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Abstract

The wide variability in the progression rates of Age-Related Macular Degeneration
(AMD) and the absence of well-established clinical biomarkers make it difficult to predict
an individual’s risk of AMD progression from intermediate stage (iAMD) to late dry stage
(dAMD) using Optical Coherence Tomography (OCT) scans. To address this challenge,
we propose to jointly train an AMD stage classifier to discriminate between iAMD and
dAMD with a N-ODE that models the future trajectory of the disease progression in the
learned embedding space. A temporal ordering is imposed such that the distance of a scan
from the decision hyperplane of the AMD stage classifier is inversely related to its time-to-
conversion. In addition, an intra-subject temporal consistency in the predicted conversion
risk scores is ensured by incorporating a pair of longitudinal scans from the same eye during
training. We evaluated our proposed method on a longitudinal dataset comprising 235 eyes
(3,534 OCT scans) with 40 converters. The results demonstrate the effectiveness of our
approach, achieving an average area under the ROC of 0.84 for predicting conversion within
the next 6, 12, 18 and 24 months. Additionally, the Concordance Index of 0.78 surpasses
the performance of several popular methods for survival analysis.
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1. Introduction

Age-related macular degeneration (AMD) is a leading cause of blindness among the elderly
population (Wong et al., 2014). It is asymptomatic in its early and intermediate stages
(iAMD), characterized by the presence of drusen. AMD gradually advances to the late
stage leading to irreversible vision loss which could be categorized as either neovascular
(nAMD) or dry (dAMD). nAMD is caused by abnormal blood vessel growth in the choroid
that leaks fluid into the retina. dAMD is more prevalent than nAMD and characterized by
Geographic Atrophy (GA) due to the loss of Retinal Pigment Epithelium (RPE). Recently,
for the first time, drugs for dAMD (Khanani et al., 2023; Heier et al., 2023) were approved
by FDA. Patients in the iAMD stage are regularly monitored with longitudinal Optical
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Coherence Tomography (OCT) imaging across multiple visits to initiate treatment at the
earliest onset of late AMD to minimize vision loss. Identifying iAMD patients at a high
risk of dAMD conversion enables ophthalmologists to prioritize these cases for enhanced
monitoring, facilitating early detection of dAMD onset. However, this is a challenging
task due to the absence of well-established clinical biomarkers and significant inter-subject
variations in the rate of AMD progression. Deep learning (DL) methods to predict the
future risk of conversion of an eye from iAMD to dAMD can play a critical clinical role
in supporting personalized treatments and clinical research by categorizing iAMD patients
into distinct risk levels for biomarker identification and recruitment in clinical trials.

Related Work: Existing methods for predicting the risk of conversion from iAMD to
nAMD or dAMD fall into two main categories: biomarker and image-based approaches.
Biomarker-based methods (Sleiman et al., 2017; Schmidt-Erfurth et al., 2018; Banerjee
et al., 2020; de Sisternes et al., 2014; Lad et al., 2022) involve segmenting retinal tissues and
pathologies to extract features, subsequently combined with clinical and demographic data
for risk prediction. Notably, Banerjee et al. (2020) utilizes multiple past visit biomarkers
in an LSTM network for future risk assessment. Image-based methods, however, directly
utilize DL models on raw OCT scans, bypassing manual segmentation. A hybrid approach
using both biomarker and image features for predicting nAMD conversion is presented in
Yim et al. (2020), employing an ensemble DL model. Unlabeled longitudinal OCT datasets
have been used in Emre et al. (2022); Rivail et al. (2019) for feature learning via temporal
self-supervised learning. These methods typically employ a binary classifier for predicting
conversion within specific timeframes, (e.g., 2 years (Russakoff et al., 2019), 6 months
(Yim et al., 2020; Emre et al., 2022)), or multi-label classification for various discrete time-
intervals (e.g., 6, 12, and 18 months (Rivail et al., 2019)).

