
Under review as a conference paper at ICLR 2023

A SAMPLING FRAMEWORK FOR VALUE-BASED REIN-
FORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Value-based algorithms have achieved great successes in solving Reinforcement
Learning problems via minimizing the mean squared Bellman error (MSBE).
Temporal-difference (TD) algorithms such as Q-learning and SARSA often use
stochastic gradient descent based optimization approaches to estimate the value
function parameters, but fail to quantify their uncertainties. In our work, under the
Kalman filtering paradigm, we establish a novel and scalable sampling framework
based on stochastic gradient Markov chain Monte Carlo, which allows us to
efficiently generate samples from the posterior distribution of deep neural network
parameters. For TD-learning with both linear and nonlinear function approximation,
we prove that the proposed algorithm converges to a stationary distribution, which
allows us to measure uncertainties of the value function and its parameters.

1 INTRODUCTION

Reinforcement learning (RL) targets at learning an optimal policy for sequential decision problems
in order to maximize the expected future reward. The value-based algorithms such as Temporal-
difference (TD) learning (Sutton, 1988), State–action–reward–state–action (SARSA) (Sutton & Barto,
2018), and Q-learning are frequently used, which play a crucial role for policy improvement. TD-
learning aims to estimate the value functions, including state-value function and action-value function,
by minimizing the mean-squared Bellman error, where the value functions are often approximated
by a function family with unknown parameters. Hence, it is critical to evaluate the accuracy and
uncertainty of parameter estimation, which enables uncertainty quantification for the sequential
decision at a sequence of states.

In the function approximation TD algorithms such as Deep Q-Network, the parameters are commonly
optimized by stochastic gradient descent (SGD) based algorithms. The convergence of these algo-
rithms, including both with linear function approximation (Schoknecht, 2002) and nonlinear function
approximation (Fan et al., 2020; Cai et al., 2019), has been extensively studied in the literature. How-
ever, SGD suffers from the local trap issue while dealing with nonconvex function approximations
such as deep neural networks (DNNs). In order to efficiently and effectively explore the landscape of
the complex DNN model, Monte Carlo algorithms such as Stochastic Gradient Langevin Dynamics
(SGLD) (Welling & Teh, 2011; Aicher et al., 2019; Kamalaruban et al., 2020) have shown their great
potential in escaping from local traps. Moreover, under the Bayesian framework, the Monte Carlo
algorithms generate samples from the posterior distribution, which naturally describes the uncertainty
of the estimates.

Toward uncertainty quantification for reinforcement learning, it is important to note that the reinforce-
ment learning problem can be generally reformulated as a state-space model. In consequence, the
value function parameters can be estimated with Kalman filtering methods such as Kalman Temporal
Difference (KTD) (Geist & Pietquin, 2010) and KOVA algorithm (Shashua & Mannor, 2020). Under
the normality assumption and for linear function approximation, the Kalman filter approaches are able
to provide correct mean and variance of the value function, which enables uncertainty quantification
for the sequential decision. However, for nonlinear function approximation, KTD and KOVA algo-
rithms adopt unscented Kalman filter (UKF) (Wan & Van Der Merwe, 2000) and extended Kalman
filter (EKF) techniques to approximate the covariance matrices. Both algorithms are computationally
inefficient for large scale neural networks. KTD requires O(p2) for covariance update, where p is the

1

Under review as a conference paper at ICLR 2023

number of parameters. In each iteration, KOVA calculates a Jacobian matrix that grows linearly with
batch size.

In this paper, we have two major contributions: (i) We develop a new Kalman filter-type algorithm
for valued-based policy evaluation based on the Langevinized Ensemble Kalman filter (Zhang et al.,
2021; Dong et al., 2022).The new algorithm is scalable with respect to the dimension of the parameter
space, which has a computational complexity of O(p) for each iteration. (ii) We prove that even
when the policy is not fixed, under some regularity conditions, the proposed algorithm converges to a
stationary distribution eventually.

2 BACKGROUND

2.1 MARKOV DECISION PROCESS FRAMEWORK

The standard RL procedure aims to learn an optimal policy from the interaction experiences be-
tween an agent and an environment, where the optimal policy maximizes the agent’s expected total
reward. The RL procedure can be described by a Markov decision process (MDP) represented
by {S,A,P, r, γ}, where S is set of states, A is a finite set of actions, P : S × A × S → R is
the state transition probability from state s to state s′ by taking action a, denoted by P(s′|s, a),
r(s, a) is a random reward received from taking action a at state s, and γ ∈ (0, 1) is a discount
factor. At each time stage t, the agent observes state st ∈ S and takes action at ∈ A according
to policy ρ with probability Pρ(a|s), then the environment returns a reward rt = r(st, at) and a
new state st+1 ∈ S. For a given policy ρ, the performance is measured by the state value func-
tion (V -function) V ρ(s) = Eρ[

∑∞
t=0 γ

trt|s0 = s] and the state-action value function (Q-function)
Qρ(s, a) = Eρ[

∑∞
t=0 γ

trt|s0 = s, a0 = a]. Both functions satisfy the following Bellman equations:

V ρ(s) = Eρ[r(s, a) + γV ρ(s′)],

Qρ(s, a) = Eρ[r(s, a) + γQρ(s′, a′)],

where s′ ∼ P(·|s, a), a ∼ Pρ(·|s), a′ ∼ Pρ(·|s′), and the expectations are taken over the transition
probability P for a given policy ρ.

2.2 BAYESIAN FORMULATION

In this paper, we focus on learning optimal policy ρ via estimating Qρ. Suppose that Q-functions are
parameterized by Q(·; θ) with parameter θ ∈ θ ⊂ Rp. Let µρ be the stationary distribution of the
transition tuple z = (s, a, r, s′, a′) with respect to policy ρ. Qρ can be estimated by minimizing the
mean squared Bellman error (MSBE),

min
θ

MSBE(θ) = min
θ

Ez∼µρ

[
(Q(s, a; θ)− r − γQ(s′, a′; θ))

2
]
, (1)

where the expectation is taken over a fixed stationary distribution µρ. By imposing a prior density
function π(θ) on θ, we define a new objective function

F̃(θ) = Ez∼µρ
[F(θ, z)]

= Ez∼µρ

[
(Q(s, a; θ)− r − γQ(s′, a′; θ))

2 − 1

n
log π(θ)

]
,

(2)

where F(θ, z) = (Q(s, a; θ)− r − γQ(s′, a′; θ))
2 − 1

n log π(θ). Since the stationary distribution
µρ is unkown, we consider the empirical objective function

F̃z =
1

n

n∑
i=1

F(θ, zi), (3)

on a set of transition tuples z = {zi}ni=1. Instead of minimizing F̃z directly, one can simulate a
sequence of θ values using the SGLD algorithm by iterating the following equation:

θt = θt−1 − ϵtnFt(θt−1) +
√
2ϵtβ−1ωt, (4)

2

Under review as a conference paper at ICLR 2023

where Ft(θt−1) is a conditionally unbiased estimator of ∇Fz(θt−1), ωt ∼ N(0, Ip) is a standard
Gaussian random vector of dimension p, ϵt > 0 is the learning rate at time t, and β > 0 is the
constant inverse temperature. It has been proven that under some regularity assumptions, θt converges
weakly to the unique Gibbs measure πz ∝ exp(−βnF̃z). However, in value-based RL algorithms,
the policy ρ is dynamically updated along with parameter θt. Therefore, the distribution µρ of the
transition tuple z also evolves from time to time as θt changes. In section 3, we develop a new
sampling algorithm, Langivinized Kalman Temporal Difference (LKTD) algorithm, for value-based
RL algorithms and establish the convergence of the proposed algorithm under the dynamic policy
setting.

