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ABSTRACT

Large language models have demonstrated remarkable potential on complex multi-
step reasoning tasks, largely enabled by substantial post-training via reinforcement
learning with process reward verification on reasoning datasets. Recent studies have
shown that it is possible to alleviate the massive data reliance and computational
costs by selecting high-value subsets of data while maintaining reasoning capability.
However, existing data selection methods typically rely only on outcome-level
signals derived from final answers to measure data quality, overlooking step-level
signals that are intrinsic to multi-step reasoning, which leads to suboptimal identi-
fication of valuable reasoning data. In this paper, we propose a novel Step-level
Uncertainty-Aware Reasoning Data Selection approach (Star-DS) that incorpo-
rates both step-level and outcome-level signals for identifying high-value reasoning
data in reinforcement learning for LLM multi-step reasoning. Specifically, we
introduce step-wise self-evaluation uncertainty of each reasoning step, as well as
reward variance of the final answer, to quantify the value of each sample for RL
training. Experiments with diverse reasoning models across multiple benchmarks
demonstrate that our approach consistently identifies high-value data, preserves
multi-step reasoning performance after RL training, and significantly reduces both
data requirements and computational costs. 1

1 INTRODUCTION

Recent advances in large language models (LLMs) have shown that reinforcement learning (RL) is
a highly effective post-training paradigm for enhancing complex reasoning abilities Rafailov et al.
(2023; 2024); Shao et al. (2024). A key factor underlying these gains is the ability of LLMs to generate
step-by-step solutions in a chain-of-thought (CoT) format (Wei et al., 2022), which allows them to
perform multi-step inference and tackle a wide range of complex tasks. Models such as o1 (Jaech et al.,
2024), DeepSeek-R1 (Guo et al., 2025), and Kimi1.5 (Team et al., 2025) empirically demonstrate
that RL fine-tuning on CoT outputs can elicit sophisticated reasoning behaviors, including reflection,
self-verification, and extended reasoning chains.

Prior studies (Gao et al., 2025; Li et al., 2025b; Wang et al., 2025) have emphasized that, during
the post-training stage of reasoning LLMs, the quality of training data often plays a more crucial
role than its sheer quantity. In certain scenarios, a carefully curated small subset of high-quality data
can achieve comparable performance to training on the entire dataset (Wang et al., 2025), consistent
with the principles of few-shot learning. Motivated by this observation, several methods have been
proposed to improve data selection for model optimization and efficiency. For instance, Learning
Impact Measurement (LIM) (Li et al., 2025b) identifies samples whose learning patterns complement
the model’s overall performance trajectory, demonstrating their potential value for training. Gradient
alignment-based approaches (Li et al., 2025a) estimate the influence of individual data points on the
training loss, offering a theoretically grounded framework for data selection. GRESO (Zheng et al.,
2025) predicts and skips zero-variance prompts using reward training dynamics before the rollout
stage, further reducing computational overhead during RL training. Other strategies leverage either

1Code is available at https://anonymous.4open.science/r/Star-DS-5961
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an external expert model or the learning signals of the target model to rank and select high-value
samples.

While these methods offer valuable insights and are effective in certain RL scenarios, they may not
fully capture the fine-grained dynamics of reasoning, which can lead to suboptimal performance. This
is largely because these methods solely focus on rollout outcomes. For example, LIM and GRESO
rely on aggregate measures such as final answer correctness, while gradient-alignment techniques
estimate the influence of data points through the loss function. None of these methods is specifically
reasoning-oriented, as they often overlook the rich information contained in intermediate reasoning
steps, which are intrinsic to multi-step inference and crucial for reasoning tasks. These gaps highlight
the need for a data selection methodology explicitly designed for reasoning-oriented LLMs, capable
of improving both efficiency and performance in multi-step inference contexts.

Addressing the aforementioned gaps poses a key challenge: how to leverage step-level learning
signals within rollouts for data selection while effectively combining them with outcome-level signals.
To tackle this, we draw inspiration from uncertainty estimation techniques of LLMs (Zhang et al.,
2025; Vashurin et al., 2024). The central intuition is that the uncertainty or inconsistency of a model
on a given input serves as a natural indicator of the sample’s potential value for training (Zhao
et al., 2025; Fu et al., 2025). Samples where the model exhibits high uncertainty are those in which
reasoning is unstable, diverse, or conflicting across different rollouts, and thus provide richer learning
signals. Existing methods that consider outcome-level information, such as the divergence among
final answers or deviations of performance trajectories from their mean, can be interpreted as a form
of uncertainty. By extending this concept to step-level uncertainty (Ye et al., 2025; Kadavath et al.,
2022), we can evaluate the reliability of intermediate reasoning steps, capturing fine-grained dynamics
that outcome-level signals alone cannot reveal. Crucially, combining step-level and outcome-level
uncertainty yields a more comprehensive measure of a sample’s value, enabling more effective data
selection that is both reasoning-oriented and uncertainty-informed.

In this paper, we propose the first data selection approach specifically tailored for multi-step reasoning
in LLMs, namely Step-level Uncertainty-aware Reasoning Data Selection (Star-DS). Our method
is designed to leverage both step-level and outcome-level signals to identify high-value samples
for reinforcement learning in multi-step reasoning tasks. Concretely, the step-level uncertainty is
estimated via a self-evaluation mechanism, in which the model itself assesses the likelihood of
correctness for each intermediate reasoning step. The outcome-level uncertainty is quantified using
the standard deviation of rewards across different rollouts, capturing the variability of final answers.
By aggregating these two complementary signals, our method provides a unified, uncertainty-aware
metric for reasoning data selection, allowing the model to prioritize samples that are both informative
and learnable for training. Our experiments demonstrate the effectiveness of the proposed method in
improving both reasoning performance and training efficiency.

Contributions. Our main contributions are as follows:

• We introduce the first data selection method in RL designed explicitly for LLM multi-step reasoning,
overcoming the shortcomings of previous approaches that rely solely on rollout outcomes and
neglect the informative process signals from intermediate reasoning steps.

• We propose a Step-level Uncertainty-aware Reasoning Data Selection method that integrates
step-level self-evaluation uncertainty with outcome-level reward variability to effectively identify
high-value samples for reinforcement learning on multi-step reasoning tasks.

• Extensive experiments across diverse reasoning benchmarks, datasets, and models demonstrate that
our approach improves both reasoning performance and training efficiency, and additional analyses
reveal the complementary roles of step-level and outcome-level signals in data selection.

2 RELATED WORK

Data Selection for LLM Reinforcement Learning. Recent works have highlighted that the efficiency
of reinforcement learning for reasoning LLMs critically depends on the quality of training data (Gao
et al., 2025; Wang et al., 2025; Li et al., 2025b; Muennighoff et al., 2025). To this end, a wide range
of data selection methods (Muldrew et al., 2024; Liu et al., 2024b; Das et al., 2024; Fatemi et al.,
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2025) have been proposed to identify high-value training subsets, aiming to enhance the reasoning
ability of LLMs while reducing the cost of large-scale data collection and training.