The binary classification based approaches are limited by discretization of the conversion
time and their inability to manage censoring, which occurs when an eye’s actual conver-
sion time is unknown due to missing follow-ups or non-conversion within a limited study
duration. Survival analysis addresses these challenges. Discrete survival models are similar
to multi-label classification but modify training loss to incorporate censoring and have re-
cently been applied to predict dAMD conversion (Rivail et al., 2023). A transformer model
has also been used for discrete-time modeling of the hazard function from tabular clinical
and demographic data (Hu et al., 2021). Traditional non-DL continuous models of survival
analysis have also been explored to capture AMD progression with handcrafted biomarkers
using the linear Cox Proportional Hazard model (CoxPH) (Schmidt-Erfurth et al., 2018).
Although CoxPH has been extended with DL using images (Katzman et al., 2018), they
have not yet been explored to model AMD progression so far. Moreover, these models are
inflexible as each patient’s hazard function is constrained to be a scaled version of the same
baseline hazard across the entire population. SODEN (Tang et al., 2022) overcomes this
issue by employing a N-ODE to model the cumulative hazard function for survival on tab-
ular data. The GRU-ODE-Bayes (De Brouwer et al., 2019) proposed a N-ODE to extend
the GRU based Recurrent Neural Network in continuous time, used in predicting disabil-
ity progression in Multiple Sclerosis patients from tabular data of past history. Recently,
N-ODEs have also been used to model the spatial evolution of GA segmentation in OCT
(Lachinov et al., 2023) and Diabetic retinopathy in fundus images (Zeghlache et al., 2023).
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Contributions: Our key contributions are: (i) The time-to-conversion from iAMD
to nAMD is modeled in continuous time, rather than discrete time-intervals as used in
most existing methods. Our model can therefore use actual continuous conversion times
as ground-truths during training and also predict conversion probabilities within arbitrary
continuous times. (ii) Our novel N-ODE based modeling directly models the Cumulative
Distribution Function(CDF) of the future conversion time instead of the cumulative hazard
function used in existing methods like SODEN. Our SMGRU-ODE architecture also extends
ODE-GRU by stacking multiple layers with multiple parallel heads. (iii) We incorporate
intra-subject consistency by requiring the N-ODE estimates of the feature and risk at future
time-points to be consistent with the values obtained using the actual OCT scan of the
future visit. (iv) We jointly train a linear AMD stage classifier and employ a rank loss on
its logits which is sensitive to censoring, to regularize the feature embedding. This facilitates
patient stratification into risk groups based on a scalar risk score derived from the decision
hyperplane distance for clinical studies or personalized treatment.

2. Method
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Figure 1: Siamese architecture uses shared weights for the ConvNeXt-Tiny encoder and
linear AMD stage classifier in both branches. Top branch predicts current AMD
stage at time-point t = j and evolves features with GRU-ODE for future t = k.
Bottom branch computes features and stage predictions for t = k directly from
the future scan Ik. Losses Lcns−ftr and Lcns−rnk ensure consistency in the feature
and risk predictions between branches. Lrnk loss ranks the logit r in inverse order
of conversion time. Only the top branch (shaded in green) is used for inference.

Given an input OCT scan of an iAMD patient, the proposed method projects it to a
feature embedding where the current feature is evolved over time with a N-ODE to forecast
the future trajectory of the disease progression. The features estimated for any (continuous)
future time-point are fed to a linear AMD stage classifier to predict the probability of the
eye to have already converted within that time, thereby modeling the CDF of the future
conversion time. In Survival analysis, the Ground Truth (GT) label for an OCT image Ij

is defined by the tuple (Ej , Tj). The event indicator Ej = 1 signifies that the eye associated
with scan Ij will progress from iAMD to dAMD, while Ej = 0 denotes no conversion within
the monitoring period. Tj denotes the time of conversion from the current visit if Ej = 1
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or the censoring time until when the patient was last monitored. Our approach is trained
on batches comprising random image pairs Ij , Ik (Figure 1) of the same eye captured at
different time points tj , tk ∈ R≥0 from two visits, such that Ij precedes Ik with tj < tk.

AMD Stage Classifier: Both Ij , Ik are input to the same ConvNeXt-Tiny Encoder
to obtain the features f j and fk respectively. ConvNext-Tiny with 29M parameters and
4.5GFLOPs is comparable to ResNet-50 and outperforms similar-sized Vision Transformer
(ViT) architectures (Liu et al., 2022), making it a suitable choice for our task. The stage
classifier’s GT yclsj = 1 if both Tj ≤ 0 and Ej = 1, otherwise yclsj = 0 for the scan Ij .
The stage classifier predicts the logit rj . The probability for the current AMD stage for
Ij is pj = σ (rj), where σ(.) denotes the sigmoid activation. Notably, rj is proportional
to the distance of f j from the decision hyperplane of the AMD stage classifier and would
be used below to define a risk score for future conversion. The stage classifier treats each
scan independently without considering any correlations between two scans of the same eye
from different time-points. While it enables the learned feature to capture pathologies to
distinguish dAMD from iAMD, it may fail to capture more subtle retinal changes indicative
of how AMD will progress in the future (Appendix Figure 3(a)).