3 MAIN RESULTS

In this section, we first introduce the state-space model formulation and the proposed sampling
algorithm under the setting of linear function approximation, and then extend the proposed sampling
algorithm to the setting of nonlinear function approximation. For simplicity, a full transition tuple
with reward and a reduced transition tuple without reward are denoted, respectively, by z and x as

z =

{
(s, a, r, s′, a′)

(s, a, r, s′)
and x =

{
(s, a, s′, a′)

(s, a, s′)
, (5)

for which we often write z = (r, x). The observation function h(x, θ) is defined as follows:

h(x; θ) =

{
Q(s, a; θ)− γQ(s′, a′; θ),

Q(s, a; θ)− γmaxb∈A Q(s′, b; θ),
(6)

for the SARSA and Q-learning algorithm, where γ is the discount factor.

3.1 LINEAR FUNCTION APPROXIMATION

Suppose that Q = {Q(·; θ)} is a family of linear Q-functions, where every Q-function can be
approximated in the form

Q(s, a; θ) = ϕ(s, a)⊤θ, (7)
where ϕ : S × A → Rp is a p-dimensional vector-valued feature map. For example, ϕ can be a
polynomial kernel, Gaussian kernel, etc. Let zt = (rt,xt) = {(rt,i, xt,i)}ni=1 be a batch of transition
tuples of size n generated at stage t. For convenience, we use bold symbols to represent either vectors
or sets of transition tuples depending on the situation. By combining (6) and (7), we define the
observation matrix as

Φ(xt) =

Φ(xt,1)
...

Φ(xt,n)

 , (8)

where each row vector is defined as

Φ(xt,i) =

{(
ϕ(st,i, at,i)− γϕ(s′t,i, a

′
t,i)

)⊤
,(

ϕ(st,i, at,i)− γϕ(s′t,i, argmaxb∈Aϕ(s
′
t,i, b)

⊤θ)
)⊤

,
(9)

for SARSA and Q-learning. Then it is easy to see that the minimization problem of MSBE in (1) can
be reformulated as a Bayesian linear inverse problem

rt = Φ(xt)θ + ηt, ηt ∼ N(0, σ2I), t = 1, 2, . . . , n, (10)

where ηt is an additive Gaussian white noise with covariance matrix σ2I , and θ is subject to the prior
distribution π(θ). The corresponding posterior distribution is given by π∗(θ) ∝ e−F̃(θ).

To develop an efficient algorithm for simulating samples from the target distribution πβ
∗ (θ) ∝ e−βF̃(θ),

where β denotes the inverse temperature, we further reformulate the Bayesian linear inverse model
(10) as a state-space model through Langevin diffusion by following Zhang et al. (2021) and Dong
et al. (2022):

θt = θt−1 +
ϵt
2
∇ log π(θt−1) + wt,

rt = Φ(xt)θt + ηt,
(11)

3

Under review as a conference paper at ICLR 2023

where wt ∼ N(0, ϵtIp) = N(0,Ωt), i.e., Ωt = ϵtIp, and ηt ∼ N(0, σ2I). In the state-space model
(11), the state θt evolves in a diffusion process that converges to the prior distribution π(θ). The new
formulation does not only allow us to solve the Bayesian inverse problem by subsampling (rt,xt)
from a given dataset at each stage t (see Theorem S1 of Zhang et al. (2021)), but also allow us to
model a dynamic system where the policy ρθt−1

changes along with stage t. In order to establish the
convergence theory of the entire RL algorithm, we impose two fundamental assumptions on the data
generating process and the normality structure.

Assumption 1 (Data generating process) For each t, we are able to generate tuple zt ∼ µθt−1

according to policy ρθt−1 . Moreover, the stationary distribution µθt−1 has density function π(zt|θt−1),
which is differentiable with respect to θ.

Assumption 2 (Normality structure) For each t, let zt = {zt,i}ni=1 be a set of full transition tuples
sampled from µθt−1

, the conditional distribution π(rt|xt, θt) is Gaussian:

rt|xt, θt ∼ N(Φ(xt)θt, σ
2I). (12)

That is, rt,i|xt,i, θt are independent Gaussian distributions.

Figure 1: Data generating process

Figure 1 depicts the RL updating scheme and
data generating process. At each stage t, the
agent interacts with the environment according
to the policy ρθt−1

and generates a batch of tran-
sition tuples zt = (xt, rt) from the stationary
distribution µθt−1

, which refers to assumption 1.
With the artificial normality structure in assump-
tion 2 and the state-space model (11), we com-
bine the RL setting with the forecast-analysis
procedure proposed in Zhang et al. (2021) and
introduce Algorithm 1. In Theorem 3.1, we
prove that the our algorithm is equivalent to an accelerated preconditioned SGLD algorithm(Li et al.,
2016). Then, with some adjustment of Theorem 10 in Raginsky et al. (2017) and the general recipe of
stochastic gradient MCMC (Ma et al., 2015), the chain {θat }nt=1 generated by Algorithm 1 converges
to a stationary distribution p∗(θ) ∝ exp(−βG̃(θ)) as defined in Lemma A.1 in the Appendix. When
ρ is fixed for policy evaluation, Algorithm 1 converges to the target distribution πβ

∗ (θ).

Algorithm 1 (Langevinized Kalman temporal difference learning for linear approximation)

0. (Initialization) Start with an initial Q-function parameter θa0 ∈ Rp, drawn from the prior
distribution π(θ). For each stage t = 1, 2, . . . , T , do steps 1-3:

1. (Sampling) With policy ρθa
t−1

, generate a set of n transition tuples from the stationary
distribution µθa

t−1
, denoted by zt = (rt,xt) = {zt,j}nj=1, where zt,j has the form of (5).

Let Φt = Φ(xt).

• Set Ωt = ϵtIp, Rt = 2σ2In, and the Kalman gain matrix Kt = ΩtΦ
⊤
t (ΦtΩtΦ

⊤
t +

Rt)
−1.

2. (Forecast) Draw wt ∼ Np(0,Ωt) and calculate

θft = θat−1 +
ϵt
2
∇ log π(θat−1) + wt. (13)

3. (Analysis) Draw vt ∼ Nn(0, Rt) and calculate

θat = θft +Kt(rt − Φtθ
f
t − vt) = θft +Kt(rt − rft). (14)

Theorem 3.1 Algorithm 1 can be reduced to a preconditioned SGLD algorithm.

