by a

√
log 1/η factor which seems unavoidable

using their approach [38]. Moreover, their results require that C be a class of balanced Bayes nets,
a technical condition which is not needed for our analysis 4. However, we would like to note that
DKL(Q||P ) can be large as compared to dTV(Q,P ), so this holds when DKL(Q||P ) is small.

5 Discussion

Conclusion In this work, we established a novel connection between distribution learning and
graphical structure sampling algorithms via the framework of online learning. Leveraging this connec-
tion, we designed efficient algorithms for agnostically learning bounded indegree chordal-structured
distributions, with polynomial sample complexity. These algorithms only require knowledge of the

4A Bayes net is said to be c-balanced for some c > 0 if all conditional probability table values ∈ [c, 1− c].
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distribution’s skeleton, without needing information on the edge directions. Since polytree-structured
distributions are a subset of chordal-structured distributions, our result also gives new results on the
well-studied problem of learning polytree-structured distributions. Interestingly, our method also
leads to a new algorithm for learning tree-structured distributions, which is significantly different
from the extremely well studied Chow-Liu algorithm. Finally, we also give an improper learning
algorithm that, with probability 2/3, gives an (ε, 3)-approximation with respect to tree-structured
distributions, which has a quadratic sample complexity advantage over Chow-Liu.

Organization of the supplementary material Due to shortage of space, the rest of the paper is
presented in the supplementary material. It is organized as follows. In Appendix A, we present
the preliminaries required for this work. Appendix B establishes the connection between regret in
online learning to KL divergence in the scenario of agnostic learning of distributions. It also presents
several necessary techniques from online learning along with the EWA and RWM algorithms that
will be used later in our work. In Appendix C, we present our results on learning chordal-structured
distributions. In Appendix D, we discuss our results on learning tree-structured distributions and
present our alternative proper learning algorithm. In Appendix E, we give the lower bound of learning
tree-structured distributions. In Appendix F, we design efficient learning algorithms for Bayes nets
over graphs with bounded vertex cover. Finally, in Appendix G, we outline how our algorithms can
be adapted to efficiently compute maximum likelihood.

6 Open Problems

Our work opens up several interesting research avenues.

• An intriguing question is whether we can extend our result for chordal graphs of bounded
indegree to general graphs of bounded treewidth and bounded indegree. Interestingly, [74]
showed that counting the number of acyclic orientations reduces to the evaluation of the
Tutte polynomial at the point (2,0), and the Tutte polynomial can be evaluated efficiently for
bounded treewidth graphs [65, 5]. This is relevant because the weights that EWA/RWM
maintain are in some sense a weighted count of the number of acyclic orientations of the
skeleton. However, we did not find a deletion-contraction recurrence for these weights, and
so their connection to the Tutte polynomial is unclear.

• Another important follow-up direction for learning Bayes nets would be to search over
Markov equivalence classes rather than DAG’s. A Markov equivalence class corresponds to
the set of DAGs that represent the same class of Bayes nets, and they can be represented as
partially directed graphs (essential graphs) that satisfy some special graphical properties.
It would be interesting to explore if the structure of essential graphs can be used to speed
up weighted counting and sampling; indeed, a very recent work by [71] gives a polynomial
time algorithm for uniformly sampling an essential graph that is consistent with a given
skeleton.

• What is the role of approximate sampling in the context of distribution learning? So far, in
this work, we have only used exact sampling algorithms for spanning arborescences and
acyclic orientations. Can Markov chain techniques be brought to good use here? Our work
further motivates settling the complexity status of approximately counting the number of
acyclic orientations of an undirected graph; this question is a long-standing open problem in
the counting/sampling literature.

• Finally, while we have restricted ourselves to learning Bayes nets here, our framework is
quite general and also applies to learning other classes of distributions, such as Ising models
and factor models. We leave these questions for future work.
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are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: It is a theoretical paper, and we give the problem statements and theorems
precisely including all assumptions.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: All these things are included, with complete proofs in the supplementary
appendices.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The paper has no experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: The paper has no experimental results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper has no experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper has no experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper has no experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the guidelines. We use no human subjects, no
datasets, and the paper is entirely theoretical in nature and only considers abstract problems
(no societal impact).

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The work is entirely theoretical on an abstract problem, and there is no societal
impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

19

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not propose datasets or models, only algorithms.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets, except for other papers which have
been properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets, other than the algorithms documented
in the paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not use crowdsourcing/human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper is entirely theoretical and does not require such approvals.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We have not used LLMs at all in obtaining the algorithms/theorems/other
results in the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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