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Abstract

Coronary computed tomography angiography (CCTA) is essential for non-invasive assess-
ment of coronary artery disease (CAD). However, accurate segmentation of atherosclerotic
plaques remains challenging due to data scarcity, severe class imbalance, and significant vari-
ability between calcified and non-calcified plaques. Inspired by Diff Tumor’s tumor synthesis
and PromptIR’s adaptive restoration framework, we introduce PromptLesion, a prompt-
conditioned diffusion model for multi-class lesion synthesis. Unlike single-class methods,
our approach integrates lesion-specific prompts within the diffusion generation process, en-
hancing diversity and anatomical realism in synthetic data. We validate PromptLesion on
a private CCTA dataset and multi-organ tumor segmentation tasks (kidney, liver, pan-
creas) using public datasets, achieving superior performance compared to baseline methods.
Models trained with our prompt-guided synthetic augmentation significantly improve Dice
Similarity Coefficient (DSC) scores for both plaque and tumor segmentation. Extensive
evaluations and ablation studies confirm the effectiveness of prompt conditioning.

1 Introduction

Coronary artery disease (CAD) is a leading cause of mortality worldwide, significantly affecting global death
rates Mensah et al.| (2023). Coronary computed tomography angiography (CCTA) is widely used as a non-
invasive imaging modality for detecting and characterizing coronary plaques, offering a strong alternative to
invasive angiography Marano et al.| (2020)); [Serruys et al.| (2021). Accurate segmentation of plaque regions
in CCTA is crucial for quantifying disease burden and guiding interventions.

However, this task is hampered by high inter-class variability between plaque types (calcified vs. non-
calcified plaques) and limited annotated datasets [Huang et al.| (2020)); [Lin et al| (2022)); Ruan et al.| (2025]).
Moreover, class imbalance is severe since healthy vessel pixels vastly outnumber plaque pixels, which can
cause segmentation models to be biased toward normal anatomy.

Recent advances in deep learning-based segmentation have achieved promising results in medical imag-
ing. Convolutional architectures like U-Net |Ronneberger et al.| (2015)) and its self-configuring variant nnU-
Net [Isensee et al.| (2018)) have become standard, and transformer-based models (e.g. TransUNet [Chen et al.
(2021)) further improved multi-organ segmentation by capturing long-range context. Nevertheless, these
models require large-scale annotated data to generalize well, making data augmentation essential to alleviate
data scarcity. Traditional augmentation techniques (random flips, rotations, etc.) provide limited benefit as
they do not introduce new anatomical patterns or pathology variations. This limitation motivates the use of
generative models to create realistic synthetic lesions and images for augmentation. Generative adversarial
networks (GANSs) |Goodfellow et al.| (2014); [Armanious et al.|(2020)); Wu et al.| (2024) and variational autoen-
coders [Pesteie et al.| (2019); |[Esser et al.| (2021]) have been explored for medical data augmentation, but can
suffer from mode collapse and limited diversity. Recently, diffusion models have emerged as a powerful class
of generative models capable of producing high-fidelity images by iterative denoising. In medical imaging,
diffusion models have shown promise in synthesizing anatomically realistic structures. For example, |Chen
et al.| (2024)) introduced DiffTumor, a diffusion-based framework for realistic tumor synthesis across organs,
demonstrating improved generalization over GANs. However, Diff Tumor is restricted to single-class lesion
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generation, focusing on one tumor type at a time. This limits its applicability for tasks where multiple lesion
classes coexist.

Inspired by PromptIR’s success |[Potlapalli et al| (2023) in adaptive image restoration using task-specific
prompts, we propose to integrate prompt-based conditioning into a diffusion model for multi-class lesion
synthesis. Our method, termed PromptLesion for multi-class lesion generation, incorporates learnable lesion-
specific prompts during the diffusion generation process. By conditioning on a prompt that encodes the
target lesion type, our model can synthesize both calcified and non-calcified plaques in Coronary Computed
Tomography Angiography (CCTA) within a single framework. This controlled augmentation addresses
the data imbalance by generating diverse examples of under-represented classes. We extend this approach
beyond CCTA plaques to multi-organ tumor synthesis: by conditioning on a lesion-specific prompt (e.g.
kidney vs. liver tumor, early vs. late stage), we enable a unified model to generate a variety of tumor
types. Our hypothesis is that prompt-guided diffusion augmentation will produce more diverse and realistic
lesions, leading to improved segmentation performance on both plaque and tumor segmentation tasks. We
validate this by training segmentation models on: (a) real data only, and (b) real + synthetic augmented
data, comparing outcomes. Experiments on a private CCTA dataset show that adding synthetic plaques
yields notable DSC improvements for plaque segmentation. Similarly, on public kidney Heller et al.| (2020),
liver |Bilic et al. (2023]), and pancreas |Antonelli et al. (2022) CT datasets, our multi-class synthetic tumors
improve segmentation accuracy across all organs, outperforming the DiffTumor augmentation approach.

