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ABSTRACT

Quantum generative modeling is a rapidly evolving discipline at the intersection
of quantum computing and machine learning. Contemporary quantum machine
learning is generally limited to toy examples or heavily restricted datasets
with few elements. This is not only due to the current limitations of available
quantum hardware but also due to the absence of inductive biases arising from
application-agnostic designs. Current quantum solutions must resort to tricks to
scale down high-resolution images, such as relying heavily on dimensionality
reduction or utilizing multiple quantum models for low-resolution image patches.
Building on recent developments in classical image loading to quantum comput-
ers, we circumvent these limitations and train quantum Wasserstein GANs on the
established classical MNIST and Fashion-MNIST datasets. Using the complete
datasets, our system generates full-resolution images across all ten classes and
establishes a new state-of-the-art performance with a single end-to-end quantum
generator without tricks. As a proof-of-principle, we also demonstrate that our
approach can be extended to color images, exemplified on the Street View House
Numbers dataset. We analyze how the choice of variational circuit architecture in-
troduces inductive biases, which crucially unlock this performance. Furthermore,
enhanced noise input techniques enable highly diverse image generation while
maintaining quality. Finally, we show promising results even under quantum shot
noise conditions.

1 INTRODUCTION

Since the advent of ChatGPT (OpenAl, 2025), generative modeling has become one of the most
used technologies in the world (Paris, 2023). From coding “copilots” (Yao, 2023) to the gener-
ation of realistic-looking images (OpenAl, 2022), or musical compositions (OpenAl, 2019), gen-
erative Al is continuously gaining fields of applications, with increasing computation and energy
demands (Jegham et al., 2025). Quantum generative modeling (Schuld & Petruccione, 2021) is an
emerging field at the intersection of quantum computing and machine learning, focused on using
quantum systems to learn, model, and sample from complex data distributions. Just as classical gen-
erative models, e.g. Variational Autoencoders (VAEs) (Kingma & Welling, 2014), Generative Ad-
versarial Networks (GANSs) (Goodfellow et al., 2014), or Transformers (Vaswani et al., 2017), learn
to mimic data distributions, quantum generative models aim to leverage the probabilistic and high-
dimensional nature of quantum mechanics to achieve outcomes, potentially superior and intractable
for classical computers (Huang et al., 2025). Although the potential advantages of applying quan-
tum generative models to practical problems remain uncertain in terms of performance, there are
indications that such systems can be energetically more efficient (Villalonga et al., 2020). Thus, it is
crucial to investigate their capabilities on relevant machine learning benchmark tasks empirically.

Image generation is a particularly interesting use case of generative modeling. For example, data
augmentation (Islam et al., 2024) for artificial vision systems is used in diverse fields ranging from
medical diagnose systems (Motamed et al., 2021) to quality assurance (Wang et al., 2023), in which
neural networks are trained to recognize illness or defective parts or products. In both cases, such
anomalous images are usually difficult to obtain naturally and synthetic examples need to be created.
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State-of-the-art methods for quantum image generation rely on fricks to circumvent scaling issues
related to high-dimensional (high-resolution) images. We recognize two widely used techniques:

1. Dimensionality Reduction: This method uses principal component analysis (PCA) (Stein
etal., 2021; Silver et al., 2023; Solanki et al., 2024; Khatun et al., 2024) or neural networks,
including autoencoders, (Rudolph et al., 2022; J et al., 2022; Shu et al., 2024; Ma et al.,
2025) to generate images in a lower-dimensional latent space. The output of the small
quantum model is then classically post-processed to recover the original image dimensions.

2. Patch generation: This method circumvents high dimensionality by generating smaller
patches of the images, where each patch uses a separate quantum generator, usually trained
simultaneously (Huang et al., 2021; Tsang et al., 2023; Thomas & Jose, 2024).

Importantly, both methods circumvent high-dimensional data by generating low-dimensional quan-
tum model outputs and may supplement them with classical computation to recover the original
image dimensions. As a result, it becomes unclear whether the quantum model plays a non-trivial
role in the generation. This is particularly true for the first method type, where a neural network
may cover most of the generation. Thus, we consider Tsang et al. (2023), a patch-generation QGAN
with one quantum generator per image row, as the previous state-of-the-art and baseline for compar-
ison. Notably, despite these tricks, prior QGANS suffered from limited visual quality and diversity,
producing scattered pixels and unrealistic class mixing even on three-class datasets. By presenting a
single end-to-end quantum generator for diverse images at full resolution, we provide evidence for
the capability and scalability of quantum generative modeling when appropriately designed.

Data of interest are often not arbitrary and have some internal structure, e.g., natural occurring im-
ages differ from random pixels. In fact, real images are known to have low-rank structure, evidenced
in their fast decreasing power spectrum (van der Schaaf & van Hateren, 1996). This allows for com-
pression algorithms such as JPEG (Wallace, 1992), which is a popular format in classical computing.
This structure carries out to the quantum realm, as illustrated in several recent results (both numer-
ical and theoretical) showing that their underlying structure leads to encoding quantum states that
are well-captured by tensor-network states and by tensor-network-inspired quantum circuits (Dilip
et al., 2022; Taconis & Johri, 2023; Jobst et al., 2024; Shen et al., 2024). These states can thus be
prepared with quantum circuits of depth linear in the number of qubits required for the encoding.

Prior research has explored various aspects of quantum image processing, including the identifi-
cation of effective quantum encodings (Jobst et al., 2024), the generation of large-scale datasets
through quantum circuit-based image encoding (Kiwit et al., 2025), and the application of quan-
tum models to classification tasks (Shen et al., 2024; Kiwit et al., 2025).Here, we present a single
end-to-end image quantum generator based on a quantum GAN (QGAN) training with a classical
discriminator. In our approach, we use no dimensionality reduction methods and no multiple gener-
ators for image patches, and tackle large datasets commonly used in the machine learning field for
benchmarking: MNIST (Lecun et al., 1998), Fashion-MNIST (Xiao et al., 2017), and Street View
House Numbers (SVHN) (Netzer et al., 2011), for color images. This is possible due to the inductive
bias created by an application-specific quantum circuit design inspired by the exponentially com-
pressed encoding scheme. Moreover, we show that multimodal noise input increases the diversity of
the generated images. We further explore the performance of training in the presence of shot noise.