Learning Impact Measurement (LIM) (Li et al., 2025b) evaluates the utility of samples by estimating
their contribution to the model’s learning trajectory, aiming to prioritize examples that provide
complementary signals during fine-tuning. LearnAlign (Li et al., 2025a) measures data influence
through gradient alignment, providing a theoretically motivated approach to identifying influential
samples. GRESO (Zheng et al., 2025) employs a probabilistic filtering strategy to exclude samples
with historically zero variance, thereby reducing redundancy in training data. Other methods leverage
either external models (Lu et al., 2023; Chen et al., 2023; Du et al., 2023; Liu et al., 2023) or internal
proxy signals (Li et al., 2023a; Wu et al., 2023; Xia et al., 2024a; Yin et al., 2024; Liu et al., 2024a;
Li et al., 2023b; Ivison et al., 2022) to rank training data, while they were originally designed for
instruction fine-tuning. More recently, DEPO (Tang et al., 2025) introduces a unified data-efficient
policy optimization pipeline that combines offline high-quality subset selection and online rollout
filtering. By prioritizing diversity, influence, and difficulty, DEPO reduces data and computation
requirements while maintaining strong reasoning performance.

Despite these advances, existing methods are typically outcome-oriented, relying on aggregate
measures such as final answer correctness (e.g., LIM, GRESO) or loss reduction (e.g., LearnAlign).
While such signals are useful, they overlook the process-oriented nature of multi-step reasoning,
where the quality of intermediate steps can provide valuable insight into reasoning performance. As a
result, current approaches may fail to identify the most informative reasoning samples. Our work
addresses this gap by introducing a step-level uncertainty-aware selection framework that considers
both step-level and outcome-level signals, providing a principled mechanism for identifying the
reasoning samples most beneficial for RL post-training.

Uncertainty Estimation of LLMs. Uncertainty estimation in LLMs is gaining increasing attention as
a mechanism for improving model calibration and mitigating hallucinations in text generation (Zhang
et al., 2025; Vashurin et al., 2024). It has been adopted by popular scenarios in reasoning LLMs,
including inference-time scaling (Xie et al., 2023), test-time adaptation (Zuo et al., 2025), and even
post-training optimization Zhao et al. (2025) of reasoning models. Broadly, uncertainty estimation
techniques can be grouped into two categories. The first are logits-based methods, which estimate
uncertainty directly from token-level output distributions, such as predictive entropy or KL divergence
from a uniform distribution (Fu et al., 2025; Ren et al., 2022; Duan et al., 2023; Darrin et al., 2022).
The second are verbalized uncertainty methods, where models are prompted to explicitly articulate
their confidence in natural language (Lin et al., 2022; Kadavath et al., 2022; Tian et al., 2023; Kapoor
et al., 2024). A prominent representative of the latter is LLM self-evaluation (Kadavath et al., 2022),
which leverages the model’s own judgment as a more calibrated criterion to verify its predictions and
guide reasoning trajectories.

Recent studies have begun extending both token-level and instance-level uncertainty to the finer
granularity of step-level uncertainty signals, which are particularly suited for multi-step reasoning.
For example, Xie et al. (2023) applied self-evaluation outcomes as criteria to calibrate stepwise
generation, thereby addressing the challenges associated with complex or lengthy reasoning chains.
Ye et al. (2025) introduced uncertainty-aware step-wise verification frameworks that explicitly model
the reliability of intermediate steps to improve robustness in reasoning-heavy tasks.

Our work builds on this line of research by being the first to incorporate step-level uncertainty into
data selection for reinforcement learning. Unlike prior outcome-oriented strategies, our method
leverages both outcome-level and step-level uncertainties as a principled indicator of sample value
during training, which in turn provides a novel connection between uncertainty estimation and
data-efficient post-training of reasoning LLMs.

3 METHODOLOGY

3.1 UNCERTAINTY-BASED DATA SELECTION FRAMEWORK

As illustrated in Figure 1, our Star-DS framework integrates two complementary signals of reasoning
uncertainty. Given an input question, the model first generates multiple reasoning rollouts, each
decomposed into step-level units where the model self-evaluates its intermediate reasoning to produce
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Q: A box contains 24 apples. 
Anna takes away one third of 
them. Then Ben takes half of the 
remaining apples. How many 
apples are left in the box?

Step 1. Anna takes away 
one third of the apples: 
\frac{1}{3} \times 24 = 8. 
So Anna takes 8 apples.

Step 2. Subtract Anna’s 
apples from the total:
24 - 8 = 16. Now 16 
apples remain.

Step 3. Ben takes half of 
the remaining apples: 
\frac{1}{2} \times 16 = 6. 
So Ben takes 6 apples.

Step 4. Subtract Ben’s 
apples from the remaining 
total:16 - 6 = 10. The 
answer is 10. 0.0
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Reasoning LLM
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Validation

…
Step 1. Determine how 
many apples Anna takes: 
\frac{1}{3} \times 24 = 8. 
So Anna takes 8 apples.

Step 2. Calculate how 
many apples remain 
after Anna takes hers:
24 - 8 = 16. Now 16 
apples remain.

Step 3. Determine how 
many apples Ben takes:
\frac{1}{2} \times 16 = 8.
So Ben takes 8 apples.

Step 4. Calculate how 
many apples are left in the 
box: 16 - 8 = 8. The 
answer is 8.

Figure 1: Overview of the proposed Star-DS framework. Given an input problem, the model generates
multiple reasoning rollouts. We measure uncertainty from two complementary perspectives: step-wise
uncertainty, which captures instability within intermediate reasoning steps, and reward variability,
which quantifies divergence across final outcomes. Samples with higher combined uncertainty are
prioritized for training, ensuring that the model focuses on resolving fragile reasoning paths and
refining its decision-making process.

step-wise uncertainty. In parallel, we compute reward variability by measuring outcome divergence
across different rollouts. These two complementary signals are then integrated into a composite
uncertainty score, based on which the most uncertain samples are prioritized for training. This
design ensures that the model allocates learning capacity to instances where reasoning is fragile or
inconsistent, thereby enhancing both robustness and efficiency in multi-step reasoning tasks.