Time-Series Prediction: To address these issues, we incorporate a N-ODE based
continuous time-series predictor called Stacked Multihead GRU-ODE (SMGRU-ODE) to
model the future trajectory of AMD progression in the feature embedding using the current
scan. SMGRU-ODE evolves the current feature f j over a (tk− tj) time-interval to indepen-

dently predict the future feature f̂k for time tk directly from the prior visit Ij , while the
actual feature fk is also obtained from Ik. The encoder, SMGRU-ODE and stage classifier
can now be jointly trained with the AMD stage classification task:

Lcls = Lbce

(
yclsj , pj

)
+ Lbce

(
yclsk , pk

)
+ Lbce

(
yclsk , p̂k

)
, (1)

where Lbce (y, p) is the binary cross-entropy loss. pj , pk and p̂k are predictions from the

stage classifier for the features f j , fk and f̂k respectively. The SMGRU-ODE architecture
is detailed in Section 2.1

Intra-eye Consistency: For the disease progression trajectory predicted by the SMGRU-
ODE to be consistent, the features f̂k and its stage prediction p̂k should match the corre-
sponding fk and pk, obtained directly from Ik. This consistency loss between the features
(Lcns−ftr) and the stage predictions (Lcns−rsk) are defined as:

Lcns−ftr = ||fk − f̂k||22, Lcns−rsk = Lbce (pk, p̂k) . (2)

These losses combined with Lcls ensure that the learned feature embedding (Appendix
Figure 3 (a) vs (b)) not only characterizes the current disease stage but is also sensitive
to the subtle retinal changes that capture the trajectory of the disease progression in the
future. Since the future visit scans are unavailable at test time, only the top branch in
Figure 1 highlighted in green is employed to obtain future predictions with the N-ODE.

Risk Score Ranking: Lcls ensures that the iAMD and nAMD samples lie on opposite
sides of its decision hyperplane without imposing any ordering among iAMD cases. We
envision a regularized feature manifold (Appendix Figure 3(b) vs (c)) which correlates the
risk of disease progression of a feature point to be inversely related to its distance from
decision hyperplane, i.e., the closer an iAMD sample is to the decision hyperplane, the
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smaller its time to conversion, until it crosses over the hyperplane to the dAMD class. In
this case, the logits r from the stage classifier acts as a risk score for AMD progression as it
is proportional to the distance of the sample from the decision hyperplane. While predicting
the probability of conversion within specified time-points (CDF) requires the N-ODE during
inference, a scalar risk score is directly obtained from the logits of the stage classifier from
the current scan. We consider a loss Lrank which is defined using pairs of samples to
encourage such ordering. Given a training batch comprising B pairs of images (i.e., a total
of 2×B scans), we form all possible pairs (Im, In) which may or may not come from the
same eye. Lrank defines an auxiliary classification task where the difference of their scalar
logits from the AMD stage classifier is fed through a neuron (with a single input and output)
to obtain the probability of ranking rm > rn as Pm>n = σ (w · (rm − rn) + b), where w and
b are scalar parameters of the neuron and the loss is defined as Lrank = Lbce

(
ym>n
rank , Pm>n

)
.

The GT ym>n
rank = 1, if Tm < Tn and Em = 1 (indicating the Im converts before In) or

when Tm < Tn and both Im, In are scans of the same eye (the risk increases in the future
visits as damage to the retinal tissue is irreversible). Similarly, ym>n

rank = 0 if Tm > Tn and,
either En = 1 or Im, In come from the same eye, which signify cases where In converts
before Im. The image pairs that do not fall into either one of these two categories cannot
be ranked due to censoring and are considered to have missing labels that are masked out
during the loss computation. Finally, the total loss to train the proposed model is:

Ltot = λ1Lcls + λ2Lcns−rsk + λ3Lcns−ftr + λ4Lrank, (3)

where the loss weights λ1, λ2, λ3 and λ4 are not handcrafted but dynamically adapted
during training using MTAdam (Malkiel and Wolf, 2021) (see Appendix E for more details).

2.1. The N-ODE architecture
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Figure 2: Our SMGRU-ODE extends GRU-ODE (in eq. 4) by stacking multiple layers (a),
with multiple parallel heads in each layer (b).