2 BACKGROUND: QUANTUM IMAGE REPRESENTATIONS

The simplest way to encode classical data into the amplitudes of a quantum state is referred to
as amplitude encoding (Schuld & Petruccione, 2021; Latorre, 2005) that is given by | (x)) =

2N 1 . . . .
ﬁ > =0 %j |7), where @ represents some classical data vector. (For notation conventions, see

App. A). This encoding is attractive because it allows for representing an image with 2™ pixels
using only n qubits, leading to an exponential reduction in storage requirements compared to a
classical representation. Since the state must be normalized, the global scaling information is lost in
the encoding. To address this limitation, encodings of the following form have been proposed (Le
et al., 2011a;b) for images with oN pixels:

2N _1
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Figure 1: (a) Quantum generator for a 4 x 4-pixel grayscale image with one layer of noise, entangling
and controlled R, gates. The nearest-neighbor (N2) and next-nearest-neighbor (N3) entangling
gates are applied on the address qubits. The final 12, gates rotate the color qubit, each controlled by
one address qubit. (b) Gate decompositions of the N2 and N3 entangling gates into CNOT and R,,.

The state |j) of the N so-called address qubits tracks the position index j and the state |c(x;))
encodes the corresponding data value x;. For grayscale images, we use the flexible representation
of quantum images (FRQI) (Le et al., 2011a;b). In this encoding, x; is a scalar with the grayscale
value of that pixel. We encode this information in the z-polarization of the color qubit

|e(z;)) = cos(52;) [0) + sin(F;) [1) 2

with the pixel value normalized to z; € [0, 1]. Thus, combining Eqs. (1) and (2), a 2N _pixel image
is encoded into a state with N + 1 qubits. FRQI has been extended to multi-channel representation
of quantum images (MCRQI) (Sun et al., 2011; 2013) for color images, as detailed in App. B.4.

The order in which the pixels are indexed can change the entanglement entropy of the resulting
state (Jobst et al., 2024). Here, we choose hierarchical indexing based on the so-called Z- or Morton
order (Latorre, 2005; Le et al., 2011a;b; Jobst et al., 2024): the first two bits of the index j label the
quadrant of the image the pixel is in, the next two bits label the subquadrant, and so on. This tends
to decrease the entanglement entropy compared to other orderings, resulting in more compressible
states (see Jobst et al. (2024) for grayscale images and Kiwit et al. (2025) for color images).

3 METHOD

In GANS, the generator Gg(z) — @ aims to map a noise vector z to a sample , indistinguishable
from real data, while the discriminator D¢ () aims to differentiate between real and fake samples.
In our setup, the generator is a quantum circuit while the discriminator is a classical convolutional
neural network. Both are trained jointly using the gradient-penalized Wasserstein GAN (Gulrajani
etal., 2017) scheme. More details are provided in App. B, while we focus here on our main method-
ological contribution: the design of the quantum generator G including an enhanced noise input.

Application-specific generator design. The quantum generator employs a circuit ansatz with an
inductive bias tailored towards the FRQI representation. Analogously for MCRQ), a color-extended
task-specific ansatz is proposed in App. B.4. The generator ansatz starts with a layer of Hadamard
gates to bring the initial state \0>®n into an equal superposition, which resembles a valid FRQI
state of a uniformly gray image. After the Hadamard gates, (multiple) layers of the generator are
added. Each layer consists of (i) noise gates, (ii) gates that entangle the the address qubits, and (iii)
controlled rotations of the color qubits, as depicted in Fig. 1 and described in the following.

First, the noise is injected at the beginning of each layer by parameterized single-qubit I, gates
(Definitions of quantum gates are provided in App. A). Details on the noise encoding with additional
learnable parameters and multiple modes are provided in the second part of this section.

Second, entangling gates are arranged as a ladder alternating between connecting nearest-neighbor
(N2) and next-nearest-neighbor (N3) address qubits. Due to the Morton order, as described in Sec. 2,
N2 gates mix qubits addressing two different spatial dimensions (vertical and horizontal). Conse-
quently, N3 gates only mix between qubits addressing the same spatial dimension at different scales.
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Figure 2: Illustration of multimodal noise modeling (left to right). Quantum circuit perspective
of implementing a bimodal mixture distribution via controlled rotations sampling the classical bit
m uniformly and € normally (unimodal). 2y and z; denote the tuned noise (shifted by 0 and T,
respectively). In this single-pixel example, noise is injected directly into the color qubit (no address
qubits or layering), so layer and qubit indices [, n as in Eq. (3) are omitted. The noise separates
the prepared states around |0) and |1) in the Bloch sphere. Measurements yield pixel values via the
probability of |1), consistent with FRQI states in Eq. (2). As an example, the distribution resembles
the bimodal statistics of the MNIST center pixel for handwritten digits 0 and /, with peaks at 0
(black) and / (white) and vanishing probability in between, avoiding unrealistic gray pixels.

We refer to repeating these ladders £ times as introducing ¢ sub-layers. Each sub-layer uses distinct
parameters and alternates the direction of qubit connections between top-down and bottom-up. The
address qubits are entangled by parameterized two-qubit gates of the form shown in Fig. 1b. These
gates realize compressed orthogonal two-qubit transformations, which have proven effective for en-
coding FRQI states (Kiwit et al., 2025).

Third, after entangling the address qubits, we rotate the color qubit via parametrized I, gates,
controlled by a single address qubit, that modulates the color of half the pixels in the image while
leaving the other half unchanged. The pixels that are affected are those whose corresponding address
bit is set to one in the binary representation of their index. More controls (k) affect a smaller fraction
(1/2F) of pixels simultaneously. These controlled rotations after the entangling gates let multiple
address qubits influence color rotations, emulating extra control qubits. More complex entanglement
structures can induce color channel modulations within a specific region and details of the image.

As a final step, the state generated by the quantum circuit must be decoded into an image. It is
essential to note that the ansatz does not enforce valid FRQI states, i.e., neither nonnegative real
amplitudes nor a uniform superposition over address qubits (uniform pixel distribution upon mea-
surement) are guaranteed. Normalizing/conditioning the computational basis probabilities enables
decoding as valid FRQI states via trigonometric inverse functions, as further detailed in App. B.2.

Enhanced noise input. The noise design critically determines the diversity and fidelity of gen-
erated samples as poorly chosen noise distributions limit the generator’s ability to capture the data
variability. Prior QGAN works (Riofrio et al., 2024; Tsang et al., 2023; Ma et al., 2025) use noise
re-uploading (Pérez-Salinas et al., 2020) which enhances expressivity by inducing a more complex,
non-linear dependence on the noise input. In contrast, we introduce two enhancements to the noise
sampling and its injection (encoding into the generator layers), enabling more diverse and detailed
image generation. While a Gaussian distribution is unimodal, with a single peak at its mean, a
multimodal distribution has multiple peaks, inducing multiple high-probability regions. Pixel distri-
butions of natural images exhibit such multimodality. For example, the distribution over the central
pixel of MNIST digits 0 and / as depicted in Fig. 2 shows peaks at black and at white.

In the following, we introduce our noise tuning technique to use a multimodal noise distribution,
inspired by the reparametrization trick (Kingma & Welling, 2014). To generate a sample & we sam-
ple the noise vector from a multivariate isotropic Gaussian € ~ N (0, Iy ), where N is the number
of address qubits. The same noise vector is shared across all L generator layers. We then sample
the mode index from a discrete uniform distribution m ~ U{1, M} and select the corresponding
reparameterization matrices fi,,, o, € RZ*™ that are part of the learnable generator parameters 6.

