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Abstract
Vision Transformers (ViTs) excel in extracting global information
from image patches. However, their inherent limitation lies in ef-
fectively extracting information within local regions, hindering
their applicability and performance. Particularly, fully supervised
pre-trained ViTs, such as Vanilla ViT and CLIP, face the challenge of
locality vanishing when adapting to downstream tasks. To address
this, we introduce a novel LOcality-aware pRompt lEarning (LORE)
method, aiming to improve the adaptation of pre-trained ViTs to
downstream tasks. LORE integrates a data-driven Black Boxmodule
(i.e.,a pre-trained ViT encoder) with a knowledge-driven White Box
module. The White Box module is a locality-aware prompt learning
mechanism to compensate for ViTs’ deficiency in incorporating
local information. More specifically, it begins with the design of
a Locality Interaction Network (LIN), which treats an image as
a neighbor graph and employs graph convolution operations to
enhance local relationships among image patches. Subsequently, a
Knowledge-Locality Attention (KLA)mechanism is proposed to cap-
ture critical local regions from images, learning Knowledge-Locality
(K-L) prototypes utilizing relevant semantic knowledge. Afterwards,
K-L prototypes guide the training of a Prompt Generator (PG) to
generate locality-aware prompts for images. The locality-aware
prompts, aggregating crucial local information, serve as additional
input for our Black Box module. Combining pre-trained ViTs with
our locality-aware prompt learning mechanism, our Black-White
Box model enables the capture of both global and local information,
facilitating effective downstream task adaptation. Experimental
evaluations across four downstream tasks demonstrate the effec-
tiveness and superiority of our LORE.
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1 Introduction
In recent years, Vision Transformers [7, 39] (ViTs) have achieved
significant progress and become the mainstream of computer vi-
sion. It demonstrates strong performance on various vision tasks,
including image classification [14], image retrieval [43], instance
segmentation [6], etc. Despite its promising progress, researchers
have recently identified a fundamental limitation of the ViT models,
i.e., though excelling at extracting global information of the image
patches, ViTs are inferior in extracting information within local
regions [21, 35]. This deficiency in incorporating local information
can be attributed to the inherent design of the architecture, which
prioritizes holistic patterns and structures while neglecting the in-
tricate details prevalent in foreground local regions. Specifically, for
a fully-supervised pre-trained ViT1 model such as Vanilla ViT [38]
and CLIP [34], it suffers from a locality vanishing problem when
adapting to downstream tasks. As shown in Fig. 1 (a), when em-
ploying a pre-trained ViT (e.g., CLIP) to extract features for several
downstream task images, the majority of high-attention-weight
tokens 1) are sparsely distributed in the background rather than
in the foreground object region, and 2) exhibit similar and low-
information semantics. This reveals that when pre-trained ViTs
encounter unknown downstream task images, they primarily pay
attention to global information while neglecting local information
in crucial regions. Consequently, the applicability and performance
of the pre-trained ViTs may be compromised when adapting a
pre-trained model to downstream tasks.

1Throughout the remainder of this work, the term "pre-trained ViT" refers specif-
ically to fully supervised pre-trained ViT.
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(a) Locality vanishing problem

(b) Illustration of the working logic of our method
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Figure 1: (a) In downstream tasks, pre-trained ViT tends to fo-
cus on global informationwhile neglecting local information
in critical regions, a phenomenon referred to as the locality
vanishing problem. (b) Our White Box module compensates
for the Black Box module’s (i.e.,pre-trained ViT) local infor-
mation incorporating capacity to better adapt to downstream
tasks.

There are methods [8, 27, 44, 48] proposed to improve the ViTs
by extracting local information of the foreground objects. However,
they are train-from-scratch designed, thus requiring substantial
computational resources and time for deployment in downstream
tasks. To overcome this deficiency, an effective strategy involves
adopting Parameter-Efficient-Tuning (PET) techniques to adapt
pre-trained ViTs to downstream tasks. The PET methods, such
as visual prompt learning (VPL) [14, 16, 52, 53] and adapter tun-
ing [10, 49], train only a small number of additional parameters for
downstream tasks, while keeping all pre-trained ViT parameters
frozen. Efficient as they are, these methods are data-driven and
regard the pre-trained model as a Black Box model [40]. The inher-
ent opacity and agnosticism of these methods present a significant
challenge in comprehending the internal workings and interpreting
the additional parameters of PET.

Different from the data-driven Black Boxmodelmentioned above,
White Box models [11, 17] are knowledge-driven, characterized by
explicit rules and logic, facilitating interpretability of their internal
workings and logical rules, while performing inferior in complex
scenarios. Recent advances in a Black-White Box model theory [28,
37] suggest that combining Black Box and White Box models to
construct a unified Black-White Box model provides a promising
approach to enhance both the performance and interpretability of
Black Box models.

Motivated by the Black-White Box model theory, we introduce
a novel LOcality-aware pRompt lEarning method (LORE) aimed
at enhancing the adaptation of pre-trained ViTs to downstream
tasks. Our LORE consists of i) a data-driven Black Box module: i.e.,a
pre-trained ViT encoder, and ii) a knowledge-driven White Box

module: A locality-aware prompt learning mechanism designed to
compensate for pre-trained ViTs’ local information incorporating
capacity. More specifically, the White Box module starts with a
Locality Interaction Network (LIN). The LIN treats an image as a
neighbor graph, with neighbor relations among image patches rep-
resented as graph edges and image patches acting as graph nodes.
Employing graph convolution, LIN enhances local relationships
among image patches. Subsequently, a Knowledge-Locality Atten-
tion (KLA) is proposed to capture critical local regions from images.
It utilizes relevant semantic knowledge as queries to match cru-
cial local regions within locality-enhanced image patches, yielding
Knowledge-Locality (K-L) prototypes of images. Afterwards, using
a K-L prototype-guided constraint, a lightweight Prompt Generator
(PG) is presented to generate locality-aware prompts for images.
Finally, locality-aware prompts, enriched with critical local informa-
tion, serve as additional input tokens for our Black Box module for
local information compensation. As shown in Fig. 1 (b), combining
the pre-trained ViT and locality-aware prompt learning mechanism,
our Black-White Box model enables the capture of both global and
local information, facilitating effective adaptation to downstream
tasks.

