

000 001 002 003 004 005 TRIPLESUMM: ADAPTIVE TRIPLE-MODALITY FUSION 006 FOR VIDEO SUMMARIZATION 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

The exponential growth of video content highlights the importance of video summarization, a task that efficiently extracts key information from long videos. However, existing video summarization studies face inherent limitations in understanding complex, multimodal videos. This limitation stems from the fact that most existing architectures employ static or modality-agnostic fusion, which fails to account for the dynamic and frame-dependent variation in modality saliency that naturally occurs within a video. To overcome these limitations, we propose a novel architecture, **TripleSumm**, which adaptively weights and fuses the contributions of the three modalities at the frame level. Furthermore, a significant bottleneck for research into multimodal video summarization has been the lack of comprehensive benchmarks. Addressing this bottleneck, we introduce **MoSu** (Most Replayed Multimodal Video Summarization), the first large-scale benchmark that provides all three modalities. Our proposed TripleSumm demonstrates its superiority by achieving state-of-the-art performance by a large margin on four video summarization benchmarks, including MoSu.

1 INTRODUCTION

With recent advances in smart mobile devices and data communication, video content has explosively grown across various platforms such as YouTube or TikTok. At the same time, recent trend shows shifted preference towards short-form content, leading to an increased demand for excerpting the main plot of long videos through summaries. *Video summarization*, the task of extracting key segments that fully represent the content of the original video, serves to meet this demand.

Existing work on video summarization (Apostolidis et al., 2021; Son et al., 2024; Kim et al., 2025a) has primarily focused on seeking a model architecture mapping frame-level visual features to their importance scores as a summary. However, human comprehension of video is inherently a multimodal process that integrates diverse cues beyond the visual. Most existing architectures, which focus solely on the visual modality, therefore overlook complementary information present in other modalities. Fig. 1, for example, illustrates a music audition that the primary modality to understand the content varies across the video. At the point (a), the textual modality (speech) is the most informative to grasp the judge’s evaluation, while at the point (b), audio-visual cues play a more important role to enjoy the robot’s performance. At the point (c), all three modalities contribute in conjunction. Observing that the modality-specific importance significantly varies even within the same video, we are motivated to utilize multiple modalities in an adaptive manner to dynamically weight the most informative modality for a more effective video summarization.

Recognizing this, recent work has begun to utilize multimodal signals for video summarization (He et al., 2023; Li et al., 2023; Hua et al., 2025; Guo et al., 2025). However, it has been largely underexplored what is the best-suitable way to fuse multimodal signals in the context of video summarization. The core objective of summarization is not merely to predict a true label, but to contrast more important frames to less important ones. This necessitates a discriminative approach to appropriately weigh feature salience by considering two key factors: intra-modal temporal dependency, which involves comparing the same modality features across adjacent time steps, and inter-modal coherence, which involves comparing different modalities at the same time point. Despite using rich trimodal inputs, most current architectures still employ simple or static fusion mechanisms (e.g., standard self-attention or cross-attention) or prioritize a single modality, failing to dynamically focus on the most informative cue at each frame. This results in compromised performance when non-visual cues become highly descriptive.

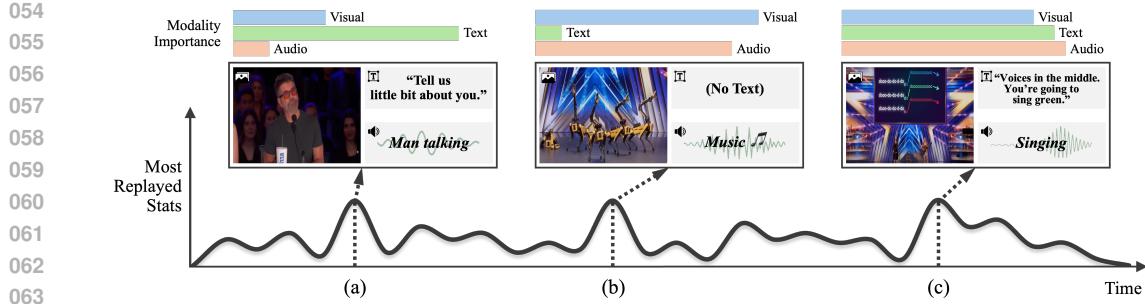


Figure 1: **Illustration of Dynamic Importance of Modalities.** Text is most salient at (a), while visual-audio are dominant at (b). At (c), all three contribute significantly. This highlights the necessity for an adaptive model that dynamically weighs saliency of each modality frame-by-frame.

In this paper, we propose **TripleSumm**, a novel video summarization model that flexibly and adaptively leverages multimodal features, while being robust in the presence of missing modalities, covering all three key aspects of a video: visual, text, and audio. Specifically, TripleSumm employs the following two novel components. First, the Multi-scale Temporal block employs a hierarchical sliding window structure with varying window sizes to effectively detect subtle temporal changes without losing the overall narrative of the video. Second, the Cross-modal Fusion block incorporates fusion tokens to explicitly learn which modality to prioritize at each moment.

In addition to the model architecture, training data has been another bottleneck for multimodal video summarization. In spite of its importance, there is no publicly available video data equipped with visual-text-audio features and importance score annotations at a sufficient scale. Existing datasets are often in a limited scale (Gygli et al., 2014; Song et al., 2015) or with a limited set of modalities (Narasimhan et al., 2022; Sul et al., 2023; Argaw et al., 2024). To address this, we introduce a large-scale video summarization dataset providing features for all three key modalities, namely, **Most Replayed Multimodal Video Summarization (MoSu)**. Composed of 52,678 in-the-wild videos and watch behavior aggregated from at least 50,000 viewers per video, this new dataset serves as a highly reliable training and evaluation set for trimodal video summarization.

Through comprehensive experiments, we verify that TripleSumm outperforms existing models by a large margin on multiple benchmarks. Notably, our method robustly generates a reasonable video summary even when one or more modalities are absent, dynamically relying on each modality depending on the content. Our qualitative analysis clearly demonstrates that the proposed method adaptively fuses multimodal information on a frame-by-frame basis.

Our main contributions can be summarized as follows:

- We propose the **TripleSumm** architecture that adaptively fuses visual, text, and audio modalities at frame level. With its temporal and modality blocks, it dynamically adjusts the importance of each modality and effectively captures the micro- and macro-level information of the video.
- We present the **MoSu**, the first large-scale video summarization dataset that provides trimodal features of each video, establishing a reliable foundation for multimodal video summarization.
- We demonstrate that TripleSumm achieves the state-of-the-art on four major video summarization benchmarks, including MoSu, while maintaining parameter efficiency.

2 RELATED WORK

Video Summarization. Early work in video summarization primarily focused on modeling temporal dependencies within the visual features, utilizing Recurrent Neural Networks (RNNs) or Long Short-term Memory (LSTM) (Zhang et al., 2016; Zhao et al., 2017; 2018; 2020). More recent models employ a self-attention mechanism to capture global, long-range dependencies (Fajtl et al., 2018; Jung et al., 2019; Zhu et al., 2020; Wang et al., 2020; Apostolidis et al., 2021; Jiang & Mu, 2022; Terbouche et al., 2023; Son et al., 2024). Additionally, some works leverage graph-based models (Park et al., 2020; Zhao et al., 2021; Zhu et al., 2022; Zhang et al., 2023), Generative Adversarial Networks (Mahasseni et al., 2017; Yuan et al., 2019; Apostolidis et al., 2019; 2020), or diffusion models (Yu et al., 2024; Shang et al., 2025; Kim et al., 2025a).

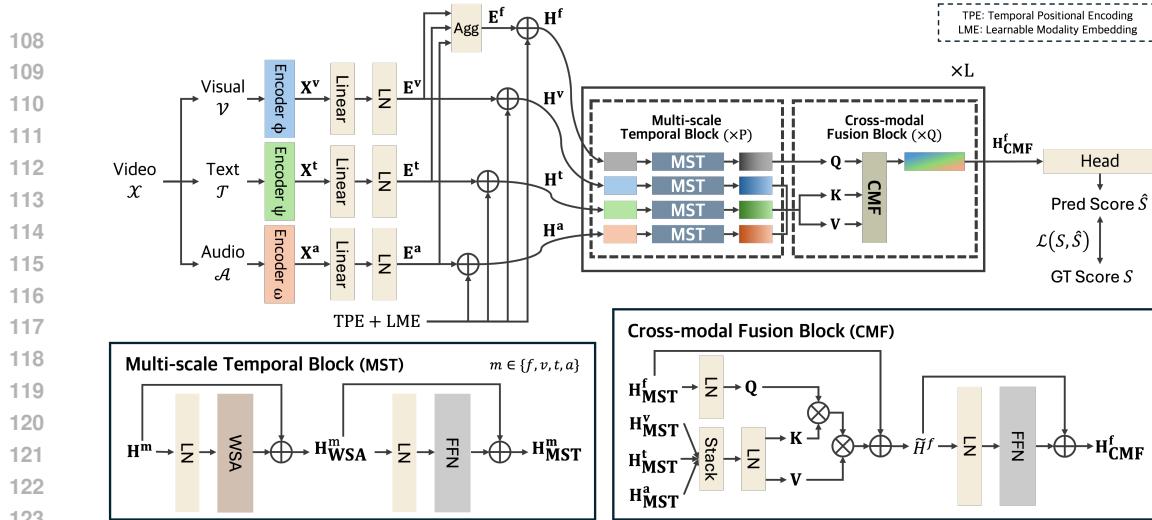


Figure 2: **Overall architecture of TripleSumm.** Visual, textual, and audio features are first encoded and linearly projected, then aggregated into fusion tokens, refined through the **Multi-scale Temporal block** (MST, lower left), and fused in the **Cross-modal Fusion block** (CMF, lower right). The fused representation is passed through a prediction head to generate frame-level importance scores.

Despite these architectural advances, relying only on visual features limits comprehensive understanding of a video. Shifting towards a multimodal approach, textual data such as transcripts or image captions have been incorporated (Narasimhan et al., 2021; Huang et al., 2021; Narasimhan et al., 2022; Hsu et al., 2023; Li et al., 2023; Argaw et al., 2024; Qiu et al., 2024), and recently CFSum (Guo et al., 2025) have pioneered to leverage visual, text, and audio signals for summarization. However, the majority of these methods still employ simple or static mechanisms (*e.g.*, standard self-attention or fixed cross-attention modules) to fuse multimodal features, without being fully adaptive. Consequently, they either treat modalities uniformly or prioritize visual information, using text as merely supplementary features (Narasimhan et al., 2021; Li et al., 2023). Due to this inherent bias and lack of dynamic weighting, these models fail to adequately summarize videos where non-visual cues (text or audio) dominate the content. Large Language Models are also employed to capture the multimodal context, leveraging their powerful reasoning capabilities (Lin et al., 2023; Hua et al., 2025; Lee et al., 2025). Meanwhile, audio remains as a largely under-utilized modality in video summarization, with a few exceptions in recent work (Badamdorj et al., 2021; Liu et al., 2022; Zhao et al., 2022; Xie et al., 2022). Our work addresses the need for a balanced utilization of all three primary modalities (visual, text, and audio) achieving comprehensive video summarization.

Video Summarization Datasets. SumMe (Gygli et al., 2014) and TVSum (Song et al., 2015) have been widely used, but they suffer from two critical limitations: extremely small scale (25 and 50 videos, respectively) and unimodal annotation based solely on visual cues, making them suboptimal for multimodal research. A large-scale benchmark Mr. HiSum (Sul et al., 2023) addresses the scale issue, but its deliberate exclusion of audio-rich categories such as music leaves the modality gap unaddressed. More recent datasets have focused on incorporating textual information. However, they often introduce new challenges, such as domain bias towards instructional videos (*e.g.*, (Argaw et al., 2024)) or live streams (*e.g.*, (He et al., 2023)), or suffer from sparse ground truths (*e.g.*, (Qiu et al., 2024)). We address the need for a large-scale, trimodal and diverse dataset by introducing the MoSu dataset, detailed in Sec. 4.

3 TRIPLESUMM: THE PROPOSED METHOD

We present our video summarization model, **TripleSumm**, depicted in Fig. 2. Beginning with the multimodal feature extraction (Sec. 3.1), we subsequently describe how we fuse the temporal and cross-modal information using our two core components, Multi-scale Temporal block and Cross-modal Fusion block (Sec. 3.2). Lastly, we describe the inference process to predict the frame-level importance scores and to generate the final summary video from them (Sec. 3.3).

162 3.1 INPUT REPRESENTATION
163

164 A raw video consists of multiple modality streams with different sampling rates. We preprocess
165 these streams to produce a set of synchronized feature sequences, each resampled to N time steps.
166 (See Sec. 5.1 for details.) At each time step $i = 1, \dots, N$, we are given multimodal signals. Under
167 our trimodal setting, we assume that we have visual $\mathcal{V} = \{\mathbf{V}_1, \dots, \mathbf{V}_N\}$, text $\mathcal{T} = \{\mathbf{T}_1, \dots, \mathbf{T}_N\}$,
168 and audio $\mathcal{A} = \{\mathbf{A}_1, \dots, \mathbf{A}_N\}$, where \mathbf{V}_i , \mathbf{T}_i , and \mathbf{A}_i are the modality-specific raw data; *e.g.*, \mathbf{V}_i is
169 a 2D RGB image. We will describe our method based on this trimodal setting, but our method itself
170 can be extended to an arbitrary set of multimodal features.