Upon projecting the initial scan Ij to the feature f j , the N-ODE predicts its future
trajectory in the feature embedding to model disease progression. Let f(t) represent the
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feature after a time t has elapsed since Ij was imaged. As time progresses from t to t+ dt
by an infinitesimal amount, f(t) is displaced by vD ·dt where vD denotes the instantaneous

velocity vector. This can be modeled in continuous time using the N-ODE df(t)
dt = vD(f(t))

with the initial value f(0) = f j , where vD is modeled with a DL network. We assume a
time-invariant system, i.e., vD is solely dependent on the current feature f(t) and not on
the time t elapsed so far.

We propose the SMGRU-ODE network to model vD(f) which extends GRU-ODE
(De Brouwer et al., 2019) by stacking D = 3 layers (Figure 2(a)), and modifying each
layer to have H = 12 parallel pathways (Figure 2(b)) called heads, based on the efficacy of
such design in Vision Transformers (Dosovitskiy et al., 2020) and recent CNN architectures
(Liu et al., 2022), (Xie et al., 2017). In Figure 2(a), each layer employs f(t) as the hidden
state and except for the first layer, also accepts an external input vd−1(t) from its previous
layer. Additive skip residual connections are applied between the inputs and outputs of
each layer (vd(t) = v̂d(t) + vd−1(t)). As depicted in Figure 2(b), each head 1 ≤ h ≤ H
independently projects the two, d-dimensional (768 for ConvNeXT-Tiny (Liu et al., 2022))
inputs to a d/H dimensional sub-space using the fully connected (FC) layers, φh,d(f(t))

and ϕh,d(vd−1(t)) which project f(t) and vd−1(t) to f
(h)
d (t) and v

(h)
d (t) respectively. Next,

the hth head computes the output o
(h)
d (t) similar to GRU-ODE as

r
(h)
d (t) = Ψ

(rst)
h,d

([
v
(h)
d (t),f

(h)
d (t)

])
, u

(h)
d (t) = Ψ

(updt)
h,d

([
v
(h)
d (t),f

(h)
d (t)

])
, (4a)

g
(h)
d (t) = Ψ

(act)
h,d

((
r
(h)
d (t)⊙ f

(h)
d (t)

))
, o

(h)
d (t) =

(
1− u

(h)
d (t)

)
⊙
(
g
(h)
d (t)− f

(h)
d (t)

)
(4b)

where Ψ
(rst)
h,d (.) and Ψ

(updt)
h,d (.) comprise a FC layer followed by Layer Normalization (LN)

and sigmoid activation to compute the update and reset gates, u
(h)
d (t) and r

(h)
d (t) in eq. (4)

respectively. TheΨ
(act)
h,d (.) used for the candidate activation vector g

(h)
d (t) employs a Softplus

activation after the LN and FC layers. Finally, each head’s output o
(h)
d (t) is concatenated

and input to Ψd(.), which represents a FC layer without LN and activation, to obtain v̂d(t).
The LN and activations are instead applied at the beginning of the next layer in φh,d+1(.)
and ϕh,d+1(.). This is to ensure that (i) the output of the final layer vD can take arbitrary
(including negative) values and (ii) the normalization and activation is applied after the
additive residual connections in each layer (Figure 2(a)) so that backpropagation gradients
can be improved through pre-activation (He et al., 2016). During forward pass of the N-

ODE, the feature for a future time-point k is given by f̂k = f j +
∫ k−j
0 vD(ft+j)dt which

can be numerically estimated using any black-box ODE-solver. During the backward pass,
the computational graph related to each iteration of the ODE-solver is not saved but can
be estimated on the run by solving another augmented ODE introduced by the adjoint
sensitivity analysis in (Chen et al., 2018). As a result, the training requires a constant
amount of memory independent of the solver’s step size and integration time allowing us to
evolve the trajectory over long time-intervals, even with limited GPU memory.

3. Experiments and Results

Dataset: It consists of 3,534 OCT scans from 235 eyes (40 converters and 195 censored)
from 123 patients, collected at the Department of Ophthalmology, Medical University of
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Vienna (Schlanitz et al., 2017) and acquired using a Spectralis scanner at a resolution of
49 B-scans (slices), each with a 512 − 1024 × 496 pixels. Each eye was imaged every 3-6
months, with total follow-up periods spanning 2-7 years. For converter eyes, labels for
each scan were computed by measuring the time interval between its acquisition and the
first conversion visit. Our Pytorch code is available at https://github.com/arunava555/
Multihead_GRU_ODE_based_Survival_Analysis.