3.2 SELF-EVALUATED STEP-WISE UNCERTAINTY

To capture fine-grained reasoning uncertainty, we introduce a step-wise self-evaluation mechanism.
Given an input sample x from a dataset, the model generates multiple outputs, each referred to
as a rollout r. Each rollout corresponds to a complete chain-of-thought (CoT), consisting of a
sequence of intermediate reasoning steps. The generation of multi-step CoT is guided using a
carefully designed prompt template (as shown in Appendix A), which encourages the model to
produce detailed reasoning paths (Wang et al., 2022). Formally, the set of rollouts for a given input is
denoted as:

R(x) = {r(1), r(2), . . . , r(k)}, r(i) ∼ πθ(· | x), (1)

where πθ represents the policy induced by the LLM with parameters θ. Consider a rollout,

r = (s1, s2, . . . , sT ), (2)

where each st denotes the tth reasoning step. Inspired by recent progress in uncertainty quantifica-
tion (Ye et al., 2025; Zhang et al., 2025), we adopt a self-evaluation scenario: during each reasoning
step, the model is prompted to evaluate its own reasoning by producing a binary judgment, either
“correct” if the step is deemed valid or “incorrect” if it is potentially flawed. The evaluation context at
step t is defined as:

x≤t = (Q, s≤t, ICoT), (3)

where Q represents the original question, s≤t denotes the partial reasoning path up to step t, and ICoT
is the chain-of-thought prompt provided for self-evaluation. Following (Kadavath et al., 2022), we
design ICoT in the form of binary-choice questioning (see Appendix A) to better calibrate the model
predictions. This self-assessment serves as a proxy for the model’s internal uncertainty, allowing us
to estimate where the reasoning process may be unstable or prone to error without relying on external
verifiers or reward models.

The reasoning model then outputs a token-level probability distribution over the two possible decisions.
We define the uncertainty of step st as the probability assigned to the “incorrect” token:

U(st) = πθ(“incorrect” | x≤t). (4)

4
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The step-wise uncertainties are subsequently aggregated to form the rollout-level uncertainty:

U(r) =
1

T

T∑
t=1

U(st). (5)

Finally, the sample-level uncertainty is defined as the expectation over the rollout set:

U(x) = Er(i)∼R(x)

[
U(r(i))

]
. (6)

This formulation explicitly measures the uncertainty of the model across multiple reasoning steps. In
contrast to outcome-only uncertainty measurements, it captures instabilities at intermediate steps and
highlights samples that challenge the model’s reasoning process across multiple reasoning stages.

3.3 REWARD VARIABILITY

While step-wise evaluation captures fine-grained uncertainties, it is also important to assess variability
at the level of final outcomes (Razin et al., 2025; Gao et al., 2025). To this end, we introduce reward
variability, which quantifies the degree of divergence in rollout-level results.

For each input prompt x, we generate k rollouts and define the reward of the i-th rollout, r(i)reward, as an
indicator of final correctness. Following the setting of popular reinforcement learning with verifiable
rewards (RLVR), r(i)reward = 1 if the predicted answer matches the ground truth, and r

(i)
reward = 0

otherwise (Gao et al., 2024; Lambert et al., 2024). The reward variability is then computed as the
standard deviation of all the rollout rewards:

σreward(x) =

√√√√1

k

k∑
i=1

(
r
(i)
reward − r̄reward

)2

, (7)

where r̄reward = 1
k

∑k
i=1 r

(i)
reward denotes the mean reward across all rollouts.

High reward variance indicates that the model’s policy has not yet converged for the given sample,
as different reasoning paths yield inconsistent outcomes—some trajectories succeed while others
fail (Foster et al., 2025; Rutherford et al., 2024). Samples exhibiting such variability are particularly
informative for training, as they highlight regions where the model remains uncertain about its overall
strategy and can benefit from additional supervision or learning signals.

3.4 COMBINED UNCERTAINTY SCORING AND DATA SELECTION

To leverage both step-wise reasoning uncertainty and outcome-level variability, we combine the two
uncertainty metrics into a single composite score. Specifically, for a given sample x, we compute the
step-wise uncertainty U(x) and the reward standard deviation σreward(x) as described in the previous
subsections. Since the two metrics may be measured on different scales, we scale them separately to
the range [0, 1]. Denote the normalized values as Ũ(x) and σ̃reward(x), respectively.

The final uncertainty score is then obtained by summing the normalized components:

Ufinal(x) = Ũ(x) + σ̃reward(x). (8)

This formulation ensures that both intermediate reasoning instability and final outcome divergence
contribute in a balanced manner to the overall uncertainty score, capturing complementary aspects of
model uncertainty.

Once the composite scores are computed for all samples in the dataset, we perform top-k selection to
identify the most informative examples. Formally, given a dataset D and a selection budget k, the
samples are selected according to

Dselected = TopK ({Ufinal(x) | x ∈ D}, k) , (9)

where TopK(·, k) returns the k samples with the highest uncertainty scores. These selected samples
are expected to provide the strongest learning signals, as they represent instances where the model
exhibits either unstable reasoning, divergent outcomes, or both. Consequently, training on Dselected
can improve model robustness and efficiency in reasoning tasks.

5
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Base Models & Data Selection. We adopt Qwen2.5-Math-1.5B (Yang et al., 2024; 2025) as the
primary base reasoning model for reasoning data selection. We additionally verify the effectiveness
of DeepSeek-R1-Distill-Qwen-1.5B (Guo et al., 2025). We perform data selection on a candidate
pool that consists of two datasets: MATH (Hendrycks et al., 2021) training set with 7,500 instances,
and GSM8K (Cobbe et al., 2021) training set with 7473 instances. For data selection, we generate 8
reasoning rollouts with a temperature of 0.6 for each candidate instance, and compute both stepwise
uncertainty and reward variability. The scores are then aggregated to identify the top-ranked samples,
which are used for downstream fine-tuning. We provide detailed examples of selected data in
Appendix C.

Training Setup. The proposed framework is conducted with the GRPO (Shao et al., 2024) algorithm
following the verl pipeline (Sheng et al., 2025). For fine-tuning on the selected subsets, we maintain
consistent hyperparameter settings across all experiments: batch size is 64, learning rate is 1× 10−6,
the maximum prompt length is 1024 tokens, and the maximum response length is 3072 tokens. KL
divergence regularization is applied with a coefficient of 0.001, and the clipping parameter is set to
0.2. All models are trained for 200 epochs to ensure fair comparison.

Evaluation Protocol. To verify the effectiveness of the selected reasoning data, we fine-tune
the base model on the selected subsets and evaluate under the official Qwen2.5-Math evaluation
pipeline (Yang et al., 2024) across six benchmark datasets: MATH500 (Hendrycks et al., 2021;
Lightman et al., 2023), AIME 2024 (AIM), AMC 2023 (AMC), Minerva Math (Lewkowycz et al.,
2022), OlympiadBench (He et al., 2024), and AIME 2025 (AIM). For AIME 2024, AIME 2025, and
AMC 2023, which consist of only 30 or 40 questions each, we repeat the test set 8 times to ensure
evaluation stability, using a rollout temperature of 0.6 and reporting the average pass@1 (avg@8)
performance. For the remaining three benchmarks, we set the temperature to 0 and evaluate using the
standard protocol. Further experimental details are reported in Appendix B.