171 For each item in each modality sequence, we extract feature representations, denoted by $\mathbf{X}^{\{v,t,a\}}$,
172 employing modality-specific pre-trained encoders:

$$173 \mathbf{X}^v = \phi(\mathbf{V}) \in \mathbb{R}^{N \times D_v}, \quad \mathbf{X}^t = \psi(\mathbf{T}) \in \mathbb{R}^{N \times D_t}, \quad \mathbf{X}^a = \omega(\mathbf{A}) \in \mathbb{R}^{N \times D_a}, \quad (1)$$

175 where ϕ is an image encoder (*e.g.*, (Szegedy et al., 2015; Radford et al., 2021)), ψ is a text encoder
176 (*e.g.*, (Liu et al., 2019)), and ω is an audio encoder (*e.g.*, (Gong et al., 2021)). Each pre-trained
177 encoder produces an embedding of its own size, denoted by D_v , D_t , and D_a for visual, text, and
178 audio, respectively.

179 These modality-specific features reside in different latent spaces. To effectively fuse them in subse-
180 quent modules, we project them into a common embedding space of size D . For this, we apply a
181 linear projection (Linear) and layer normalization (LN) (Ba et al., 2016) to each modality-specific
182 features $\mathbf{X}^{\{v,t,a\}}$ to produce per-modality embeddings $\mathbf{E}^{\{v,t,a\}} \in \mathbb{R}^{N \times D}$:

$$183 \mathbf{E}^{\{v,t,a\}} = \text{LN}(\text{Linear}(\mathbf{X}^{\{v,t,a\}})). \quad (2)$$

185 We denote the embedding at time step i , which is the i -th row of $\mathbf{E}^{\{v,t,a\}}$, as $\mathbf{e}_i^{\{v,t,a\}}$. On top of
186 these per-modality embeddings, we introduce another cross-modal embedding, denoted by $\mathbf{E}^f =$
187 $\{\mathbf{e}_1^f, \mathbf{e}_2^f, \dots, \mathbf{e}_N^f\} \in \mathbb{R}^{N \times D}$, where $\mathbf{e}_i^f = \text{Agg}(\mathbf{e}_i^v, \mathbf{e}_i^t, \mathbf{e}_i^a)$. The aggregation function (Agg) can be
188 either a deterministic function (*e.g.*, average), or a learnable model (*e.g.*, multi-layer perceptrons).
189 The main motivation to add this is to avoid potential bias introduced by conventional cross-modal
190 fusion methods, *e.g.*, asymmetric using one modality as a query to attend on others. Our fused
191 embeddings \mathbf{E}^f serve as an anchor to integrate all modalities, promoting their equitable engagement.

192 Lastly, we construct the final token embeddings by adding a temporal positional encoding (TPE)
193 $\mathbf{tpe}_i \in \mathbb{R}^D$ (Vaswani et al., 2017) and a learnable modality embedding (LME) $\mathbf{lme}^{\{f,v,t,a\}} \in \mathbb{R}^D$
194 to distinguish each time step and the origin of the modality:

$$196 \mathbf{h}_i^{\{f,v,t,a\}} = \mathbf{e}_i^{\{f,v,t,a\}} + \mathbf{tpe}_i + \mathbf{lme}^{\{f,v,t,a\}}, \quad \text{for } i = 1, \dots, N. \quad (3)$$

198 In matrix form, the final input matrix stacked over all time steps is denoted by $\mathbf{H}^{\{f,v,t,a\}} \in \mathbb{R}^{N \times D}$.

200 3.2 TEMPORAL AND CROSS-MODAL REFINEMENT
201

202 The core of our proposed architecture is a hierarchical ‘refine-and-fuse’ strategy, designed to learn
203 integrated representations from the input sequences ($\mathbf{H}^{\{f,v,t,a\}}$). This is achieved by interleaving
204 two key components: Multi-scale Temporal block (MST) for temporal refinement within each
205 modality, and Cross-modal Fusion block (CMF) for inter-modal information exchange. Our final
206 model stacks L interleaved layers, where each layer is composed of P temporal blocks and Q cross-
207 modal blocks.

208 3.2.1 MULTI-SCALE TEMPORAL BLOCK
209

210 From the input sequence $\mathbf{H}^{\{f,v,t,a\}}$, the MST learns temporal patterns within each modality by
211 employing Windowed Self-Attention (WSA) (Beltagy et al., 2020; Liu et al., 2021), restricting the
212 range of self-attention for a query token $\mathbf{q}_i \in \mathbb{R}^D$ at time step i to keys and values within a local
213 window of size w centered at i . These local keys and values, denoted by $\mathbf{K}_i \in \mathbb{R}^{w \times d_k}$ and $\mathbf{V}_i \in$
214 $\mathbb{R}^{w \times d_k}$, are constructed by collecting key vectors \mathbf{k}_j and value vectors \mathbf{v}_j within a window such that
215 $j = |i - j| \leq w/2$, where $w \in \{n \in \mathbb{N} \mid 1 \leq n \leq N \text{ and } n \text{ is odd}\}$ and d_k is the dimensionality of
the key vector. Formally, the overall process of the MST is as follows:

$$\begin{aligned}
216 \quad \mathbf{h}_{\text{WSA}}^m &= \text{Attn}(\text{LN}(\mathbf{h}_i^m), \text{LN}(\mathbf{h}_{\{j:|i-j| \leq w/2\}}^m), \text{LN}(\mathbf{h}_{\{j:|i-j| \leq w/2\}}^m)) + \mathbf{h}_i^m, \\
217 \quad \mathbf{h}_{\text{MST}}^m &= \text{FFN}(\text{LN}(\mathbf{h}_{\text{WSA}}^m)) + \mathbf{h}_{\text{WSA}}^m,
\end{aligned} \tag{4}$$

219 where $m \in \{f, v, t, a\}$, $\text{Attn}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \text{softmax}(\mathbf{Q}\mathbf{K}^\top / \sqrt{d_k}) \mathbf{V}$ is the standard attention
220 (Vaswani et al., 2017), and FFN is a feed-forward network. The ‘Multi-scale’ characteristic is
221 achieved by varying the window size w at each layer, to allow the model to capture semantics
222 from local to global scales. Specifically, the initial layers employ smaller window sizes to capture
223 fine-grained local dependencies between adjacent frames. Then, later layers progressively expand
224 the windows to capture long-range dependencies across frames. WSA is applied to each modality
225 with shared parameters, enabling the model to capture general temporal patterns while keeping pa-
226 rameter usage efficient. An ablation on parameter sharing is detailed in the App. C.5. Furthermore,
227 WSA is not just crucial for the model to capture multi-granular context across the input video, it
228 is also beneficial for computational efficiency, reducing the complexity from $O(N^2)$ for standard
229 self-attention to $O(w \cdot N)$ at each layer.

230 3.2.2 CROSS-MODAL FUSION BLOCK

232 Whereas the MST focuses on refining temporal patterns within each modality, the CMF is designed
233 to model the interactions across different modalities, independently at each time step. To allow the
234 model to select the most informative modality at each time step without being biased towards any
235 particular modality, this block employs the cross-attention mechanism taking the fusion token \mathbf{h}_i^f as
236 a single query at each time step i , and the corresponding modality-specific tokens, $\mathbf{h}_i^{\{v,t,a\}}$, as the
237 keys and values. The query token then attends to this collection of three context tokens, allowing it
238 to weigh and aggregate information from the most relevant modality at that specific moment.

239 Formally, given the features $\mathbf{h}_{\text{MST},i}^{\{f,v,t,a\}}$ from the preceding temporal block at time step i , it performs

$$\tilde{\mathbf{h}}_i^f = \text{Attn}(\text{LN}(\mathbf{h}_{\text{MST},i}^f), \text{LN}(\mathbf{h}_{\text{MST},i}^{\{v,t,a\}}), \text{LN}(\mathbf{h}_{\text{MST},i}^{\{v,t,a\}})) + \mathbf{h}_{\text{MST},i}^f, \tag{5}$$

$$\mathbf{h}_{\text{CMF},i}^f = \text{FFN}(\text{LN}(\tilde{\mathbf{h}}_i^f)) + \tilde{\mathbf{h}}_i^f, \tag{6}$$

245 where $\text{Attn}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \text{softmax}(\mathbf{Q}\mathbf{K}^\top / \sqrt{d_k}) \mathbf{V}$, and d_k is the key vector size. The Layer Nor-
246 malization $\text{LN}(\cdot)$ is applied within each modality separately. The updated fused embeddings, $\mathbf{H}_{\text{CMF}}^f$,
247 are enriched with contextual information selectively drawn from all three modalities.

249 A key design principle of TripleSumm is the separation of temporal and cross-modal fusion. The
250 temporal context is modeled exclusively by the MST, allowing it to focus solely on integrating
251 modality information at each corresponding time step. On the other hand, the cross-modal fusion is
252 solely performed by the CMF, at each time step i independently. This design is not just beneficial
253 for the model to explicitly learn the two orthogonal (temporal and multimodal) patterns in the video,
254 but also allows efficient implementation by momentarily merging the batch and time dimensions,
255 enabling parallel processing across all tokens.

256 3.3 MODEL TRAINING AND INFERENCE

259 Finally, a prediction head linearly projects the refined fused features $\mathbf{H}_{\text{CMF}}^f$ to the importance score
260 $\hat{S} \in [0, 1]$ of each frame, interpreted as the probability to be included in the final video summary.
261 More details about the prediction head are described in App. A.1.

262 The model is trained to minimize the squared L2 loss between the predicted score vector $\hat{S} =$
263 $\{\hat{s}_1, \dots, \hat{s}_N\}$ and the ground-truth scores $S = \{s_1, \dots, s_N\}$. Formally, our loss is given by

$$\mathcal{L}(S, \hat{S}) = \|S - \hat{S}\|_2^2 = \|S - \text{Linear}(\mathbf{H}_{\text{CMF}}^f)\|_2^2. \tag{7}$$

267 Following established practice in video summarization (Otani et al., 2019; Son et al., 2024; Kim
268 et al., 2025a), the final summary is obtained by selecting a set of temporally coherent shots that
269 maximizes the predicted frame-level importance scores under a fixed length budget. The detailed
segmentation and selection procedure is provided in App. A.2.

270

4 MoSu DATASET

271
 272 Video summarization has been suffering from the data shortage for both quality and scale. For ex-
 273 ample, the most widely used public datasets for the last decade were SumMe (Gygli et al., 2014)
 274 and TVSum (Song et al., 2015), which consist of just 25 and 50 videos, respectively. Obviously,
 275 these are in an extremely small scale, led serious overfitting environment, but no other dataset has
 276 been available until recently due to the high labeling cost. Mr. HiSum (Sul et al., 2023) resolved this
 277 by taking the ‘Most Replayed’ statistics from YouTube as a reliable proxy for per-frame importance
 278 based on collective viewer engagement (see App. B.2 for details). However, despite this advantage,
 279 Mr. HiSum remains unsuitable for trimodal video summarization, as it provides only visual fea-
 280 tures without accompanying text or audio modalities and additionally removes audio-centric video
 281 categories, further limiting its applicability to multimodal fusion.

282 In order to reliably train and evaluate trimodal video summarization models, we introduce a new
 283 large-scale called dataset **MoSu** (Most Replayed Multimodal Video **S**ummarization), curated from
 284 YouTube-8M dataset (Abu-El-Haija et al., 2016), which provides videos with multi-label anno-
 285 tations across 3,862 classes drawn from knowledge graph entities. For annotations, we follow a
 286 similar procedure to Sul et al. (2023), collecting the ‘Most Replayed’ statistic. We construct this
 287 dataset by filtering videos that satisfy the following criteria: (1) both an audio track and an En-
 288 glish transcription are available, either originally provided or automatically generated by YouTube’s
 289 caption translation, to satisfy the trimodal condition, (2) over 50,000 views to obtain the Most Re-
 290 played statistics, and (3) at least 120 seconds long to ensure sufficiently long content for meaningful
 291 summarization.

292 **Dataset Statistics.** MoSu contains 52,678
 293 videos corresponding to nearly 4,000 hours,
 294 covering a vast range of topics with 3,406 cat-
 295 egories. The average video length in MoSu is
 296 272.3 seconds, ranging from 120 to 501 sec-
 297 onds. As compared with other video summa-
 298 rization datasets in Tab. 1, MoSu is the first
 299 large-scale dataset to provide all three modal-
 300 ties (visual, text, and audio), as opposed to pre-
 301 vious ones with visual-only (e.g., Mr. HiSum) or
 302 bimodal (e.g., MMSum).