Finally, we apply the element-wise affine transformation z,,, | = iy 1 +0m e withle{1,..., L}.

This results in a (uniform) Gaussian mixture model z ~ L+ S"M  A/(z | ppn, diag(a2,)), where

M m=1
W, Om € REN correspond to the flattened matrices i, and o,,,. For each single noise component

withne{1,..., N}, this can be represented by rotations on address qubit n of the form

- —[Rz(,ufm,l,n 4 Um,l,ngn)]_~ (3)
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Figure 3: QGAN samples for (a) MNIST, (b) Fashion-MNIST, and (c) SVHN. For (a) and (b), one
image is shown for each of the 40 noise modes used by the large QGANs (64 layers). For each
mode, the displayed image is selected as closest to the mean of 500 samples in Euclidean distance.
For (c), a 32-layer QGAN generates images restricted to containing the digit 0. The central digit is
consistently a 0, while extra digits may occur on the sides, reflecting typical house number tags.

In terms of its quantum circuit implementation, this tuning corresponds to M rotation gates encoding
unimodal noise components but controlled by classical bits encoding the sampled mode index m to
realize each mode via a separate controlled gate layer. Figure 2 presents the bimodal case. To the best
of our knowledge, multimodal latent distributions have only been explored implicitly in quantum
conditional models (Liu et al., 2021; Zeng et al., 2023), and their explicit treatment together with
noise tuning is novel in QGANS, with only classical analogues reported (Gurumurthy et al., 2017).

4 RESULTS

We designed the experiments with three main objectives: (i) demonstrating the high quality and
diversity of the QGAN image generation, (ii) analyzing the impact of our QGAN design choices,
and (iii) assessing the transferability to future quantum computers under inevitable shot noise in
the generation process. All experiments are conducted in numerical simulation. We evaluate our
approach using standard image datasets, including the grayscale MNIST (Lecun et al., 1998; Deng,
2012) and Fashion-MNIST (Xiao et al., 2017) datasets. These datasets contain ten classes of differ-
ent handwritten digits and clothing photos, respectively. Both have a resolution of 28 x 28 pixels
and are interpolated (bilinear) to 32 x 32 pixels to match 11-qubit FRQI states. The 32 x 32-pixel
Street View House Numbers (SVHN) color images (Netzer et al., 2011) are represented by 13-qubit
MCRQI states. Further details on the datasets are provided in App. C. All images presented are
generated from QGANS trained for a fixed number of iterations or, when stated, loaded from a
checkpoint that minimizes the maximum mean discrepancy (MMD; see App. D.1). For clarity, im-
ages are manually ordered and, where relevant, matched to classes. We vary and indicate the number
of generator layers, but place two sub-layers each. Implementation details can be found in App. B.

4.1 GENERATING SAMPLES OF HIGH QUALITY AND DIVERSITY

To demonstrate image generation of high quality and diversity, we train large QGAN models with
64 layers and 40 noise modes for about 50 000 generator updates on the full MNIST and Fashion-
MNIST datasets and present the checkpoint that minimizes the MMD metric. As shown in Fig. 3,
not only are all ten classes successfully captured with high visual quality, but images also reveal
rich intra-class diversity. The depth of the models enables them to represent fine image structures in
digits (Fig. 3a), or extreme cases such as the single-pixel-wide straps in the sandals class (Fig. 3b),
which demand more complex entanglement among the address qubits. The size of the quantum
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Figure 4: Ablation study highlighting the importance of task-specific model design choices. Panels
(a) and (b) show images from the task-agnostic circuit using Amplitude encoding and FRQI encod-
ing, respectively. Panels (c¢) and (d) show images from the task-specific circuit using Amplitude
encoding and FRQI encoding, respectively. Task-specific modifications yield clearer, less distorted
digit representations, with combining both proposed design choices leading to the best results (d).

generator may appear large relative to previous works. However, since these works only covered
small subsets of classes within these datasets, less expressive models suffice. Similarly, our QGAN
framework also learns high-quality images with shallower circuits on these subsets. In App. D.2,
we analyze this trade-off in more detail and observe that deeper models are necessary not only to
improve image quality on a fixed dataset but also to maintain quality when scaling to all classes.

A colorful extension. The model is also trained on the color dataset, SVHN, restricted to images
containing the digit 0. In this setting, the O consistently occupies the central position, while ad-
ditional digits may appear on the left and right. Consequently, the surrounding context introduces
variability, as house numbers naturally contain multiple digits, and the background colors may also
differ. Fig. 3c illustrates representative results from a QGAN model with 32 layers of the color-
extended task-specific ansatz and 3 modes, trained for nearly 100 000 iterations and evaluated via
MMD. One can observe that the central digit is reliably reconstructed as a 0, while digits occurring
to the left often resemble 2s or 3s, reflecting the realistic distribution present in the dataset.

4.2 IMPACT OF TASK-SPECIFIC GENERATOR DESIGN CHOICES

We analyze the impact of the two main design choices in the presented QGAN framework, concern-
ing the generator design and noise techniques, through additional experiments.

Task-specific generator design ablation study. We evaluate the relevance of two generator de-
sign choices specific to the task of image generation: (i) the generator circuit ansatz specific to
the image state encoding instead of a task-agnostic ansatz, and (ii) the FRQI state representation
over simple amplitude image encoding. Compared to the layers in the task-specific ansatz, the
task-agnostic ansatz implements entanglement via fixed cyclic N2 controlled-NOT gates, while pa-
rameterization occurs only in single-qubit z — y — z rotation sequences. We perform an ablation
study that compares the results of QGANs where these design choices are either implemented or
omitted. All combinations use 16 layers, and are trained for 15 000 iterations on the digits 0, I and
2. Furthermore, the enhanced noise inputs (3 modes) may improve even the amplitude encoding and
task-agnostic ansatz combination, which most closely resembles the setup by Tsang et al. (2023).

Figure 4 shows the results, revealing the impact of the two design choices. The most pronounced
difference in image quality arises from the ansatz choice. The task-agnostic ansatz (Fig. 4a, 4b)
produces images with a vague glimpse of digits. Furthermore, this ansatz produces images of limited
diversity, particularly omitting classes, such as digit 2. Formally, this corresponds to mode collapse,
which limits QGANs with task-agnostic ansitze from scaling to more classes, as in previous works
limited to at most three classes. The task-specific ansatz (Fig. 4c, 4d) clearly achieves what the task-
agnostic one fails to model: spatial coherence and defined edges—two main properties of natural
images (Simoncelli & Olshausen, 2001). Hence, neighboring pixels exhibit similar colors, with
edges clearly defined rather than being fuzzy.