θat = θat−1 +
ϵt
2
Σt

n∑
i=1

∇ log π(θat−1|zt,i) + et, (15)

where Σt = (I−KtΦ(xt)) is a constant matrix given xt, et ∼ N(0, ϵtΣt), and ∇ log π(θat−1|zt,i) =
1
σ2Φ(xt,i)(rt,i − Φ(xt,i)θ

a
t−1) +

1
n∇ log π(θat−1).

4

Under review as a conference paper at ICLR 2023

Theorem 3.2 Consider the pre-conditioned SGLD algorithm:

θt = θt−1 − ϵTΣtG(θt−1, zt) +
√
2ϵTβ−1et, t = 1, 2, . . . , T, (16)

where et ∼ N(0,Σt), β is the inverse temperature, T is the total iteration number, and ϵT is a
constant learning rate depending on T . For this algorithm, we assume the conditions of Lemma A.1
(of the Appendix) hold. Further, if we choose the learning rate ϵT such that TϵT → ∞, Tϵ5/4T → 0

and TϵT δ
1/4 → 0, then W2(pT , p∗) → 0 as T → ∞, where pT and p∗ are as defined in Lemma A.1

of the Appendix.

Remark 1 For the LKTD algorithm, we have G(θt−1, zt) = − 1
σ2

∑n
i=1(Φ(xt,i)

⊤(rt,i −
Φ(xt,i)θt−1))+

1
σ2
θ
θt−1. In addition, we set ϵT = t0/T

α for some constant t0 > 0 and α ∈ (4/5, 1),

such that TϵT δ1/4 → 0.

The conditions required by Theorem 3.1 and Theorem 3.2 are verified by Lemma 3.1 given below.

Lemma 3.1 Let G(θ,z) = − 1
σ2

∑n
i=1(Φ(xi)

⊤(ri−Φ(xi)θ))+
1
σ2
θ
θ. Assume (i) Z is compact, and

r̄ = sup{|r| : r ∈ R} < ∞, (ii) ∥ϕ(s, a)∥ ≤ 1 for all s ∈ S, a ∈ A, and (iii) θ0 ∼ N(0, σ2
0Ip),

with σ2
0 < 1

2 , then the conditions (A1)-(A6) are satisfied.

The LKTD algorithm is very flexible. It is not necessary to use all n samples (collected at each time
t) at each iteration. Instead, a subsample can be used and multiple iterations can be performed for
intergrating the available data information in the way of SGLD. Moreover, as explained in Zhang et al.
(2021), the forecast-analysis procedure enables the algorithm scalable with respect to the dimension
of θt, while enjoying the computational acceleration led by the pre-conditioner. In summary, the
LKTD algorithm is scalable with respect to both the data sample size and the dimension of the
parameter space.

3.2 NONLINEAR FUNCTION APPROXIMATION

In this section, we further extend our algorithm to the setting of nonlinear function approximation.
For each stage t, we consider the nonlinear inverse problem

rt = h(xt; θ) + ηt, ηt ∼ N(0, σ2I), (17)

where h(x; ·) : θ → R is a nonlinear differentiable observation function of θ. With the state
augmentation approach similar to LEnKF algorithm, we define the augmented state vector by

φt =

(
θt
ξt

)
, ξt = h(xt; θt) + ut, ut = N(0, ασ2I),

where ξt is an n-dimensional vector, and 0 < α < 1 is a pre-specified constant. Suppose that θt has a
prior distribution π(θ) as we defined in previous section, the joint density function of φt = (θ⊤t , ξ

⊤
t)⊤

can be written as π(φt) = π(θt)π(ξt|θt), where ξt|θt ∼ N(h(xt; θt), ασ
2I). Based on Langevin

dynamics, we can reformulate (17) as the following dynamic system

φt = φt−1 +
ϵt
2
∇φ log π(φt−1) + wt,

rt = Htφt + vt,
(18)

where wt ∼ N(0,Ωt), Ωt = ϵtIp, p is the dimension of φt; Ht = (0, I) such that Htφt = ξt;
vt ∼ N(0, (1 − α)σ2I), which is independent of wt for all t. With the formulation in (18), we
transformed a nonlinear inverse problem to a linear state-space model and thus the previous theoretical
results still hold for the nonlinear inverse problem. The target distribution p∗(θ) can be easily obtained
by marginalization from p∗(φ).

Algorithm 2 (Langevinized Kalman temporal difference for nonlinear approximation)

0. (Initialization) Start with an initial Q-function parameter ensemble θa0 ∈ Rp, drawn from
the prior distribution π(θ). For each stage t = 1, 2, . . . , T , do the following steps 1-3:

5

Under review as a conference paper at ICLR 2023

1. (Sampling) With policy ρθa
t−1

defined in (40), generate a set of n transition tuples from the
stationary distribution µθa

t−1
, denoted by zt = (rt,xt) = {zt,j}nj=1, where zt,j has the

form of (5). Let Ht = (0, I)

• For each iteration k = 1, 2, . . . ,K, set Qt,k = ϵt,kIp, Rt = 2(1 − α)σ2I , and the
Kalman gain matrix Kt,k = Qt,kH

⊤
t (HtQt,kH

⊤
t +Rt)

−1, and do steps 2-3.

2. (Forecast) Draw wt,k ∼ Np(0,Ωt) and calculate

φf
t,k = φa

t,k−1 +
ϵt,k
2

∇ log π(φa
t,k−1) + wt,k, (19)

where if k = 1, set φa
t,0 = (θat−1,K

⊤, r⊤t)
⊤. More precisely, the gradient of two components

can be written as

∇ log π(φa
t,k−1) =

(
∇θ log π(θt,k−1) +

1
ασ2∇θh(xt; θt,k−1)(ξt,k−1 − h(xt; θt,k−1))

− 1
ασ2 (ξt,k−1 − h(xt; θt,k−1))

)
.

(20)

3. (Analysis) Draw vt,k ∼ Nn(0, Rt) and calculate

φa
t,k = φf

t,k +Kt,k(rt −Htφ
f
t,k − vt,k) = φf

t,k +Kt,k(rt − rft,k). (21)

4 EXPERIMENTS

In this section, we compare LKTD with Adam algorithm (Kingma & Ba, 2014). With a simple
indoor escape environment, we show the ability of LKTD in uncertainty quantification and policy
exploration. Further, with a more complicated environments such as OpenAI gym, we show that
LKTD is able to learn better and more stable policies for both training and testing.