303 **Thematic Categories.** Motivated by the finding
 304 that the complexity of video summarization significantly varies by video topics (Sul et al., 2023),
 305 we aim to analyze video summarization quality across various thematic categories on MoSu as well.
 306 Since the original 3,406 categories inherited from YouTube-8M are too fine-grained, we cluster them
 307 into 10 distinct topical groups. Specifically, we first construct a topic space by applying K-Means
 308 clustering to the SBERT embeddings (Reimers & Gurevych, 2019) of the 3,862 entity descriptions
 309 from Wikipedia. We also map each video to the same embedding space using its concatenated entity
 310 labels, and select the closest cluster centroid as its pseudo-class. See App. B.3 for details of the
 311 resulting thematic groups; App. G.2 for summarization performance across clusters, showing how
 312 they affect the ease of summarization.

313

5 EXPERIMENTS

314

5.1 EXPERIMENTAL SETTING

315 **Datasets.** Our primary evaluation is conducted on our MoSu dataset, introduced in Sec. 4. To
 316 further validate generalizability of the proposed model, we also evaluate its performance on three
 317 widely-used external datasets: a large-scale Mr. HiSum (Sul et al., 2023), and two human-annotated
 318 SumMe (Gygli et al., 2014) and TVSum (Song et al., 2015). We follow the original data split
 319 for Mr. HiSum and MoSu. For SumMe and TVSum, we employ two evaluation protocols: the
 320 traditional 5-fold cross-validation (5FCV) (Li et al., 2023; Son et al., 2024; Lee et al., 2025) and the
 321 train/validation/test (TVT) split (Kim et al., 2025a), correcting the overfitting issue of 5FCV. Details
 322 for protocols are available in App. B.5.

Dataset	Modality			Videos	Duration	Category
	Visual	Text	Audio			
SumMe	✓			25	1.1	–
TVSum	✓			50	3.5	10
Mr.HiSum	✓			31,892	1,788	3,509
TL;DW?	✓	✓		12,160	628.5	185
BLiSS	✓	✓		13,303	1,109.0	–
LfVS-P	✓	✓		250K	55,416.6	6.7K
MMSum	✓	✓		5,100	1,229.9	170
MoSu	✓	✓	✓	52,678	3,983.7	3,406

323 **Table 1: Statistics of various video summariza-
 324 tion datasets.** Total duration is reported in hours.

Method	Modality			$\tau \uparrow$	$\rho \uparrow$	mAP50 \uparrow	mAP15 \uparrow	Params \downarrow	GFLOPs \downarrow
	V	T	A						
VASNet (Fajtl et al., 2018)	✓			0.151	0.219	64.49	31.05	8.13M	1.99G
PGL-SUM (Apostolidis et al., 2021)	✓			0.151	0.218	64.97	30.63	5.31M	1.21G
CSTA (Son et al., 2024)	✓			<u>0.291</u>	<u>0.398</u>	<u>71.77</u>	<u>40.65</u>	10.56M	11.37G
A2Summ (He et al., 2023)	✓	✓		0.181	0.257	66.48	35.70	<u>2.48M</u>	1.35G
SSPVS (Li et al., 2023)	✓	✓		0.190	0.271	66.10	32.65	112.81M	43.64G
Joint-VA (Badandorj et al., 2021)	✓		✓	0.190	0.272	65.68	32.25	4.21M	1.63G
UMT (Liu et al., 2022)	✓		✓	0.239	0.334	68.83	36.73	4.66M	1.39G
CFSum (Guo et al., 2025)	✓	✓	✓	0.277	0.374	70.97	38.20	19.83M	8.52G
TripleSumm (Ours)	✓	✓	✓	0.361	0.484	75.11	45.53	1.37M	0.97G

Table 2: Comparison on MoSu. Best and second-best are **boldfaced** and underlined, respectively.

(a) Mr. HiSum				(b) SumMe				(c) TVSum					
Method	TVT			Method	TVT		5FCV		Method	TVT		5FCV	
	τ	ρ	mAP50		τ	ρ	τ	ρ		τ	ρ	τ	ρ
VASNet	0.069	0.102	58.69	25.28	VASNet	0.089	0.099	0.160	0.170	0.153	0.205	0.160	0.170
PGL-SUM	0.097	0.141	61.60	27.45	PGL-SUM	0.104	0.116	0.192	0.213	0.141	0.186	0.157	0.206
CSTA	0.128	0.185	63.38	30.42	CSTA	0.133	0.148	0.246	0.274	0.168	0.221	0.194	0.255
A2Summ	0.121	0.172	63.20	32.34	A2Summ	0.088	0.096	0.108	0.129	0.157	0.206	0.137	0.165
SSPVS	0.078	0.113	59.48	26.35	SSPVS	0.142	0.157	0.192	0.257	0.171	0.226	0.181	0.238
Joint-VA	0.161	0.231	65.88	35.23	Joint-VA	0.117	0.129	0.230	0.256	0.142	0.188	0.166	0.220
UMT	0.178	0.253	66.81	<u>35.65</u>	UMT	0.148	0.165	0.241	0.268	0.144	0.189	0.179	0.235
Ours (Visual)	0.187	0.258	67.16	35.57	Ours (Full)	0.162	0.187	0.265	0.296	0.198	0.259	0.211	0.275
Ours (Full)	0.273	0.372	71.63	41.40	Ours (MoSu)	0.172	0.192	0.282	0.314	0.200	0.262	0.217	0.282

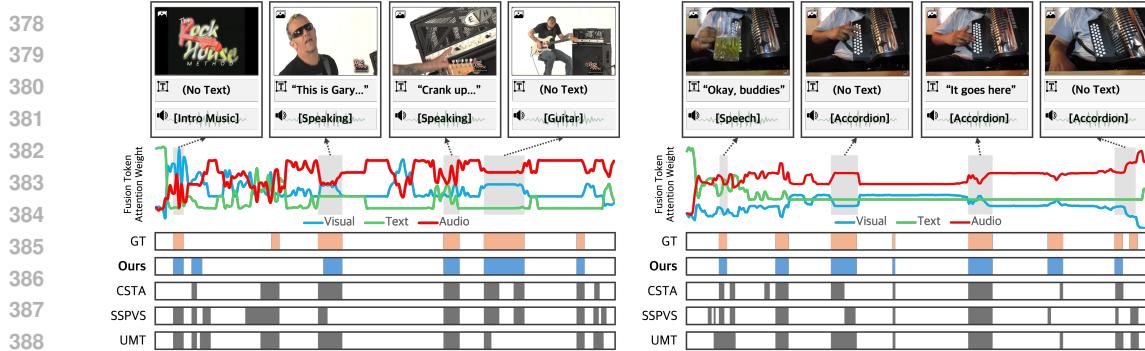
Table 3: Performance comparison on (a) Mr. HiSum, (b) SumMe, and (c) TVSum datasets. **Ours (Full)** refers to the model trained on each respective dataset, **Ours (Visual)** is trained using only visual features, and **Ours (MoSu)** represents the model pre-trained with MoSu and fine-tuned on the target dataset.

Data Preprocessing. As mentioned in Sec. 3.1, our model requires temporally aligned feature sequences of the same length. We preprocess each modality in MoSu as follows. For the visual modality, we sample frames at 1 fps and encode them using a pre-trained CLIP (Radford et al., 2021). For the text modality, we extract time-stamped transcripts from YouTube and obtain RoBERTa (Liu et al., 2019) features by taking the sentence-level [CLS] token, which is then broadcast to all frames covered by its duration; frames without transcripts are filled with a default embedding vector. For audio, we extract features at a 1-second interval using a centered-window approach: for each second t , a 10-second segment is cropped from the interval $[t - 5, t + 5]$ and encoded into a feature vector using a pre-trained Audio Spectrogram Transformer (AST) (Gong et al., 2021).

On Mr. HiSum, SumMe, and TVSum, we adopt their officially provided visual features for a fair comparison. Since these datasets do not provide text or audio streams, we generate frame-level text captions using an image captioning model, Qwen2.5-VL-7B-Instruct (Bai et al., 2025), and extract the raw audio directly from the videos. For each modality, we then follow the preprocessing procedures originally defined for each dataset. Detailed preprocessing steps are provided in App. B.4.

Implementation Details. We use $L = 2$ interleaved layers, with $P = 2$ Multi-scale Temporal blocks (thus, in total 4 temporal blocks) and $Q = 2$ Cross-modal Fusion block. To facilitate a local-to-global feature capture, we progressively reduce the attention window size (w), from the entire sequence N down to 5. More details are described in App. A.1.

Evaluation Metrics. Following Otani et al. (2019), we primarily report rank-based correlation metrics, Kendall’s τ (Kendall, 1945) and Spearman’s ρ (Zwillinger & Kokoska, 1999), on the frame-level importance prediction, being consistent with recent studies (Son et al., 2024; Terbouche et al., 2023; Kim et al., 2025a). On MoSu and Mr. HiSum datasets where the Most Replicated statistics are used as ground-truth, we further assess the highlight detection performance with mean Average Precision (mAP) following Sul et al. (2023). Following this protocol, each video is divided into 5-second segments and ranked by predicted importance. The top 50% (mAP50) and 15% (mAP15) of these segments are then evaluated as the predicted highlights against the ground-truth.



(a) Guitar demonstration where attention shifts among visual, text, and audio cues as the content changes. (b) Playing accordion video with less visual-text information, where audio cues predominate.

Figure 3: **Qualitative Examples on MoSu.** The graph in the middle visualizes the fusion token’s attention weights, illustrating how our model dynamically estimates the saliency of each modality and thus maintains strong summarization accuracy even when some modalities are missing.

5.2 QUANTITATIVE EVALUATION

Evaluation on MoSu. As shown in Tab. 2, TripleSumm achieves clear state-of-the-art performance on MoSu, surpassing all unimodal and multimodal baselines by a substantial margin across all metrics. In addition to its accuracy gains, TripleSumm is also highly efficient with only 1.3M parameters, which is significantly smaller than strong baselines such as CSTA (10.56M), and UMT (4.66M). The results demonstrate that TripleSumm delivers superior predictive performance while maintaining a markedly lighter and more efficient architecture.

Evaluation on Other Datasets. Tab. 3(a) shows that our method achieves the state-of-the-art across all metrics on Mr. HiSum. Notably, it outperforms all baselines even only with the visual features $Ours_{\text{visual}}$, validating the effectiveness of the proposed Multi-scale Temporal block in capturing salient temporal features from a single modality. In addition, our full model significantly outperforms its visual-only version, highlighting the benefit of leveraging multimodal information.

Tab. 3(b–c) indicate that our full model outperforms all baselines by a large margin when trained and evaluated on SumMe and TVSum, both of which are human-annotated datasets. This is particularly noteworthy, since the ground-truth annotations are solely based on visual information. Our model’s performance with all three modalities suggests that non-visual modalities provide crucial contextual cues for identifying key visual moments, implying that our trimodal approach learns a synergistic relationship among modalities. Lastly, our model performs even better when pre-trained on MoSu and fine-tuned on the target dataset (the last row, $Ours_{\text{MoSu}}$). This result indicates that the rich representations learned from the large-scale MoSu dataset are effectively transferable.

5.3 QUALITATIVE DEMONSTRATION

We illustrate a couple of qualitative examples of the video summary with TripleSumm in Fig. 3. As seen in the graph in the middle, showing the attention weights of the Fusion Token, TripleSumm adapts the saliency of each modality on a frame-by-frame basis as the content changes. **Through these weights, we interpret that our method has properly learned and reflected the relative importance of each modality, aligned well with human intuition, instead of exhibiting chaotic fluctuations or collapsing to a static mean.** In a guitar demonstration video in Fig. 3(a), the model relies mostly on audio signals, while correctly shifting attention to the visual modality for the opening logo (first scene) and to text for the narration (second scene). Fig. 3(b) shows an accordion performance with minimal visual changes and no text. Despite the missing modalities, it maintains strong predictions by properly attending to the audio. **This capability stems from our design using the neutral Fusion Token, not a modality-specific one, as the query, allowing the model to weigh modalities free from bias.** Overall, we observe that TripleSumm produces summaries more faithful to the ground truth than the baselines by appropriately weighting modalities at each moment. More qualitative results are available in App. I.

(a) Input Modalities							(b) Attention Window Size				
V	T	A	τ	ρ	mAP50	mAP15	Window Size (w)	τ	ρ	mAP50	mAP15
✓			0.309	0.417	72.60	41.35	Constant (Local)	0.308	0.422	72.02	40.85
	✓		0.277	0.376	70.40	38.46	Constant (Wide)	0.316	0.429	72.94	41.37
		✓	0.280	0.381	70.34	38.99	Constant (Global)	0.327	0.442	73.84	42.74
	✓	✓	0.318	0.429	72.79	42.31	Wide-to-Local	0.336	0.453	73.59	43.25
✓	✓		0.338	0.454	74.17	43.51	Local-to-Wide	0.347	0.467	74.21	44.51
✓		✓	0.342	0.461	74.24	43.74	Global-to-Local	0.354	0.474	74.75	44.71
✓	✓	✓	0.361	0.484	75.11	45.53	Local-to-Global	0.361	0.484	75.11	45.53

(c) MST & CMF Block							(d) Modality Fusion				
MST	CMF	τ	ρ	mAP50	mAP15	Method	τ	ρ	mAP50	mAP15	
	✓	0.260	0.363	70.40	38.46	Static	0.347	0.468	74.48	44.41	
✓		0.346	0.464	74.28	44.21	Global	0.352	0.472	74.67	44.71	
✓	✓	0.361	0.484	75.11	45.53	Dynamic	0.361	0.484	75.11	44.43	

Table 4: **Ablation studies on input modalities, attention window sizes, MST & CMF block and modality fusion method.**

5.4 ABLATION STUDY

We further conduct several ablation studies on MoSu, unless noted otherwise.