For the image encoding choice, the overall contrast of the digits from the black background is im-
proved when transitioning from amplitude (Fig. 4a, 4c) to FRQI encoding (Fig. 4b, 4d). We observe
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Figure 5: Comparison of noise inputs: (a) unimodal, (b) fixed multimodal, (c) tuned multimodal.
Models were trained on MNIST classes 0-2, with 3 modes in the multimodal setups. Images are
generated after 15 000 training iterations and manually selected to highlight characteristic effects.
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Figure 6: More input noise modes (“overmoding”) diversify generated samples. Three models are
trained on all ten Fashion-MNIST classes with a factor of (a) 1, (b) 2, and (c) 4 more noise modes
than classes. We present all modes capturing the classes ankle boot and dress. Three images are
shown per mode: the center image is closest to the mean in Euclidean distance, while the outer
images closely approximate moves of 3¢ along the first principal component (indicated by arrows).
PCA, based on 1 000 samples per mode, illustrates the primary variability within each mode.

that the saturation is more balanced across different samples and more uniform within each digit.
These results support the theoretical expectation of sensitivity in saturation for amplitude-encoded
images due to the need of amplitude normalization. FRQI encoding handles the saturation by in-
troducing the color qubit. In addition, the edges are less blurred when switching from amplitude to
FRQI encoding under the image-specific ansatz. We tested two image-specific ansatz realizations
for amplitude encoding (Fig. 4c): one omits the layer of controlled color-qubit rotations, while the
other replaces it with a layer of single-qubit rotations. No substantial differences were observed in
the generated images.

From unimodal to multimodal noise through tuning. In the following, we will discuss the role
of input noise distributions and injection techniques, centered around generated images from three
different experiments presented in Fig. 5. Given that previous QGAN works relied solely on uni-
modal noise distributions, we start the analysis with unimodal Gaussian noise (Fig. 5a). Pure blend-
ing by simply superimposing images of two classes (see Os where the inside of the circle is not
transparent, e.g., leftmost image in Fig. 5a) is observed less frequently than in previous works (Tsang
et al., 2023), which might be due to an improved generator design. However, more pronounced class
mixing effects manifest as morphing shapes of distinct classes, such as /s appearing as right-leaning
with curved tops and faint bottom bars reminiscent of 2s (rightmost image in Fig. 5a). Although uni-
modal noise does not suffer from strict mode collapse onto a single digit, we conclude that scaling
to datasets with many diverse classes is infeasible.

Introducing a multimodal distribution with three fixed modes (matching the number of classes in-
cluded for training) mitigates these two mixing effects (Fig. 5b). However, this change is accom-
panied by a considerable loss in image quality, often obscuring visual class differentiation either
(rightmost image in Fig. 5b). A likely reason is that sampling from modes placed at fixed p; away
from zero results in noise injections that disrupt state preparation due to a systematic rotation in each
layer, which the model can control only to a limited extent. Therefore, the proposed noise tuning
technique, where the mode centers p; and widths o; effectively become learnable parameters, is
crucial for multimodality, generating clearly separated and undistorted images (Fig. 5c¢).

More modes than classes (“overmoding”). Choosing the number of modes equal to the number
of classes is natural, however this information is unavailable in unsupervised datasets. Moreover, in-
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Figure 7: (a) Marginal probabilities of the address qubits sorted by magnitude. Exact state-vector
simulations (blue) deviate strongly from the expected uniform distribution (dashed), with many am-
plitudes nearly zero, whereas finite sampling with 2048 shots (orange) smooths the distribution
toward uniformity. (b) Examples generated from 2 048 shots (top) and from exact probabilities (bot-
tom). Finite-shot sampling introduces statistical noise that smooths the distribution and preserves
pixel information. Hence, models trained on sampled data (left) yield clearer, more robust digits,
while models trained on exact probabilities (right) tend to produce incomplete or distorted images.

stances of the same class may exhibit very different features (high intra-class variety), and modeling
them with more than a single mode might be an appropriate choice. By analogy to overparameter-
ization, we call the use of an ansatz with a potential excess of modes overmoding. To analyze the
effects of overmoding, we train three QGANS on the complete Fashion-MNIST datasets with x1,
%2, and x4 more modes than classes for 20 000 iterations (nearly 40 000 in the latter case). Fig. 6
shows generated images after training for the classes ankle boot and dress, corresponding to three
models with 1, 2, and 4 modes per class.

Across all classes, increasing the number of modes enhances intra-class diversity by allowing the
model to represent distinct sub-classes. A single mode (Fig. 6a) may already capture some variation,
but typically sacrifices visual quality. In contrast, overmoding benefits both diversity and quality.
With two modes (Fig. 6b), the model already separates flat vs. heeled boots and short vs. long
dresses, which were previously conflated in a single mode. At four modes (Fig. 6¢), the separation
becomes more fine-grained. For boots, one heeled mode varies heel type (from stiletto, via block,
to wedge), while another varies heel height. Flat-boot modes capture distinct styles, differing in
details such as laces, soles, and pull tabs. Dresses are distinguished by sleeve type (long, short,
cap, sleeveless/straps) and further vary in length within each mode. The fourth dress mode (Fig. 6¢)
transitions into the coat class by altering shape and introducing a zipper line. This overlap highlights
the benefit of not conditioning QGAN modes on class labels, allowing the unsupervised model to
exploit shared visual structures across classes. More inter-class modes are presented in App. D.3.

4.3 FINITE MEASUREMENT SHOT EFFECTS

The marginal distribution of the address qubits of valid FRQI states, after tracing out the color qubit,
is uniform due to the sine—cosine structure in Eq. (2). In exact state-vector simulations without
shot noise, the quality of the generated samples depends only on the ratio, rather than the absolute
values, of the probability amplitudes of |0) and |1) in the color qubit for a given address. However,
some basis states may have vanishingly small amplitudes in both |0) and |1). With a finite number
of shots, such states are unlikely to be sampled, causing loss of pixel information. Incorporating
finite shot noise during training may alleviate this problem. Very low probabilities may exclude
information from some pixels, making it easier for the discriminator to detect fake samples and
forcing the generator to avoid such cases and thus promoting more uniformly distributed marginal
probabilities over the address qubits. Details of our implementation are presented in App. B.5.

Figure 7a illustrates how exact state-vector simulations yield highly uneven marginal probabilities
across pixels, with many basis states exhibiting vanishingly small amplitudes. By contrast, sampling
with a finite number of shots (2048 in this example) smooths out the distribution and keeps the
probabilities closer to the expected uniform distribution, thereby mitigating the risk of pixels being
systematically excluded. This effect also shows in the sampled images in Fig. 7b, where finite shot
noise ensures that pixel information is retained more consistently across the image. Together, these
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results highlight that incorporating shot noise into training not only prevents the discriminator from
exploiting missing pixels but also promotes more robust and uniform sampling behavior.