To demonstrate the effectiveness and superiority of our proposed
LORE method, we conduct comprehensive experiments on a total
number of 16 benchmark datasets on 4 different downstream tasks,
including image classification, image retrieval, point correspon-
dence, and video object segmentation. On the task of image classifi-
cation, the LORE steadily and significantly outperforms the existing
state-of-the-art (SOTA) methods on 12 benchmarks. Besides, ex-
periments on the other three tasks demonstrate the generality of
our LORE. Ablation studies further demonstrate the effectiveness
of the proposed components. In summary, the main contributions
include:

• Wepropose a novel LOcality-aware pRompt lEarningmethod
(LORE) consisting of a data-driven Black Box module and a
knowledge-driven White Box module for downstream task
adaptation.

• To mitigate the problem of locality vanishing in pre-trained
ViT models, we design a locality-aware prompt learning
mechanism as our White Box module to compensate for
the limited local information incorporating capacity of pre-
trained ViTs.

• We develop a Knowledge-Locality Attention (KLA) mecha-
nism to capture critical local regions from images. KLA learns
K-L prototypes of images utilizing a semantic knowledge-
locality matching strategy, which are then leveraged to opti-
mize the training of our Prompt Generator (PG).

• Experimental results on 4 kinds of downstream tasks, includ-
ing 16 benchmark datasets, demonstrate the superiority of
the proposed LORE method.

2 Related Work
2.1 VPL for Downstream Task Adaptation
Motivated by the success of prompt learning for pre-trained lan-
guage models in the NLP field [18, 24, 51], investigating prompt
learning for pre-trained vision models has emerged as a prominent
research area. Visual prompt learning (VPL) aims to fine-tune only
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a small number of task-specific parameters while freezing the entire
pre-trained model [14, 23]. In comparison to alternative fine-tuning
strategies (e.g.,Full Fine-tuning, Adapter Tuning [10, 36, 49], and
Prefix Tuning [20]), VPL achieves remarkable performance and
substantially reduces per-task storage requirements. Today, VPL
is mainly used to adapt vision-only models [14, 42, 50] and Vision-
Language Models (VLMs) [2, 15, 16, 29, 45, 52–54] to downstream
tasks. Specifically, VPT [14] is the first to adopt prompt learning
for pre-trained vision models. It investigates the applicability and
viability of VPL and opens up an innovative avenue for down-
stream task adaptation. CoOp [53] proves that learnable prompts
(i.e.,continuous prompts) perform better than hand-crafted prompts
(i.e.,discrete prompts, like "a photo of an apple.") in terms of perfor-
mance and robustness of downstream task adaptation. Maple [16]
proposes multi-modal prompts to improve alignment between vi-
sion and language representations in VLMs. ProGrad [54] presents
a prompt-aligned gradient method for downstream task adapta-
tion. These methods design learnable prompts instead of hand-craft
prompts and show the superiority of learnable prompts. However,
it is difficult to interpret what the learnable prompts mean and how
they help pre-trained models adapt to downstream tasks. In this
paper, we attempt to provide a more interpretable perspective on
VPL. Our locality-aware prompt learning mechanism is designed
to generate locality-aware prompts, aggregating crucial local in-
formation and thus addressing the deficiency in pre-trained ViTs’
capacity to incorporate local information for downstream tasks.

2.2 ViTs with Locality Mechanism
ViTs rely on self-attentionmechanisms to extract global information
among image patches [7, 21, 35, 39]. However, the lack of a locality
mechanism (e.g.,the convolutions in CNNs) makes it difficult to cap-
ture critical local regions in foreground objects, especially in down-
stream tasks. The aforementioned issue restricts pre-trained ViTs’
ability to adapt to downstream tasks [25]. To improve the capacity
to extract local information, recent studies [9, 13, 26, 27, 31, 48]
have concentrated on tokenization techniques and self-attention
mechanisms. Slide-Transformer [31] proposes the slide attention
for local relationship modeling. T2T-ViT [48] proposes a progres-
sive tokenization strategy that can better encode the critical local
structure for image patches. Swin Transformer [27] uses a shifted
windowing scheme to provide better cross-window connections
within local windows. Additionally, there has been a trend of de-
signing hybrid architectures [8, 22, 44, 46, 47] of convolutional
layers and self-attention layers in a way that local mechanisms are
introduced to ViTs. For instance, ConViT [8] and CvT [44] bring
locality to ViTs by adding convolutions within the transformer
blocks. However, these methods are train-from-scratch designed.
In light of this limitation, our LORE is intended to implement a
locality-aware prompt learning mechanism for pre-trained ViTs.

3 Methodology
As shown in Fig. 2, our LORE consists of a Black Box module and
a White Box module. Specifically, the pre-trained ViT encoder 𝐹
serves as the Black Box module. The locality-aware prompt learn-
ing mechanism serves as the White Box module. Within the White

Box module, the Locality Interaction Network (LIN) learns locality-
enhanced tokens Ê that enhance information interaction within
image local regions. Subsequently, the Knowledge-Locality Atten-
tion (KLA) is designed to capture critical local regions from Ê under
the guidance of semantic knowledge, yielding Knowledge-Locality
(K-L) prototypes denoted as Â. Utilizing LIN and K-L prototype-
guided constraint L𝑘𝑝 , the Prompt Generator (PG) is proposed
to generate locality-aware prompts U. Finally, the locality-aware
prompts U are fed into our Black Box module alongside image
patch tokens E0, thereby constituting a Black-White Box model.
The details of the Black Box module and White Box module are
presented in the following sections.