Experimental Setup: A stratified five-fold cross-validation was performed by ran-
domly dividing the scans at an eye-level to reduce the bias of a specific train-test data split.
Each fold had 47 eyes with 8 converters and the number of scans varied between 667-707
across the folds. The model was trained five times, treating each fold as the test set, while
the remaining dataset was randomly divided into 80% for training and 20% for validation.
While the already converted dAMD scans were used during training, they were removed
from the test set during evaluation. The performance was evaluated for predicting the con-
version to dAMD within 6, 12, 18 and 24 months using the Area under the receiver operating
characteristic curve (AUROC). Balanced Accuracy was used to assess binary predictions
obtained by setting a threshold on the conversion probabilities at an optimal operating
point determined from the validation set in each fold. Additionally, the Concordance Index
(C-index) was used to evaluate the proposed risk score. It quantifies a model’s ability to
provide a reliable (inverse) ranking of the conversion time, taking censoring into account.

Ablation Results: In Table 1, we analyzed the effect of the depth and the number of
heads in SMGRU-ODE. Either reducing the depth D from 3 to 1 (in row 1) while keeping
H=12, or reducing H from 12 to 1, while keeping D=3 (in row 2) had an adverse impact on
the performance at all time-points, both in terms of AUROC and Balanced Accuracy. The
C-index also reduced from 0.777 to 0.744 in both cases. This justifies our incorporation of
multiple layers and heads in GRU-ODE. From rows 3-6, we perform ablation on the loss
terms. In row 3, we train the model with Lcls loss (see eq. (1) ), which is the minimal loss
required to predict future conversion without incorporating any other losses to regularize
the feature embedding. Introducing Lrank loss to it leads to a significant improvement in
C-index (from 0.715 to 0.769) which is expected as Lrank is geared towards improving the
rank ordering. Moreover, it improves the conversion prediction performance for all time-
points both in terms of AUROC and Balanced Accuracy (except for AUROC - 6 month).
Next, introducing the Lcns−rsk loss (in row 5) leads to further improvement in C-index,
AUROC also improves for all except the 24-month time-point. However, the Balanced
Accuracy shows mixed results with minor improvements for predicting conversion within
12 and 18 months but a slight drop in performance for the 6 and 24-month time-points.
Finally, introducing the Lcns−ftr loss leads to our proposed method in row 6. It consistently
improves the AUROC, Balanced Accuracy and C-index metrics with the exception of the
6 month time-point. Overall, the results demonstrate the value of using all loss terms.

Comparison with the State of the Art: In Table 2, we compare our method against
common survival analysis methods. 6-month time windows are considered for the discrete-
time survival models based on the censored cross-entropy loss (Wulczyn et al., 2020) and the
logistic hazard model (Rivail et al., 2023). DeepSurv (Katzman et al., 2018) extends CoxPH
with DL, while SODEN (Tang et al., 2022) is a N-ODE based method, previously used on
tabular data. These methods were also trained with ConvNeXt-Tiny encoder but with
modified classification layers and losses. Notably, all of these methods do not employ intra-
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Table 1: Ablation experiments of different loss terms and the SMGRU-ODE architecture
(mean ± std. dev.). Best values in each column are highlighted in bold.

AUROC Balanced Accuracy

6 12 18 24 6 12 18 24 C-index

SMGRU-ODE(D=1) 0.823± 0.05 0.789± 0.05 0.771± 0.05 0.779± 0.06 0.814± 0.05 0.769± 0.05 0.751± 0.05 0.746± 0.06 0.744± 0.06

SMGRU-ODE(H=1) 0.817± 0.08 0.791± 0.08 0.766± 0.07 0.766± 0.08 0.813± 0.05 0.777± 0.05 0.749± 0.05 0.743± 0.05 0.744± 0.07

Lcls 0.854± 0.06 0.827± 0.06 0.795± 0.04 0.799± 0.04 0.832± 0.06 0.784± 0.05 0.756± 0.04 0.764± 0.05 0.715± 0.05

Lcls + Lrank 0.852± 0.05 0.828± 0.04 0.803± 0.01 0.812± 0.02 0.846± 0.04 0.788± 0.05 0.773± 0.02 0.781± 0.02 0.769± 0.04

Lcls + Lrank + Lcns−rsk 0.857± 0.05 0.832± 0.04 0.807± 0.04 0.810± 0.03 0.834± 0.04 0.793± 0.03 0.774± 0.03 0.776± 0.03 0.773± 0.05

Proposed 0.856± 0.05 0.844± 0.04 0.819± 0.02 0.822± 0.03 0.840± 0.05 0.818± 0.04 0.800± 0.04 0.803± 0.04 0.777± 0.04

subject regularization, hence require training a single branch network. The results in Table
2 indicate the superiority of our proposed method which outperforms the existing methods
at all time-points. SODEN, another N-ODE-based method showed signs of overfitting with
good performance on the validation set (for selecting the best-performing models in each
fold) but led to a drastic drop in performance on the test sets across all folds.