4.1 INDOOR ESCAPE ENVIRONMENT

Figure 2: Indoor escape environ-
ment

Consider a simple indoor escape environment as shown in Figure
2. The environment is in the square [0, 1]× [0, 1], and the goal is to
reach the top right corner of size 0.1×0.1 as fast as possible. At the
beginning time 0, the agent is randomly put in the square. At each
time t, the agent observes the location coordinate s = (x, y) as its
current state, then chooses an action a ∈ {N,S,E,W} according
to policy ρ with a step size randomly drawn from Unif([0, 0.3]).
The reward at each time t is −1 before the agent reaches the goal.
The indoor escaping environment is an example where the optimal
policy is not unique. Observe that the Q-values of N and E have
no difference in most states, except for the top and the right border.
Hence, the ability to explore various optimal policies is critical
for learning a stable and robust policy. Through this experiment
we show the ability of the LKTD algorithm to learn a mixture
optimal policy in a single run. We compare LKTD with the widely
used Adam algorithm on training a deep neural network with three
hidden layers of sizes (16,16,16). Agents update the network parameters every 50 interactions and
5 gradient steps per update for a total of 10000 episodes. For action selection, the ϵ-Boltzmann
exploration as defined in B.1 is used with an exploring rate of ϵ = 0.1 and an inverse action
temperature of βact = 5. The batch size is 250. The last 1000 parameter updates are collected as a
parameter ensemble, which induces a Q-value ensemble and a policy ensemble. With the Q-value
ensemble, we are able to draw the density plot of Q-values at each point of the square as illustrated
by Figure 3. To quantify uncertainty of the policy, we define the mean policy probability by

pϱ(a|s) =
1

|ϱ|
∑
ρ∈ϱ

1a(ρ(s)), (22)

where ϱ is the policy ensemble induce from the parameter ensemble. Intuitively, the mean policy
probability is the proportion of an action taken by the policy ensemble at a given state. We further

6

Under review as a conference paper at ICLR 2023

(a) Q-value density at (5.5, 5.5) (b) Q-value density at (2.5, 9.5)

Figure 3: Q-value density plots and mean policy probabilities of LKTD

(a) Mean optimal action probability (b) Close to optimal (c) Bad exploration

Figure 4: (a) is the mean optimal action probability of indoor escape environment. (b) is similar to
(a) on both boundary and interior grids. (c) Fails to find the correct policy on the boundaries, which
leads to high false optimal action rate for actions {N,E}.

define the mean optimal policy probability of an environment by taking expectation over all optimal
policies. The mean optimal policy probability of the indoor escape environment is shown in figure 4a.

In figure 4, we divide the state space into 100 grids of size 0.1× 0.1, then compute the mean action
probabilities of each grid center and each action. For a further comparison of the two algorithms, we
calculated two metrics in table 1: (1) MSE between the mean action probability and the mean optimal
action probability, denoted by MSE(p̂), where the MSE is taken over all grids. (2) The sub-optimal
action rate (SOAR), which is defined by the probability of choosing the action that is sub-optimal for
a state. Table 1 shows that in terms of MSE(p̂), LKTD and Adam with large learning rate are more
efficient in sample space exploration; however, in terms of SOAR, LKTD is much smaller than Adam
in actions {N,E}, where the high SOAR comes from the top and right boundaries as in figure 4c. In
other words, LKTD can efficiently explore the optimal policies, while retaining its accuracy. In figure
3b, the mean policy probability shows that LKTD can choose the correct policy on the boundary
grids.

Table 1: MSE(p̂) and SOAR

Description North East South West

Name ϵt β MSE(p̂) SOAR MSE(p̂) SOAR MSE(p̂) SOAR MSE(p̂) SOAR

LKTD 1e-4 1 0.044 0.098 0.044 0.102 0.002 0.026 0.002 0.026
Adam 1e-2 N/A 0.044 0.134 0.044 0.135 0 0.005 0 0.005
Adam 1e-3 N/A 0.047 0.493 0.047 0.495 0 0 0 0
Adam 1e-4 N/A 0.058 0.502 0.058 0.495 0 0 0 0

7

Under review as a conference paper at ICLR 2023

4.2 CLASSICAL CONTROL PROBLEMS

In this section, we consider four classical control problems in OpenAI gym (Brockman et al., 2016),
including CartPole-v1, MountainCar-v0, LunarLander-v2 and Acrobot-v1. We compare LKTD with
Adam under the framework and parameter settings of RL Baselines3 Zoo (Raffin, 2020). Each
experiment is duplicated 500 times, and the training progress is recorded in figure 5. At each time
step, the best and the worst 1% of the rewards are considered as outliers and thus ignored in the plots.
LKTD can also be applied to DQN algorithm by modifying the state-space model in equation 11 as

θt = θt−1 +
ϵt
2
∇ log π(θt−1) + wt,

yt = ϕ(st,at)
⊤θt + ηt,

(23)

where ϕ(st,at) = [ϕ(st,1, at,1), . . . , ϕ(st,n, at,n)] and yt = rt + γϕ(s′t,a
′
t)

⊤θt−1. The new
gradient can be written as G(θt−1, zt) = − 1

σ2

∑n
i=1(ϕ(xt,i)(rt,i − Φ(xt,i)θt−1)) +

1
σ2
θ
θt−1, where

the first term corresponds to the semi-gradient in DQN algorithm. With suitable constraints on the
semi-gradient, we can modify lemma 3.1 to guarantee the convergence. In the four classic control
problems, LKTD shows its strength in efficient exploration and robustness without adopting common
RL tricks such as gradient clipping and target network. The updating period of the target network is
set to 1 for LKTD. The detail hyperparameter settings are given in section B.4.

In figure 5, the solid and dash lines represent the median and mean rewards, respectively. For
each algorithm, the colored area covers 98% of the reward curves. We consider 3 types of reward
measurements, training reward, evaluation reward and the best evaluation reward. Training reward
records the cumulative reward during training, which include the ϵ-exploration errors. Evaluation
reward calculates the mean reward over 10 testing trails at each time t. The best evaluation reward
only records the best evaluation reward up to time t.

In CartPole-v1, LKTD outperforms Adam in all 3 measurements, especially on the training and best
evaluation rewards. During training, LKTD receives significantly higher rewards than Adam. In
optimal policy exploration, almost 99% of the time LKTD achieves the optimal policy faster than the
median of Adam.

In MountainCar-v0, the mean and median reward curves of LKTD and Adam are similar. However,
LKTD is more robust during training and more efficient in exploration of good policies. From the
best evaluation reward plot, we can observe that the 1% reward lower bound is close to -200 for
Adam, which indicates that the agent fails find any good policies during the training.

In order to learn the optimal policies in Lunarlander-v2, the agent has to learn a correct way of
landing instead of staying in the air. Due to the sampling nature of LKTD, the exploration rate ϵ is
increased from 0.12 to 0.25 for agent to collect enough landing experiences. Hence, LKTD converges
slightly slower than Adam. However, with a large exploration rate, LKTD is still able to obtain stable
training rewards which are close to Adam with a much higher lower bound. Moreover, with a longer
training period, LKTD will eventually perform better in evaluation.

In Acrobot-v1, the training reward of LKTD converges slower in some experiments, but in most
cases, the performance of LKTD dominates Adam.

According to the experiments, LKTD has a more robust training process and finds the optimal polices
faster than Adam. The experiments also indicate that Adam uses the rare experiences more efficiently,
whereas LKTD needs to trade the training performance for the exploration of rare experiences.