Baselines. We compare Star-DS against the baseline strategies below: (1) Random Sampling, which
selects samples uniformly at random and serves as a control group; (2) Learning Impact Measure-
ment (LIM) (Li et al., 2025b), which prioritizes samples whose learning patterns complement the
model’s overall performance trajectory; (3) PPL (Laurençon et al., 2022), which selects samples
with highest perplexity under the pretrained model; (4) Instruction-Following Difficulty (IFD) (Li
et al., 2023a), which measures the challenge of each instructional sample for the model; (5) Token
Length (Xia et al., 2024b), which ranks samples based on their token length. These baselines cover
both simple heuristics and more principled, model-aware approaches for data selection.

4.2 MAIN RESULTS

Table 1 presents the comparison between Star-DS and baselines. Overall, Star-DS consistently
outperforms all baselines across nearly all benchmarks. On AIME 2024, AMC 2023, and MATH500,
it achieves pass@1 scores of 16.2, 54.4, and 73.4, outperforming the best baseline by margins of 0.4,
1.9, and 0.8 points, respectively. These performance gains indicate that selecting samples based on
step-level uncertainty and reward variability effectively enhances multi-step reasoning capabilities.

Compared to random and perplexity-based selection, Star-DS shows clear advantages, suggesting
that simple heuristics are insufficient to capture the intricacies of reasoning difficulty. While LIM and
IFD incorporate learning dynamics or instruction-following difficulty, these signals might be less
sensitive to the subtle variations that influence multi-step reasoning performance, thus lagging behind
Star-DS. Notably, Star-DS even rivals or surpasses training on the full MATH dataset (e.g., 35.3 vs.
32.6 on OlympiadBench), demonstrating that careful subset selection not only improves efficiency
but also enhances reasoning robustness.

Computational Efficiency. From an efficiency perspective, training the selected 1,000-sample subset
for a single epoch takes roughly 90 seconds, whereas training the full 7,500-sample dataset for one
epoch takes about 240 seconds (on the same hardware). Even when including the overhead for metric
evaluation, Star-DS remains efficient. Based on our experimental measurements, completing a full

6
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Table 1: Comparison of data selection methods on six mathematical reasoning benchmarks with
Qwen2.5-Math-1.5B. All models are trained with GRPO for 200 epochs on 1,000-example subsets
of MATH selected by each method unless noted. “NA” denotes the base model without additional
training, and “MATH-FULL” uses the full 7,500-example MATH set. Best results (pass@1) are
bolded, and second-best are underlined.

Selection Method AIME24 AIME25 AMC23 MATH500 Minerva Olympiad Average

NA 6.7 4.6 33.1 40.2 9.6 22.7 19.5
MATH-FULL 15.0 8.8 51.6 72.6 28.7 32.6 34.9

Random 15.4 7.5 52.2 72.2 27.5 35.0 35.0
LIM 15.4 8.3 52.5 71.4 26.5 34.1 34.7
PPL 15.8 7.1 50.6 71.8 27.6 34.1 34.5
IFD 15.8 7.1 52.2 72.6 28.3 34.8 35.1
Star-DS 16.2 8.8 54.4 73.4 28.3 35.3 36.1

Table 2: Ablation study (pass@1) on six benchmarks with Qwen2.5-Math-1.5B. All models are
trained with GRPO for 200 epochs on 1,000 selected samples of MATH. “Stepwise uncertainty” and
“Reward variability” correspond to using each signal individually, while “Star-DS” combines both.
Best results are bolded, and second-best are underlined.

Method AIME24 AIME25 AMC23 MATH500 Minerva Olympiad Average

Stepwise Uncertainty 14.6 7.9 54.5 73.0 27.4 34.5 35.3
Reward Variability 14.6 8.3 53.8 72.6 28.3 35.9 35.6
Star-DS 16.2 8.8 54.4 73.4 28.3 35.3 36.1

estimation of reward variability roughly corresponds to training the entire dataset for one epoch,
while calculating stepwise uncertainty is equivalent to approximately five epochs over the full dataset.
These measurements highlight that, despite the additional evaluation overhead, Star-DS significantly
reduces overall computation time compared to training on the full dataset.

4.3 ABLATION STUDY

To better understand the contribution of each component in Star-DS, we conduct an ablation study
with a fixed budget of 1,000 selected samples. Specifically, we compare three variants: using
only stepwise uncertainty, using only reward variability, and the proposed Star-DS method that
combines both signals. All models are trained under the same experimental settings as the main
experiment.

Table 2 presents the results. We observe that even when using a single scoring criterion, the selected
data already achieves competitive improvements, outperforming most baseline methods. Specifically,
reasoning data selected by stepwise uncertainty only achieves the best performance on AMC23 (54.5),
while that selected by reward variability only leads on OlympiadBench (35.9) and Minerva (28.3).
Data selected by Star-DS with both criteria consistently achieves the best or near-best results across
almost all benchmarks, including the highest scores on AIME24 (16.2), AIME25 (8.8), and MATH500
(73.4). These findings highlight the complementary nature of the two metrics and demonstrate that
combining them produces a more balanced and robust selection strategy.

4.4 EFFECT OF SELECTED DATA SIZE

We further investigate the impact of the number of selected training samples on method performance.
We fix the training epochs to 200 and vary the selection subset size among 100, 500, and 1,000
examples for each selection method. Table 3 reports the average pass@1 score across six mathematical
reasoning benchmarks.

Overall, our Star-DS consistently outperforms baseline selection strategies at all subset sizes, demon-
strating both efficiency and robustness. Specifically, even with only 100 selected examples, Star-DS
achieves an average pass@1 of 34.85, nearly doubling the base model (19.48) and already surpassing
some larger subsets of baseline methods. As the selected data size increases to 1,000 (13.4% of full
data), performance rises to 36.07, exceeding the result of training on the full MATH dataset (34.88),
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Table 4: Performance (pass@1) on six mathematical reasoning benchmarks using GSM8K as the
training pool. All models are trained with GRPO for 200 epochs on 1,000-example subsets selected by
each method unless noted. “NA” denotes the base model without additional training, and “GSM8K-
FULL” uses the entire GSM8K training set for comparison. Best results are bolded, and second-best
are underlined.

Selection Method AIME24 AIME25 AMC23 MATH500 Minerva Olympiad Average

NA 6.7 4.6 33.1 40.2 9.6 22.7 19.5
GSM8K-FULL 14.2 8.8 51.6 72.8 25.4 34.8 34.6

Random 14.6 8.8 51.5 71.4 25.7 34.2 34.4
Token Length 12.5 7.9 50.9 73.8 18.4 34.3 32.9
PPL 14.2 8.3 51.9 70.0 25.0 33.0 33.7
IFD 14.2 9.0 50.6 73.2 27.3 33.8 34.7
Star-DS 15.0 9.2 52.2 73.8 26.5 35.3 35.3

highlighting that carefully curated subsets can be more informative than the full training set. These
results quantitatively demonstrate that Star-DS not only selects high-quality training data efficiently
but also scales effectively, providing superior multi-step reasoning performance with fewer examples.
For completeness, the benchmark-wise results for different subset sizes are reported in Appendix B.4.