Table 2: Comparison with State-of-the-Art. Best performance is highlighted in bold.
AUROC Balanced Accuracy

6 12 18 24 6 12 18 24 C-index

Cens. Cross-Entropy 0.787± 0.06 0.779± 0.06 0.776± 0.05 0.789± 0.04 0.764± 0.05 0.739± 0.04 0.731± 0.03 0.741± 0.02 0.767± 0.04

Logistic Hazard 0.787± 0.06 0.787± 0.04 0.779± 0.04 0.797± 0.03 0.780± 0.06 0.766± 0.03 0.745± 0.04 0.755± 0.04 0.769± 0.04

DeepSurv 0.755± 0.13 0.735± 0.12 0.720± 0.11 0.728± 0.12 0.734± 0.12 0.702± 0.10 0.681± 0.09 0.679± 0.09 0.768± 0.04

SODEN 0.673± 0.09 0.707± 0.05 0.703± 0.04 0.721± 0.05 0.676± 0.05 0.691± 0.03 0.685± 0.04 0.698± 0.04 0.710± 0.05

Proposed 0.856± 0.05 0.844± 0.04 0.819± 0.02 0.822± 0.03 0.840± 0.05 0.818± 0.04 0.800± 0.04 0.803± 0.04 0.777± 0.04

4. Conclusion

A wide variability in progression speed and the lack of well-established biomarkers make
predicting the progression of AMD challenging. We proposed a novel framework that com-
bines an AMD stage classifier with a N-ODE to forecast dAMD onset at continuous future
times. To learn meaningful features from scarce labels, we enforce (i) intra-subject consis-
tency to ensure that the feature embedding is sensitive to temporal changes in the retina
to predict the future; (ii) temporal ordering, where a scan’s proximity to the AMD classi-
fier’s decision hyperplane is inversely related to its time-to-conversion. These constraints
enabled our model to outperform several existing deep survival analysis methods. Addi-
tionally, temporal ranking allowed us to derive a scalar risk score to stratify eyes into low
and high risk groups. While training uses longitudinal OCT scans, only a single scan at test
time is needed for future conversion prediction. Our method for predicting dAMD onset
can facilitate patient-specific disease management and enrich clinical trial populations with
high-risk patients. Currently, the proposed method has been evaluated on a single-center
dataset. Further evaluation of our method on multi-center data and adaptation to other
survival analysis tasks in the medical domain, such as progression-free survival in cancer
patients, are potential directions for future work. Use of a ViT based encoder and incorpo-
rating segmentations of relevant retinal layers and lesions as additional inputs may also be
considered in the future to further improve performance.
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Bogunović. Deep survival modeling of longitudinal retinal oct volumes for predicting the
onset of atrophy in patients with intermediate amd. Biomedical Optics Express, 14(6):
2449–2464, 2023.

Daniel B Russakoff, Ali Lamin, Jonathan D Oakley, Adam M Dubis, and Sobha Sivaprasad.
Deep learning for prediction of amd progression: a pilot study. Investigative ophthalmology
& visual science, 60(2):712–722, 2019.

Ferdinand G Schlanitz, Bernhard Baumann, Michael Kundi, Stefan Sacu, Magdalena Barat-
sits, Ulrike Scheschy, Abtin Shahlaee, Tamara J Mittermüller, Alessio Montuoro, Philipp
Roberts, et al. Drusen volume development over time and its relevance to the course
of age-related macular degeneration. British Journal of Ophthalmology, 101(2):198–203,
2017.

Ursula Schmidt-Erfurth, Sebastian M Waldstein, Sophie Klimscha, Amir Sadeghipour, Xi-
aofeng Hu, Bianca S Gerendas, Aaron Osborne, and Hrvoje Bogunović. Prediction of
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Appendix A. Intuitive Explanation of the Methodology
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Figure 3: (a) The AMD stage classifier learns a decision hyper-plane separating iAMD from
dAMD. Each scan is considered to be an independent sample. The learned feature
should capture pathologies that distinguish iAMD from dAMD. (b) A N-ODE is
introduced along with the stage classifier. The N-ODE traces the trajectory of
disease progression (shown as dotted lines connecting the points of the same color,
representing scans coming from the same eye at different time-points). Now the
feature also needs to capture the subtle retinal changes indicative of the future
disease state. (iii) A notion of direction is incorporated in the feature embedding.
The closer a point is to the decision hyperplane, the smaller its time-to-conversion.
AMD being an irreversible disease can only progress in time, so scans from a later
visit of an eye (shown by numbered indices) have to successively get closer to the
decision hyperplane.