5 DISCUSSION

In this work, we have made several contributions advancing quantum generative modeling. First, we
demonstrated that end-to-end quantum Wasserstein GANs can be trained directly on full-resolution,
standard classical image datasets without resorting to dimensionality reduction or patch-wise mod-
eling, thus moving beyond the toy examples that have historically constrained the field. Second, we
showed that performance depends critically on the incorporation of inductive biases through care-
fully designed variational circuit architectures, rather than relying on generic, application-agnostic
ansitze. Our findings highlight that task-specific architectural choices are not only a technical de-
tail but a central driver of scalability and generative quality in quantum machine learning. Finally,
by benchmarking our training under realistic shot-noise conditions, we provide a practical pathway
toward robust quantum image generation. Together, these contributions underscore that progress in
quantum generative modeling will come not only from hardware advances but also from principled
design choices that align quantum models with the structure of the task.

A common criticism of quantum generative modeling with image encodings such as FRQI is the ap-
parent measurement overhead: while images of N pixels can be encoded using O(log(N)) qubits,
recovering a sampled image requires O(N') measurements, seemingly negating the exponential qubit
compression by introducing exponential costs at the decoding stage. At first glance, this appears to
undermine one of the central motivations for FRQI-based models. However, several points help mit-
igate this concern. First, it is worth questioning whether this limitation is practically consequential:
real-world images are captured by classical devices and do not need exponential classical resources,
e.g., memory and time, for capturing or processing. Second, more sophisticated decoding strate-
gies, exploiting known structure of natural images, may reduce the measurement burden while still
recovering meaningful image statistics.

We propose the following three ideas for decoding strategies. One could use compressed sens-
ing (Donoho, 2006; Candes & Tao, 2006; Candes et al., 2006) as a post-processing step. This
method would act entirely classically: missing pixel intensities, i.e., non-measured states, can of-
ten be reconstructed from partial information using structural priors on natural images (Candes &
Wakin, 2008; Duarte & Eldar, 2011). While this may not directly resolve the scaling challenge,
exploring the asymptotic behavior of compressed sensing in this context could clarify the extent to
which the number of required measurements can be meaningfully reduced. Alternatively, one could
perform measurements in Fourier space. By applying the Quantum Fourier Transform to the address
qubits, as suggested in the original FRQI framework (Le et al., 2011a;b), one could probe the fre-
quency domain rather than pixel space. Since low-frequency components dominate natural images,
higher-frequency qubits should naturally decouple, effectively concentrating measurement probabil-
ity on the relevant low-frequency subspace. Finally, one could use shadow tomography techniques
that leverage recent advances tailored to tensor-network states (Akhtar et al., 2023; Bertoni et al.,
2024). By exploiting the limited bond dimension characteristic of natural images (Jobst et al., 2024),
such methods could drastically reduce the shot complexity of retrieving useful image statistics with
error bounds and theoretical guarantees. Pursuing these directions could recast measurement over-
head from a perceived limitation into an opportunity for additional streamlining, further aligning
quantum generative modeling with the structure of natural data. Exploring these decoding strategies
is left for future work.

As a final reflection, it is striking to observe the disparity in resources required by quantum versus
classical generative models for the datasets studied here. Our quantum approach achieves compet-
itive synthetic data generation with only 11-13 qubits and on the order of ten thousand trainable
parameters, whereas classical models typically rely on ten thousands of bits and hundreds of thou-
sands of parameters. This contrast highlights the remarkable expressive power that quantum com-
puting can bring to machine learning, and we view it as yet another indication of its potential to
fundamentally reshape how generative modeling is conceived and implemented.
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REPRODUCIBILITY STATEMENT

All experiments in this paper can be reproduced with the provided code and instructions. The com-
plete codebase, which includes training scripts, evaluation notebooks, and configuration files, is
included as part of the supplementary material for the submission. If the paper is accepted, we will
make the code publicly available as a GitHub repository.
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A NOTATION AND DEFINITIONS

The present work follows the standard notions and definitions commonly found in the quantum
computing literature (Nielsen & Chuang, 2011) and is briefly presented here.

We adopt the Dirac (bra—ket) notation, where a quantum state labeled by ) is written as a ‘ket’ |¢).
For a single qubit, |¢)) may be state zero |0), one |1}, or, unlike a classical bit, in a superposition

) =a|0)+B[1) with a,B€C, |af*+|8]*=1. 4)
The coefficients «, 5 are called probability amplitudes for reasons that become clear shortly. The

state-vector representation expresses the ‘ket’ states as column vectors when fixing a basis. The
common computational basis, used in this work, is composed of the zero and one states as

0 =e®=@1 0, pH=eV=0 1, 5)

which span the state space is C? and superpositions are simply basis decompositions. Equipped with
the canonical inner product (¢|t)), this space is a Hilbert space. This definition uses a ‘bra’, which

is the adjoint of the ket |1/} (conjugate row vector of the state-vector), i.e., (1| = |1)T = () ")*.

The tensor product @ combines single-qubit spaces into the joint state space C2* of an n-qubit
system. For example, two qubits |¢1) and |12) form the composite state [1)) = [1)1) & [2), The
computational basis naturally generalizes to 2™ states, given by all tensor products of n qubits in
|0) and |1), commonly labeled by a bit string or integer label, e.g., |[101) = |5). Hence, the n-qubit
Hilbert space is spanned by {[0),...,]|2" — 1)} = {e®,... e "=V},

Entanglement distinguishes two types of multi-qubit states. A state |¢)) € C2" is separable (unen-
tangled) if a tensor product decomposition into single-qubit states exists [10) = |¢1)®- - -®|1y,) , and
entangled otherwise. Hence, entangled states cannot be fully described by their subsystems, only
by the joint system. In the FRQI representation used here, entanglement corresponds to spatially
correlated pixel colors, whereas unentangled states yield pixel colors independent of position.

Quantum states evolve not only linearly |¢)) — U |1}, but also, which conserves normalization, by
a unitary transformation, i..e, U tU = UUT = I. In the state-vector expression, this action corre-
sponds to a matrix-vector product in a fixed basis. A standard way to express such transformations is
through quantum circuits, where unitary operations are decomposed into elementary quantum gates
(e.g., see Fig. 1). Two gates combine either sequentially, U; o Us, corresponding in matrix form to
UsUj, or in parallel on disjoint subsystems via the tensor/Kronecker product U; ® U,. The basic
single-qubit gates used here are defined in the computational basis as

1 1 0 1 0 —2 1 0
ol ) () () () e

Parameterized rotation gates are generated by the Pauli operators X, Y, Z through exponentials
Ro(0) = e X2, R,(0) = e V%, R.(0) =72 (7
rotating a qubit about its x-, -, and z-axis by an angle 6, respectively. Controlled (two-qubit) gates

act conditionally, with the control qubit determining whether the operation is applied to the target
qubit. Examples include the controlled-NOT (CNOT) and controlled- Iz, (in block-matrix notation):

(I, 0 (I 0
CNOT = (0 X)’ cRy(0) = (0 Ry(9)>' (8)
Note that only multi-qubit gates can alter the entanglement of a state.