3.1 Black Box Module: Pre-trained ViT
We formulate our Black Box module as follows. The 𝐹 is a pre-
trained ViT encoder with 𝐿 transformer layers. Given an input of
image X, the image is reshaped to𝑀 flattened 2D patches. These
patches are then projected into image patch tokens E0 ∈ R𝑀×𝑑𝑒 ,
where𝑀 is the token length and 𝑑𝑒 is the dimension of each patch
token. Furthermore, patch tokens E0 and a CLS token C0 are fed
into the 𝐹 . Formally, for the 𝑖-th transformer block 𝐹𝑖 :

[C𝑖 , E𝑖 ] = 𝐹𝑖 ( [C𝑖−1, E𝑖−1]), (1)

where 𝑖 = 1, 2, ..., 𝐿. Notably, all parameters of the Black Box module
are frozen in our method.

3.2 White Box Module: Locality-Aware Prompt
Learning Mechanism

3.2.1 Locality Interaction Network. LIN first represents an image as
a graph and then explicitly enhances the local relationships between
neighbor image patches. Taking the E0 as input, we construct a
directed neighbor graph G = (V, E) for each image, where V is
the node set and E is the edge set. More specifically,𝑀 patch tokens
of an image E0 = [e1, e2, ..., e𝑀 ] are defined as the node setV . Each
node indicates an image patch token e𝑖 ∈ R1×𝑑𝑒 . For a node e𝑖 , we
establish a directed edge originating from node e𝑗 to e𝑖 when e𝑗 is
identified as one of the TopK nearest neighbors of e𝑖 , denoted as
e𝑗 ∈ N (e𝑖 ). Obviously, this graph G represents local relationships
between image patch tokens, which can be used as a prior to help
characterize local regions. Afterwards, we use the max-relative
graph convolution Θ [12, 19] to enhance the locality interaction
between an image patch token e𝑖 and its neighbors N(e𝑖 ). In this
way, the E0 can be updated to E′ ∈ R𝑀×𝑑𝑒 :

E′ = Θ(E0,G)
= [e′1, e′2, ..., e′𝑖 , ..., e′𝑀 ],

(2)

with
e′𝑖 =𝑚𝑎𝑥 (e𝑖 − e𝑗 |e𝑗 ∈ N (e𝑖 )), (3)

where𝑚𝑎𝑥 (·) is a max-pooling feature aggregator to pool the dif-
ference of features between e𝑖 and its neighbors. Eq. (3) further
details the operation of Θ from the perspective of an image patch
token e𝑖 . And then, we design a residual connect module ℎ(·, ·) to
alleviate over-smoothing problem [5] of the max-relative graph
convolution. Finally, the locality-enhanced tokens Ê ∈ R𝑀×𝑑𝑒 of
an image is defined as:

Ê = ℎ(E′, E0) = 𝜎 (E′W1)W2 + E0, (4)
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Figure 2: The framework of our LORE. We design the locality-aware prompt learning mechanism (i.e.,White Box module)
to compensate for the local information incorporating capacity of pre-trained ViTs (i.e.,Black Box module). Our White Box
module consists of a Locality Interaction Network (LIN), a Knowledge-Locality Attention (KLA), and a Prompt Generator (PG).
The workflow indicated by the green lines is not necessary for the inference phase.

where 𝜎 is the relu non-linearity,W1 ∈ R𝑑𝑒×𝑑𝑒 andW2 ∈ R𝑑𝑒×𝑑𝑒

are fully-connected layers. Ê enhances the local relationships be-
tween image patches in comparison to E0.

3.2.2 Knowledge-Locality Attention. Ê includes the entire regions
of an image. There are still a few local regions in Ê that are unim-
portant in terms of representing the image’s salient characteristics.
To this end, we introduce the KLA, guided by relevant semantic
knowledge, which helps in capturing important local regions of Ê
while discarding unimportant ones.

We formulate the problem of capturing important local regions
as a semantic knowledge-locality matching between the seman-
tic knowledge embedding q and the locality-enhanced tokens Ê.
More specifically, we encode auxiliary prompts into semantic em-
beddings q utilizing a semantic knowledge encoder denoted as 𝑆 ,
represented as q = 𝑆 (Prompt). These auxiliary prompts contain rel-
evant semantic knowledge corresponding to the foreground objects
in images, which are handcrafted instructions like “This is a photo
of a [CLASS].”. In KLA, we use q as the input of the Q (query) and
Ê as the input of the K (key) and V (value). Then we apply linear
transformations to generate Q, K, and V, respectively:

Q = qWq,K = ÊWk,V = ÊWv, (5)

where Wq ∈ R𝑑𝑞×𝑑𝑒 , Wk ∈ R𝑑𝑒×𝑑𝑒 , Wv ∈ R𝑑𝑒×𝑑𝑒 , Q ∈ R1×𝑑𝑒 ,
K ∈ R𝑀×𝑑𝑒 , and V ∈ R𝑀×𝑑𝑒 . Furthermore, we define an 𝐴𝑇𝑇𝑁 (·)
function to match and aggregate the crucial local regions into A:

A = 𝐴𝑇𝑇𝑁 (Q,K,V) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝜑𝑁 (QK⊤/
√︁
𝑑𝑒 ))V, (6)

where
√
𝑑𝑒 is a scaling factor. The 𝜑𝑁 (·) denotes a row-wise top-

N filter, which sets the top-N values unchanged and the rest to
0, aiming to ensure that 𝐴𝑇𝑇𝑁 (·) focuses on the most relevant
locality-enhanced tokens. For simplicity, the concept of multiple
heads here is omitted. In Eq.(6), matrix product of QK⊤ ∈ R1×𝑀

represents the similarity between the semantic embedding q and
all locality-enhanced tokens Ê of an image. Finally, a multi-layer
perceptron (𝑀𝐿𝑃 ) and a residual connection are adopted to enhance
the representation ability of A. The Knowledge-Locality (K-L) pro-
totype Â is formulated as:

Â = 𝐵𝑁 (𝑀𝐿𝑃 (A) + A), (7)

where 𝐵𝑁 indicates the batch normalization operation. This K-L
prototype Â contains critical local information about an image.

3.2.3 Prompt Generator. Taking the K-L prototype Â as input, a
straightforward method for generating locality-aware prompt U is
to directly feed Â into the PG. However, this solution necessitates
the model to compute the corresponding K-L prototype for each
image during inference, increasing computation complexity and
requiring auxiliary prompts for the prototype generation, which is
impractical for real-world applications. To overcome this limitation,
we develop a K-L prototype-guided constraint L𝑘𝑝 . It facilitates
PG training with the use of the K-L prototypes Â, wherein K-L
prototypes are not necessary for the inference phase. We firstly
formulate the architecture of the PG and then describe the details
of L𝑘𝑝 .
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PG has two lightweight bottleneck architectures. These bottle-
neck architectures reduce the number of parameters while ensuring
effectiveness. Using the first bottleneck architecture Ψ1 parame-
terized by 𝜃1, we map the Ê to a latent space. We define a latent
embedding Y ∈ R1×𝑑𝑒 as:

Y = Ψ1 (𝑎𝑣𝑝 (Ê);𝜃1), (8)

where 𝑎𝑣𝑝 (·) is the average pooling operation and Ψ1 consists of
two 1 × 1 convolutions. Initially, it reduces the feature dimension
to 𝑟 , followed by an expansion of the dimension back to 𝑑𝑒 . 𝑟 ≪ 𝑑𝑒 .
Afterwards, the second bottleneck architecture Ψ2 parameterized
by 𝜃2 is used to generate the locality-aware prompt U:

U = Ψ2 (Y;𝜃2) . (9)

Ψ2 comprises two 1×1 convolution operations that initially decrease
the feature dimension to 𝑟 and then expand the dimension back to
𝑑𝑒 . The normalization operations are omitted here.

K-L prototype-guided constraint L𝑘𝑝 optimizes the training ob-
jective of the PG. More specifically, we first introduce the positive
and negative K-L prototypes. For a downstream task image X with
a true label 𝑡 , we can obtain a predicted label 𝑝 using our Black
Box module. 𝑝 = 𝑡 denotes a correct prediction, whereas 𝑝 ≠ 𝑡

denotes a wrong prediction. When 𝑝 ≠ 𝑡 , we define the positive /
negative prompt like “This is a photo of a [CLASS 𝑡 / CLASS 𝑝].”.
For instance, for a “dog” image of the downstream task, the B-B
module incorrectly predicts it as a “cat”. We verbalize the wrong
prediction as a negative prompt, such as "This is a photo of a cat",
which demonstrates the B-B’s wrong understanding of this image.
We hope to correct the wrong understanding during PG’s training
phase. To this end, we compute the corresponding positive/negative
K-L prototype Â𝑡/Â𝑝 using Eq. (5) and (6). Â𝑝 is the negative K-L
prototype that contains misleading local information about the
image. And then, we define L𝑘𝑝 to guide the latent embedding Y
that are similar to Â𝑡 but not similar to Â𝑝 in a joint latent space:

L𝑘𝑝 = −𝑐𝑜𝑠 (Y, Â𝑡 ) + I(𝑡 ≠ 𝑝) ∗ 𝑐𝑜𝑠 (Y, Â𝑝 ), (10)

where I(·) is the indicator function. If 𝑡 ≠ 𝑝 is true, I(𝑡 ≠ 𝑝) is 1.
Otherwise, I(𝑡 ≠ 𝑝) is 0. 𝑐𝑜𝑠 (·, ·) is the cosine similarity.

3.3 Training and Inference Pipeline of LORE
During the training phase, the overall training loss of our model is
formulated as:

L = L𝑡𝑎𝑠𝑘 + 𝜆L𝑘𝑝 , (11)

where L𝑡𝑎𝑠𝑘 is the downstream task loss. L𝑘𝑝 is used to optimize
the training of PG, and we describe the details of L𝑘𝑝 in Eq.(10). 𝜆
indicates the hyper-parameter to balance the contributions of the
two losses. The LIN, PG, and KLA are trainable.

During the inference phase, we first compute the locality-enhanced
tokens Ê for an image by using Eq. (2), (3), and (4). And then, Eq. (8)
and (9) are used to generate the locality-aware prompt U. Finally,
U is used as additional input tokens containing the critical local
information, fed into our pre-trained ViT along with image patch
tokens. The 𝑖-th transformer block 𝐹𝑖 in our model is formulated
as:

[C𝑖 ,U𝑖 , E𝑖 ] = 𝐹𝑖 ( [C𝑖−1,U𝑖−1, E𝑖−1]), (12)

where 𝑖 = 1, 2, ..., 𝐿. The outputs of 𝐹𝐿 are utilized to get downstream
task results.

4 Experiments
In the following part of this section, we first provided the experimen-
tal setup, then presented the evaluation results and visualization
results, and finally showed ablation studies.