In summary, our work makes the following contributions:

e Prompt-conditioned diffusion augmentation: We introduce PromptLesion, the first diffusion-
based framework integrating lesion-specific prompts for controlled multi-class lesion synthesis. This
design provides an easy-to-scale solution adaptable to multiple lesion classes and anatomies.

e Enhanced segmentation via synthetic data: Our synthetic augmentation method significantly
boosts segmentation performance, effectively addressing class imbalance by oversampling rare lesions
realistically.

e Generalization across anatomies: We validate PromptLesion across CCTA plaque and multi-
organ tumor datasets (kidney, liver, pancreas), achieving superior segmentation accuracy and lesion
diversity compared to baseline methods.

This paper is structured as follows: Section 2 reviews related work on medical image synthesis, diffusion
models, and prompt-based learning. Section 3 details our prompt-conditioned diffusion methodology, in-
cluding the VQGAN-based autoencoder and multi-class prompt integration. Section 4 presents experiments
on CCTA and tumor datasets, with comparisons to baselines and ablations. Section 5 concludes with key
findings and future directions.

2 Related Work

2.1 Maedical Image Synthesis and Augmentation

Data Augmentation in Segmentation: Data scarcity and class imbalance are common challenges in medical
image segmentation, and various augmentation strategies have been proposed. Beyond basic transformations,
researchers have explored generating synthetic data to enrich training sets. Generative Adversarial Networks
(GANSs) have been widely used for medical image synthesis and augmentation. For example, |Frid-Adar
et al| (2018) used GANs to generate synthetic liver lesions in CT scans to improve tumor classification
performance. Bowles et al.[(2018)) applied GAN-based augmentation for brain lesion segmentation, reporting
improved segmentation accuracy. In digital pathology, [Xue et al.[(2021)) introduced HistoGAN, a conditional
GAN that synthesizes histopathology image patches conditioned on cancer class, yielding significant gains
in classification of rare cancer subtypes. These works demonstrate that synthetic lesion data can effectively
mitigate class imbalance and improve model generalization in various medical imaging contexts. However,
most GAN-based approaches are class-specific — they train separate models for each lesion type or organ.
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This limits scalability and fails to exploit potential commonalities between classes. Moreover, GANs can
struggle to maintain anatomical realism for complex structures. These limitations motivate the use of
diffusion models, which offer improved stability and diversity.

2.2 Diffusion Models for Medical Image Synthesis

Diffusion probabilistic models have recently shown impressive results in image generation. A diffusion model
gradually adds noise to training images and learns to reverse this noising process, enabling it to sample
realistic images from pure noise. |Ho et al.| (2020) introduced the DDPM formulation and demonstrated
high-quality image synthesis on natural images. Due to their capacity for generating fine details and mode
coverage, diffusion models are well-suited to medical image synthesis, where preserving anatomical fidelity
is critical. Several works have adapted diffusion models to medical tasks. Diffusion-based augmentation
was applied by |Chen et al| (2024)) in Diff Tumor, which synthesized tumors on CT and improved cross-
organ tumor detection. Their diffusion-generated tumors enabled the training of a segmentation model that
generalized to multiple organs, highlighting diffusion models’ potential in biomedical data augmentation.
Kazerouni et al.| (2023) survey diffusion models in medical imaging and note their success in anomaly de-
tection and modality translation tasks. |Zhang et al| (2024)) propose DiffBoost, a controllable text-guided
diffusion model for medical image segmentation augmentation. By incorporating structural edge information
and textual labels, DiffBoost generates diverse synthetic images that improve segmentation performance on
ultrasound, CT, and MRI datasets. |[Dorjsembe et al.|(2024)) introduce Med-DDPM, a 3-D mask-conditioned
diffusion model that synthesises anatomically faithful brain-MRI volumes from tumour masks, further un-
derscoring conditional diffusion’s value for privacy-preserving data augmentation. These results reinforce
that diffusion-based synthetic data can significantly boost downstream segmentation accuracy. Compared
to GANSs, diffusion models offer improved mode diversity and training stability at the cost of higher compu-
tation. Our work builds upon these advances by introducing conditional diffusion for multiple lesion classes
simultaneously. While diffusion models have been successfully applied to tasks such as anomaly detection
and single-class lesion synthesis (e.g., for a specific tumor type), many recent works also explore domain
translation, denoising, reconstruction, and multi-class tasks. Nonetheless, the majority of lesion-focused
diffusion studies to date often concentrate on one particular lesion type rather than simultaneously address-
ing multiple classes; we extend the paradigm to multi-class lesion generation via prompt embeddings, as
described next.