Finally, the probabilistic nature of quantum mechanics arises from the fact that quantum states can-
not be fully observed: measurements yield probabilistic outcomes and collapse the state to align
with the observation. For computational basis measurements, the probability of observing the qubits
representing integer i € {0,...,2" — 1} is

pi = {ly) [ ©)
This probability is the squared magnitude of the corresponding probability amplitude in the su-
perposition of computational basis states (or, put differently, the inner product of the |¢)) and |i)).
Consequently, the closer |1) is to a basis state |}, the higher the likelihood of observing i upon
measurement. In a quantum computer, states can typically be prepared repetitively. Therefore, from
a number of measurement shots, certain state quantities, such as the (computational basis) probabil-
ities, can be estimated, which are of particular interest to decode the image from an FRQI state.
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B METHODOLOGICAL AND IMPLEMENTATION DETAILS

All experiments in this work are implemented as numerical state-vector simulations. For the
gradient-based optimization, we use PennyLane (Bergholm et al., 2022) in combination with the
just-in-time compilation and vectorization capabilities of JAX (Bradbury et al., 2025) to perform
auto-differentiable, GPU-accelerated state-vector calculations.

B.1 GENERATIVE MODELING

The Generative Adversarial Networks (GAN) (Goodfellow et al., 2014) technique was originally
proposed for classical neural networks. One neural network functions as the generator Gg(z) and
learns (parameters @) to produce samples, based on random noise inputs z, that are indistinguishable
from the real data. In contrast, another neural network operates as the discriminator Dg(x) and
concurrently learns (parameters ¢) to provide a discrimination signal indicating whether the input is
real or generated (fake). GANs can be readily extended to quantum generative models by replacing
the generator neural network with a generator quantum circuit, where the generated data sample
is constructed from measurement expectation values for continuous-valued outputs (Riofrio et al.,
2024), such as images (Tsang et al., 2023). In principle, although not studied in this work, the
discriminator could also be a quantum model.

GANs were originally introduced with a discriminator resembling a binary discrimination signal
(for classification Dg(x) = 1 for real and Dy (x) = 0 for fake inputs &). Due to training instability
and problems such as the mode collapse phenomenon (resulting in less diverse samples than the
real distribution), the original GAN framework can be improved by the Wasserstein-GAN (WGAN)
approach (Arjovsky et al., 2017), where the discriminator now provides a continuous discrimination
signal Dy (x) € R that should be maximized for real and minimized for fake inputs . This is
described by the following optimization problem, which directly gives rise to the corresponding loss
functions that are minimized alternately during training:

=Lc(6)
min mdz}x Eznr, Do(x) —E.p,Dy(Go(2)) (10)

2]
=—Lp(¢)

The noise distribution P, induces the generation distribution P, through the map from noise to
data space that the generator G (-) provides. We utilize batches of size N of generated (and real)
data to evaluate the empirical loss functions L (@) and L (0), which estimate the expectations
over the noise and real data distributions P, P, in L5(0) and L£p(0), respectively, by substituting
~ 1

E() ~ % 220)-

The discriminator is required to be 1-Lipschitz so that its output differences reflect actual distances
in input space, preventing it from creating artificial in the loss landscape that would distort the
Wasserstein distance. To enforce this condition, it is common practice to add a gradient penalty of
the discriminator with respect to its inputs, scaled by a regularization coefficient A > 0

Lp($) « Lp(@) + AEsznz, |(|VaD(&)|, — 1)*], (11

where these inputs & are uniformly distributed Pz on lines between pairs of samples from the data
distribution [P, and generator distribution P, (Gulrajani et al., 2017). Again, finite batches of N
inputs provide expectation estimates and yield the gradient-penalty version of the empirical loss
Lp(¢). In this work, all implementations refer to the Wasserstein GAN method with gradient
penalty (WGAN-GP), utilizing a quantum generator, whether it is termed QGAN or QWGAN.

B.2 GENERATOR DECODING: FROM QUANTUM STATES TO IMAGES

As outlined in the main text, the generator ansatz does not enforce valid FRQI states. Therefore,
we construct the image solely from the estimated (computational basis) measurement probabilities
of the generated state |G(z; 0)), and then normalize/condition these probabilities to recover a valid
FRQI representation.
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Concretely, for a pixel indexed by j, probabilities of observing the color qubit of pixel j in states |0)
and |1) are

pos = ({0l ® (GNIG(z0)",  piy=]((1]® (GDIGE= ), (12)

respectively, following the computational basis measurement definition in Eq. (9). The total proba-
bility of measuring information of pixel j is

Dj = DPo,j +p1,j- (13)

For a valid FRQI state, the total probability always equals 1/2" because all 2V pixels are equally
likely to be observed.

Hence, to achieve conformity to the FRQI representation in the decoding process, normalization
uncovers the effective color-qubit amplitudes as defined in Eq. (2)

a,j = \/M, arj = \/P1j/pj- (14)

Finally, the pixel value is derived from the FRQI encoding using trigonometric inverse functions as

T; = %arccos(ao’j) = %arcsin(am). (15)

B.3 DISCRIMINATOR DESIGN

The discriminator is implemented as a convolutional neural network (CNN) (Lecun et al., 1998;
Fukushima, 1980) designed to distinguish between real and fake images, i.e., those obtained by de-
coding the quantum states generated by the QGAN. The exact CNN architecture is adopted from
the discriminator suggested by Gulrajani et al. (2017) for the MNIST dataset and outlined in the
following. Three convolutional layers are used and followed by leaky ReLLU activations, which pre-
serve gradient flow in low-activation regions. All convolutions have 5 x 5 kernels and are applied
with a stride of 2, which halves the size in each layer (no pooling is used). The number of con-
volutional filters is 64, 128, and 256 in the first, second, and third layers, respectively. After the
convolutional layers, the outputs are flattened and passed into a fully connected layer that maps the
extracted features to a single scalar output without any further activation function.

B.4 QUANTUM GENERATIVE MODELING OF COLOR IMAGES

To extend the QGAN framework in this work to generating color images, we first present the exten-
sion of the FRQI grayscale encoding to color images proposed by Sun et al. (2011; 2013). Then, we
introduce a natural extension of the task-specific, FRQI-based generator ansatz to this more general
image encoding. We refer to this new ansatz as the color-extended task-specific ansatz.