4.1 Experimental Setup
Datasets. For the classification task, we conducted experiments on
three kinds of datasets: (1) Natural datasets: CIFAR-10, CIFAR-100,
DTD, and ImageNet. (2) Fine-grained datasets: Flowers102, Stanford-
Cars, FGVCAircraft, and StanfordDogs. (3) Specialized datasets: Eu-
roSAT, Resisc45, UCF101, and Pattern. For the image retrieval task,
we performed experiments on ROxford5k and RParis6k datasets.
For the point correspondences task, we reported results on SPair-
71k dataset. For the video object segmentation task, we conducted
experiments on DAVIS 2017 dataset.

Implementation Details.We implemented our LORE2 in Py-
Torch with two NVIDIA RTX 3090 GPUs. We adopted the visual
encoder of pre-trained CLIP ViT-B/16 [34], pre-trained CLIP ViT-
B/32 [34], and Vanilla ViT-B/16 pre-trained on ImageNet-21k [38]
as our Black Box modules, respectively. We adopted the text en-
coder of pre-trained CLIP as our semantic knowledge encoder. Our
models are trained using the SGD optimizer with a mini-batch size
of 32/64. In the few-shot classification task and the first stage of
the easy-to-hard classification task, we set the initial learning rate
to 0.003 and decreased it to 0.0001 by the cosine annealing rule. In
the second stage of the easy-to-hard classification task, we set the
initial learning rate to 0.0005 and decrease it to 0.0001 by the cosine
annealing rule. We trained our method for 50 epochs. We followed
the same data augmentation strategies in our comparison methods.
The hyper-parameter 𝜆 is set to 0.1. The length of locality-aware
prompts is set to 10. The dimension 𝑟 in Ψ1 and Ψ2 is set to 32.

4.2 Results of Downstream Task Adaptation
4.2.1 Classification. We compared our model with SOTA prompt
learning methods ( CoOp [53], Co-CoOp [52], Maple [16], and Pro-
Grad [54]), representative adapter-basedmethod ( Clip-Adapter [10]),
and Zero-shot CLIP [34]. For a fair comparison, we adopted the
same pre-trained CLIP as the base model of our comparison meth-
ods, and we used the dataset split strategy as the same as our
method to reproduce these methods. In this task, LORE’s task head
is trainable.

Few-shot classification. Fine-tuning models with few-shot
training samples that are randomly selected, followed by perfor-
mance evaluation on the total test set. Notably, we used the same
training samples in our comparison methods.

We compared our LORE with all these methods on 12 datasets
with 16-shot and 8-shot settings. As shown in Table 1, our LORE
outperforms the SOTA methods with the 16-shot setting: (1) it has
achieved the highest accuracies on all datasets. (2) it has achieved
the highest average accuracy. LORE surpasses the best method
Clip-Adapter by 7.09% in average accuracy. Besides, our LORE
also outperforms these methods with the 8-shot setting: (1) it has

2The code is available at https://github.com/Mysteriousplayer/KGPT.

https://github.com/Mysteriousplayer/KGPT
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Table 1: Comparison with the SOTA methods on 12 datasets under the few-shot classification task, where the Black Box module
is CLIP ViT-B/16. Our LORE has achieved the highest average accuracy.
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CLIP 71.30 63.84 24.72 62.67 88.38 64.78 43.40 66.59 35.80 62.60 66.72 61.33 59.34 0
Co-CoOp 90.42 73.72 35.70 71.15 80.00 55.19 65.53 71.02 73.02 81.81 79.46 91.23 72.35

16-shot

ProGrad 95.78 74.87 38.34 70.33 80.66 54.97 68.14 71.13 76.16 83.11 77.13 93.52 73.68
Clip-Adapter 96.59 77.99 43.41 69.64 80.86 55.33 69.73 70.02 78.96 86.44 82.77 95.71 75.62
CoOp 96.79 79.84 43.05 72.65 78.80 54.57 68.09 71.51 78.68 84.70 82.37 94.85 75.49
Maple 93.59 76.58 39.48 75.08 80.72 62.84 69.47 70.72 79.57 83.26 81.89 93.82 75.59
LORE 98.98 87.20 54.34 78.14 93.19 72.39 75.00 72.16 87.04 88.94 87.13 98.04 82.71
Co-CoOp 88.02 71.51 32.46 70.09 78.50 55.03 59.15 70.19 65.20 78.06 76.79 86.91 69.33

8-shot

ProGrad 93.54 73.37 34.53 69.78 79.08 53.50 62.93 70.44 69.74 80.29 76.08 90.84 71.18
Clip-Adapter 94.03 73.64 36.57 66.60 79.35 53.95 64.15 69.02 71.99 82.29 80.70 92.50 72.07
CoOp 95.01 76.50 36.57 70.01 78.67 52.97 64.52 69.19 70.16 81.38 79.88 91.45 72.19
Maple 90.05 72.62 32.91 72.45 79.99 61.00 64.89 70.06 66.98 79.07 79.12 86.97 71.34
LORE 97.48 81.25 42.99 70.72 87.79 64.75 70.21 70.65 76.95 84.25 83.48 96.51 77.25

achieved the highest accuracies or compatible ones on all datasets.
(2) it has achieved the highest average accuracy. Compared to the
best method CoOp, our LORE surpasses it by 5.06% in average
accuracy. Moreover, as we can see from Table 2, LORE also has
achieved the highest average accuracy when we use pre-trained
ViT-B/32 as the Black Box module: (1) LORE surpasses the best
methods by 6.82%, 5.52%, and 3.69% on 4 fine-grained datasets, 4
natural datasets, and 4 specialized datasets with the 16-shot setting,
respectively. (2) LORE outperforms the best methods with a gap
of 4.67%, 2.04%, and 3.43% on 3 kinds of datasets with the 8-shot
setting, respectively.