Appendix B. Implementation Details

All experiments were performed in Python 3.8.16 with Pytorch 2.0.0. The proposed method
was trained with batches comprising 16 image pairs for 200 epochs (300 batch updates per
epoch), using the MTAdam (Malkiel and Wolf, 2021) optimizer for dynamic loss tuning. A
cyclic learning rate scheduler was employed with a minimum and maximum learning rate
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of 10−6 and 10−4 respectively. The performance on the validation set was monitored at
the end of each epoch for early stopping with a patience of 50 epochs. The N-ODE was
implemented with the torchdiffeq library (Chen, 2018). The Euler method was used as the
ODE-solver due to its computational efficiency with a step size of 0.06, where the time
between 0-3 years was mapped to [0,1]. During training, each batch was constructed with
random training image-pairs (Ij , Ik) with a time-interval of 0-3 years between them. The
training batches were constructed to ensure that all Ij were in the iAMD stage while half of
the Ik in each batch were in the dAMD stage (through oversampling) to enable the training
of the AMD stage classifier.

The proposed method required around 6 GB of GPU memory to train using a training
batch size of 16 image pairs. The ConvNeXt-Tiny (Liu et al., 2022) encoder was initialized
with the standard Image-Net pre-trained weights for end-to-end fine-tuning. The proposed
SMGRU-ODE model with D=3, H=12 has 4,798,848 learnable network parameters.

Appendix C. Eye-level Performance Comparison with Bootstrapping:

Table 3: Eye-level Bootstrap Performance (mean ± std. dev.). Best values in each column
is highlighted in bold.

AUROC Balanced Accuracy

6 12 18 24 6 12 18 24 C-index

Proposed 0.863± 0.10 0.827± 0.10 0.808± 0.07 0.816± 0.07 0.871± 0.11 0.811± 0.09 0.789± 0.07 0.801± 0.06 0.769± 0.06

Cens. Cross-Entropy 0.775± 0.14 0.772± 0.103 0.773± 0.10 0.790± 0.08 0.804± 0.11 0.756± 0.11 0.742± 0.07 0.746± 0.06 0.762± 0.06

Logistic Hazard 0.769± 0.19 0.768± 0.12 0.763± 0.09 0.786± 0.08 0.792± 0.14 0.760± 0.11 0.749± 0.08 0.766± 0.08 0.749± 0.08

DeepSurv 0.769± 0.18 0.710± 0.16 0.712± 0.14 0.723± 0.14 0.749± 0.17 0.689± 0.12 0.682± 0.12 0.686± 0.12 0.752± 0.07

SODEN 0.675± 0.24 0.674± 0.17 0.673± 0.13 0.698± 0.11 0.711± 0.19 0.671± 0.14 0.665± 0.11 0.693± 0.10 0.673± 0.09

Eye-level bootstrapping involves multiple re-samplings of the test set in each fold. In
each re-sampling, one OCT scan is selected from each eye (by randomly selecting any one
of the patient visits). This re-sampling process is repeated 1000 times for each of the five
folds to report the average performance across the 5× 1000 = 5000 sample estimates across
all folds (see Table 3).

Appendix D. Preprocessing and Data Augmentation

The top and bottom boundaries delineating the retinal tissue called the Inner Limiting
Membrane (ILM) and the Bruch’s Membrane (BM) were extracted using the automated
method in (Fazekas et al., 2022). Thereafter, the curvature of the retinal surface was
flattened by shifting each A-scan by an offset such that the BM lies on a straight plane
similar to (Emre et al., 2022). The five central B-scans centered around the fovea spanning
5 mm across the A-scans (image columns) were extracted and the region containing the
retinal tissue between the ILM and BM was cropped with a margin of 280 micron in the
bottom to include the choroid region and resized to 248 × 248. The intensity was linearly
scaled to [-1,1].

During training, 3 consecutive B-scans (slices) out of the 5 central B-scans extracted
during preprocessing were randomly selected from each scan and provided as input to the

13



Chakravarty Emre Lachinov Rivail Schmidt-Erfurth Bogunović

ConvNeXt-Tiny model in place of the three RGB color channels. The data augmentations
during training involved random translations, horizontal flip, random crop-resize, Gaussian
noise, random in-painting and random intensity transformations.