4.5 OTHER DATASET AND MODEL

Table 3: Average pass@1 performance across
six benchmarks under three data selection
sizes. All models are trained with GRPO for
200 epochs. “NA” denotes the base Qwen2.5-
Math-1.5B model without additional train-
ing, and “MATH-FULL” uses the full 7,500-
example MATH set. Best results are bolded.

Selection Size

Selection Method 100 500 1,000

Random 33.73 34.00 34.97
LIM 34.25 33.83 34.70
PPL 33.02 33.45 34.50
IFD 34.30 34.15 35.13
Star-DS 34.85 34.77 36.07

NA 19.48
MATH-FULL 34.88

To evaluate the generalizability of Star-DS, we con-
duct two additional experiments: (1) using GSM8K
as the data pool for dataset-level validation with
Qwen2.5-Math-1.5B, and (2) using DeepSeek-R1-
Distill-Qwen-1.5B as the base model for model-level
validation. In both cases, selected subsets are trained
for 200 epochs and evaluated on six mathematical
reasoning benchmarks, with fixed selection budgets
of 1,000 and 100 examples, respectively.

On GSM8K (see Table 4), Star-DS consistently
achieves the best or near-best performance across
benchmarks. Notably, carefully selected subsets can
match or surpass training on the full GSM8K dataset
(e.g., 35.3 vs. 34.8 on OlympiadBench), demonstrat-
ing effective identification of high-value reasoning
samples across domains.

For DeepSeek-R1-Distill-Qwen-1.5B (see Table 5),
Star-DS consistently achieves the highest perfor-
mance, except when compared to training on the full
dataset. In contrast, the lowest-ranked samples identified by Star-DS (Star-DS_Bottom) perform
significantly worse than random selection. It demonstrates that Star-DS effectively distinguishes
high-value from low-value reasoning samples, confirming that Star-DS is meaningful and reliable for
different base models.

5 ANALYSIS

Figure 2 illustrates the training dynamics on the MATH dataset for four different data selection strate-
gies: (1) training on the full dataset, (2) selecting samples based solely on stepwise uncertainty, (3)
selecting samples based solely on reward variability, and (4) selecting samples using the combination
of stepwise uncertainty and reward variability (the proposed Star-DS). The figure highlights both
reward progression and response length trends over 200 epochs.

As shown by the reward curve (left), the stepwise uncertainty strategy starts from a relatively low
average reward of 0.4 and gradually increases to 0.55 after 200 epochs, reflecting slower initial
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Table 5: Performance (pass@1) of DeepSeek-R1-Distill-Qwen-1.5B trained on 100-example subsets
selected by each method for 200 epochs. “NA” denotes the base model without additional training,
and “MATH-FULL” uses the entire training set. “Star-DS_Bottom” consists of samples ranked lowest
by Star-DS. Best results are bolded, and second-best are underlined.

Selection Method AIME24 AIME25 AMC23 MATH500 Minerva Olympiad Average

NA 12.1 10.8 45.3 63.6 15.8 24.6 28.7
MATH-FULL 20.0 20.0 65.3 81.0 28.7 41.0 42.7

Random 18.3 18.8 63.4 77.0 24.6 40.1 40.4
Star-DS_Bottom 17.4 18.3 61.6 75.8 23.8 39.0 39.3
Star-DS 18.3 19.2 64.4 79.0 25.3 40.6 41.1

Figure 2: Training dynamics of different selection strategies. Left: Reward curves of four training
settings on the MATH dataset: training on the full set, stepwise uncertainty only, reward variability
only, and their combination Star-DS (proposed). Right: Response length curves under the same
settings.

learning but steady improvement. In contrast, the reward variability strategy begins with a much
higher reward of 0.8 and continues to rise to approximately 0.9, indicating that the selected samples
are initially more informative for maximizing immediate outcomes. The combined method exhibits a
balanced trajectory, starting at 0.6 and reaching 0.75, closely mirroring the reward curve observed
when training on the full dataset. This demonstrates that integrating both uncertainty signals captures
complementary aspects of the training data, achieving stable and effective reward improvement.

On the response length curve (right), stepwise uncertainty produces the longest responses, beginning
around 1,100 tokens and decreasing to 850 tokens after 200 epochs. Reward variability generates
much shorter responses, decreasing from 650 to roughly 500 tokens. The combined strategy yields
an intermediate effect, with response lengths starting from 950 and descending to about 750 tokens,
exhibiting a similar downward trend but remaining consistently above the full dataset curve, which
drops from approximately 750 to 550 tokens. These observations suggest that Star-DS produces
outputs of moderate length, striking a balance between the verbosity of stepwise uncertainty and the
brevity of reward variability.

6 CONCLUSION

In this paper, we make the first attempt at reasoning data selection for LLM multi-step reasoning,
introducing a step-level uncertainty-aware framework Star-DS. Star-DS integrates both step-wise
self-evaluation uncertainty and reward variability to more effectively capture the intrinsic challenges
of multi-step reasoning. Experiments across diverse benchmarks and reasoning models demon-
strate that Star-DS consistently identifies high-value data, preserves reasoning performance, and
substantially reduces data and computational requirements. In future work, we intend to extend this
framework to online data selection, enabling dynamic identification of valuable training instances
during reinforcement learning.
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APPENDIX

In this appendix, Section A presents the full prompt templates used for rollout generation and
step-wise self-evaluation in our framework. Section B describes the detailed experimental setup,
including the GRPO algorithm, the training datasets, and the evaluation benchmarks. Extended
results across different data subset sizes are also reported. Section C provides concrete examples
of selected data based on our proposed scoring strategies, including stepwise uncertainty, reward
variability, and their combination. Section D clarifies the scope of LLM usage within our framework.
Finally, our code is provided in the supplementary material and can also be accessed via https:
//anonymous.4open.science/r/Star-DS-5961.

A PROMPT TEMPLATES FOR ROLLOUT GENERATION AND SELF-EVALUATION

For reproducibility, we provide the exact prompt templates used in our framework. The first template
is designed for rollout generation, where the model is instructed to produce detailed step-by-step
chain-of-thought solutions to mathematical problems. To better guide the model’s reasoning format,
this template includes several worked examples before the target question. The second template is
used for step-wise self-evaluation, where the model assesses the correctness of each reasoning step
in a binary fashion (“Correct” or “Incorrect”) given a specific math problem and the reasoning steps
generated so far. We reproduce the full text of both prompts below.

Prompt Template for Rollout Generation

Q: What is the value of 20
19

+ (20)1
9

?
A:

Step 1: Evaluate the first term 2

(
0(1

9)
)

- First, simplify the exponent’s base: 19 = 1. - Then, calculate
01 = 0. - Finally, compute 20 = 1.