Easy-to-Hard classification. To test whether our White Box
module can improve pre-trained ViTs when encountered with hard
samples, we devise a two-stage classification task comprising an
easy curriculum stage and a hard curriculum stage. More specifi-
cally, we assess sample difficulty based on their distribution in the

Table 2: Comparison with the SOTA methods on 3 kinds of
datasets under the few-shot classification task, where the
Black Box module is CLIP ViT-B/32.
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CLIP 49.96 63.86 51.90 55.24 0
Co-CoOp 59.41 63.20 78.65 67.09

16-shot

ProGrad 63.91 64.48 79.52 69.30
Clip-Adapter 65.85 63.77 83.85 71.16
CoOp 65.95 64.68 82.86 71.16
Maple 64.49 68.37 83.32 72.06
LORE 72.77 73.89 87.54 78.06
Co-CoOp 55.91 62.08 74.23 64.08

8-shot

ProGrad 60.97 62.59 74.02 65.86
Clip-Adapter 60.91 62.72 79.05 67.56
CoOp 61.37 62.17 78.19 67.24
Maple 60.01 65.47 77.30 67.59
LORE 66.04 67.51 82.48 72.01

feature space of our Black Box module. For a sample X belonging
to class 𝑗 , the difficulty function D is definable using the distance
between its feature (i.e.,CLS token) C𝐿 and its class centroid o𝑗 :
D = 𝑑𝑖𝑠 (C𝐿, o𝑗 ), where 𝑑𝑖𝑠 (·, ·) is the cosine distance. A lower diffi-
culty score indicates that X is closer to its class centroid o𝑗 and is
thus considered an easy sample, suitable for initial adaptation to
downstream tasks. Conversely, a higher difficulty score suggests
that X is farther from its class centroid o𝑗 and is more likely to be
misclassified, making it a suitable candidate for further adaptation
of the model to downstream tasks. In the easy curriculum stage, we
select the 𝑁 easiest samples to train the LORE-e. Subsequently, in
the hard curriculum stage, we select the 𝑁 hardest samples based
on the LORE-e. These selected samples are then utilized to further
train the LORE-h. Importantly, both LORE-e and LORE-h share an
identical framework. It is worth noting that the training samples of
each class are given 16/stage and 8/stage, respectively. We did not
test the 16/stage setting on Flowers102, StanfordCars, DTD, and
UCF101. Because the number of training samples in the 4 datasets
is not insufficient to select 16 qualified hard samples.

According to Table 3, our method has shown obvious advantages
over the SOTA methods: (1) our LORE-h has obtained the highest
accuracies on all datasets and the highest average accuracies for
the 16/stage and 8/stage settings; (2) our LORE-e has achieved the
highest average accuracies for the 16/stage and 8/stage settings; (3)
our LORE-e has achieved the highest accuracies or compatible one
on all datasets for the two settings; (4) our LORE-h outperforms our
LORE-e by 1.66% and 2.04% for both settings, respectively, which is
the most significant improvement compared to SOTA methods. In
conclusion, our LORE-h outperforms our LORE-e, demonstrating
the superiority of our locality-aware prompt learning mechanism
in improving the performance of our Black Box module when en-
countered with difficult samples.

4.2.2 Effectiveness on Other Downstream Tasks. To further ver-
ify the effectiveness of our Black-White Box model in improving
pre-trained ViTs, we conduct experiments on other downstream
tasks. Our White Box module, pre-trained on the classification task,
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Table 3: Comparison with the SOTA methods on 12 datasets under the easy-to-hard classification task, where the Black Box
module is CLIP ViT-B/16. ‘xxx-e’ and ‘xxx-h’ represent being trained only in the easy curriculum stage and being trained in the
easy curriculum stage followed by the hard curriculum stage, respectively. The highest accuracy in the easy/hard curriculum is
indicated with an underline / in bold. Absolute improvements from the easy to hard curriculum are indicated in parentheses.
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CLIP 71.30 63.84 24.72 62.67 88.38 64.78 43.40 66.59 35.80 62.60 66.72 61.33 59.34 0
CoOp-e - - 44.34 75.59 82.50 58.72 - 71.30 80.84 86.29 - 94.74 74.29

16/stage

CoOp-h - - 45.33 75.19 78.80 58.02 - 70.75 64.69 85.35 - 89.59 70.97(-3.32)
Co-CoOp-e - - 35.43 71.68 82.54 56.29 - 71.27 72.32 82.05 - 90.41 70.25
Co-CoOp-h - - 37.02 71.95 81.52 54.95 - 71.01 60.72 82.30 - 89.85 68.67(-1.58)
Clip-Adapter-e - - 46.56 71.74 82.26 56.27 - 70.23 81.27 87.70 - 95.86 73.99
Clip-Adapter-h - - 47.37 71.67 82.23 56.55 - 70.00 81.26 87.10 - 96.05 74.03(+0.04)
ProGrad-e - - 39.48 71.00 80.26 55.99 - 71.68 79.89 84.20 - 94.26 72.10
ProGrad-h - - 43.74 74.95 79.88 57.86 - 70.59 74.95 84.55 - 93.03 72.44(+0.34)
Maple-e - - 38.85 75.41 81.81 62.41 - 72.21 82.41 84.11 - 93.24 73.81
Maple-h - - 41.31 75.52 80.79 62.36 - 71.24 85.16 84.31 - 94.08 74.35 (+0.54)
LORE-e - - 56.92 77.25 91.71 76.53 - 76.64 88.07 88.02 - 96.96 81.26
LORE-h - - 61.00 79.80 92.88 77.56 - 75.73 89.05 89.67 - 97.66 82.92 (+1.66)
CoOp-e 95.62 79.11 41.49 72.27 81.42 56.70 68.99 71.22 77.83 84.15 81.10 93.14 75.25