2.3 Prompt-based Learning in Generative Models

Prompt learning — providing additional conditioning inputs or context to guide model behavior — has gained
traction in both NLP and vision Brown et al. (2020); [Liu et al. (2023)); [Shin et al.| (2020); [Radford et al.
(2021));|Zhou et al.| (2022);|Jia et al.| (2022)). In NLP, prompt templates are used to steer large language models
to perform specific tasks without fine-tuning. In computer vision, learnable prompts or tokens have been
employed to adapt transformers to new tasks (e.g. LoCoOP |Miyai et al.| (2023)) for few-shot classification).
Prompt-based techniques have only recently been explored in image generation and restoration. [Potlapalli
et al.| (2023)) introduced PromptIR, which uses trainable prompt vectors to encode degradation information
(noise, blur, haze levels) for image restoration. By injecting prompts into a restoration network, PromptIR
achieved state-of-the-art results on multiple degradation types with a single model. This demonstrated that
lightweight prompts can effectively modulate a deep network’s behavior based on task-specific context. In
the generative domain, approaches like text-to-image diffusion [Zhang et al.| (2023) allow controlling outputs
via textual prompts. Yet, prompt-based conditioning in medical generative models remains underexplored.

PromptIR’s plug-and-play prompt modules inspire our work: we design a prompt-based conditioning mech-
anism for a diffusion generator. The prompts in our model encode lesion type information (plaque or tumor
category) and guide the image synthesis process to produce the desired abnormality. This is conceptually
related to conditional generation but with a flexible learned prompt vector instead of a simple one-hot label
or fixed scalar conditioning. The prompt is injected at multiple stages of the diffusion U-Net, allowing it to
influence the denoising trajectory towards the target lesion appearance. We show that such prompt condi-
tioning yields distinct benefits in a multi-class setting, as it provides a form of adaptive guidance that can
be tuned for each lesion class without retraining the entire model.
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2.4 Applications of Multi-Class Lesion Synthesis

While single-class synthetic augmentation has demonstrated benefits in medical imaging contexts, such as
liver lesions |[Frid-Adar et al.| (2018), brain lesions Bowles et al.| (2018]), and pathology classification Xue
et al| (2021), the capability to simultaneously handle multiple lesion classes within a single framework is
becoming increasingly crucial. In clinical practice, multiple lesion types or pathologies frequently coexist
within a single imaging scan, such as varying plaque compositions in coronary arteries Ruan et al.| (2025) or
metastatic tumors distributed across multiple organs. Nevertheless, prior generative augmentation methods,
including GAN-based techniques |Armanious et al.|(2020); Wu et al.| (2024]) and diffusion-based methods like
DiffTumor (Chen et al.[(2024), typically focus on synthesizing a single lesion class per model. This single-class
strategy does not effectively exploit shared anatomical or pathological characteristics, leading to inefficiencies
and limited scalability when expanding to multiple lesion types.

Our work addresses this limitation by introducing a unified, prompt-driven diffusion framework designed
explicitly for multi-class lesion synthesis. We target two distinct clinical domains: coronary artery plaques
(calcified and non-calcified) and abdominal organ tumors (kidney, liver, pancreas, each with early and late
stages). In the context of coronary computed tomography angiography (CCTA), our method synthesizes
both plaque types within the arterial context, providing balanced lesion diversity that enhances segmen-
tation robustness on scans with mixed plaque compositions. Similarly, for tumor segmentation tasks, our
approach generates diverse tumors across different abdominal organs, allowing segmentation models to learn
generalized lesion features rather than becoming overly specialized on a single organ or lesion class.

Leveraging prompt-conditioned diffusion ensures anatomical coherence in synthesized images despite varia-
tions in lesion appearance. Consequently, we produce richly augmented datasets that encompass multiple
lesion categories, significantly improving segmentation accuracy across lesion classes. Our experimental re-
sults consistently demonstrate superior Dice similarity coefficients for both plaque and tumor segmentation
tasks compared to baseline methods trained solely on real data or single-class augmentation strategies. Over-
all, prompt-based multi-class lesion synthesis provides a scalable, generalizable, and effective augmentation
strategy, representing a significant advancement in generative augmentation for medical imaging.