Step 2: Evaluate the second term
((

20
)1)9

- Simplify inside the parentheses: 20 = 1. - Then,

(1)1 = 1. - Raise 1 to the power of 9: 19 = 1.

Step 3: Add the results of the two terms - 1 + 1 = 2. Thus, the value of the expression is 2 .

Q: Chandler wants to buy a 500 dollar mountain bike. For his birthday, his grandparents send him 50
dollars, his aunt sends him 35 dollars and his cousin gives him 15 dollars. He earns 16 dollars per week
for his paper route. He will use all of his birthday money and all of the money he earns from his paper
route. In how many weeks will he be able to buy the mountain bike?
A:
Step 1. **Identify the total amount of money Chandler needs:** Chandler wants to buy a mountain
bike that costs 500.

Step 2. **Calculate the total amount of birthday money Chandler received:** - From his grandparents:
50 - From his aunt: 35 - From his cousin: 15 - Total birthday money: 50 + 35 + 15 = 100

Step 3. **Set up an equation for the total money Chandler will have after x weeks of saving his
earnings from the paper route:** - He earns 16 per week from his paper route. - Total money after x
weeks: Birthday money + Earnings from paper route = 100 + 16x

Step 4. **Formulate the equation based on the cost of the mountain bike:** - The total money should
equal the cost of the bike: 100 + 16x = 500

Step 5. **Solve the equation for x:** - Subtract 100 from both sides of the equation: 16x = 500− 100
- Simplify the right side: 16x = 400 - Divide both sides by 16: x = 400

16
- Simplify the division: x = 25

Step 6. **Conclusion:** Chandler will be able to buy the mountain bike after saving for 25 weeks. The
answer is 25 .
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Q: Six rectangles each with a common base width of 2 have lengths of 1, 4, 9, 16, 25, and 36. What is
the sum of the areas of the six rectangles?
A:
Step 1. **Identify the dimensions of each rectangle**: Each rectangle has a common base width of 2.
The lengths of the rectangles are given as 1, 4, 9, 16, 25, and 36.

Step 2. **Calculate the area of each rectangle**: The area of a rectangle is calculated by multiplying
its length by its width. Therefore, the area of each rectangle can be calculated as follows: - For the
rectangle with length 1: Area = 2× 1 = 2 - For the rectangle with length 4: Area = 2× 4 = 8 - For the
rectangle with length 9: Area = 2×9 = 18 - For the rectangle with length 16: Area = 2×16 = 32 - For
the rectangle with length 25: Area = 2×25 = 50 - For the rectangle with length 36: Area = 2×36 = 72

Step 3. **Sum the areas of all rectangles**: Add the areas calculated in the previous step:

Total Area = 2 + 8 + 18 + 32 + 50 + 72

Step 4. **Simplify the sum**: Add the numbers to find the total area:

Total Area = 2 + 8 + 18 + 32 + 50 + 72 = 182

Therefore, the sum of the areas of the six rectangles is 182 .

=== End of Example ===
Instruction for the next problem:
When solving the next question, please explicitly follow the same format as the above example:
- MUST Use Step 1:, Step 2:, Step 3:, etc.
- MUST NOT generate new questions, examples, verification code, or explanations beyond this problem.
- MUST end your answer with the final value inside .

Q: {question}
A:

Prompt Template for Self-Evaluation

You are an expert math reasoning evaluator.
Your ONLY task is to evaluate the correctness of the CURRENT reasoning step,
given the previous reasoning steps.
Do NOT try to solve the original problem or guess future steps.

Here is a math problem:
{question}

Here is the reasoning so far:
{previous_steps}

Now, consider the next reasoning step:
{current_step}

Please carefully evaluate whether THIS step is correct given the reasoning so far.
Choose ONE of the following options as your FINAL answer:
# (A) Correct
# (B) Incorrect

IMPORTANT: Your final output must be a single character: either "A" or "B".
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B DETAILED EXPERIMENTAL SETUP AND ADDITIONAL RESULTS

In this section, we provide a comprehensive overview of our experimental setup and additional
experimental results. We first describe the Group Relative Policy Optimization (GRPO) algorithm
used for fine-tuning large language models (see Section B.1). Next, we detail the training datasets
employed, including MATH and GSM8K (see Section B.2). We then summarize the evaluation
benchmarks used to assess model performance, including MATH500, AIME 2024/2025, AMC 2023,
Minerva Math, and OlympiadBench (see Section B.3). Finally, we present the detailed results for
selected data subsets of varying sizes (see Section B.4).

B.1 DETAILS OF GROUP RELATIVE POLICY OPTIMIZATION (GRPO) ALGORITHM

We adopt the Group Relative Policy Optimization (GRPO) algorithm (Shao et al., 2024) for fine-tuning
reasoning models. GRPO is designed for multi-step reasoning tasks and emphasizes group-relative
performance: each rollout is evaluated relative to a group of rollouts, encouraging the model to favor
consistently effective reasoning chains.

Formally, let πθ denote the policy of the model with parameters θ. For a given input q and its
associated group of G rollouts {oi}Gi=1, the GRPO objective is defined as:

JGRPO(θ) = E(q,a)∼Pq,{oi}G
i=1∼πold

θ (o|q)

[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min
(
ri,tÂi,t, clip(ri,t, 1− ϵ, 1 + ϵ)Âi,t

)
− β KL[πθ ||πref]

]
,

(10)

where ri,t =
πθ(oi,t|q,oi,<t)

πold
θ (oi,t|q,oi,<t)

, and the relative advantage Âi,t is computed as

Âi,t =
ri − mean({rj}Gj=1)

std({rj}Gj=1)
. (11)

Here, πref represents the reference (pre-trained) model, while ϵ and β are hyperparameters controlling
the clipping range and KL-regularization weight, respectively. This formulation ensures that updates
favor rollouts performing better than the group average while maintaining proximity to the pre-trained
policy.

In our experiments, GRPO is applied to fine-tune selected subsets of reasoning data. Each candidate
input generates multiple rollouts, and the group-relative advantage guides the policy to prioritize
stable, high-quality reasoning chains, while the KL term stabilizes updates and prevents catastrophic
deviation from the pre-trained model.

B.2 DETAILS OF TRAINING DATASETS

MATH. The MATH dataset (Hendrycks et al., 2021) contains 12,500 challenging mathematics
problems sourced from high school-level competitions, designed to assess advanced problem-solving
skills in machine learning models. Problems span topics including Prealgebra, Algebra, Number
Theory, Counting and Probability, Geometry, Intermediate Algebra, and Precalculus. Each problem
is assigned a difficulty level from 1 to 5 and includes detailed step-by-step solutions. For training
purposes, we use the designated training split of 7,500 problems (60% of the full dataset).