During inference, no data augmentation was employed. Of the 5 central B-scans ex-
tracted, 3 sets of images were constructed, each using 3 consecutive B-scans as channels
similar to RGB in natural images (and the average predictions from these 3 images was
used). The same approach was also employed for evaluating the other state-of-the-art
methods for comparison.

Appendix E. Dynamic Loss Tuning

Determining the value of the tunable loss weights λ1, λ2, λ3 and λ4 in Eq. 3 through a
systematic grid search is computationally expensive as it requires training multiple model
configurations. Instead, we used Multi-Term Adam (MTAdam) (Malkiel and Wolf, 2021) to
dynamically adapt the loss weights during training. MTAdam extends the ADAM optimizer
by tracking derivatives and the first and second order moments of each loss term separately
and continuously balances their gradient magnitudes across all layers during training batch
updates. To evaluate the impact of this design choice, we retrained the model with different
alternatives presented below in Table 4. In case of Equal Weighting we fixed all weights
to λ1 = λ2 = λ3 = λ4 = 1.0. In case of Handcrafted weights, we fixed λ1 = 1.0, λ2 = 0.1,
λ3 = 1.0 and λ4 = 10.0 by observing the scale and the perceived relative importance of the
different loss terms. The uncertainty weighting based method in (Kendall et al., 2018) is
another alternative automatic method for dynamic loss tuning which was used along with
the modifications proposed in (Liebel and Körner, 2018) to avoid the loss becoming negative
during training.

Table 4: Comparison of different loss weighting strategies (mean ± std. dev.). Best values
in each column is highlighted in bold.

AUROC Balanced Accuracy

6 12 18 24 6 12 18 24 C-index

Equal weighting 0.862± 0.07 0.828± 0.04 0.802± 0.03 0.807± 0.04 0.855± 0.05 0.798± 0.03 0.777± 0.02 0.775± 0.02 0.772± 0.03

Handcrafted weights 0.843± 0.06 0.835± 0.04 0.808± 0.03 0.820± 0.02 0.831± 0.05 0.796± 0.04 0.780± 0.04 0.793± 0.04 0.772± 0.02

MT-ADAM 0.856± 0.05 0.844± 0.04 0.819± 0.02 0.822± 0.03 0.840± 0.05 0.818± 0.04 0.800± 0.04 0.803± 0.04 0.777± 0.04

Uncertainty weighting 0.843± 0.06 0.819± 0.04 0.790± 0.03 0.797± 0.03 0.818± 0.07 0.773± 0.04 0.749± 0.04 0.752± 0.04 0.763± 0.04

Appendix F. Identification of Risk Groups

We calibrated the risk scores in each fold to lie in the [0, 1]. This was performed with bicubic
interpolation to map the xth percentile of the risk scores in the validation set to x

100 (e,g.,
the 10th percentile of the risk scores is mapped 0.1 and so on). The test set predictions
of the calibrated risk scores were combined from the five folds to obtain a risk score for
each OCT scan. The scans were then stratified into 3 groups with low risk (0 ≤ r ≤ 0.33),
moderate risk (0.33 < r ≤ 0.67) and high risk (0.67 < r ≤ 1). A population-level survival
function for these groups is plotted in Fig. 4 (a) using the Kaplan–Meier estimator on the
GT conversion time. It depicts the mean and standard deviation of the survival probability
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for each population group, computed across 1000 re-samplings using bootstrapping. The
survival curves for the three risk groups show a clear separation, thereby demonstrating the
effectiveness of the proposed risk score. The learned feature embedding (Fig. 4 (b)) exhibit
a smooth transition from fast(red) to slow converters(blue) along the feature manifold where
the gray dots represent the censored scans.

The Saliency maps obtained for the risk scores in Fig. 5 show the network to be sensitive
to the structural changes around the RPE (e.g. Fig.5 (a),(b)) and Hyperreflective Foci
(HRF) (e.g. Fig.5 (d),(e) ) which have been clinically linked to dAMD progression.
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Figure 4: (a) Kaplan-Meier curves for different risk groups; (b) UMAP plot of feature em-
bedding for one of the five folds. The censored scans are depicted with gray dots
and the converters colored by their time to conversion (red indicates fast conver-
sion)

(a)

(d)

(b)

(e)

(c)

(f)

Figure 5: Grad-CAM Saliency maps for the risk score.
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