5 CONCLUSION

This paper proposes LKTD as a new sampling framework for deep RL problems via state-space
model reformulation. LKTD is equivalent to an accelerated preconditioned SGLD algorithm but with
a self-dependent data generating process. For both linear and nonlinear function approximations,
LKTD is guaranteed to converge to a stationary distribution p∗(θ) under mild conditions. Our
numerical experiments indicate that LKTD is comparable with Adam algorithm in optimal policy
search, while outperforming Adam in robustness and optimal policy explorations. This implies a
great potential of LKTD in uncertainty quantification.

8

Under review as a conference paper at ICLR 2023

Figure 5: The first column shows the cumulative rewards obtained during the training process, the
second column shows the testing performance without random exploration, and the third column
shows the performance of best model learnt up to time t.

9

Under review as a conference paper at ICLR 2023

REFERENCES

C. Aicher, S. Putcha, C. Nemeth, P. Fearhead, and E.B. Fox. Stochastic gradient mcmc for nonlinear
state space models. ArXiv:1901.10568v1, 2019.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Qi Cai, Zhuoran Yang, Jason D Lee, and Zhaoran Wang. Neural temporal-difference and q-learning
provably converge to global optima. arXiv preprint arXiv:1905.10027, 2019.

Tianning Dong, Peiyi Zhang, and Faming Liang. A stochastic approximation-langevinized ensemble
kalman filter algorithm for state space models with unknown parameters. Journal of Computational
and Graphical Statistics, pp. in press, 2022.

Jianqing Fan, Zhaoran Wang, Yuchen Xie, and Zhuoran Yang. A theoretical analysis of deep q-
learning. In Alexandre M. Bayen, Ali Jadbabaie, George Pappas, Pablo A. Parrilo, Benjamin Recht,
Claire Tomlin, and Melanie Zeilinger (eds.), Proceedings of the 2nd Conference on Learning for
Dynamics and Control, volume 120 of Proceedings of Machine Learning Research, pp. 486–489.
PMLR, 10–11 Jun 2020. URL https://proceedings.mlr.press/v120/yang20a.
html.

Matthieu Geist and Olivier Pietquin. Kalman temporal differences. J. Artif. Int. Res., 39(1):483–532,
sep 2010. ISSN 1076-9757.

Parameswaran Kamalaruban, Yu-Ting Huang, Ya-Ping Hsieh, Paul Rolland, Cheng Shi, and
Volkan Cevher. Robust reinforcement learning via adversarial training with langevin dy-
namics. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 8127–8138. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
5cb0e249689cd6d8369c4885435a56c2-Paper.pdf.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Chunyuan Li, Changyou Chen, David E. Carlson, and Lawrence Carin. Preconditioned stochastic
gradient langevin dynamics for deep neural networks. In AAAI, 2016.

Yi-An Ma, Tianqi Chen, and Emily B. Fox. A complete recipe for stochastic gradient mcmc. In
NIPS, 2015.

Francisco S. Melo and M. Isabel Ribeiro. Convergence of q-learning with linear function ap-
proximation. In 2007 European Control Conference (ECC), pp. 2671–2678, 2007. doi:
10.23919/ECC.2007.7068926.

Antonin Raffin. Rl baselines3 zoo. https://github.com/DLR-RM/rl-baselines3-zoo,
2020.

Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex learning via stochastic
gradient Langevin dynamics: a nonasymptotic analysis. In Proceedings of the 2017 Conference on
Learning Theory, pp. 1674–1703, 2017.

Ralf Schoknecht. Optimality of reinforcement learning algorithms with linear function approximation.
In S. Becker, S. Thrun, and K. Obermayer (eds.), Advances in Neural Information Processing Sys-
tems, volume 15. MIT Press, 2002. URL https://proceedings.neurips.cc/paper/
2002/file/228bbc2f87caeb21bb7f6949fddcb91d-Paper.pdf.

Shirli Di-Castro Shashua and Shie Mannor. Kalman meets bellman: Improving policy evaluation
through value tracking. ArXiv, abs/2002.07171, 2020.

Richard S. Sutton. Learning to predict by the methods of temporal differences. Machine Learn-
ing, 3(1):9–44, August 1988. URL http://www.cs.ualberta.ca/˜sutton/papers/
sutton-88.pdf.

10

https://proceedings.mlr.press/v120/yang20a.html
https://proceedings.mlr.press/v120/yang20a.html
https://proceedings.neurips.cc/paper/2020/file/5cb0e249689cd6d8369c4885435a56c2-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/5cb0e249689cd6d8369c4885435a56c2-Paper.pdf
https://github.com/DLR-RM/rl-baselines3-zoo
https://proceedings.neurips.cc/paper/2002/file/228bbc2f87caeb21bb7f6949fddcb91d-Paper.pdf
https://proceedings.neurips.cc/paper/2002/file/228bbc2f87caeb21bb7f6949fddcb91d-Paper.pdf
http://www.cs.ualberta.ca/~sutton/papers/sutton-88.pdf
http://www.cs.ualberta.ca/~sutton/papers/sutton-88.pdf

Under review as a conference paper at ICLR 2023

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.
html.

E.A. Wan and R. Van Der Merwe. The unscented kalman filter for nonlinear estimation. In
Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and
Control Symposium (Cat. No.00EX373), pp. 153–158, 2000. doi: 10.1109/ASSPCC.2000.882463.

Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient langevin dynamics. In
ICML, 2011.

Peiyi Zhang, Qifan Song, and Faming Liang. A langevinized ensemble kalman filter for large-scale
static and dynamic learning, 2021. URL https://arxiv.org/abs/2105.05363.

11

http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/2105.05363

Under review as a conference paper at ICLR 2023

Appendix

A COMPLETE PROOFS

A.1 PROOF OF THEOREM 3.1

PROOF: Following the proof of LEnKF theorem 3.1 (Zhang et al., 2021), we consider the Kalman
gain matrix Kt = ΩtΦ(xt)

⊤(Rt +Φ(xt)ΩtΦ(xt)
⊤)−1, which can be rewritten as

Kt = (I −KtΦ(xt))ΩtΦ(xt)
⊤R−1

t = (Φ(xt)
⊤R−1

t Φ(xt) + Ω−1
t)−1Φ(xt)

⊤R−1
t . (24)

Let θft = θat−1 + δt + wt, where δt = ϵt∇ log π(θat−1). With the identity (24), the conditional
expectation of θat can be written as

E(θat |θat−1, rt,xt) = θat−1 + δt +Kt(rt − Φ(xt)θ
a
t−1 − Φ(xt)δt)

= θat−1 +Kt(rt − Φ(xt)θ
a
t−1) + (I −KtΦ(xt))δt

= θat−1 + (I −KtΦ(xt))ΩtΦ(xt)
⊤R−1

t (rt − Φ(xt)θ
a
t−1) + (I −KtΦ(xt))δt

= θat−1 + (I −KtΦ(xt))Ωt[Φ(xt)
⊤R−1

t (rt − Φ(xt)θ
a
t−1) + Ω−1

t δt]