GSM8K. GSM8K (Cobbe et al., 2021) is a collection of 8,500 grade school mathematics word
problems emphasizing multi-step reasoning. Each problem generally requires 2–8 reasoning steps
and can be solved with basic arithmetic operations (+, -, ×, ÷). Solutions are provided in natural
language, encouraging models to generate coherent reasoning chains in addition to the final answer.
The dataset is linguistically diverse and crafted to be solvable by a bright middle school student,
making it a useful complement to MATH for reasoning data selection.
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B.3 DETAILS OF EVALUATION DATASETS

MATH500. MATH500 (Hendrycks et al., 2021) is a curated subset of 500 problems drawn from the
MATH test split. This smaller benchmark is used to facilitate efficient and reproducible evaluation
while maintaining problem difficulty diversity.

AIME 2024/2025. These datasets consist of 30 problems each from the 2024 and 2025 American
Invitational Mathematics Examination (AIME) I and II. They provide a focused evaluation of multi-
step reasoning on challenging competition-level problems (AIM).

AMC 2023. The AMC 2023 benchmark contains 40 problems selected from the AMC 12A and
12B competitions for U.S. high school students. Topics include arithmetic, algebra, combinatorics,
geometry, number theory, and probability, with all problems solvable without calculus (AMC).

Minerva Math. Minerva Math (Lewkowycz et al., 2022) is a set of 272 undergraduate STEM
problems derived from MIT OpenCourseWare. The dataset emphasizes multi-step scientific reasoning
across courses such as solid-state chemistry, information theory, differential equations, and special
relativity. Problems are self-contained, and solutions are either numeric or symbolic.

OlympiadBench. OlympiadBench (He et al., 2024) is a large-scale benchmark for advanced
mathematical and physical reasoning. The subset used for evaluation comprises 675 text-only, open-
ended problems in English sourced from international math competitions, with expert-annotated
step-by-step solutions.

B.4 DETAILED RESULTS ACROSS DIFFERENT SUBSET SIZES

In this section, we present the detailed benchmark-wise performance corresponding to the averaged
outcomes reported in Section 4.4. Specifically, we provide results for three different subset sizes—100,
500, and 1,000 selected training samples—evaluated across six mathematical reasoning benchmarks.
For each setting, we include the results of multiple baseline selection strategies as well as Star-DS,
allowing a fine-grained comparison on individual benchmarks. These tables complement the main
results by illustrating how each data selection method performs under varying amounts of training
data. The complete results are provided in Tables 6–8.

Table 6: Results (pass@1) with 100 selected training samples.
Selection Method AIME24 AIME25 AMC23 MATH500 Minerva Olympiad

Full 15.0 8.8 51.6 72.6 28.7 32.6

Random 15.4 7.1 51.2 71.0 25.0 32.7
IFD 15.8 6.7 51.6 72.8 25.7 33.2
LIM 15.0 8.3 53.1 71.6 23.5 34.0
PPL 13.8 6.7 51.6 69.4 25.0 31.6
Star-DS 15.8 8.3 53.2 71.2 26.8 33.8

Table 7: Results (pass@1) with 500 selected training samples.
Selection Method AIME24 AIME25 AMC23 MATH500 Minerva Olympiad

Full 15.0 8.8 51.6 72.6 28.7 32.6

Random 14.8 7.9 50.9 70.4 26.1 33.9
IFD 14.5 7.1 51.6 72.4 26.1 33.2
LIM 13.8 5.8 52.8 70.6 27.9 32.1
PPL 12.9 7.5 49.7 70.6 26.8 33.2
Star-DS 14.6 7.1 52.5 72.0 27.6 34.8

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 8: Results (pass@1) with 1,000 selected training samples.
Selection Method AIME24 AIME25 AMC23 MATH500 Minerva Olympiad

Full 15.0 8.8 51.6 72.6 28.7 32.6

Random 15.4 7.5 52.2 72.2 27.5 35.0
IFD 15.8 7.1 52.2 72.6 28.3 34.8
LIM 15.4 8.3 52.5 71.4 26.5 34.1
PPL 15.8 7.1 50.6 71.8 27.6 34.1
Star-DS 16.2 8.8 54.4 73.4 28.3 35.3

C EXAMPLE DETAILS

In this section, we present detailed examples of data selected based on our data scoring methods. For
each scoring criterion—stepwise uncertainty, reward variability, and their combination—we show
the top-5 and bottom-5 data samples according to the respective scores. Each example includes the
full prompt, the ground-truth answer, and the computed score, providing an illustrative view of how
different scoring strategies prioritize data. The corresponding examples are listed in Table 9, Table 10,
and Table 11.

D THE USE OF LARGE LANGUAGE MODELS

In this work, we used large language models (LLMs) solely as a general-purpose tool to assist in
polishing the writing and improving the clarity of the manuscript. The LLM was not involved in
the formulation of research ideas, the design of experiments, or the analysis of results. All technical
content, experimental design, data processing, and interpretations presented in this paper were
independently developed by the authors.

We acknowledge that while the LLM contributed to text refinement, the authors take full responsibility
for all content, including any text generated with LLM assistance. No LLM was listed as an author or
contributor beyond its role in language polishing.
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Table 9: Details of Top-5 and Bottom-5 examples ranked by stepwise uncertainty score.
Rank Index Prompt Ground Truth Score

Top-5 Examples

Top-1 3087 Let S be a square of side length 1. Two points are chosen
independently at random on the sides of S. The
probability that the straight-line distance between the

points is at least
1

2
is

a− bπ

c
, where a, b, and c are

positive integers with gcd(a, b, c) = 1. What is
a+ b+ c? Let’s think step by step and output the final
answer within \boxed.

59 1.00

Top-2 3923 Let a, b, c, d be real numbers such that
a+ b+ c+ d = 6, a2 + b2 + c2 + d2 = 12. Let m and
M denote minimum and maximum values of
4(a3 + b3 + c3 + d3)− (a4 + b4 + c4 + d4),
respectively. Find m+M . Let’s think step by step and
output the final answer within \boxed.

84 1.00

Top-3 4304 The sequences of positive integers 1, a2, a3, . . . and
1, b2, b3, . . . are an increasing arithmetic sequence and an
increasing geometric sequence, respectively. Let
cn = an + bn. There is an integer k such that
ck−1 = 100 and ck+1 = 1000. Find ck. Let’s think step
by step and output the final answer within \boxed.

262 1.00

Top-4 4601 ζ1, ζ2, and ζ3 are complex numbers such that
ζ1 + ζ2 + ζ3 = 1, ζ21 + ζ22 + ζ23 = 3, ζ31 + ζ32 + ζ33 = 7.
Compute ζ71 + ζ72 + ζ73 . Let’s think step by step and
output the final answer within \boxed.

71 1.00

Top-5 7222 Find the equation of the plane passing through the point
(0, 7,−7) and containing the line x+1

−3
= y−3

2
= z+2

1
.