Ablation on Input Modalities. We evaluate our method with all possible combinations of input modalities in Tab. 4(a). Among the unimodal settings, the visual modality (V) turns out to be strongest, while the audio (A) slightly outperforms the text (T). This highlights the power of the audio stream, which continuously provides rich contextual cues, whereas transcripts are often sparse in “in-the-wild” videos, leaving many segments without semantic information. Each bimodal combination outperforms the strongest single modality, demonstrating a significant synergistic effect. Building on this synergy, the full trimodal configuration achieves the best performance, confirming that all three modalities provide unique and valuable signals for summarization.

Ablation on Window Size. We compare several hierarchical windowing options for the multi-scale temporal blocks. We denote $w \in \{3, 5, 7\}$ as Local windows and its 3-9 times larger size as Wide windows. A Global window indicates $w = N$, where N is the total number of frames in the video. Using these window sizes, we experiment with various scheduling strategies: using a constant window size, and gradually expanding or shrinking. For instance, Local-to-Global means starting with a Local window size at the first layer, and adopts gradually larger sizes in the next layers, reaching to the whole frames at the last one; *e.g.*, $[3, 9, 27, N]$ or $[5, 15, 45, N]$.

We first observe in Tab. 4(b) that relying on a constant window size yields suboptimal performance. Here, the Constant (Global) is equivalent to the standard self-attention, using all frames at all layers, but it underperforms the following mixed strategies. Among the hierarchical ones, we observe two patterns. First, narrower-to-wider strategies (Local-to-Wide/Global) tend to outperform its opposite (Wide/Global-to-Local), demonstrating that a bottom-up approach to learn fine-grained details first and establish broader context based on them is more appropriate for video summarization. Also, having a Globally-windowed layer slightly improves performance for both bottom-up and top-down strategies, at the cost of computational overhead. We draw these conclusions based on more fine-grained experiments with various choices of w , detailed in App. C.2.

Ablation on MST & CMF Blocks. We conduct an ablation study to verify the effect of the two components of our method: the Multi-scale Temporal (MST) Block and the Cross-modal Fusion (CMF) Block. The results in Tab. 4(c) clearly show that both blocks are essential to achieve the full performance of our model, observing a significant performance drop when one of them is removed. Comparing the effect of the two components, we observe a more substantial degradation when MST is removed. This highlights that the MST Block is the most critical module for accurately capturing the long-range temporal dependencies and multi-scale context required for precise frame-level importance prediction. In conclusion, the CMF block indeed provides the final multimodal boost by dynamically fusing the processed features, and the MST block forms the foundational backbone essential for leveraging the complex, long-range temporal structure of the video, confirming their respective roles in our proposed architecture.

486 **Ablation on Modality Fusion Method.** A main hypothesis of our paper is that the saliency of
 487 each modality varies frame by frame. To verify its validity, we conduct an ablation study on its
 488 design. The simplest approach to fuse trimodal tokens would be simply taking average over them
 489 with same weights (*Static*). A slightly advanced variant would learn a single scalar weight for
 490 each modality by averaging cross-modal attention scores over time (*Global*). These global weights
 491 are then uniformly applied across the video, allowing adaptation across modalities but not across
 492 frames. Finally, *Dynamic* fusion computes cross-attention scores independently at every frame and
 493 uses these scores to determine the relative contribution of modality features on a per-frame basis.

494 As shown in Tab. 4(d), the performance gradually improves as modality and temporal adaptivity
 495 are added (*Dynamic* > *Global* > *Static*). This result confirms that the model effectively leverages
 496 frame-level flexibility without collapsing to a trivial solution, validating that our *Dynamic* fusion
 497 mechanism is stable and essential for effective multimodal summarization.

499 5.5 ZERO-SHOT PERFORMANCE ON LONG-FORM VIDEOS

500 For a more rigorous evaluation of the scalability
 501 and generalization capabilities of our model,
 502 we conduct another zero-shot experiment on 50
 503 significantly longer videos unseen at training.
 504 On average, these test videos are 70.4 minutes
 505 long, covering a wide range of topics. More de-
 506 tails about this test set are provided in App. B.6.

507 All models have been trained on MoSu, and
 508 Tab. 5 reports their zero-shot inference per-
 509 formance on this long video set. The results
 510 clearly demonstrate the superior generalization
 511 of TripleSumm, particularly in the demanding
 512 long-form setting. On these extremely long
 513 videos, our model significantly outperforms all
 514 baselines on the rank-based correlation met-
 515 rics. Specifically, our TripleSumm achieves the
 516 highest scores in Kendall’s τ (0.128) and Spear-
 517 man’s ρ (0.189). This confirms that our adaptive
 518 fusion architecture generalizes far more effectively
 519 to complex, long-form content, maintaining the
 520 most accurate frame-level importance prediction
 521 even when faced with entirely new domains and semantic structures.

522 To the best of our knowledge, this is the first summarization benchmark on hours-long videos.
 523 Considering the fact that video summarization gets more challenging but meaningful on these longer
 524 videos with more complex story-telling structures, we believe that this experiment also significantly
 525 contributes to the community in advancing video summarization in real-world scenarios.

526 6 CONCLUSION

527 We primarily explore a deep integration of three modalities, visual, text, and audio, for the task
 528 of video summarization. Our proposed method, **TripleSumm**, dynamically assesses the saliency
 529 of each modality at different moments and adaptively utilizes them to produce a superior sum-
 530 mary video. To facilitate further development, we also introduce **MoSu**, a new large-scale trimodal
 531 dataset. Our experiments show that TripleSumm achieves highly competitive results on multiple
 532 benchmarks. These findings suggest the potential benefits of integrating all three modalities for a
 533 more comprehensive understanding of video content. We hope that the proposed TripleSumm model
 534 and the MoSu dataset can contribute to future advancements in multimodal video summarization.

535 While our work adheres to the standard three-step protocol (frame importance scoring, KTS, and
 536 Knapsack) for fair comparison on existing benchmarks, we believe that developing a fully end-to-
 537 end model would be a promising future direction. Exploring methods that learn to select coherent
 538 summary clips directly, rather than only learning frame-level scores, would present a valuable op-
 539 portunity to advance the field.

Method	τ	ρ	mAP50	mAP15
Random	0.000	0.000	50.59	16.18
VASNet	0.024	0.036	54.15	18.95
PGL-SUM	0.024	0.035	54.29	17.55
CSTA	0.083	0.123	58.09	22.26
A2Summ	0.042	0.062	54.04	18.66
SSPVS	0.033	0.048	53.60	18.45
Joint-VA	0.052	0.077	53.99	19.90
UMT	0.066	0.097	56.05	23.10
CFSum	0.061	0.089	56.32	20.59
TripleSumm	0.128	0.189	59.70	23.27

540 Table 5: **Zero-shot performance on long videos.**
 541 All models are trained on MoSu and tested di-
 542 rectly on long video dataset. Our proposed model
 543 demonstrates the best generalization on rank-
 544 based metrics (kTau, sRho).

540 **LARGE LANGUAGE MODEL USAGE**
541542 We acknowledge the use of a large language model (LLM) for copyediting purposes during the
543 preparation of this paper. The model was employed to enhance readability, correct grammar, and
544 refine sentence structure. All intellectual contributions, including the core ideas, methodology, and
545 analysis, are solely the work of the authors.
546547 **REFERENCES**
548549 Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Natsev, George Toderici, Balakrishnan
550 Varadarajan, and Sudheendra Vijayanarasimhan. Youtube-8M: A large-scale video classification
551 benchmark. *arXiv:1609.08675*, 2016.552 Evlampios Apostolidis, Eleni Adamantidou, Alexandros I Metsai, Vasileios Mezaris, and Ioannis
553 Patras. Unsupervised video summarization via attention-driven adversarial learning. In *International
554 Conference on multimedia modeling*, pp. 492–504. Springer, 2019.
555556 Evlampios Apostolidis, Eleni Adamantidou, Alexandros I Metsai, Vasileios Mezaris, and Ioannis
557 Patras. Ac-sum-gan: Connecting actor-critic and generative adversarial networks for unsuper-
558 vedied video summarization. *IEEE Transactions on Circuits and Systems for Video Technology*, 31
559 (8):3278–3292, 2020.560 Evlampios Apostolidis, Georgios Balaouras, Vasileios Mezaris, and Ioannis Patras. Combining
561 global and local attention with positional encoding for video summarization. In *IEEE interna-
562 tional symposium on multimedia (ISM)*, pp. 226–234. IEEE, 2021.
563564 Dawit Mureja Argaw, Seunghyun Yoon, Fabian Caba Heilbron, Hanieh Deilamsalehy, Trung Bui,
565 Zhaowen Wang, Franck Dernoncourt, and Joon Son Chung. Scaling up video summarization pre-
566 training with large language models. In *Proceedings of the IEEE/CVF Conference on Computer
567 Vision and Pattern Recognition*, pp. 8332–8341, 2024.
568569 Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. *arXiv:1607.06450*,
570 2016.571 Taivanbat Badamdjorj, Mrigank Rochan, Yang Wang, and Li Cheng. Joint visual and audio learn-
572 ing for video highlight detection. In *Proceedings of the IEEE/CVF International Conference on
573 Computer Vision*, pp. 8127–8137, 2021.574 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
575 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv:2502.13923*, 2025.
576577 Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer.
578 *arXiv:2004.05150*, 2020.579 Jiri Fajtl, Hajar Sadeghi Sokeh, Vasileios Argyriou, Dorothy Monekosso, and Paolo Remagnino.
580 Summarizing videos with attention. In *Asian conference on computer vision*, pp. 39–54. Springer,
581 2018.582 Yuan Gong, Yu-An Chung, and James Glass. Ast: Audio spectrogram transformer.
583 *arXiv:2104.01778*, 2021.
584585 Maosheng Guo, Yu Zhang, and Ting Liu. Gaussian transformer: a lightweight approach for natural
586 language inference. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 33,
587 pp. 6489–6496, 2019.588 Yaowei Guo, Jiazheng Xing, Xiaojun Hou, Shuo Xin, Juntao Jiang, Demetri Terzopoulos, Chenfanfu
589 Jiang, and Yong Liu. Cfsum: A transformer-based multi-modal video summarization framework
590 with coarse-fine fusion. In *ICASSP 2025-2025 IEEE International Conference on Acoustics,
591 Speech and Signal Processing (ICASSP)*, pp. 1–5. IEEE, 2025.592 Michael Gygli, Helmut Grabner, Hayko Riemenschneider, and Luc Van Gool. Creating summaries
593 from user videos. In *European conference on computer vision*, pp. 505–520. Springer, 2014.
594

594 Bo He, Jun Wang, Jielin Qiu, Trung Bui, Abhinav Shrivastava, and Zhaowen Wang. Align and
 595 attend: Multimodal summarization with dual contrastive losses. In *Proceedings of the IEEE/CVF*
 596 *conference on computer vision and pattern recognition*, pp. 14867–14878, 2023.

597

598 Tzu-Chun Hsu, Yi-Sheng Liao, and Chun-Rong Huang. Video summarization with spatiotemporal
 599 vision transformer. *IEEE Transactions on Image Processing*, 32:3013–3026, 2023.

600 Hang Hua, Yunlong Tang, Chenliang Xu, and Jiebo Luo. V2xum-llm: Cross-modal video sum-
 601 marization with temporal prompt instruction tuning. In *Proceedings of the AAAI Conference on*
 602 *Artificial Intelligence*, volume 39, pp. 3599–3607, 2025.

603

604 Jia-Hong Huang, Luka Murn, Marta Mrak, and Marcel Worring. Gpt2mvs: Generative pre-trained
 605 transformer-2 for multi-modal video summarization. In *Proceedings of the 2021 international*
 606 *conference on multimedia retrieval*, pp. 580–589, 2021.

607

608 Hao Jiang and Yadong Mu. Joint video summarization and moment localization by cross-task sam-
 609 ple transfer. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
 610 nition*, pp. 16388–16398, 2022.

611

612 Yunjae Jung, Donghyeon Cho, Dahun Kim, Sanghyun Woo, and In So Kweon. Discriminative
 613 feature learning for unsupervised video summarization. In *Proceedings of the AAAI Conference
 614 on artificial intelligence*, volume 33, pp. 8537–8544, 2019.

615

616 Maurice G Kendall. The treatment of ties in ranking problems. *Biometrika*, 33(3):239–251, 1945.

617

618 Kwanson Kim, Jaehoon Hahm, Sumin Kim, Jinhwan Sul, Byunghak Kim, and Joonseok Lee.
 619 Summdiff: Generative modeling of video summarization with diffusion. In *Proceedings of the*
 620 *IEEE/CVF Conference on International Conference on Computer Vision*, 2025a.