= θat−1 +
1

2
(I −KtΦ(xt))Ωt[Φ(xt)

⊤V −1(rt − Φ(xt)θ
a
t−1) + Ω−1

t δt]

= θat−1 +
ϵt
2
Σt[Φ(xt)

⊤V −1(rt − Φ(xt)θ
a
t−1) +∇ log π(θat−1)],

(25)

where Σt = I −KtΦ(xt), Ωt = ϵtI , and Rt = 2V . For LKTD, we have

θat = θft +Kt(rt − Φ(xt)θ
f
t − vt)

= θat−1 + δt + wt +Kt(rt − Φ(xt)(θ
a
t−1 + δt + wt)− vt)

= E(θat |θat−1, rt,xt) + wt −KtΦ(xt)wt −Ktvt

= E(θat |θat−1, rt,xt) + et,

(26)

where et = wt −Kt(Φ(xt)wt + vt) with mean E(et) = 0 and covariance

V ar(et) = V ar(wt) +KtV ar(Φ(xt)wt + vt)K
⊤
t − 2Cov(wt,Kt(Φ(xt)wt + vt))

= Ωt +Kt(Φ(xt)ΩtΦ(xt)
⊤ +Rt)K

⊤
t − 2KtΦ(xt)Ωt

= (I −KtΦ(xt))Qt = ϵtΣt.

(27)

By combining (24), (25),(26) and the assumption V = σ2I , the update of θat can be rewritten as

θat = θat−1 +
ϵt
2
Σt[Φ(xt)

⊤V −1(rt − Φ(xt)θ
a
t−1) +∇ log π(θat−1)] + et

= θat−1 +
ϵt
2
Σt[

n∑
i=1

1

σ2
Φ(xt,i)

⊤(rt,i − Φ(xt,i)θ
a
t−1) +∇ log π(θat−1)] + et

= θat−1 +
ϵt
2
Σt

n∑
i=1

∇ log π(θat−1|zt,i) + et,

(28)

where ∇ log π(θat−1|zt,i) = 1
σ2Φ(xt,i)

⊤(rt,i − Φ(xt,i)θ
a
t−1) +

1
n∇ log π(θat−1). □

A.2 LEMMA FOR THEOREM 3.2

We assume the following conditions hold:

(A1) For any θ ∈ Θ, the Markov transition kernel Πθ has a single stationary distribution πθ(z),
G : Θ×Z is measurable, and ∥g(θ)∥ = ∥

∫
Z G(θ, z)π(z|θ)dz∥ < ∞.

(A2) There exists a function G(θ, z), which is an anti-derivative of G(θ, z) with respect to θ, i.e.,
∇θG(θ, z) = G(θ, z), such that |G(0, z)| ≤ A for some constant A > 0 and any z ∈ Z; in
addition, there exists some constant B > 0 such that ∥G(0, z)∥ ≤ B for any z ∈ Z .

12

Under review as a conference paper at ICLR 2023

(A3) There exists some constant M > 0 such that for any z ∈ Z ,

∥G(θ, z)−G(ϑ, z)∥ ≤ M∥θ − ϑ∥, ∀θ, ϑ ∈ Θ.

(A4) For each z ∈ Z , the function G(·, z) is (m, b)-dissipative; for some m > 0 and b ≥ 0,

⟨θ,G(θ, z)⟩ ≥ m∥θ∥2 − b, ∀θ ∈ Θ.

(A5) There exist a constant δ ∈ [0, 1) and some constants M and B such that

E∥G(θ, z)− g(θ)∥2 ≤ 2δ(M2∥θ∥2 +B2), ∀θ ∈ Θ.

(A6) The probability law µ0 of the initial hypothesis θ0 has a bounded and strictly positive density
p0 with respect to the Lebesgue measure on Θ, and

κ0 := log

∫
Θ

e∥θ∥
2

p0(θ)dθ < ∞.

Lemma A.1 (Proposition 10 of Raginsky et al. (2017)) Consider the SGLD algorithm with a constant
learning rate ϵ,

θt = θt−1 − ϵG(θt−1, zt) +
√
2ϵβ−1et, (29)

where et ∼ N(0, Id), d is the dimension of θ, and β is the inverse temperature. Assume the
conditions (A1)-(A6) hold. If EG(θt−1, zt) = g(θt−1) holds for any step t ∈ N, β ≥ 1 ∨ 2

m , and
0 < ϵ < 1 ∧ m

4M2 , then

W2(pt, p∗) ≤ (C̃0δ
1/4 + C̃1ϵ

1/4)tϵ+ C̃2e
−tϵ/βCLS , (30)

where pt(θ) denotes the density function of θt; p∗(θ) ∝ exp(−βG̃(θ)), G̃(θ) is the anti-derivative of
g(θ), i.e., ∇θG̃(θ) = g(θ); CLS denotes a logarithmic Sobolev constant satisfied by the p∗, and the
constants C̃0, C̃1 and C̃2 are given by

C0 =

(
M2

(
κ0 + 2

(
1 ∨ 1

m

)(
b+ 2B2 +

d

β

))
+B2

)
,

C1 = 6M2(βC0 + d),

C̃0 =

√
(12 + 8(κ0 + 2b+

2d

β
))(βC0 +

√
βC0),

C̃1 =

√
(12 + 8(κ0 + 2b+

2d

β
))(C0 +

√
C0),

C̃2 =

√
2CLS

(
log ∥p0∥∞ +

d

2
log

3π

mβ
+ β

(
Mκ0

3
+B

√
κ0 +A+

b

2
log 3

))
.

PROOF: The proof of Lemma A.1 follows from Proposition 10 of Raginsky et al. (2017). □

A.3 PROOF OF THEOREM 3.2

PROOF: By Theorem 1 of Ma et al. (2015), Algorithm (16) (of the main text) works as a pre-
conditioned SGLD algorithm with the pre-conditioner Σt, and it has the same stationary distribution
as the algorithm (29). By (30), we have W2(pT , p∗) → 0 for algorithm (29) under the given settings
of ϵ and NT . Therefore, for Algorithm (16), we also have W2(pT , p∗) → 0 as T → ∞ by noting
that Σt is positive definite for any t. □

A.4 PROOF OF LEMMA 3.1

PROOF: Since we assume that all samples are i.i.d, it suffices to prove the lemma with the case n = 1.
In this case, G(θ, z) = G(θ, z) = − 1

σ2Φ(x)
⊤(r − Φ(x)θ) + 1

σ2
θ
θ. Let g(θ) = Ez∼µθ

[G(θ, z)] =∫
Z G(θ, z)π(z|θ)dz be the expected gradient with respect to the stationary distribution µθ.

13

Under review as a conference paper at ICLR 2023

(A1) By assumption (i) and (ii), then by simple algebra

∥G(θ, z)∥ ≤ 1

σ2
∥Φ(x)∥ · ∥(r − Φ(x)θ)∥+ 1

σ2
θ

∥θ∥

≤ 1

σ2
(1 + γ)(r̄ + (1 + γ)∥θ∥) + 1

σ2
θ

∥θ∥

=
1

σ2
(1 + γ)r̄ + (

1

σ2
(1 + γ)2 +

1

σ2
θ

)∥θ∥ < ∞.