3 Method

Our proposed method combines a latent diffusion model with prompt-based multi-class conditioning to
generate realistic lesions for data augmentation. The overall pipeline (illustrated in Figure 1)) consists of
three stages: (1) a VQGAN autoencoder that learns a compact latent representation of medical images, (2)
a conditional diffusion model operating in the latent space, guided by lesion prompts to produce synthetic
abnormalities, and (3) a segmentation model to evaluate the performance of synthetic images. We describe
each component and its integration below.

3.1 VQGAN-based Reconstruction

Following the approach introduced by DiffTumor |Chen et al.| (2024]), we employ a Vector Quantized Gen-
erative Adversarial Network (VQGAN) [Esser et al| (2021) to encode medical images into a compact latent
space, as step 1 in Figure [I] shows. Working in this latent representation significantly reduces computa-
tional demands and enables the diffusion model to focus better on meaningful anatomical and pathological
structures.

Specifically, given an input 3D medical image patch z € RZ*WXD the encoder E4 produces a compressed
latent representation z = Ey(z) € Rrxwxd - Fach element of z is subsequently quantized by mapping it
to the nearest vector from a learned discrete codebook Z = {e;} X, yielding the quantized latent code 2.
The decoder G4 then reconstructs the image from this quantized code, resulting in the reconstructed output

T = G¢(Z)

To train VQGAN effectively, we optimize a combined loss objective comprising several terms: a pixel-level L
reconstruction loss (L,e.) ensuring accurate overall reconstruction, a perceptual 10ss (Lperceptual) t0 preserve
anatomical details across axial, coronal, and sagittal planes, and two codebook-related losses—a codebook
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Figure 1: Overview of our Prompt-based Diffusion augmentation framework. (a) Step 1: VQGAN Autoen-
coder encodes input medical images into compact latent representations. (b) Step 2: Prompt-conditioned
diffusion model named PromptLesion synthesizes lesion-specific latent codes guided by prompt embeddings.
(¢) Step 3: Segmentation Model evaluates the performance of synthetic lesion images. See Section 3 for
detailed descriptions.

optimization loss (Lcodeboor) and an encoder commitment loss (Leommit)—which collectively stabilize quan-
tization training. Additionally, we introduce adversarial training with two discriminators: a volumetric
discriminator (D,) enforcing overall 3D anatomical coherence and a slice-based discriminator (D) improv-
ing slice-wise realism. We further incorporate a discriminator-based feature matching loss (Lyatcn) to guide
the decoder toward generating realistic intermediate representations. The discriminator loss (Lg;sc) is thus
formulated as:

Ldisc = IOgDs/v(w) + log (1 - Dé/u({c)) . (1)

After training, encoder and decoder parameters are frozen. The diffusion model operates exclusively on this
discrete latent space, ensuring efficient synthesis while retaining critical anatomical information.

3.2 Diffusion Model with Prompt Conditioning

Inspired by the approach outlined in Diff Tumor |Chen et al.| (2024)), we employ a Denoising Diffusion Proba-
bilistic Model (DDPM) to synthesize latent representations containing realistic lesions, as step 2 in Figure
shows. Specifically, we define a diffusion model using a U-Net architecture fp(z¢,t, m, 24" p) designed
to reverse a predefined forward noising process. Note that, similarly to DiffTumor, the diffusion model is
conditioned on both the lesion mask m and the healthy region z"¢**"¥ = (1 —m) ® 2. During the forward
process, Gaussian noise is progressively introduced into the initial latent representation zy (obtained from
real images via the trained VQGAN encoder), resulting in a noisy latent code z; at timestep ¢ € [1,T]. The
U-Net then predicts the added noise given z;, timestep ¢, lesion mask m, healthy CT region z"¢**"Y and a
lesion-specific prompt embedding p.