621

622 Minsun Kim, Dawon Lee, and Junyong Noh. Generating highlight videos of a user-specified length
 623 using most replayed data. In *Proceedings of the 2025 CHI Conference on Human Factors in*
 624 *Computing Systems*, pp. 1–13, 2025b.

625

626 Min Jung Lee, Dayoung Gong, and Minsu Cho. Video summarization with large language models.
 627 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 18981–18991,
 628 2025.

629

630 Haopeng Li, Qihong Ke, Mingming Gong, and Tom Drummond. Progressive video summarization
 631 via multimodal self-supervised learning. In *Proceedings of the IEEE/CVF winter conference on*
 632 *applications of computer vision*, pp. 5584–5593, 2023.

633

634 Jingyang Lin, Hang Hua, Ming Chen, Yikang Li, Jenhao Hsiao, Chiuman Ho, and Jiebo Luo.
 635 Videoxum: Cross-modal visual and textural summarization of videos. *IEEE Transactions on*
 636 *Multimedia*, 26:5548–5560, 2023.

637

638 Ye Liu, Siyuan Li, Yang Wu, Chang-Wen Chen, Ying Shan, and Xiaohu Qie. Umt: Unified multi-
 639 modal transformers for joint video moment retrieval and highlight detection. In *Proceedings of*
 640 *the IEEE/CVF conference on computer vision and pattern recognition*, pp. 3042–3051, 2022.

641

642 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
 643 Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
 644 approach. *arXiv:1907.11692*, 2019.

645

646 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 647 Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the*
 648 *IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 10012–10022, 2021.

649

650 Behrooz Mahasseni, Michael Lam, and Sinisa Todorovic. Unsupervised video summarization with
 651 adversarial lstm networks. In *Proceedings of the IEEE conference on Computer Vision and Pattern*
 652 *Recognition*, pp. 202–211, 2017.

653

654 Medhini Narasimhan, Anna Rohrbach, and Trevor Darrell. Clip-it! language-guided video summa-
 655 rization. *Advances in neural information processing systems*, 34:13988–14000, 2021.

648 Medhini Narasimhan, Arsha Nagrani, Chen Sun, Michael Rubinstein, Trevor Darrell, Anna
 649 Rohrbach, and Cordelia Schmid. Tl; dw? summarizing instructional videos with task relevance
 650 and cross-modal saliency. In *European Conference on Computer Vision*, pp. 540–557. Springer,
 651 2022.

652 Mayu Otani, Yuta Nakashima, Esa Rahtu, and Janne Heikkila. Rethinking the evaluation of video
 653 summaries. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recog-*
 654 *nition*, 2019.

655 Jungin Park, Jiyoung Lee, Ig-Jae Kim, and Kwanghoon Sohn. Sumgraph: Video summarization via
 656 recursive graph modeling. In *European Conference on Computer Vision*, pp. 647–663. Springer,
 657 2020.

658 Danila Potapov, Matthijs Douze, Zaid Harchaoui, and Cordelia Schmid. Category-specific video
 659 summarization. In *European conference on computer vision*, pp. 540–555, 2014.

660 Jielin Qiu, Jiacheng Zhu, William Han, Aditesh Kumar, Karthik Mittal, Claire Jin, Zhengyuan Yang,
 661 Linjie Li, Jianfeng Wang, Ding Zhao, et al. Mmsum: A dataset for multimodal summarization
 662 and thumbnail generation of videos. In *Proceedings of the IEEE/CVF Conference on Computer*
 663 *Vision and Pattern Recognition*, pp. 21909–21921, 2024.

664 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 665 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 666 models from natural language supervision. In *International conference on machine learning*, pp.
 667 8748–8763. PMLR, 2021.

668 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
 669 networks. *arXiv:1908.10084*, 2019.

670 Zirui Shang, Yubo Zhu, Hongxi Li, Shuo Yang, and Xinxiao Wu. Video summarization using
 671 denoising diffusion probabilistic model. In *Proceedings of the AAAI Conference on Artificial*
 672 *Intelligence*, volume 39, pp. 6776–6784, 2025.

673 Jaewon Son, Jaehun Park, and Kwangsu Kim. Csta: Cnn-based spatiotemporal attention for video
 674 summarization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 675 *Recognition*, pp. 18847–18856, 2024.

676 Yale Song, Jordi Vallmitjana, Amanda Stent, and Alejandro Jaimes. Tvsun: Summarizing web
 677 videos using titles. In *Proceedings of the IEEE conference on computer vision and pattern recog-*
 678 *nition*, 2015.

679 Jinhwan Sul, Jihoon Han, and Joonseok Lee. Mr. hisum: A large-scale dataset for video highlight
 680 detection and summarization. *Advances in Neural Information Processing Systems*, 36:40542–
 681 40555, 2023.

682 Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
 683 mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
 684 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1–9, 2015.

685 Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
 686 patiraju, Léonard Hussonot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma
 687 2: Improving open language models at a practical size. *arXiv preprint arXiv:2408.00118*, 2024.

688 Hacene Terbouche, Maryan Morel, Mariano Rodriguez, and Alice Othmani. Multi-annotation atten-
 689 tion model for video summarization. In *Proceedings of the IEEE/CVF Conference on Computer*
 690 *Vision and Pattern Recognition*, pp. 3143–3152, 2023.

691 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 692 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*
 693 *tion processing systems*, 30, 2017.

694 Junyan Wang, Yang Bai, Yang Long, Bingzhang Hu, Zhenhua Chai, Yu Guan, and Xiaolin Wei.
 695 Query twice: Dual mixture attention meta learning for video summarization. In *Proceedings of*
 696 *the 28th ACM international conference on multimedia*, pp. 4023–4031, 2020.

702 Jiehang Xie, Xuanbai Chen, Shao-Ping Lu, and Yulu Yang. A knowledge augmented and
 703 multimodal-based framework for video summarization. In *Proceedings of the 30th ACM Interna-*
 704 *tional Conference on Multimedia*, pp. 740–749, 2022.

705 Minghao Xu, Hang Wang, Bingbing Ni, Riheng Zhu, Zhenbang Sun, and Changhu Wang. Cross-
 706 category video highlight detection via set-based learning. In *Proceedings of the IEEE/CVF Inter-*
 707 *national Conference on Computer Vision*, pp. 7970–7979, 2021.

709 Qinghao Yu, Hui Yu, Ying Sun, Derui Ding, and Muwei Jian. Unsupervised video summarization
 710 based on the diffusion model of feature fusion. *IEEE Transactions on Computational Social*
 711 *Systems*, 11(5):6010–6021, 2024.

712 Li Yuan, Francis EH Tay, Ping Li, Li Zhou, and Jiashi Feng. Cycle-sum: Cycle-consistent adversar-
 713 *ial lstm networks for unsupervised video summarization*. In *Proceedings of the AAAI Conference*
 714 *on Artificial Intelligence*, volume 33, pp. 9143–9150, 2019.

716 Ke Zhang, Wei-Lun Chao, Fei Sha, and Kristen Grauman. Video summarization with long short-
 717 term memory. In *European conference on computer vision*, pp. 766–782. Springer, 2016.

718 Yunzuo Zhang, Yameng Liu, Weili Kang, and Ran Tao. Vss-net: Visual semantic self-mining net-
 719 *work for video summarization*. *IEEE Transactions on Circuits and Systems for Video Technology*,
 720 34(4):2775–2788, 2023.

722 Bin Zhao, Xuelong Li, and Xiaoqiang Lu. Hierarchical recurrent neural network for video summa-
 723 *ization*. In *Proceedings of the 25th ACM international conference on Multimedia*, pp. 863–871,
 724 2017.

725 Bin Zhao, Xuelong Li, and Xiaoqiang Lu. Hsa-rnn: Hierarchical structure-adaptive rnn for video
 726 *summarization*. In *Proceedings of the IEEE conference on computer vision and pattern recogni-*
 727 *tion*, pp. 7405–7414, 2018.

729 Bin Zhao, Xuelong Li, and Xiaoqiang Lu. Tth-rnn: Tensor-train hierarchical recurrent neural net-
 730 *work for video summarization*. *IEEE Transactions on Industrial Electronics*, 68(4):3629–3637,
 731 2020.

732 Bin Zhao, Haopeng Li, Xiaoqiang Lu, and Xuelong Li. Reconstructive sequence-graph network for
 733 *video summarization*. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(5):
 734 2793–2801, 2021.

735 Bin Zhao, Maoguo Gong, and Xuelong Li. Hierarchical multimodal transformer to summarize
 736 *videos*. *Neurocomputing*, 468:360–369, 2022.

738 Wencheng Zhu, Jiwen Lu, Jiahao Li, and Jie Zhou. Dsnet: A flexible detect-to-summarize network
 739 *for video summarization*. *IEEE Transactions on Image Processing*, 30:948–962, 2020.

740 Wencheng Zhu, Yucheng Han, Jiwen Lu, and Jie Zhou. Relational reasoning over spatial-temporal
 741 *graphs for video summarization*. *IEEE Transactions on Image Processing*, 31:3017–3031, 2022.

743 Daniel Zwillinger and Stephen Kokoska. *CRC standard probability and statistics tables and formu-*
 744 *lae*. Crc Press, 1999.

745

746

747

748

749

750

751

752

753

754

755

APPENDIX

A IMPLEMENTATION DETAILS

A.1 EXPERIMENTAL SETUP

The model’s hyperparameters are detailed in Tab. I. The architecture consists of 2 interleaved layers with 2 multi-scale temporal blocks and 2 cross-modal fusion blocks. To capture features from local-to-global scales, the attention window size w is progressively increased across these blocks, from local self-attention (a window size of 5) up to 15, 45, and N , where N is the input sequence length. We use the Swish-Gated Linear Unit (SwiGLU) (Team et al., 2024) for the feed-forward network (FFN) layers. The final score prediction head comprises a sequence of a linear projection, a GeLU activation, layer normalization, another linear projection, and a final sigmoid activation. The hidden dimension within this head is set to 192. Architectural parameters include an embedding dimension (D) of 128. The model was trained for 100 epochs using the AdamW optimizer. The learning rate was initialized at 5×10^{-4} and adjusted via a MultiplicativeLR scheduler. All experiments were conducted on a single NVIDIA RTX A6000.

Category	Hyperparameter	Value
<i>Model Architecture</i>	Embedding Dimension (D)	128
	Number of multi-scale temporal block (P)	2
	Number of cross-modal fusion block (Q)	2
	Number of interleaved block (L)	2
	Number of attention heads	4
	Hidden dimension of prediction head	192
<i>Training Details</i>	Epoch	100
	Batch Size	32
	Dropout rate	0.1
	Initial Learning Rate	5×10^{-4}

Table I: **Hyperparameters for the proposed model.**

A.2 SUMMARY GENERATION PROCEDURE

To construct the final summary from the predicted per-frame importance scores \hat{S} , we follow the standard pipeline used in prior work (Son et al., 2024; Kim et al., 2025a). Each input video is first partitioned into temporally coherent shots using Kernel Temporal Segmentation (KTS) (Potapov et al., 2014; Zhang et al., 2016). The importance score of each shot is then computed as the mean of the predicted frame-level scores within that shot. Next, we select an optimal subset of shots that maximizes the total shot score while satisfying a predefined length budget (e.g., 15% of the original video duration); this selection is formulated as a 0/1 knapsack problem with shot length as the weight and shot score as the value. Finally, the chosen shots are concatenated in their original temporal order to produce the final summary video.

B DATASETS DETAILS

B.1 DETAILED STATISTICS OF THE MoSu DATASET

We provide more detailed characteristics of the MoSu dataset, introduced in Sec. 4. First, Fig. I shows the distribution of video duration in this dataset, ranging from 120 to 500 seconds. Tab. II offers statistics of the video duration, textual tokens, and audio tracks. As we filter out all videos without a valid audio track (e.g. a scenario that can occur if a creator mutes or removes the audio), all videos in this dataset have audio information, making it suitable for triple modality fusion.

Statistic Category	Value
Duration Statistics	
Avg. Duration	272.25 sec
Std. Deviation	102.43 sec
Min Duration	120.00 sec
Max Duration	501.00 sec
Textual Statistics	
Total # of Tokens	32.6M
Avg. # of Tokens per Video	619.1
Transcript Density	61.84%
Audio Statistics	
Audio Availability	100%

Table II: **Detailed Statistics of the MoSu Dataset.** Transcript density means the average ratio of video duration with valid text.

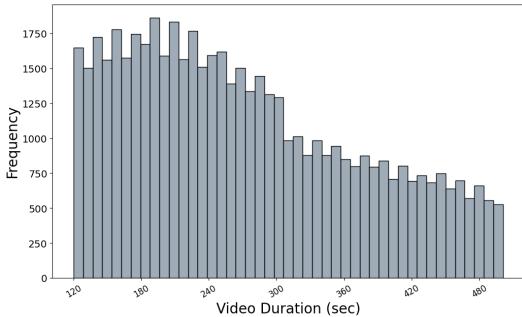


Figure I: **Video Durations in MoSu Dataset.**

B.2 GROUND-TRUTH PREPROCESSING

The ‘Most Replayed’ statistic from YouTube serves as the ground-truth for identifying key moments in a video. It is a normalized frequency of replay counts collected from tens of thousands of views, provided as a sequence of 100 scores corresponding to uniformly segmented clips. Following the precedent set by Sul et al. (2023); Kim et al. (2025b), we exclusively use videos with over 50,000 views to ensure statistical reliability.