(31)

Since the upper bound is independent of z, the expected gradient g(θ) is well-defined with
∥g(θ)∥ < ∞ for all θ ∈ Θ.

(A2) Given the explicit formulation of G(θ, z), the anti-derivative G(θ, z) can be derived as

G(θ, z) = 1

2σ2
(r − Φ(x)θ)2 +

1

2σ2
θ

∥θ∥2. (32)

For any z ∈ Z , we can derive the following bound

|G(0, z)| = 1

2σ2
r2 ≤ 1

2σ2
r̄2, (33)

and
∥G(0, z)∥ ≤ 1

σ2
(1 + γ)r̄. (34)

(A3) For any z ∈ Z ,

∥G(θ, z)−G(ϑ, z)∥ = ∥ 1

σ2
Φ(x)⊤Φ(x)(θ − ϑ) +

1

σ2
θ

(θ − ϑ)∥

≤ (
1

σ2
∥Φ(x)∥2 + 1

σ2
θ

)∥θ − ϑ∥

= (
1

σ2
(1 + γ)2 +

1

σ2
θ

)∥θ − ϑ∥.

(35)

(A4) For any z ∈ Z ,

⟨θ,G(θ, z)⟩ = − 1

σ2
(Φ(x)θ)(r − Φ(x)θ) +

1

σ2
θ

∥θ∥2

=
1

σ2
(Φ(x)θ − r

2
)2 − r2

4σ2
+

1

σ2
θ

∥θ∥2

≥ 1

σ2
θ

∥θ∥2 − r̄2

4σ2
.

(36)

(A5) Since ∥G(θ, z)∥ is uniformly bounded for all z ∈ Z given in (31), the gradient bias is
bounded by

∥G(θ, z)− g(θ)∥ ≤ 2max
z∈Z

∥G(θ, z)∥ ≤ 2

σ2
(1 + γ)r̄ + 2(

1

σ2
(1 + γ)2 +

1

σ2
θ

)∥θ∥ (37)

By some algebra, we can calculate the quadratic bound
∥G(θ, z)− g(θ)∥2 ≤ δ(M2∥θ∥2 +B2), (38)

where M2 = 4(1
σ2 (1 + γ)2 + 1

σ2
θ
)2 + 1 and B2 = M2(2

σ2 (1 + γ)r̄)2. Since the bound is
uniform for all z ∈ Z , we can derive the desired bound for the expectation.

(A6) By assumption (iii),

κ0 = log

∫
Θ

e∥θ∥
2

e
−1

2σ2
0
∥θ∥2

dθ − p log
√
2πσ2

0

< log

∫
Θ

e
(1− 1

2σ2
0
)∥θ∥2

dθ < ∞,

(39)

for any σ2
0 < 1

2 .

□

14

Under review as a conference paper at ICLR 2023

B MORE NUMERICAL RESULTS

B.1 SOFTMAX PROBABILISTIC POLICY

For the indoor escape environment, we adopt the Boltzmann exploration which selects an action a
with probability

Pρθ
(a|s) = exp{βactQ(s, a; θ)}∑

a′∈A exp{βactQ(s, a′; θ)}
,

where βact is the action inverse temperature. When βact is small, the agent tends to explore random
actions. In contrast, when βact is large, the agent takes action greedily. Greedy Q-learning can be
viewed as a special case of Boltzmann exploration, since ρθ(s) = argmaxaQ(s, a; θ) with probability
1 as βact → ∞. Moreover, the action probability P (ρθ(s) = a) is differentiable with respect to
θ. In this paper, we assume all RL algorithms follow the ϵ-Boltzmann exploration with the action
probability given by

Pρϵ
θ
(a|s) = ϵ+ (1− ϵ)

exp{βactQ(s, a; θ)}∑
a′∈A exp{βactQ(s, a′; θ)}

, (40)

where ϵ is the random exploration rate. Note that as βact → ∞, ϵ-Boltzmann exploration converges
to ϵ-greedy exploration.

B.2 STATE VALUE VISUALIZATION FOR THE INDOOR ESCAPING EXAMPLE

In this section, we demonstrate the state value approximation for both linear and nonlinear function
approximations. By following Melo & Ribeiro (2007), we define the Q-function and the feature map
as

Q(s, a) = ϕ(s)⊤θ =
∑
a′∈A

ϕ̄(s)⊤θa′1a′(a) and ϕ̄(s) = (σ1(x, y), σ2(x, y), . . . , σ4(x, y))
⊤,

(41)
where the parameter vector θ = (θ⊤N , θ⊤S , θ

⊤
E , θ

⊤
W)⊤ is partitioned into 4 subspaces, 1(·) is the

indicator function, and σi : S → R is a basis function which can be a linear basis function, Gaussian
kernel, etc. For each set of basis functions, the agent is allowed to update its parameter every 60
steps with 20 transition tuples as training data for 30,000 episodes. In every experiment, we collect
the last 1,000 updates as the samples from the stationary distribution. In figure 6, we compare
different function approximation of SARSA type LKTD. The optimal policy used to simulate the
true state-value is defined as

ρ∗(x, y) =

{
N, if x ≥ y,

E, if x < y,
(42)

where the discount factor γ = 0.9. In figure 6b, 6c and 6d, the state-value surfaces are estimated using
the average state-values of last 1000 updates with respect to linear-based approximation, kernel-based
approximation and deep neural network approximation respectively. We showed that LKTD algorithm
successfully estimate the state-values for all three function approximations.

B.3 CONTINUATION OF UNCERTAINTY QUANTIFICATION FOR THE INDOOR ESCAPING
EXAMPLE

This section is a supplement to Section 4.1 of the main text, which includes more numerical results
for comparison of the proposed LKTD algorithm and the popular Adam algorithm (Kingma & Ba,
2014).

In each run of LKTD, we set the batch size to 250, fix the inverse temperature β = 1, and update
the network parameters every 50 steps. For σ and σθ in Remark 1, we set σ2 = 1 and σ2

θ = 25,
where σ2 is estimated by the mean square TD error according to Assumption 2, and σ2

θ is chosen
suitably for convergence and ignorable prior effects. Under the setting β = 1, LKTD converges to
the stationary distribution p∗(θ) ∝ exp(−G̃(θ)). The parameters obtained in the last 1000 parameter
updates are used as a parameter ensemble for performing the followed Bayesian inference tasks. The
parameter ensemble naturally induces a Q-value ensemble and a policy ensemble. More precisely,
each parameter vector corresponds to a Q-function and a greedy policy induced from the Q-function.

15

Under review as a conference paper at ICLR 2023

(a) Simulated State-value (b) Linear-based approximation

(c) Gaussian-based approximation (d) Deep neural network

Figure 6: State-value surface: (a) State-values of the center point in each grid with respect to the
optimal policy. (b) Linear function approximation with linear basis. (c) Linear function approximation
with Gaussian kernel. (d) Deep neural network with hidden-layers (16,16,16).