We explicitly introduce prompt conditioning to guide lesion synthesis, integrating prompts at multiple
scales within the U-Net architecture. Prompts encode lesion class labels(one-hot) into dense vectors us-
ing a prompt embedding network (e.g. [0, 1,0] for calcified plaque, [0, 0, 1] for non-calcified plaque in CCTA
datasets;[0, 1,0, 0, 0,0, 0] for early stage tumor in liver datasets). Our framework further supports controlled
multi-class lesion synthesis via user-specified prompts (Section3.2.1) and leverages adaptive prompt learn-
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ing through implicit prompts derived from a transformer-based encoder to enrich contextual relationships
among lesion types (Section3.2.2). Formally, the diffusion model is trained by optimizing the standard
DDPM objective, minimizing:

EZO,C,G,t UG_fg(zt,tvmvzhealthyapﬂz] ) (2)

where f0(z,t,m, 2" p) is our PromptLesion Network, as a 3D U-Net variant with prompt block, in-
terleaved self-attention layers and convolutional layers|Ho et al.| (2020)); [Nichol & Dhariwal (2021)); the noisy
latent z; is obtained through the forward noising step defined by:

2z = Vayzo + V1 —age, e~ N(0,I). (3)

Through this training, the U-Net learns to progressively denoise latents towards plausible, prompt-specific
anatomical structures and lesions.

3.2.1 Multi-class Lesion Generation via Prompts

Once trained, our diffusion model enables controlled synthesis of lesions conditioned on user-specified
prompts. For instance, to generate synthetic coronary plaques, we first sample a random Gaussian la-
tent zr ~ N(0, 1) and select a desired lesion class Cplaque € calcified, non-calcified . The prompt embedding
network generates the corresponding prompt vector p. We then perform iterative reverse denoising steps,
computing:

Zt—1 :fé’(ztat,mazhealthyap)a t:Tan]-a"'v]-a (4)

ultimately yielding a clean latent zg representative of a vessel containing the desired plaque type. Decoding
zp via the pretrained VQGAN decoder produces synthetic but anatomically coherent CCTA images suitable
for segmentation training.

A similar procedure is applied for tumor data, where prompts condition the model to generate organ-specific
and stage-specific tumor lesions. Crucially, our unified diffusion model supports generation of multiple lesion
types using a single architecture, differentiating lesion classes solely through prompt vectors. The model
can also generate lesion-free images by employing a dedicated “healthy” identity prompt, enabling versatile
data augmentation strategies, including guided insertion of synthetic lesions into real lesion-free backgrounds
through partial reverse diffusion steps analogous to latent-space inpainting.

Following DiffTumor (Chen et al.| (2024), we also adopt lesion-background blending, which they showed is
superior to fully synthetic volumes. Our augmentation procedure integrates synthetic lesion patches into real
images at anatomically plausible locations guided by clinical domain knowledge, such as inserting synthetic
plaques along coronary artery walls.

3.2.2 Adaptive Prompt Learning

To further enhance the informativeness and representational capability of our prompt-based augmentation
framework, we extend the prompt encoding mechanism beyond simple one-hot vectors by incorporating im-
plicit prompts extracted through a lightweight transformer-based encoder, as shown in Figure[2] Specifically,
instead of directly using a one-hot encoded vector of lesion labels as explicit conditioning input, we employ
a small transformer encoder [Vaswani et al.| (2017) to embed the multi-class segmentation masks into latent
embeddings. These embeddings inherently capture richer contextual relationships among different lesion
classes, thus serving as more informative implicit prompts to guide the diffusion process. The lightweight
transformer encoder consists of 3 layers, each comprising multi-head self-attention and position-wise feed-
forward networks, effectively balancing representational capacity and computational efficiency. Compared
to the explicit one-hot encoding used previously, this implicit prompting strategy leverages spatial and
class relational context, potentially improving the generation fidelity and diversity of synthetic lesions, as
demonstrated empirically in subsequent experiments.

3.3 Segmentation Model

As shown in step 3 of Figure [1 to evaluate our synthetic augmentation, we use standard segmentation
models including 3D U-Net and nnU-Net, following the general methodology of DiffTumor |Chen et al.
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Figure 2: Transformer-based Prompt Network: Instead of conditioning with one-hot vector, transformer-
based prompt network conditions with multi-channel mask.

(2024). Specifically, for the CCTA plaque segmentation task, we combine synthetic plaque-containing slices
generated by PromptLesion with healthy artery slices from the real training dataset. Each synthetic slice
includes automatically generated lesion masks indicating calcified or non-calcified plaques, thus enriching
rare lesion classes while maintaining realistic artery anatomy.

For the multi-organ tumor segmentation tasks (kidney, liver, pancreas), we directly follow DiffTumor’s
procedure, integrating PromptLesion-generated synthetic tumor images and their corresponding masks with
real tumor data. These segmentation models serve as evaluation tools to measure the effectiveness of our
synthetic data—by comparing models trained with and without PromptLesion augmentation, we assess
whether the generated images contribute to improved performance on downstream segmentation benchmarks.