Handling YouTube Most Replayed Bias. A common artifact was observed in these statistics: an anomalous spike in replay scores within the initial few seconds of a video, often occurring before the primary content begins. This phenomenon, referred to as YouTube Most Replayed Bias, is likely attributable to viewers’ heightened attention or initial buffering adjustments at the start of a video. If left unaddressed, this bias could mislead a model into associating high importance with temporal position rather than semantic content. To mitigate this effect and ensure the model learns content-based importance, the ground-truth scores corresponding to the first five seconds of each video were zeroed out.

B.3 THEMATIC CATEGORY CLUSTERING

Tab. III shows the number of videos and the top five most frequent entity labels for each identified cluster. A high degree of semantic coherence is observed between the top entities and assigned cluster topics, which validates the effectiveness of the clustering approach. The dataset was partitioned into train, validation, and test sets by applying a stratified split with an 8:1:1 ratio to each cluster. This ensures that the proportional representation of each cluster is preserved across all data subsets.

B.4 DATA PREPROCESSING DETAILS

To ensure reproducibility, we provide the detailed settings for our feature extraction pipeline, which processes all videos into temporally aligned feature sequences at a 1-second interval.

Visual Features. For our MoSu dataset, we sampled one frame per second and used the official pre-trained CLIP model ¹ to extract a 768-dimensional feature vector for each frame. For the external benchmarks, to ensure a fair comparison, we directly utilized their officially provided visual features: Inception-v3 features for Mr. HiSum, and GoogLeNet features for SumMe and TVSum.

Text Features. The text features were derived from two sources: YouTube transcripts for the MoSu dataset and generated captions for external benchmarks. For the MoSu dataset, time-stamped transcripts provided by YouTube were utilized. English transcripts were used directly, while non-English ones were translated via YouTube’s automated translation API. Videos without any transcripts were excluded. For external benchmarks, a caption was generated for each frame using a Vision-Language

¹[openai/clip-vit-large-patch14](https://openai.com/research/clip)

864	Cluster	Videos	Top 5 Most Frequent Entities
865	Video Games	11,578	Game, Video game, Action-adventure game, Call of Duty, Strategy video game
866	Musical Instruments	7,647	Guitar, String instrument, Musician, Acoustic guitar, Electric guitar
867	Fashion & Materials	5,588	Cosmetics, Hair, Hairstyle, Fashion, Art
868	Automobiles	5,207	Vehicle, Car, Engine, Driving, Sports car
869	Electronic Devices	4,291	Gadget, Mobile phone, Smartphone, Samsung Galaxy, IPhone
870	Food & Cooking	3,919	Food, Recipe, Cooking, Dessert, Dish (Food)
871	Sports	3,784	Game, Weight training, Basketball, Gym, Basketball moves
872	Animation & Comics	3,752	Cartoon, Comedy (drama), Animation, Art, Comedian
873	Vehicles & Transportation	3,731	Vehicle, Motorcycle, Cycling, Bicycle, Motorcycling
874	Animals	3,181	Animal, Pet, Dog, Fishing, Fish

Table III: Cluster sizes and their top 5 most frequent entities.

model². All acquired text was then subjected to a unified encoding process. First, non-verbal annotations (e.g., [Music], [Applause]) were removed. Each sentence was subsequently encoded into a 768-dimensional feature vector using the [CLS] token embedding from a pre-trained RoBERTa model³. This vector was then broadcasted across all 1-second timestamps spanned by its duration. Timestamps with no associated text were assigned a default vector, precomputed by passing a <pad> token through the encoder.

Audio Features. To process the audio data, we extracted a feature vector for each second of the audio stream. This is achieved using a centered window approach designed to capture sufficient semantic context and match the model’s standard input size. Specifically, for each second t , a 10-second segment is extracted from the symmetric interval $[t - 5, t + 5]$. This bidirectional windowing ensures that the representation for time t is informed by both preceding and succeeding events. These segments are subsequently encoded into a fixed-size feature vector by utilizing the output embedding of the [CLS] token from a pre-trained Audio Spectrogram Transformer (AST) model⁴. This process results in a sequence of contextualized representations for the entire audio stream.

B.5 DATA SPLIT IN SUMME AND TVSUM

For completeness and reproducibility, we provide detailed descriptions of the two evaluation protocols used in the main paper, together with the full benchmark results.

Five-fold Cross-Validation (5FCV). Following standard practice in video summarization, each dataset is randomly partitioned into five equal folds at the video level. For each fold, we train on the remaining four folds and test on the held-out fold, averaging results across all five folds. While this protocol enables direct comparison with most existing methods, it lacks a separate validation set. This absence can lead to overfitting because hyperparameter tuning and early stopping decisions are effectively made based on test performance.

Fixed Train / Validation / Test Split (TVT). To address the overfitting concerns inherent in 5FCV, we also adopt the fixed split protocol proposed by Kim et al. (2025a). Videos are divided into approximately 6:2:2 for train/validation/test splits, with the same partition used consistently across all experiments. The validation set is used for hyperparameter tuning and early stopping, ensuring that the test set remains completely unseen during model development. This protocol provides a more rigorous evaluation of generalization capability.

²Qwen/Qwen2-VL-7B-Instruct

³FacebookAI/roberta-base

⁴MIT/ast-finetuned-audioset-10-10-0.4593

918 **B.6 LONG VIDEO TEST SET**
919

920 In order to evaluate the video summarization models in a more realistic and challenging setting, we
921 collect a dedicated evaluation set with significantly longer videos than any other public datasets for
922 video summarization. Traditional video summarization benchmarks like SumMe (Gygli et al., 2014)
923 and TVSum (Song et al., 2015) include videos with a duration of 2-5 minutes on average. Recent
924 datasets like LFVS-P (Argaw et al., 2024) and MMSum (Qiu et al., 2024) have increased it to 13-14
925 minutes on average, as shown in Tab. 1. However, these datasets are still far from long videos in the
926 real-world, e.g., movies or documentaries that are hours-long.
927

928 We collected 50 diverse, long-form videos curated to challenge models with domains not present in
929 the MoSu training set. While MoSu covers a wide range of categories (e.g., Video Games, Fashion,
930 Animals), this dataset features complex narrative structures and specialized content. For example,
931 it includes domains such as full-length films and documentaries, professional technical tutorials,
932 full-length sports matches and multilingual talk show. Ground truth for these videos have been
933 obtained using the same ‘Most Replayed’ scores, same as MoSu. Key statistics of this new test set
934 are summarized in Tab. IV. Notably, the average video duration is 70.4 minutes, 10-20 times longer
935 than the training videos from MoSu.
936

937	Statistic	938	Duration (sec)
939	Avgverage Duration	940	4224.0
941	Stdandard Deviation	942	1263.6
943	Min Duration	944	2413.0
945	Max Duration	946	7207.0

947 Table IV: **Statistics for the long video dataset.**948 **C ARCHITECTURE ABLATION STUDY**
949950 **C.1 MODEL LAYER**

951	952 Number of Layers			$\tau \uparrow$	$\rho \uparrow$	mAP50 \uparrow	mAP15 \uparrow	Params \downarrow
	953 Overall (L)	954 MST (P)	955 CMF (Q)					
956 8	957 8	958 8	959 0.337	960 0.454	961 73.78	962 43.31	963 17.15M	964
965 4	966 4	967 4	968 0.356	969 0.477	970 74.77	971 44.44	972 4.53M	973
974 2	975 2	976 2	977 0.361	978 0.484	979 75.11	980 45.53	981 1.37M	982
983 2	984 2	985 1	986 0.342	987 0.462	988 74.06	989 44.08	990 1.11M	991
992 2	993 1	994 2	995 0.349	996 0.472	997 74.79	998 44.44	999 1.11M	999
999 2	999 1	999 1	999 0.350	999 0.473	999 74.77	999 44.51	999 0.85M	999
999 1	999 1	999 1	999 0.325	999 0.442	999 73.80	999 42.73	999 0.58M	999

999 Table V: **Ablation study on the number of model layers.** Overall denotes the total number of
999 layers, while MST and CMF refer to the Multi-Scale Temporal block and Cross-Modal Fusion block,
999 respectively.

999 To investigate the influence of network depth, we vary both the total number of layers and the
999 allocation of layers between the Multi-scale Temporal block (MST) and the Cross-modal Fusion
999 block (CMF), as reported in Tab. V. Increasing the number of CMF layers provides no additional
999 benefit and results in a slight decline in overall performance across all evaluation metrics, whereas
999 decreasing the MST depth consistently degrades performance. These results indicate that temporal
999 modeling requires a moderately deep MST for effective representation, while a single fusion layer
999 is sufficient for cross-modal integration.

999 **C.2 WINDOW SIZE**

999 To analyze the impact of the temporal receptive field on summarization performance, we experiment
999 with various window size configurations for the window-based self-attention mechanism, as shown

Window Size (w)	$\tau \uparrow$	$\rho \uparrow$	mAP50 \uparrow	mAP15 \uparrow
Baselines				
Standard SA	0.327	0.442	73.84	42.74
Fixed Window				
5, 5, 5, 5	0.308	0.422	72.02	40.85
15, 15, 15, 15	0.327	0.441	73.02	41.95
45, 45, 45, 45	0.333	0.447	73.34	43.21
Global-to-Local				
$N, 27, 9, 3$	0.353	0.473	74.62	44.20
$N, 45, 15, 5$	0.354	0.474	74.75	44.71
$N, 63, 21, 7$	0.358	0.479	74.92	44.63
Local-to-Global				
3, 9, 27, N	0.356	0.479	74.97	45.03
5, 15, 45, N	0.361	0.484	75.11	45.53
7, 21, 63, N	0.359	0.480	75.07	45.03

Table VI: **Ablation study on different window size configurations.** N denotes the full sequence length (global attention).

in Tab. VI. Specifically, we compare fixed window sizes and hierarchical configurations (Global-to-Local and Local-to-Global). The results demonstrate that the Local-to-Global strategy, specifically the sequence of $[5, 15, 45, N]$, yields the best performance across all metrics. This configuration progressively expands the receptive field from the lower to higher layers, allowing the model to capture fine-grained local temporal dynamics in the early stages and integrating global context in the later stages. Conversely, fixed small windows fail to capture long-range dependencies, while starting with global attention (Global-to-Local) appears less effective at preserving essential local details. These findings confirm that a hierarchically expanding window structure is optimal for modeling the multi-scale nature of video content.

C.3 LEARNABLE WINDOW

Window Size (w)	$\tau \uparrow$	$\rho \uparrow$	mAP50 \uparrow	mAP15 \uparrow
Standard SA	0.327	0.442	73.84	42.74
+ Learnable	0.329 (+0.002)	0.446 (+0.004)	74.04 (+0.20)	42.94 (+0.20)
Global-to-Local	0.358	0.479	74.92	44.63
+ Learnable	0.359 (+0.005)	0.479 (+0.005)	75.00 (+0.25)	44.89 (+0.18)
Local-to-Global	0.361	0.484	75.11	45.53
+ Learnable	0.362 (+0.001)	0.482 (-0.002)	75.24 (+0.13)	45.08 (-0.45)

Table VII: **Effect of Learnable Gaussian modulation on different attention strategies.**

Ideally, it would be the best to adaptively choose the set of window sizes from the data. However, learning these from scratch was extremely unstable from our initial experiments, probably due to the excessive degree of freedom. Instead, we adopt a learnable window configuration based on a Gaussian-modulated self-attention mechanism, conceptually similar to (Guo et al., 2019), initializing the model with a pre-trained one with fixed window sizes. The core idea is to set the parameters of the Gaussian distribution (including the standard deviation σ) as learnable values, allowing the model to adaptively adjust the width (or scale) of the receptive field at each layer. Specifically, by modulating the attention scores with the Gaussian mask $\mathbf{G}_{i,j}$, the parameter σ directly controls the decay rate of attention weights with respect to the temporal distance $|i - j|$. Mathematically, a smaller σ causes the exponential term to vanish rapidly for distant frames, effectively enforcing locality, whereas a larger σ yields a flatter distribution, allowing the model to capture global context.