The experimental results are reported in Tables 2, 3 and 5, where each measurement is derived by
averaging over 200 independent runs.

For comparison, Adam has been run with different learning rates, including 1.0e-2, 1.0e-3 and 1.0e-4.
For each learning rate, it is run for 200 times independently, each run consisting of 10000 episodes.
Similar to LKTD, we use the parameters obtained in the last 1000 parameter updating steps as a
parameter ensemble for performing the followed statistical inference tasks. The results are also
summarized in Tables 2, 3 and 5.

Table 2 reports the estimation accuracy of Q-values, which is measured by the mean squared error
between the mean of the Q-value ensemble and the Q-value of the optimal policy as defined in
equation 42. It is easy to see that Adam produces about the same MSEs for all four actions with a
learning rate of 1e-2, and it produces more varied MSEs with other learning rates. LKTD produces
almost the same MSEs as the best run of Adam.

Table 2: MSE(Q̂) for the indoor escaping example

Description North East South West Average

Name Learning rate MSE(Q̂) MSE(Q̂) MSE(Q̂) MSE(Q̂) MSE(Q̂)

LKTD 1e-4 0.119 0.120 0.100 0.101 0.110
Adam 1e-2 0.113 0.113 0.096 0.096 0.105
Adam 1e-3. 0.130 0.139 0.354 0.355 0.245
Adam 1e-4 0.120 0.119. 0.396 0.392 0.257

Table3 compares the performance of the two algorithms in optimal policy exploration, which is
measured by MSE(p̂), the mean squared error between the proportions of action votes from the policy
ensemble and the probabilities of mean optimal actions. The probabilities of mean optimal actions
describe the variety of optimal actions at a state. That is, if multiple actions are all optimal, the
probabilities of mean optimal actions are the same across all optimal actions. For example, suppose
that both action N and action E are optimal at a state, then each has a mean optimal action probability

16

Under review as a conference paper at ICLR 2023

of 0.5; therefore, a policy ensemble that fails to explore all optimal policies (due to a local trap issue)
might only vote for one of the two actions. For LKTD, the smaller values of MSE(p̂) in the north and
east actions imply that it provides better optimal policy exploration than Adam.

It is worth mentioning that Adam with a learning rate of 1e-2 also produces similar MSE(p̂) values
to LKTD, but its SOAR in table 4 is worse than LKTD, which implies that LKTD provides a more
reliable policy than Adam.

Table 3: MSE(p̂) for the indoor escaping example

Description North East South West Average

Name Learning rate MSE(p̂) MSE(p̂) MSE(p̂) MSE(p̂) MSE(p̂)

LKTD 1e-4 0.044 0.044 0.002 0.002 0.023
Adam 1e-2 0.044 0.044 0 0 0.022
Adam 1e-3 0.047 0.047 0 0 0.0235
Adam 1e-4 0.058 0.058 0 0 0.029

Table 4: Sub-optimal action rate for the indoor escaping example

Description North East South West

Name Learning rate SOAR SOAR SOAR SOAR Average

LKTD 1e-4 0.098 0.102 0.026 0.026 0.063
Adam 1e-2 0.134 0.135 0.005 0.005 0.070
Adam 1e-3 0.493 0.495 0 0 0.247
Adam 1e-4 0.502 0.495 0 0 0.248

Table 5 compares the coverage rates of the optimal Q-values by different algorithms. By considering
100 grid points over the entire state space, we can calculate the coverage rate of optimal Q-values.
Table 5 shows that LKTD has consistent coverage rates around 95% for all actions, while Adam
with small learning rates failed to cover over 50% of the optimal Q-values. Although Adam with a
large learning rate (1e-2) can provide a good exploration for optimal policies, however, due to its
optimization nature, it cannot provide a correct confidence coverage for the Q-value.

Table 5: Coverage rate of the optimal Q-value for the indoor escaping example

Description North East South West

Name Learning rate CR CR CR CR Average

LKTD 1e-4 0.935 0.928 0.972 0.968 0.951
Adam 1e-2 0.883 0.883 0.887 0.884 0.884
Adam 1e-3 0.635 0.634 0.314 0.316 0.475
Adam 1e-4 0.263 0.263 0.109 0.108 0.186

Remark 2 Instead of using semi-gradient, the true gradient is used in all of the indoor escaping
experiments of LTKD and Adam. Note that the semi-gradient is biased, which can lead to incorrect
stationary distribution. In order to keep the comparison subjective, the objective function for Adam
at each time t is given by

L(θ) =
1

n

n∑
i=1

(Q(si, ai; θ)− ri − γQ(s′i, a
′
i; θ))

2. (43)

B.4 HYPERPARAMETER SETTINGS FOR CLASSIC CONTROL PROBLEMS

Our experiment is based on the framework of RL Baselines3 Zoo. For Adam optimizer, the hyperpa-
rameters are provided by Zoo package. For LKTD, we set σ = 1 and 1/β = 0.01, and σθ can be

17

Under review as a conference paper at ICLR 2023

chosen suitably according to the parameter size. The DQN agents are trained using a 2-layer dense
neural network with hidden layers of size (256, 256). All the hyperparameters are shown in table 6.
Note that if the gradient step is set to -1, the agent conducts as many gradient steps as steps done in
the environment between two updates.

Table 6: Hyperparameters

Environment CartPole-v1 MountainCar-v0 LunarLander-v2 Acrobot-v1

Hyperparameters LKTD Adam LKTD Adam LKTD Adam LKTD Adam

learning rate 2.5e-5 2.3e-3 1e-4 4e-3 5e-6 6.3e-4 5e-5 6.3e-4
1/β (temperature) 0.01 - 0.01 - 0.01 - 0.01 -
σθ (prior) 5 - 5 - 20 - 5 -
σ (observation) 1 - 1 - 1 - 1 -
target update interval 1 1000 1 600 1 250 1 250
γ(discount factor) 0.99 0.98 0.99 0.99
training steps 5e4 2e5 1.2e5 1e5
batch size 64 64 64 64
learning starts 1e5 1e3 0 0
train freq 256 16 4 4
gradient steps 128 8 -1 -1
exploration fraction 0.16 0.2 0.12 0.12
exploration final eps 0.04 0.07 0.25 0.1 0.1

18

	Introduction
	Background
	Markov decision process framework
	Bayesian Formulation

	Main Results
	Linear function approximation
	Nonlinear Function Approximation

	Experiments
	Indoor escape environment
	Classical control problems

	Conclusion
	Complete proofs
	Proof of Theorem 3.1
	Lemma for Theorem 3.2
	Proof of Theorem 3.2
	Proof of Lemma 3.1

	More Numerical Results
	Softmax probabilistic policy
	State value visualization for the indoor escaping example
	Continuation of uncertainty quantification for the indoor escaping example
	Hyperparameter settings for classic control problems