8/stage

CoOp-h 95.25 78.88 41.31 72.56 81.30 55.34 62.93 70.48 72.17 82.64 79.25 89.05 73.43(-1.82)
Co-CoOp-e 86.60 72.30 32.49 70.96 80.67 55.30 62.45 70.87 68.00 80.27 78.30 87.71 70.49
Co-CoOp-h 88.39 72.38 33.51 70.17 76.24 54.35 59.31 70.25 63.83 78.36 77.61 88.08 69.37(-1.12)
Clip-Adapter-e 95.74 76.53 42.33 69.51 80.52 54.28 69.41 69.37 76.99 85.79 82.21 94.03 74.73
Clip-Adapter-h 95.41 76.63 43.26 70.75 81.30 55.36 69.79 68.93 74.93 85.51 82.63 94.36 74.91(+0.18)
ProGrad-e 94.80 72.07 36.48 69.38 79.88 54.07 65.11 71.29 75.11 82.41 74.20 90.16 72.08
ProGrad-h 94.32 76.92 41.67 72.03 81.09 56.36 66.60 70.03 70.89 82.58 80.10 90.62 73.60(+1.52)
Maple-e 89.85 73.91 35.16 72.19 80.93 60.64 66.76 71.36 70.58 80.23 79.22 87.58 72.37
Maple-h 91.47 75.75 36.12 72.94 80.37 60.98 68.03 70.72 75.37 81.02 79.75 90.84 73.61 (+1.24)
LORE-e 97.16 83.14 49.62 74.95 89.11 69.69 73.40 71.76 83.59 87.00 84.32 95.99 79.98
LORE-h 97.77 85.42 54.94 78.21 91.43 72.73 74.36 73.34 86.32 87.97 85.14 96.58 82.02 (+2.04)

demonstrates good generalization ability across different down-
stream tasks, including image retrieval, point correspondences, and
video object segmentation.

Image Retrieval. We used the evaluation protocols of [3] to
compare the performance of off-the-shelf features in our Black-
White Box model and the Black Box model. Concretely, the pre-
trained feature (i.e.,CLS token) is frozen and used directly for image
retrieval using the K-NN strategy without any fine-tuning. We
reported theMeanAverage Precision (mAP) for theMedium (M) and
Hard (H) split on ROxford5k and RParis6k datasets [33]. As depicted
in Table 4, our Black-White Box models have clear advantages over
Black Box models (i.e.,Vanilla ViT-B/16 and CLIP ViT-B/16).

Point Correspondences. In the point correspondences task,
given a source image with annotated keypoints, the objective is
to predict the locations of corresponding keypoints in a target
image. We followed the evaluation protocols outlined in [1, 41].
More specifically, image patch tokens are mapped to the size of
the original image by bi-linear interpolation. We compute the key
point features in the source image and match the mutual nearest
neighbors in the target image. In Table 4, we reported the Percentage
of Correct Keypoint (PCK) on SPair-71k [30] dataset. Our Black-
White Box models outperform their Black Box counterparts.

Video Object Segmentation. We conducted experiments on
DAVIS 2017 [32] for the task of video object segmentation. It is a

semi-supervised task that aims to propagate the first frame’s seg-
mentation mask to subsequent frames. We followed the evaluation
protocols outlined in [4]. Image patch tokens of video frames are
extracted to segment scenes without any fine-tuning. As illustrated
in Table 4, we reported the mean region similarity and contour-
based accuracy (J&F M) of our Black-White Box models and the
corresponding Black Box models. We can observe that our Black-
White Box models perform better in this dense recognition task.

4.3 Visualization
We reported visualization results to make intuitive explanations for
our method. Specifically, we visualized the self-attention maps gen-
erated by our Black Box module and our Black-White Box model.
These self-attention maps indicate the self-attention of the CLS
token and other image tokens across the heads of the last ViT
layer. Additionally, we visualized the attention map of our KLA
mechanism, which illustrates the attention between the seman-
tic knowledge embedding q and the locality-enhanced tokens Ê.
As shown in Fig. 3, the Black Box module focuses on global in-
formation while neglecting local information in critical regions,
illustrating the locality vanishing problem. Conversely, our KLA
mechanism effectively directs attention towards critical local re-
gions. Our Black-White Box model enables the extraction of both
global and local information, providing a comprehensivemethod for
capturing diverse spatial dependencies. Significantly, throughout
the training phase, the parameters of the Black Box module remain
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Table 4: Evaluations under other downstream tasks, including image retrieval, point correspondence and video object segemen-
tation, where the Black Box (B-B) modules are CLIP ViT-B/16 and Vanilla ViT-B/16.

Task Image Retrieval Point Correspondences Video Object Segmentation
Dataset ROxford5k RParis6k SPair-71k Davis

Metric CLIP ViT CLIP ViT CLIP ViT CLIP ViT
M H M H M H M H PCK@0.1 J&F M

B-B 0.397 0.107 0.302 0.094 0.708 0.482 0.603 0.358 18.25 16.61 54.38 58.12
LORE 0.418 0.171 0.449 0.172 0.750 0.552 0.720 0.523 20.71 18.07 55.62 59.46

Original                   B-B                KLA               LORE                     B-B                KLA               LORE 

ViT CLIP

Figure 3: Attention map visualization of our Black Box module (B-B), our KLA mechanism, and our LORE on ImageNet under
the classification task. Our LORE achieves a balancing of global and local information within downstream tasks.