Quantum image representations for color images. We encode color images with the multi-
channel representation of quantum images (MCRQI) (Sun et al., 2011; 2013). For each pixel, the
data value now has several components, ; = ( xf, a:jG, mf, x] )T, corresponding to the
three RGB color channels and a possible fourth v channel indicating the opacity of the image. If
only the three RGB channels are available for a given image (as is the case for all color image
datasets considered in this work), the image is at full opacity and we can simply set the o channel to
zero (Sun et al., 2013) or ignore it in the decoding. The color information of a pixel is then encoded

in a three-qubit state as

1s

le(x;)) = > Zaf') [100)
za§)[101) a16)
|010) + sin g:cf)|11o>

7)1000) + sin(F

2% 001) + sin(
7 ) 1010) (
)

with normalized values 2%, x% € [0, 1]. Thus, by inserting this definition in Eq. (1), a color

G
RS J )
image with 2V pixels is encoded into a quantum state with n = N + 3 qubits. Just as for grayscale

images, encoding natural color images via MCRQI results in lowly-entangled states, which are well
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Figure 8: Quantum generator for a 4 x 4-pixel color image with one layer of noise, entangling and
controlled R, gates. The last two color qubits are interpreted as (channel-) address qubits, analogous
to four sub-pixels per pixel, and are integrated into the address qubit register accordingly.

approximated by tensor-network states. To prepare the state exactly on a quantum computer, we
can essentially reuse the same circuit that prepares an FRQI state and run it for each color channel
separately. However, this procedure treats the color channels independently, which is not ideal for
generative modeling, as channels should be considered together.

Color-extended task-specific ansatz. In MCRQI, the three color qubits, as defined in Eq. (16),
play distinct roles: the first (left) encodes the channel intensity in its z-polarization, while the last
two (center and right) specify the channel, i.e., |00) for R, |01) for G, |10) for B, and |11) for c.
Interpreting these two channel qubits also as address qubits casts MCRQI into an FRQI perspective,
effectively mapping a color image onto a grayscale image of doubled resolution. Within the Morton
order, when these channel addressing color qubits are placed as the last two address qubits, this
can be interpreted as subdividing each pixel into four sub-pixels. This interpretation aligns with the
design of digital displays, where each pixel is divided into RGB sub-pixels that, when sufficiently
miniaturized, appear as a single colored pixel to the human eye. We adopt this physical intuition
as the basis for our color-extended ansatz to achieve a task-specific design with sufficient inductive
bias.

Consequently, extending our grayscale generator ansatz to color images becomes straightforward:
the last two color qubits are treated as highest-resolution address qubits. Figure 8 provides a circuit
diagram for a 4 x 4-pixel color image analogous to the 4 x 4-pixel grayscale example in Fig. 1. As
with any address qubit, these two color qubits are affected by noise (the noise vector now includes
two more components), are included in the N2 and N3 entangling ladders, and act as control qubits
each for two additional R, gates on the (first) color qubit.

B.5 TRAINING WITH SHOT NOISE

We recall, that the exact probability distribution P is defined as the squared amplitudes of the quan-
tum state produced by the circuit. However, in practice, we only have access to samples from this
distribution. Given the unfavorable scaling of the parameter-shift rule (Mitarai et al., 2018; Schuld
et al., 2019) for large quantum systems, we focus on assessing the influence of shot noise on the
generated distribution, but not the exact impact on the gradient. We define the computational basis
{lz)}zefo,13n, i-e., the set of all bitstrings of length n, where n is the number of qubits. The exact
distribution P assigns to each basis state |x) the probability |(z|¢)|?, obtained from the squared
amplitudes of the circuit’s output state [¢)). In practice, however, we only have access to a finite-shot

approximation P, obtained from measurement samples. To emulate the effect of shot noise while
keeping gradients tractable, we compute the per—basis-state deviation (z) = P(x) — P(x). We

then perturb the exact distribution by this deviation, P(z) = P(x) + &(z), and apply a subse-
quent clipping step to ensure nonnegativity, followed by a renormalization. The gradient flows only
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through the exact distribution P, not through the stochastic deviation . This procedure closely
resembles the reparameterization trick from (Kingma & Welling, 2014). Thus, the gradient is eval-
uated with respect to the exact distribution P, while still enabling efficient backpropagation during
the simulation of quantum circuits. Note that the gradient is affected solely by the clipping step. If
no measurement outcomes occur in the basis states corresponding both to |0) and |1), we assign the
pixel a neutral gray value before reconstructing the image from the quantum state and feeding it into
the discriminator.

B.6 TRAINING HYPERPARAMETERS

The minibatch size is 64 in most experiments, reduced to 32 for the large (64-layer) MNIST and
Fashion-MNIST QGANSs and to 16 for the color model, solely due to GPU memory limits. General
generator parameters are initialized from a zero-centered normal distribution with variances o2, €
{0.001,0.01,0.025,0.05}, using larger variances for smaller models and vice versa. Noise-tuning
parameters are further scaled down by a factor of 10. The discriminator is updated ten times per
generator update (all iteration counts in the paper refer to generator updates), with the ratio reduced
to 5 : 1 for the color model. Both the generator and discriminator are optimized with the Adam
optimizer Kingma & Ba (2014), using learning rates in {0.001,0.0025, 0.01}, typically lower for
larger models. For the discriminator, the learning rate is reduced by a factor of 10 in grayscale
experiments and 4 in the color model. Training the QGANSs largely follows the WGAN-GP setup
of Gulrajani et al. (2017), which informs the following choices: Adam hyperparameters are fixed to
B1 = 0.5 and B2 = 0.9, and the gradient-penalty coefficient A is set to 10 as defined in Eq. (11).

C DATASETS

The MNIST dataset (Lecun et al., 1998; Deng, 2012) is a simple and widely used dataset for training
machine learning models. It contains grayscale images of handwritten digits between ‘0’ and ‘9’,
and associated labels indicating the correct digit. The original images have 28 x 28 pixels. Here, we
use bilinear interpolation to resize them to 32 x 32 pixels making them suitable for processing on
a quantum computer. The class distribution over the 70 000 images is approximately uniform, with
each class representing between 9% and 11% of the dataset.

The Fashion-MNIST dataset (Xiao et al., 2017) was introduced as a more challenging alternative to
MNIST, after it became apparent that MNIST was too easily solved and no longer posed a significant
challenge for more sophisticated classification models. The dataset also features 70 000 grayscale
images with an original resolution of 28 x 28 pixels, which we again resize to 32 x 32 pixels using
bilinear interpolation. Instead of handwritten digits, the images feature the 10 different clothing
articles, T-shirt/top, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, ankle boot. The dataset
is balanced over the ten classes. When presented in this work, the colors of the generated images
are inverted for Fashion-MNIST for a more intuitive presentation, e.g., of shadings.

The Street View House Numbers (SVHN) dataset (Netzer et al., 2011) offers a natural-image analog
to MNIST, comprising RGB 32 x 32 crops of digits 0—9 taken from Google Street-View scenes that
feature real-world background variation. In our experiments, we restrict the corpus to those samples
whose central digit is 0. Within the official core split this subset contains roughly 4 948 training
samples and 1 744 test samples.