Enter your answer in the form Ax+By + Cz +D = 0,
where A, B, C, D are integers such that A > 0 and
gcd(|A|, |B|, |C|, |D|) = 1. Let’s think step by step and
output the final answer within \boxed.

x+ y + z = 0 1.00

Bottom-5 Examples

Bottom-1 2924 In tetrahedron ABCD, edge AB has length 3 cm. The
area of face ABC is 15cm2 and the area of face ABD is
12 cm2. These two faces meet each other at a 30◦ angle.
Find the volume of the tetrahedron in cm3. Let’s think
step by step and output the final answer within \boxed.

20 0.00

Bottom-2 4009 An integer-valued function f is called tenuous if
f(x) + f(y) > y2 for all positive integers x and y. Let g
be a tenuous function such that g(1)+ g(2)+ · · ·+ g(20)
is as small as possible. Compute the minimum possible
value for g(14). Let’s think step by step and output the
final answer within \boxed.

136 0.00

Bottom-3 4523 Is the function f(x) = ⌊x⌋+ 1
2

even, odd, or neither?
Enter "odd", "even", or "neither". Let’s think step by step
and output the final answer within \boxed.

neither 0.00

Bottom-4 4662 The complex number z traces a circle centered at the
origin with radius 2. Then z + 1

z
traces a: (A) circle (B)

parabola (C) ellipse (D) hyperbola. Enter the letter of the
correct option. Let’s think step by step and output the
final answer within \boxed.

C 0.00

Bottom-5 5059 Given that 8−1 ≡ 85 (mod 97), find 64−1 (mod 97),
as a residue modulo 97. (Give an answer between 0 and
96, inclusive.) Let’s think step by step and output the final
answer within \boxed.

47 0.00
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Table 10: Details of Top-5 and Bottom-5 examples ranked by reward variability score.
Rank Index Prompt Ground Truth Score

Top-5 Examples

Top-1 4 Sam is hired for a 20-day period. On days that he
works, he earns $60. For each day that he does not
work, $30 is subtracted from his earnings. At the end
of the 20-day period, he received $660. How many
days did he not work? Let’s think step by step and
output the final answer within .

6 1.00

Top-2 10 The points (9,−5) and (−3,−1) are the endpoints of
a diameter of a circle. What is the sum of the
coordinates of the center of the circle? Let’s think step
by step and output the final answer within .

0 1.00

Top-3 15 Let f(x) =

{
x/2 if x is even,
3x+ 1 if x is odd

. What is

f(f(f(f(1))))? Let’s think step by step and output the
final answer within .

4 1.00

Top-4 17 Let f(x) =

{
2x2 − 3 if x ≤ 2,

ax+ 4 if x > 2
. Find a if the graph

of y = f(x) is continuous. Let’s think step by step and
output the final answer within .

1
2

1.00

Top-5 32 Simplify (2x− 5)(x+ 7)− (x+ 5)(2x− 1). Let’s
think step by step and output the final answer within .

-30 1.00

Bottom-5 Examples

Bottom-1 6 What are all values of p such that for every q > 0, we
have 3(pq2+p2q+3q2+3pq)

p+q
> 2p2q? Express your

answer in interval notation in decimal form. Let’s think
step by step and output the final answer within .

[0, 3) 0.00

Bottom-2 39 The square of an integer is 182 greater than the integer
itself. What is the sum of all integers for which this is
true? Let’s think step by step and output the final
answer within .

1 0.00

Bottom-3 48 Find the product of all constants t such that the
quadratic x2 + tx− 10 can be factored in the form
(x+ a)(x+ b), where a and b are integers. Let’s think
step by step and output the final answer within .

729 0.00

Bottom-4 49 Factor 58x5 − 203x11. Let’s think step by step and
output the final answer within .

−29x5(7x6 − 2) 0.00

Bottom-5 7487 Compute cos 72◦. Let’s think step by step and output
the final answer within .

−1+
√
5

4
0.00
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Table 11: Details of Top-5 and Bottom-5 examples ranked by the combined scoring (the proposed
Star-DS method).

Rank Index Prompt Ground Truth Score

Top-5 Examples

Top-1 596 Let f(x) =

{
−x+ 3 if x ≤ 0,

2x− 5 if x > 0
. How many solutions

does the equation f(f(x)) = 4 have? Let’s think step by
step and output the final answer within .

3 2.00

Top-2 3963 Let a, b, c be nonzero real numbers, and let
x = b/c+ c/b, y = a/c+ c/a, z = a/b+ b/a.
Simplify x2 + y2 + z2 − xyz. Let’s think step by step
and output the final answer within .

4 2.00

Top-3 7197 Let l,m, n be real numbers, and let A,B,C be points
such that the midpoint of BC is (l, 0, 0), the midpoint of
AC is (0,m, 0), and the midpoint of AB is (0, 0, n).
Find AB2+AC2+BC2

l2+m2+n2 . Let’s think step by step and output
the final answer within .

8 2.00

Top-4 500 A 100-gon P1 is drawn in the Cartesian plane. The sum
of the x-coordinates of the 100 vertices equals 2009. The
midpoints of the sides of P1 form a second 100-gon, P2.
Finally, the midpoints of the sides of P2 form a third
100-gon, P3. Find the sum of the x-coordinates of the
vertices of P3. Let’s think step by step and output the
final answer within .

2009 1.98

Top-5 258 The entire graph of the function f(x) is shown below (f
is only defined when x is between -4 and 4 inclusive).
How many values of x satisfy f(f(x)) = 2?
[asy]...[/asy] Let’s think step by step and output the final
answer within .

3 1.94

Bottom-5 Examples

Bottom-1 4662 The complex number z traces a circle centered at the
origin with radius 2. Then z + 1

z
traces a: (A) circle (B)

parabola (C) ellipse (D) hyperbola. Enter the letter of the
correct option. Let’s think step by step and output the
final answer within .

C 0.00

Bottom-2 4988 A school has between 150 and 200 students enrolled.
Every afternoon, all the students come together to
participate in gym class. The students are separated into
six distinct sections of students. If one student is absent
from school, the sections can all have the same number of
students. What is the sum of all possible numbers of
students enrolled at the school? Let’s think step by step
and output the final answer within .

1575 0.00

Bottom-3 7103 Find the curve defined by the equation r = 4 tan θ sec θ.
(A) Line (B) Circle (C) Parabola (D) Ellipse (E)
Hyperbola. Enter the letter of the correct option. Let’s
think step by step and output the final answer within .

C 0.00

Bottom-4 7191 For a positive constant c, in spherical coordinates
(ρ, θ, ϕ), find the shape described by the equation ρ = c.
(A) Line (B) Circle (C) Plane (D) Sphere (E) Cylinder (F)
Cone. Enter the letter of the correct option. Let’s think
step by step and output the final answer within .

D 0.00

Bottom-5 7371 Find the curve defined by the equation r = 1
1−cos θ

. (A)
Line (B) Circle (C) Parabola (D) Ellipse (E) Hyperbola.
Enter the letter of the correct option. Let’s think step by
step and output the final answer within .

C 0.00
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