4 Experiments

4.1 Datasets & Preprocessing

For VQGAN training in Step 1 shown in Figure |1, we use AbdomenAtlas-8K dataset |Qu et al.| (2023)) for
tumor training following Difftumor method |Chen et al.[(2024) and a private CCTA datset for plaque training.
For Step 2 and 3 shown in Figure [I} we train and evaluate our method on two types of datasets: (1) CCTA
scans for plaque segmentation, and (2) contrast-enhanced CT scans for abdominal tumor segmentation. The
CCTA dataset is a private set of 100 cardiac CTA volumes, following the data split ratio of a prior work
Ruan et al.| (2025)): 70 training, 10 validation, 20 testing . Each CCTA volume has expert annotations
for calcified and non-calcified plaque regions within the coronary arteries. For tumor segmentation, we
use the same public datasets as DiffTumor: the Kidney Tumor dataset (KiTS) Heller et al.| (2020), Liver
Tumor (LiTS) Bilic et al.| (2023)), and Pancreas Tumor (MSD Pancreas) |Antonelli et al.| (2022)) — totaling
131 liver tumor CTs, 300 kidney tumor CTs, and 250 pancreas tumor CTs for training/validation. Each of
these datasets contains two tumor classes (early-stage vs. advanced) as described in |Chen et al.| (2024]).
We combine them to form a multi-organ tumor training set, while evaluating segmentation on each organ
separately (using their standard test splits). All data were resampled to a uniform voxel spacing (e.g. 1mm3)
and intensity normalized (windowed to relevant Hounsfield unit ranges and min-max scaled). We applied
standard augmentations (random affine transformations, flips, elastic deformations) during training to all
models for a fair comparison.

For preprocessing, we followed the procedure used in DiffTumor |Chen et al.| (2024]), extracting fixed-size
3D sub-volumes from the original CT volumes to ensure both memory efficiency and sufficient anatomical
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context for training the diffusion model. Specifically, for CCTA, we extracted volumetric patches centered
around the heart region to include clear visibility of coronary arteries. For tumor segmentation, similar
3D patches were extracted covering the respective organs (kidney, liver, pancreas). Each extracted sub-
volume was resized or padded to a fixed spatial dimension (e.g., 96 x 96 x 96 voxels), followed by intensity
normalization. Subsequently, we trained a VQGAN autoencoder on these 3D patches to encode them into
compact latent representations. These latent maps, along with corresponding segmentation masks indicating
lesions (plaques or tumors) versus background, served as inputs for training our prompt-conditioned diffusion
model.

4.2 Experimental Setup and Baselines

We integrate our synthetic data into the training of segmentation models and compare against multiple
baselines:

o Baseline segmentation (Real-Only): Train segmentation networks using only the real training images
and labels, with no synthetic augmentation, using baseline U-Net and nnU-Net architectures. This
represents the standard supervised scenario with limited data.

o PromptLesion Augmentation (Ours): Train the same segmentation networks on the combination
of real and PromptLesion-generated images. For each real image in a batch, we add one or more
synthetic images of under-represented classes (e.g. a synthetic non-calcified plaque image if that
class is rare) generated by our model. The synthetic images come with automatically generated
segmentation masks (since we know the lesion ground-truth in the synthetic world).

« PromptLesion’ Augmentation (Ours): In the additional experiment, we thoroughly evaluated the
impact of using transformer-derived implicit prompts compared to the conventional one-hot vector
approach. We conducted training of the PromptTumor model using the implicit transformer-based
prompts under identical conditions as previous experiments. Segmentation results were evaluated
on the same tumor datasets (liver, kidney, pancreas) and coronary artery plaque datasets, using
baseline U-Net and nnU-Net architectures.

e DiffTumor Augmentation: As an additional baseline, we simulate using DiffTumor for augmentation.
Diff Tumor can only synthesize one type of tumor at a time (e.g. liver tumors). We generate
synthetic tumors for each organ separately using DiffTumor’s released model and add those to
training. This baseline tests if our multi-class approach yields an advantage over using multiple
single-class generators.

e SynTumor Augmentation: We compare our diffusion-based augmentation with SynTumor |[Hu et al.
(2023)). These images augment the training set similarly for both CCTA and tumor datasets.

o Med-DDPM (multi-class) Augmentation: We extend Med-DDPM Dorjsembe et al.| (2024)) to handle
all lesion classes jointly by conditioning on multi-class masks. For each healthy CT, a lesion mask
of a target class is sampled; Med-DDPM then generates a lesion volume that is composited into the
CT following the DiffTumor blending strategy. The resulting synthetic scans and their masks are
mixed with the real data using the same sampling ratio as PromptLesion, allowing us to assess a
mask-conditioned diffusion baseline without prompt embeddings.

e Segmentation architectures: We report results with two segmentation models: a standard 3D U-Net
and the nnU-Net 3D framework. We train each model on each training set variant (Real-Only-
Training, Mix-Training, etc). All models are trained for 500 epochs with early stopping on the
validation set.