D EXTENDED EXPERIMENTS AND ANALYSIS

Experiments and analyses beyond the results presented in the main text (Sec. 4) are discussed here.

D.1 MODEL SELECTION AND EVALUATION

All samples presented in this work are generated by either a QGAN after being trained for a fixed
number of iterations, or a QGAN reloaded from a training checkpoint, which is selected automat-
ically via the maximum mean discrepancy (MMD) metric instead of the lowest-loss checkpoint, a
common criterion in generative modeling (Borji, 2019; 2021). Generally, the number of iterations
is set before training starts, or training is stopped after a preset time limit, independent of the loss or
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Figure 9: Learning curves of MMD and loss for the largest QGANs (64 layers) on MNIST and
Fashion-MNIST. The MMD metric is normalized using its minimum (min) and upper quantile (Q3).
The average MMD curve is computed across the three kernels iinear, £poly, and xrpr, followed by a
centered moving average over 9 neighboring training checkpoints. The selected model is indicated at
the point where the average MMD reaches its minimum. For clarity, the loss curves are additionally
smoothed with a moving average over 1 000 iterations.

evaluation metrics. Importantly, in both model selection scenarios, human intervention or selection
was not involved to avoid biased or “cherry-picked” results.

Maximum mean discrepancy (MMD). The kernel MMD (Gretton et al., 2012) measures the
difference between two probability distributions IP,, and P, denoting the real data distribution and
generator distribution, respectively, in the context of QGAN evaluation. Intuitively, MMD compares
similarities within and across datasets, providing a measure of how well the generator mimics the
real distribution. For the largest QGAN models in this work, which were used to generate the images
in Figs. 3a and 3b, the learning curves of MMD and loss are presented in Fig. 9. The empirical
definition of the MMD, based on &k samples W .. x®) ~ P, (arandom k-sized subset of the
training set) and &1, ..., &%) ~ Pg, reads as follows

n k2 Z wz;w] k‘2 Z wlij %Z”(ii,ij)a (17)
4,J

where « denotes the kernel. The kernel « is a symmetric similarity function assigning high values to
similar samples and low values to dissimilar ones. We evaluate MMD using three common kernels:
linear, polynomial (of degree 2), and radial basis function (RBF) (with unit bandwidth) kernels. To
obtain stable scores, the MMD values are normalized between their minimum and upper quantile
for each kernel, avoiding sensitivity to noisy estimates from early underfit stages. The final score
to pick the best model is computed by averaging across kernels and applying a centered moving
average (window size 9) across neighboring training checkpoints. A checkpoint was created every
500 iterations, and £ = 5000 samples were used to estimate the MMD.

D.2 IMPACT OF GENERATOR DEPTH AND DATASET COMPLEXITY ON IMAGE QUALITY

An extended analysis is presented here to investigate further the relationship between model depth,
dataset complexity (in terms of the number of classes), and image quality. The experiments are
based on MNIST, comparing models trained on either the complete set of classes or a restricted
subset (digits 0 and /), while varying generator depths L € 8,16, 32. The number of modes is set to
either 2 or 10, matching the number of classes. Each model is trained for 40 000 iterations, and the
checkpoint minimizing the MMD metric is used for image generation. Figure 10 presents the results
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Figure 10: Effect of generator depth and dataset complexity on image quality. Models were trained
either on (a) an MNIST subset (digits 0 and /) with depth L = 8, or on all ten MNIST classes with
(b) the same depth L = 8 or increased depths of (¢) L = 16 and (d) L = 32. One representative
image (manually selected) per class is depicted. Results suggest that increasing the number of
classes requires deeper generators to maintain visual quality.
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Figure 11: Three inter-class modes blend between Fashion-MNIST classes: (a) dress—coat, (b) t-
shirt—dress, and (c) trouser—dress. Results are from training a QGAN with 4 times more input noise
modes than dataset classes (“overmoding”). As in Fig. 6, each mode is visualized with images
representing the mean (center) and £30 variations (outer) along the first principal component. PCA
is based on 1 000 samples per mode. Note that (a) dress—coat mode was already presented in Fig. 6c.

and clearly shows that as the number of classes increases, deeper generator circuits are required to
maintain image quality. Recall that the large models in Sec. 4.1 used 64 layers to capture all MNIST
digits at both high quality and diversity.

For the training restricted to two classes, even a shallow generator with L = 8 produces high-quality
samples (Fig. 10a). This setting exactly matches the number of layers per patch generator used in
prior work by Tsang et al. (2023), where 28 such generators were combined for two classes. In
contrast to their results, the model here produces images of improved quality, comparable to the
results of the much larger 64-layer generators (cf. Fig. 3a). This demonstrates that the gain in
quality over previous works is primarily due to our task-specific QGAN design, not merely due to
increasing model size. In comparison, Fig. 10b shows images generated from a model with the same
number of layers L = 8 but now trained on all 10 classes. Here, a decrease in quality is evident,
especially when comparing to the 0 and / samples in Fig. 10a. Generally, most other classes are
captured considerably worse than by the large model as in Fig. 3a. By scaling the model to L = 16
(Fig. 10c) and L = 32 (Fig. 10d) layers, a successive increase in image quality can be observed.
While some images at L = 16 (Fig. 10c) already reach a high quality, such as digits 0 and / again
matching the high quality of the smaller L = 8 model when trained on these two classes only
(Fig. 10a), it requires L = 32 layers (Fig. 10d) to achieve uniformly such quality across all classes.

D.3 INTER-CLASS MODES IN OVERMODING

In extension of the analysis on QGAN “overmoding” for the complete Fashion-MNIST dataset,
Fig. 11 presents additional modes, analogous to those in Fig. 6. Here, the focus is on inter-class
modes, which capture images blending between two classes, occurring in the model trained with 40
input noise modes on the 10 classes in Fashion-MNIST. While such blending may initially appear
to induce undesired mixing artifacts, it can in fact reflect realistic scenarios. For instance, one mode
morphs between dress and coat, not only adjusting the shape but also introducing a clear line for a
zipper (Fig. 11a). Another mode mostly captures t-shirts gradually transitioning from a fitted t-shirt
into a t-shirt dress (Fig. 11b). A third mode gradually brings the legs of a frouser closer together until
they eventually connect and resemble a dress, while the top simultaneously forms proper shoulder
caps (Fig. 11c¢).
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LLM USAGE STATEMENT

In accordance with the ICLR 2026 policy on Large Language Model (LLM) usage, we disclose
that Grammarly and ChatGPT were utilized for grammar checking, style improvement, and minor
text polishing. GitHub Copilot was used to suggest code snippets during development, with all
generated code reviewed, tested, and adapted by the authors. No LLMs were used for generating
novel research ideas, data analysis, or drafting substantial portions of the manuscript.
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