Table 5: Ablation studies of our LORE on 4 natural datasets.
B-B, W-B, L𝑘𝑝 , and VPT indicate the Black Box module, the
White Box module, the K-L prototype-guided constraint, and
the visual prompt tuning [14], respectively.

Method Avg. Acc.W-B L𝑘𝑝 VPT ViT CLIP
B-B with VPT ✗ ✗ ✓ 74.01 73.91
LORE w/o L𝑘𝑝 ✓ ✗ ✓ 75.24 77.16

LORE ✓ ✓ ✓ 76.38 78.19

entirely frozen within the Black-White Box model. Consequently,
global information persists within our LORE, albeit with reduced
attention weights. Moreover, we think that this preservation is not
deleterious; retaining global information to a certain degree can be
beneficial for the downstream task adaptation.

4.4 Ablation Studies
We designed ablation studies to further investigate the effective-
ness of our method. Ablation studies are conducted on the 16-shot
classification task. The Black Box modules here are Vanilla ViT-
B/16 and CLIP ViT-B/16. First, we removed the White Box module
and adopted visual prompt tuning [14] to fine-tune the Black Box
module (i.e.,"B-B with VPT"), which is a commonly used prompt

learning method. Second, we removed the K-L prototype-guided
constraint L𝑘𝑝 to obtain another baseline "LORE w/o L𝑘𝑝 ". No-
tably, our KLA is also removed in "LORE w/o L𝑘𝑝 ". As shown in
Table 5, when using the Vanilla ViT-B/16 as the Black Box module,
our method achieves the best performance compared with "LORE
w/o L𝑘𝑝 " and "B-B + VPT", leading to improvements of 1.14% and
2.37%, respectively. When using the CLIP ViT-B/16 as the Black Box
module, LORE outperforms the two baselines by 1.03% and 4.28%,
respectively. These results demonstrate that the White Box module
helps adapt pre-trained ViTs to downstream tasks.

5 Conclusions and Future Works
In this work, we propose a locality-aware prompt learning method
for downstream task adaptation. Specifically, we utilize the pre-
trained ViT encoder as our Black Box module, while designing
the locality-aware prompt learning mechanism, referred to as the
White Box module. In our White Box module, the LIN, KLA, and
PG collaborate to generate the locality-aware prompts, which can
enhance the local information incorporating capacity of the Black
Box module. We showcase LORE’s superiority and effectiveness
on 4 downstream tasks. A promising future research direction is
utilizing rules from external knowledge graphs to develop more
interpretable White Box modules.
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A SUPPLEMENTARY MATERIAL
A.1 Datasets statistics
The comprehensive statistics of the classification datasets are pre-
sented in Table 6. For StanfordDogs, CIFAR-10, CIFAR-100, DTD,
ImageNet, Resisc45, and Pattern, we followed the official dataset
split strategy. For Flowers102, StanfordCars, Aircraft, EuroSAT, and
UCF, we followed the split strategy used in CoOp.

For image retrieval datasets, ROxford5k and RParis6k contain
4,993 and 6,322 high-resolution (1024 × 768) images, respectively,
and each dataset has 70 queries from 11 landmarks.

For point correspondences dataset, SPair-71k comprises 70,958
image pairs from 18 classes with diverse variations in viewpoint
and scale, of which 53340 pairs serve as the training set, 5384 pairs
serve as the validation set, and 12234 pairs serve as the test set.

For video object segmentation dataset, DAVIS consists of 50 video
sequences with 3455 densely annotated frames in pixel level. 30
videos with 2079 frames are for training, and 20 videos with 1376
frames are for validation.

A.2 Computational complexity analysis
As shown in Table 7, the number of trainable parameters, GFLOPs,
and FPS of our LORE during the inference phase remain compara-
ble to those of "B-B" and "B-B+VPT". Moreover, our LORE signifi-
cantly improves performance on downstream tasks and offers an
interpretable perspective for visual prompt learning. Therefore, we
believe these trade-offs are justified.

Table 6: Classification datasets statistics.

Dataset Description Classes Train Test

Flowers102

Fine-grained

102 5726 2463
Stanford Cars 196 8144 8041
Aircraft 100 6667 3333
Stanford Dogs 120 12000 8580

CIFAR-10

Natural

10 50000 10000
CIFAR-100 100 50000 10000
DTD 47 3760 1880
ImageNet 1000 1281166 50000

EuroSAT

Specialized

10 18900 8100
Resisc45 45 6300 25200
Pattern 38 24320 6080
UCF 101 9537 3783

Table 7: Comparison of computational complexity during
the inference phase on 4 natural datasets. The results are
conducted on an NVIDIA RTX 3090, wherein the B-B module
is CLIP ViT-B/16, VPT denotes visual prompt tuning, and
LORE indicates our Black-White Box model.

Method Training Param. (%) GFLOPs FPS Avg. acc.
B-B - 45.2 106.1 65.79

B-B with VPT 0.2 47.0 95.5 73.91
LORE 5.7 48.9 74.4 78.19

A.3 Limitations
Our LORE aims to enhance the adaptation of pre-trained ViTs to
downstream tasks. Therefore, the primary objective of our experi-
mental design is to validate the effectiveness of pre-trained ViTs in
adapting to downstream tasks. To ensure comprehensive evalua-
tions, we compared our LORE with several effective and representa-
tive PET methods, including CoOp, Co-CoOp, Maple, ProGrad, Clip-
adapter, and VPT. Some of these methods have demonstrated out-
standing performance in domain generalization and cross-dataset
transfer evaluations using pre-trained CLIP models. However, it
is important to note that domain generalization and cross-dataset
transfer evaluations assess the CLIP-based model’s generalization
ability, which is beyond the scope of this study. We would like
to further investigate the generalization ability problem in future
work.
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