Note that we use the DiceCELoss [Sudre et al.| (2017)) for all the segmentation trainings. We emphasize that
the synthetic images are used in addition to real images (not replacing them). The proportion of synthetic
data is tuned on the validation set — we found using a 1:1 ratio of synthetic: real achieved the best results
without overwhelming the network with possibly redundant synthetic samples.
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Figure 3: Vision Comparison for CCTA datasets: In mask images, black refers to background, red denotes
coronary artery wall, green indicates calcified plaque, and purple is non-calcified plaque

4.3 Evaluation Metrics and Protocol

Segmentation performance is evaluated primarily by the Dice Similarity Coefficient (DSC), which measures
the overlap between predicted masks and ground truth . We report DSC for each class (calcified vs non-
calcified plaque, or tumor in each organ) and overall mean DSC. We compare model performance on the
independent test sets for each task:(a) CCTA Plaque Segmentation: We evaluate on 10 held-out CCTA
volumes, computing the per-lesion DSC. (b) Multi-organ Tumor Segmentation: We test on the official test
sets of KiTS, LiTS, and MSD Pancreas. Following DiffTumor, we perform evaluation tumor-wise and report
the mean DSC across all tumors.

For statistical significance, we run each experiment 3 times with different random seeds and report the average
DSC. We use paired t-tests between Real-Only and Mix results to confirm improvements are significant.

4.4 Results

Figure[3|shows qualitative segmentation results on the CCTA dataset, comparing a baseline model (trained on
real data only) with our proposed PromptLesion. Our method effectively captures challenging plaque regions,
particularly non-calcified plaques, which often have ambiguous boundaries and relatively low contrast with
surrounding tissues. In contrast, the baseline segmentation model often misses these subtle plaque structures
or incorrectly segments partial regions, leading to incomplete or noisy segmentations. By leveraging our
prompt-conditioned diffusion augmentation, the segmentation predictions become more accurate and closely
aligned with expert annotations, demonstrating enhanced sensitivity towards subtle lesions.

Similarly, Figure [4] illustrates visual comparisons on the tumor datasets (kidney, liver, pancreas). The
model trained with our prompt-based diffusion augmentation produces more accurate tumor masks across
organs compared to the baseline, especially for smaller or less conspicuous lesions. Figure [4] demonstrates
similarly enhanced segmentation accuracy for kidney, liver, and pancreas tumors, highlighting our method’s
generalizability.
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Figure 4: Vision Comparison for Tumor Datasets: In mask images, red is the background, purple refers to
organ, and the black is the target tumor.

Quantitatively, Table [I] summarizes DSC results for CCTA plaque segmentation. Our PromptLesion and
PromptLesion! methods consistently outperformed the baselines, achieving marked improvements particu-
larly for the challenging non-calcified plaques. PromptLesion’ provided the best overall performance across
both segmentation architectures.

Table [2] compares the segmentation performance of various approaches for multi-class tumor segmenta-
tion, evaluated on three different organs (liver, kidney, pancreas) with two segmentation backbones (U-Net
and nnU-Net). “Real Tumors” represents training on real tumor data only (no synthetic augmentation).
“DiffTumor,,,” are baselines that use single-source training (trained on one organ’s data) but are tested
across multiple domains (performance averaged across organs). Our proposed methods, “PromptLesion” and
“PromptLesion',” consistently outperform these baselines (including DiffTumor,,¢) in multi-domain segmen-
tation without sacrificing performance. The results demonstrate that PromptTumor achieves the best overall
performance (see the “Avg” column), highlighting its effectiveness in generating multi-class tumors across
different domains.

4.5 Ablation Study
4.5.1 Multi-class tumor generation across domains

Tabl presents an ablation study evaluating multi-class tumor generation across three domains (liver, kidney,
pancreas) using two different backbones (UNet and nnUNet). “Diff Tumor” denotes the baseline method
trained on the same source data, while “PromptLesion” (and its variant “PromptLesion’”) represents our
proposed approach for multi-class generation. The results indicate that PromptLesion achieves comparable
or even higher performance than DiffTumor, demonstrating that our prompt-based framework does not
sacrifice performance when extending tumor generation to multiple classes.