As shown in Tab. VII, this adaptive mechanism does not yield substantial difference. It offers minor improvements on Standard SA and Global-to-Local architectures, while its effect is negligible for Local-to-Global strategy, with some metrics even degrading. This suggests that our manually

1026 designed Local-to-Global structure is already highly effective at capturing the necessary multi-scale
 1027 temporal dependencies. The additional complexity of learning the receptive field variance does not
 1028 offer a tangible benefit over our carefully tuned fixed windows.
 1029

1030 C.4 EMBEDDING DIMENSION

<i>D</i>	$\tau \uparrow$	$\rho \uparrow$	mAP50 \uparrow	mAP15 \uparrow	Params \downarrow	GFLOPs \downarrow
768	0.244	0.336	68.64	35.61	39.71M	31.77G
512	0.323	0.436	72.79	41.95	18.07M	14.25G
384	0.354	0.476	74.83	44.29	10.42M	8.10G
256	0.357	0.479	74.93	45.21	4.85M	3.67G
192	0.360	0.483	74.98	44.95	2.85M	2.10G
128	0.361	0.484	75.11	45.53	1.37M	0.97G
96	0.358	0.479	74.95	44.91	0.84M	0.57G

1040 Table VIII: **Ablation study on different embedding dimensions.** *D* denotes the embedding dimension.
 1041
 1042

1043 We further investigate the effect of the embedding dimension *D* on both model efficiency and sum-
 1044 marization accuracy. As presented in Tab. VIII, we observe that the model performs best around
 1045 *D* = 128 to 192. The performance slightly degrades up to *D* = 384, and an even larger *D* sub-
 1046 stantially overfits the model. Even at an extremely low dimension of *D* = 96, the model maintains
 1047 competitive performance, demonstrating the robustness and compactness of our feature represen-
 1048 tation. Based on these results, we select *D* = 128 as the optimal setting, striking a good balance
 1049 between a lightweight architecture and high-quality summarization.
 1050

1051 C.5 SHARED PARAMETERS

Setting	$\tau \uparrow$	$\rho \uparrow$	mAP50 \uparrow	mAP15 \uparrow	Params \downarrow
w/o Shared Parameters	0.352	0.472	74.62	44.37	2.95M
w/ Shared Parameters	0.361	0.484	75.11	45.53	1.37M

1057 Table IX: **Effect of shared parameters on performance.**
 1058

1059 To evaluate the impact of parameter sharing in the Multi-scale Temporal block, we perform an
 1060 ablation study (Tab. IX). The w/o Shared Parameters configuration assigns an independent temporal
 1061 block to each modality, whereas the w/ Shared Parameters configuration employs a single block
 1062 shared across visual, audio, and textual streams.
 1063

1064 Sharing parameters reduces the number of learnable weights from 2.95 M to 1.37 M, nearly a three-
 1065 fold decrease, yet yields consistently higher scores on all evaluation metrics. This result indicates
 1066 that parameter sharing enables the temporal block to capture multi-scale patterns common to differ-
 1067 ent modalities. Training this shared block on all modalities simultaneously also exposes it to roughly
 1068 four times as many training sequences as an independent block for each modality. The combination
 1069 of greater data exposure and the inherent ability of the multi-scale temporal structure to model both
 1070 long- and short-range dynamics provides a clear explanation for the superior performance of the
 1071 shared-parameter design, despite its substantially smaller parameter count.
 1072

1073 C.6 FUSION TOKENS

1074 We explore three ways to aggregate trimodal features ($\mathbf{e}_i^v, \mathbf{e}_i^t, \mathbf{e}_i^a$) into the fusion token \mathbf{e}_i^f : 1) a
 1075 visual-centric baseline, taking only the visual feature ($\mathbf{e}_i^f = \mathbf{e}_i^v$; *No Fusion*), 2) treating the fusion
 1076 token itself as a learnable parameter ($\mathbf{e}_i^f \in \theta^D$; *Learnable*) and 3) a simple average over the visual,
 1077 textual, and audio features ($\mathbf{e}_i^f = (\mathbf{e}_i^v, \mathbf{e}_i^t, \mathbf{e}_i^a)/3$; *Average*).
 1078

1079 Surprisingly, Tab. 4(d) concludes that the simple Average initialization yields the highest perfor-
 1080 mance. The No Fusion baseline, relying mainly on visual information, may be vulnerable when

1080 non-visual cues such as speech or ambient sound dominate or when certain modalities are missing.
 1081 The Average, assigning equal contribution to all modalities, is simple but effective to balance all
 1082 modalities to serve as a query.
 1083

Method	$\tau \uparrow$	$\rho \uparrow$	mAP50 \uparrow	mAP15 \uparrow
No Fusion	0.346	0.464	74.35	44.58
Learnable	0.353	0.474	74.79	44.83
Average	0.361	0.484	75.11	45.53

1088
1089 Table X: **Ablation study on fusion token aggregation.**
1090
10911092 **D COMPUTATIONAL COST ANALYSIS**
1093

Method	$\tau \uparrow$	$\rho \uparrow$	Params \downarrow	GFLOPs \downarrow	Inference Time \downarrow
VASNet	0.151	0.219	8.31M	1.99G	7.36ms
PGL-SUM	0.151	0.218	5.31M	<u>1.21G</u>	13.55ms
CSTA	<u>0.291</u>	<u>0.398</u>	10.56M	11.37G	9.48ms
A2Summ	0.181	0.257	<u>2.48M</u>	1.35G	44.29ms
SSPVS	0.190	0.271	112.81M	43.64G	14.27ms
Joint-VA	0.190	0.272	4.21M	1.63G	2.58ms
UMT	0.239	0.334	4.66M	1.39G	4.94ms
CFSum	0.277	0.374	19.83M	8.52G	3.87ms
TripleSumm	0.361	0.484	1.37M	0.97G	2.81ms

1104
1105 Table XI: **Comparison of computational cost and performance.** We report rank correlation scores
1106 (τ , ρ), model size (Params), inference cost (GFLOPs) and inference time to evaluate the trade-off
1107 between efficiency and accuracy.
1108

1109 We compare TripleSumm with other methods in terms of computational complexity and inference
 1110 speed to validate its suitability for real-world applications. Tab. XI reports the summarization accu-
 1111 racy (τ and ρ), number of learnable parameters (Params), GFLOPs and inference time of competing
 1112 models. TripleSumm sets a new state-of-the-art in efficiency, requiring only 1.37M learnable param-
 1113 eters and 0.97 GFLOPs, which is significantly lower than all other baselines. Despite its lightweight,
 1114 our model outperforms all baselines by a large margin in correlation metrics ($\tau = 0.361$, $\rho = 0.484$).
 1115 Furthermore, TripleSumm achieves a remarkably fast inference time of 2.81ms, making it compara-
 1116 ble to the fastest method (Joint-VA) while delivering superior summarization quality. This analysis
 1117 confirms that TripleSumm successfully breaks the trade-off between performance and efficiency,
 1118 offering a highly scalable solution for video summarization.
 1119

1120 **E ADDITIONAL ANALYSIS ON ADAPTIVE LEARNING DYNAMICS**
11211122 **E.1 ABLATION ON THE LEARNED MODALITY SALIENCY**

1123 To verify if our model effectively assigns attention weights to the truly important modalities at each
 1124 frame, we conduct another ablation study on the MoSu test set. At inference, we utilize the attention
 1125 weights assigned by the Fusion Token to the three modalities (Visual, Text, and Audio) at every
 1126 frame. We then rank them in the order of weights: highest (Rank 1), second-highest (Rank 2),
 1127 and third-highest attention weights (Rank 3), respectively, at each time step. Using these ranks, we
 1128 selectively take only a subset of modalities (e.g., “Rank 1 only” or “Rank 1 + 2”).
 1129

1130 As shown in Tab. XII, the full TripleSumm model, which always utilizes all modalities, achieves the
 1131 best performance across all metrics, confirming that the weighted contribution of all three modalities
 1132 is the optimal strategy. As expected, the performance gradually degrades as the model is forced to
 1133 ignore more highly-weighted modalities, showing worst performance when restricted to the least-
 1134 important modality (“Rank 3 only”). This demonstrates that the attention mechanism successfully
 1135 suppresses noise and prioritizes informative cues. The substantial performance improvement from

“Rank 1 only” to “Rank 1 + 2” validates that the second-most important modality provides crucial complementary information. In conclusion, this ablation study confirms that the Fusion Token’s attention mechanism successfully learns the frame-dependent saliency of each modality, leading to the superior performance of TripleSumm.

1138

1139

Method	$\tau \uparrow$	$\rho \uparrow$	mAP50 \uparrow	mAP15 \uparrow
Rank 3 only	0.068	0.099	59.83	26.31
Rank 2 only	0.146	0.206	63.73	31.10
Rank 2 + 3	0.168	0.232	64.45	31.92
Rank 1 only	0.206	0.285	66.48	34.39
Rank 1 + 2	0.283	0.385	<u>70.67</u>	<u>39.80</u>
TripleSumm (Ours)	0.361	0.484	75.11	45.53

1146

1147 Table XII: **Ablation on dropping modality features based on estimated saliency.**

1148

1149

1150

1151

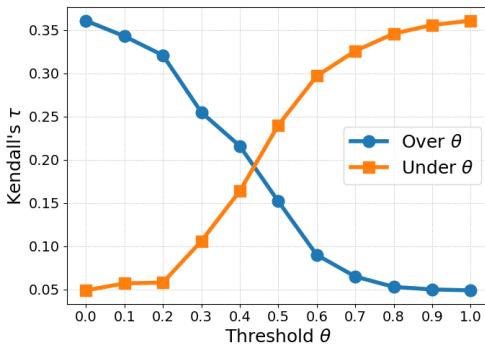
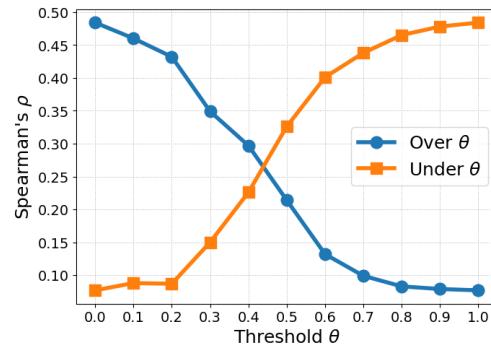
E.2 ANALYSIS OF ATTENTION WEIGHT DISTRIBUTION

1152

1153 To investigate the distribution of the attention weights learned by the Fusion Token, we conduct
 1154 another ablation study similar to the above (App. E.1), but using a specific threshold θ instead of
 1155 relative importance. This experiment is designed to assess whether the learned weights are heavily
 1156 concentrated on a few dominant modalities or if they are distributed more broadly across the input
 1157 features.

1158 As depicted in Fig. II, the analysis utilized two filtering strategies. “Over θ ” retains only the weights
 1159 $\geq \theta$ and sets others to zero), while “Under θ ” retains only the weights $\leq \theta$ and sets others to zero).
 1160 The performance metrics, Kendall’s τ and Spearman’s ρ , exhibit a remarkably smooth and linear
 1161 inverse relationship as the threshold θ is varied from 0.0 to 1.0. This linearity suggests that the
 1162 attention weights are not concentrated on a small, fixed subset of features. If the weights are sparse,
 1163 we would expect to see sharp, non-linear changes in performance. Instead, the gradual degradation
 1164 of “Over θ ” performance and the corresponding gradual improvement of “Under θ ” performance (as
 1165 θ increases and includes more subtle weights) indicate that the Fusion Token distributes its attention
 1166 weights broadly and subtly. This broad distribution confirms that the model captures complementary
 1167 information from a wide range of features and modalities, validating that TripleSumm effectively
 1168 utilizes distributed saliency rather than relying on a single dominant cue.

1169

(a) Kendall’s τ with threshold θ (b) Spearman’s ρ with threshold θ

1182

1183

1184

1185

1186

1187

1188 Figure II: **Performance evaluation by thresholding modality attention weights.** The figure illus-
 1189 trates the model performance, measured by (a) Kendall’s τ and (b) Spearman’s ρ , when a threshold
 1190 θ is applied to the Fusion Token’s learned modality attention weights. The **Over θ** line shows the
 1191 performance when only weights $\geq \theta$ are retained, while the **Under θ** line shows performance when
 1192 only weights $\leq \theta$ are retained.