4.5.2 Prompt conditioning

To systematically investigate the contribution of transformer-based implicit prompts, we performed an ab-
lation study by comparing: (a)Baseline (Real Data Only): Training segmentation models solely on real

10
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Table 1: Quantitative comparison of plaque generation in Dice Score.

Backbone Method Calcified Plaque | Non-calcified Plaque | Avg
Real CCTA 68.1 21.3 44.7

SynTumor 69.5 27.2 48.4
DiffTumorg,q 70.2 30.2 50.2

Unet

Med-DDPM 71.6 34.3 52.9
PromptLesion 73.4 38.2 55.8
PromptLesion' 75.1 39.0 57.1

Real CCTA 69.2 23.1 46.2

SynTumor 69.9 28.3 49.1
DiffTumor,4 70.6 31.7 51.1

nnUnet

Med-DDPM 70.9 35.3 53.1
PromptLesion 74.1 40.1 57.1
PromptLesion! 75.6 44.3 59.9

Table 2: Quantitative comparison of tumor generation in Dice Score.

Backbone Method Liver | Kidney | Pancreas | Avg
Real Tumors 35.8 50.0 43.5 43.1
SynTumor 48.3 53.3 44.2 48.6
DiffTumorgyg 52.3 54.2 46.3 50.9
Unet

Med-DDPM 59.2 54.3 52.6 55.4
PromptLesion | 58.6 58.9 52.9 56.8
PromptLesiont | 64.0 | 60.0 53.7 59.2
Real Tumors 47.2 51.3 33.4 43.9
SynTumor 49.2 54.1 36.4 46.5
DiffTumor.g 53.8 55.7 39.8 49.7

nnUnet
Med-DDPM 53.7 55.3 45.3 51.4
PromptLesion 56.0 59.3 45.2 53.5
PromptLesiont | 58.2 | 61.1 46.6 55.3

data.(b)Diff Tumor :

Our initial PromptTumor method conditioned on one-hot vectors of target lesions.
(Transformer-based Implicit Prompt): The improved method introducing latent embeddings generated from
multi-class masks through a lightweight transformer encoder. We observed a consistent performance boost
when transitioning from explicit one-hot prompts to implicit prompts, highlighting that implicit embeddings

11
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Table 3: Ablation study for multi-class tumor generation across domains

Backbone Method liver | kidney | pancreas | Avg
DiffTumor 59.3 60.9 54.2 58.1

Unet PromptLesion | 58.6 58.9 52.9 56.8
PromptLesiont | 64.0 | 60.0 53.7 59.2

DiffTumor 58.9 | 62.8 44.8 55.5

nnUnet PromptLesion | 56.0 59.3 45.2 53.5
PromptLesiont | 58.2 | 61.1 46.6 55.3

encode additional structural and semantic information beneficial for the diffusion model. The quantitative
evidence in Tables[I]and [2] corroborates this observation, revealing an average DSC gain of approximately 2-3
percentage points on both plaque and tumor segmentation benchmarks relative to the original PromptLesion.

5 Conclusion

We proposed PromptLesion, a prompt-conditioned latent-diffusion framework that tackles data scarcity
and severe class imbalance in coronary computed tomography angiography (CCTA). By injecting
lesion-specific prompts into the denoising trajectory, the model synthesizes anatomically coherent calcified
and non-calcified plaques, supplying segmentation networks with hard-to-obtain training samples. Across
both backbone architectures, the augmented models consistently outperform the real-data baselines in plaque
Dice score, with especially pronounced improvements for the under-represented non-calcified plaques.

To probe generalization, we reused the same framework—changing only the prompt definitions—on public
multi-organ tumor datasets. Consistent Dice improvements on liver, kidney, and pancreas benchmarks con-
firm that prompt-guided diffusion scales gracefully to unseen anatomies and lesion types without retraining
the generator.

Impact: This work advances the state-of-the-art in generative medical image augmentation by introducing
an easily scalable, multi-class synthesis paradigm. Clinically, enhanced plaque segmentation can improve
patient risk assessment in coronary artery disease, and improved tumor segmentation has significant potential
for better treatment planning. Our prompt-conditioned diffusion framework can be readily adapted to other
medical imaging scenarios by defining suitable prompts, underscoring its broad applicability and potential
to reduce annotation burdens in clinical AI deployments.

Broader Impact
PromptLesion’s synthetic images are privacy-preserving but anatomically realistic, easing data-sharing. Yet

they can amplify training-set bias, so regular bias checks and external validation are vital before any clinical
deployment.

12
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