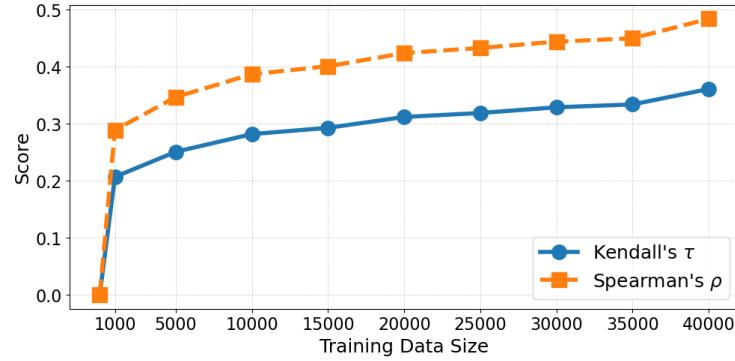
1188 F FULL RESULTS OF EXTERNAL DATASET
11891190 F.1 TVSUM AND SUMME
1191

1193 Method	1194 SumMe		1195 TVSum	
	1196 $\tau \uparrow$	1197 $\rho \uparrow$	1198 $\tau \uparrow$	1199 $\rho \uparrow$
1200 Random	0.000	0.000	0.000	0.000
1201 Human	0.205	0.213	0.177	0.204
1202 SUM-GAN(Mahasseni et al., 2017)	0.049	0.066	0.024	0.031
1203 VASNet(Fajtl et al., 2018)	0.160	0.170	0.160	0.170
1204 DSNet-AF(Zhu et al., 2020)	0.037	0.046	0.113	0.138
1205 DSNet-AB(Zhu et al., 2020)	0.051	0.059	0.108	0.129
1206 AC-SUM-GAN(Apostolidis et al., 2020)	0.102	0.088	0.031	0.041
1207 DMASum(Wang et al., 2020)	0.063	0.089	0.203	0.267
1208 CLIP-It(Narasimhan et al., 2021)	-	-	0.108	0.147
1209 PGL-SUM(Apostolidis et al., 2021)	0.192	0.213	0.157	0.206
1210 UMT(Liu et al., 2022)	0.241	0.268	0.179	0.235
1211 iPTNet(Jiang & Mu, 2022)	0.101	0.119	0.134	0.163
1212 A2Summ(He et al., 2023)	0.108	0.129	0.137	0.165
1213 AAAM(Terbouche et al., 2023)	-	-	0.169	0.223
1214 MAAM(Terbouche et al., 2023)	-	-	0.179	0.236
1215 VSS-Net(Zhang et al., 2023)	-	-	0.190	0.249
1216 Joint-VA(Badamdorj et al., 2021)	0.230	0.256	0.166	0.220
1217 SSPVS(Li et al., 2023)	0.192	0.257	0.181	0.238
1218 CSTA(Son et al., 2024)	0.246	0.274	0.194	0.255
1219 LLMVS(Lee et al., 2025)	0.253	0.282	0.211	0.275
1220 SummDiff(Kim et al., 2025a)	0.256	0.285	0.195	0.255
1221 Ours_(Full)	0.265	0.296	0.211	0.275
1222 Ours_(MoSu)	0.282	0.314	0.217	0.282

1216 Table XIII: This table presents a performance comparison of various models on the SumMe
1217 and TVSum datasets. Results are reported under the 5-Fold Cross-Validation (5FCV) protocol.1218 Tab. XIII presents the performance comparison on the SumMe and TVSum datasets under the 5-Fold
1219 Cross-Validation (5FCV) protocol. These results are included primarily to ensure comparability with
1220 prior work, as this evaluation setting has been predominantly used in previous literature.1221 The 5FCV protocol offers comparability with existing baselines and demonstrates the robustness
1222 of our approach across different random partitions. However, the TVT protocol provides a more
1223 reliable measure of true generalization performance by eliminating potential test set contamination
1224 during hyperparameter optimization. Across both evaluation settings, TripleSumm consistently sur-
1225 passes previous methods, with particularly strong improvements when pre-trained on our MoSu
1226 dataset. This consistent performance gain across different evaluation protocols demonstrates the
1227 effectiveness of our multimodal fusion design and validates the benefits of large-scale pre-training
1228 data.1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242 F.2 MR. HISUM DATASET
1243

Method	$\tau \uparrow$	$\rho \uparrow$	mAP50 \uparrow	mAP15 \uparrow
SUM-GAN (Mahasseni et al., 2017)	0.067	0.095	56.62	23.56
VASNet (Fajtl et al., 2018)	0.069	0.102	58.69	25.28
AC-SUM-GAN (Apostolidis et al., 2020)	0.012	0.018	55.35	21.88
SL-module (Xu et al., 2021)	0.060	0.088	58.63	24.95
PGL-SUM (Apostolidis et al., 2021)	0.097	0.141	61.60	27.45
Joint-VA (Badamdarj et al., 2021)	0.161	0.231	65.88	35.23
iPTNet (Jiang & Mu, 2022)	0.020	0.029	55.53	22.74
UMT (Liu et al., 2022)	0.178	0.253	66.81	35.65
A2Summ (He et al., 2023)	0.121	0.172	63.20	32.34
SSPVS (Li et al., 2023)	0.078	0.113	59.48	26.35
CSTA (Son et al., 2024)	0.128	0.185	63.38	30.42
Ours (Visual)	0.187	0.258	67.16	35.57
Ours (Full)	0.273	0.372	71.63	41.40

1258 Table XIV: Comparison on Mr. HiSum dataset.
12591260 To provide a complete benchmark, we report detailed results on the Mr.HiSum dataset in Tab. XIV.
1261 TripleSumm achieves the highest scores across all correlation metrics, surpassing previous state-of-
1262 the-art approaches by a clear margin.
12631264 G DATASET ABLATION STUDY
12651266 G.1 DATA SCALING
12671281 Figure III: Evaluating the effect of MoSu dataset scale on TripleSumm performance.
12821283 To examine the impact of training data volume on performance, TripleSumm was trained on MoSu
1284 subsets of progressively increasing size. As illustrated in Fig. III, both Kendall's τ and Spearman's
1285 ρ exhibit a clear positive correlation with the number of training samples. Notably, the performance
1286 curve does not reach saturation, even when the entire MoSu dataset is utilized, which suggests that
1287 further performance gains could be achieved with additional data. This finding highlights the data
1288 scarcity of conventional benchmarks like SumMe and TVSum and underscores the necessity of
1289 large-scale datasets such as MoSu for advancing the field of video summarization.
12901291 G.2 CLASS DISTRIBUTION
12921293 To assess label balance, the distribution of semantic clusters within the MoSu dataset was analyzed
1294 (App. B.3). The dataset is composed of ten distinct clusters of varying sizes and themes; however,
1295 the sample distribution is sufficiently balanced to prevent any single category from dominating the
1296 training process.

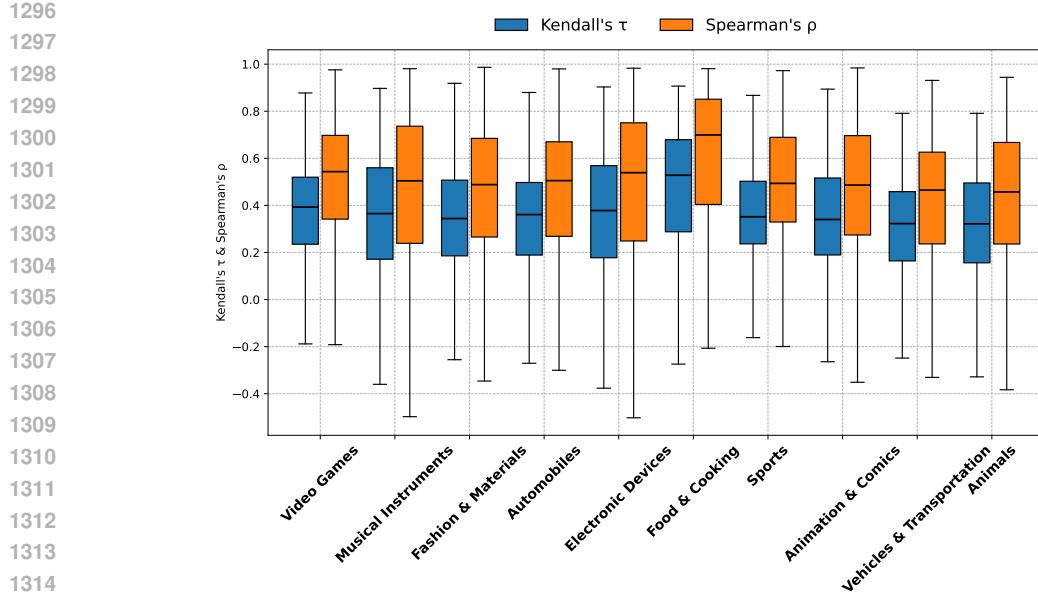


Figure IV: **Per-cluster performance on the MoSu dataset.** Boxplots show the distribution of Kendall’s τ (blue) and Spearman’s ρ (orange) for each semantic cluster.

A per-cluster performance evaluation, measured by correlation metrics, further substantiates this balance (Fig. IV). The median scores across clusters remain proximal to the overall mean and exhibit no clear correlation with sample size. For instance, clusters with fewer samples often achieve performance comparable to that of larger ones, while some well-represented clusters show wider variance or slightly lower median scores. Notably, the Sports and Animation & Comics clusters achieve higher medians with tighter distributions, suggesting more consistent model predictions for these categories. These results suggest that model accuracy is more influenced by the difficulty of the content in each cluster (e.g., visual complexity, audio variation) than by the amount of data.

H USER STUDY

H.1 HUMAN ALIGNMENT STUDY OF MOST-REPLAYED STATS AS GROUND TRUTH

Metric	τ	ρ
Human vs. MR Correlation	0.466	0.602

Table XV: **Human Alignment Study Results.** Rank correlation scores confirm a strong positive alignment between human-perceived importance and the Most Replayed (MR) ground truth.

To validate the use of ‘Most Replayed’ (MR) stats as a proxy for human-perceived importance, we conducted a dedicated human alignment study. We randomly sampled 24 videos from the MoSu test set, each partitioned into contiguous 10-second segments. We recruited 24 annotators, and each video was independently evaluated by 3 annotators (some annotators assigned to multiple videos as needed). Annotators were asked to watch the entire video to understand its overall context and narrative. To ensure full multimodal comprehension, they were instructed to listen to the audio and enable English subtitles when the original speech was not in English. After this initial viewing, the video was presented again in 10-second segments, and annotators were asked to rate the importance of each segment for producing a concise summary on a scale from 1 (least important) to 5 (most important). For robustness, we averaged ratings by three annotators for each segment. To compare these human scores with the ground truth, we also averaged the original Most Replayed scores into the corresponding 10-second bins.

1350
 1351 In Tab. XV, we report the rank correlations (Spearman’s ρ and Kendall’s τ) between the aggregated
 1352 human scores and the binned Most Replicated scores across segments. The results exhibit strong
 1353 positive correlations between the two, confirming that while Most Replicated is a proxy, it aligns
 1354 closely with human judgments of importance, validating its use as a reliable proxy ground truth for
 1355 video summarization.

1355

1356

H.2 HUMAN EVALUATION OF GENERATED VIDEO SUMMARIES

1357

Comparison Pair	Win Rate (%)	Lose Rate (%)
TripleSumm vs. UMT	61.5	38.5
TripleSumm vs. CSTA	69.2	30.8

1361

1362 Table XVI: **Human Preference Results for Pairwise Model Comparison.** Win rate (%) represents
 1363 the percentage by which TripleSumm (Ours) was favored when compared against its respective
 1364 baseline (UMT or CSTA) based on human subjective rankings of generated summaries.

1365

1366 To assess the perceptual quality of the generated summaries, we conduct a human evaluation. We
 1367 randomly sampled 15 videos from the test set of the MoSu dataset. We recruited 9 annotators.
 1368 Each video was assigned with 3 annotators for robust evaluation. To ensure a comprehensive un-
 1369 derstanding of the video content, each annotator was first presented with the full original video.
 1370 Subsequently, they watched the summaries generated by TripleSumm, CSTA, and UMT, and were
 1371 asked to rank them. The ranking criteria focused on how well the summary preserved the essential
 1372 content and flow of the original video.

1373

1374 To quantify the performance, we converted the collected rankings into pairwise winning rates. For
 1375 any given pair of models, a model was considered to “win” if it was ranked higher than its coun-
 1376 terpart. The final winning rate was calculated by aggregating these pairwise comparisons across all
 1377 annotators and videos. As reported in Tab. XVI, TripleSumm consistently outperforms the baselines,
 1378 achieving winning rates of 61.5% against UMT and 69.2% against CSTA, validating the effective-
 1379 ness of our approach in generating human-preferred summaries.

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

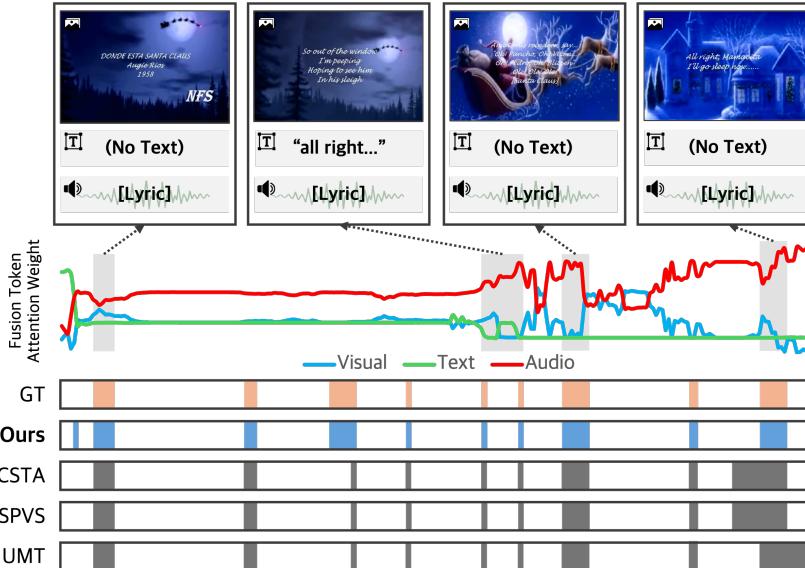
1399

1400

1401

1402

1403

1404
1405 I MORE QUALITATIVE RESULTS
1406
1407
1408
1409
1410
1411
1412
14131425
1426 (a) A vehicle overcoming an obstacle, where the audio cue of a tire screech is critical to
1427 understanding the action.1447
1448 (b) A music video centered on its audio track, where visual and textual cues are of sec-
1449 ondary importance.1450
1451 Figure V: **More Qualitative Examples on MoSu.** The graph in the middle visualizes the fusion
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
322