COMPOSEANYTHING: COMPOSITE OBJECT PRIORS FOR TEXT-TO-IMAGE GENERATION

Anonymous authors

000

001

002003004

006

800

015

021

023

025

026

027 028

029

031

032

034

038

039

040

041

042

043

044

045

046

047

049

051

052

Paper under double-blind review

Three bears, two girls, three chickens, one chair and two cups

Figure 1: *ComposeAnything* enables text-to-image generation for complex compositions involving surreal spatial relationships and high object counts. Unlike layout-conditioned (*e.g.*, RPG (Yang et al., 2024) and CreatiLayout (Zhang et al., 2024a)), or reinforcement learning methods (*e.g.*, Flow-GRPO (Liu et al., 2025), it achieves both high visual quality and strong faithfulness to text.

ABSTRACT

Generating images from text with complex object arrangements remains a major challenge for current text-to-image (T2I) models. Existing training-based solutions, such as layout-conditioned models or reinforcement learning methods, improve compositional accuracy but often distort realism, leading to floating objects, broken physics, and degraded image quality. In this work, we introduce ComposeAnything, an inference-only framework that enhances compositional generation without retraining. Our key idea is to replace stochastic noise initialization with composite object priors—interpretable structured composite of objects, created using 2.5D layouts generated from large language models and pretrained image generators. We further propose prior-guided diffusion, which integrates these priors into the denoising process to enforce compositional correctness while preserving visual fidelity. This training-free strategy enables seamless generation of compositional objects and coherent backgrounds, while allowing refinement of inaccurate priors. ComposeAnything consistently outperforms state-of-the-art inference-only methods on T2I-CompBench and NSR-1K benchmarks, especially for prompts with complex spatial relations, high object counts, and surreal scenes. Human evaluations confirm that our method generates images that are not only compositionally faithful but also visually coherent.

1 Introduction

Text-to-image (T2I) models, particularly diffusion-based ones such as SDXL (Podell et al., 2023), SD3 (Esser et al., 2024) and Flux (Black Forest Labs, 2024), have achieved remarkable success in generating individual concepts with high fidelity. However, they struggle with complex object compositions (Huang et al., 2023), especially novel arrangements that deviate from their training

distribution, often resulting in unnatural mixing of objects, incorrect 2D/3D spatial positioning, and inaccurate object counts, as shown in Figure 1.

To improve compositional generation, prior work has explored layout control and reinforcement learning (RL). Layout-based methods use 2D cues (e.g., boxes or blobs) often derived from LLMs (OpenAI, 2025) to steer generation (Feng et al., 2023b; Li et al., 2023a; Nie et al., 2024). Training-based variants adapt pretrained T2I models with layout-conditioning modules (Zhang et al., 2024a; Li et al., 2023a; Zhang et al., 2023a; Wang et al., 2024a), offering stronger spatial control but incurring heavy training cost and quality degradations under rigid constraints (Zhang et al., 2024b) (e.g., CreatiLayout (Zhang et al., 2024a) in Figure 1). Inference-only variants guide denoising via attention/latent manipulation or region-wise denoising (Yang et al., 2024; Chefer et al., 2023; Dahary et al., 2024), preserving quality better but providing weaker control for unusual layouts, higher object counts, and 3D relations because they rely on *coarse 2D* signals without appearance priors.

RL-based methods such as DDPO (Black et al., 2024), DPOK (Fan et al., 2023) and Flow-GRPO (Liu et al., 2025) optimize explicit compositional rewards (e.g., counts and spatial relations) to enforce alignment. While this improves compositional scores, the reward-driven optimization tends to overexploit the imperfect reward signal, yielding floating objects, faded backgrounds, and broken physical realism — trading fidelity for composition as shown in Figure 1 and 7. Moreover, rigid box-conditioned training overfits to layout constraints, compromising image coherence.

We propose *ComposeAnything* to address these limitations with a purely *inference-time* solution that balances accurate composition and visual realism. The key idea is to replace stochastic noise in pretrained diffusion models with *composite object priors*: structured object-level priors created from text using LLM reasoning and off-the-shelf image generators. These priors carry appearance, count/size, and coarse 2.5D placement with depth cues, going beyond box-only cues. We then introduce *prior-guided diffusion*, which integrates the priors in the early stage of denoising. It combines *object-prior reinforcement* and *spatially controlled denoising*. The former preserves foreground priors in early steps while allowing the model to synthesize coherent backgrounds; the latter strengthens the spatial arrangement of the composite prior via mask-guided attention in early diffusion steps where global structure is determined. After these initial steps, we revert to standard diffusion to refine detail and realism. *ComposeAnything* outperforms state-of-the-art inference-only methods on T2I-CompBench (Huang et al., 2023) and NSR-1K (Feng et al., 2023b) under automatic metrics, and achieves significant improvement over human evaluations over all the baselines. Ablations confirm the contributions of composite object priors and prior-guided diffusion.

Contributions. (i) A training-free interpretable framework that replaces random noise with *composite object priors* carrying appearance and coarse 2.5D structure derived from text via LLMs and pretrained generators. (ii) *Prior-guided diffusion* that integrates these priors via object-prior reinforcement and spatially controlled denoising in early steps, balancing compositional fidelity and image quality. (iii) State-of-the-art quality-compositionality trade-off on challenging benchmarks, particularly for surreal spatial relations, high-object-count, and generally complex prompts; code to be released.

2 RELATED WORKS

Compositional generation. Compositional T2I aims to produce images that faithfully reflect complex textual descriptions (Huang et al., 2023; Zhang et al., 2024b; Jamwal & S., 2024; Li et al., 2024a; Wang et al., 2024a; Feng et al., 2023b; Yang et al., 2024; Wang et al., 2024b; Couairon et al., 2023; Lian et al., 2024). While modern diffusion models (Podell et al., 2023; Esser et al., 2024; Black Forest Labs, 2024) are strong generators, they struggle with novel multi-object arrangements, spatial relations, and counting.

Training-based layout control. A common direction is to inject explicit spatial conditioning during training. Methods fine-tune pretrained backbones (Podell et al., 2023; Esser et al., 2024; Black Forest Labs, 2024; Chen et al., 2023; 2024a; Pernias et al., 2023) or add adapters with grounding/alignment objectives (Wang et al., 2024b; Jiang et al., 2024; Hu et al., 2024a). Layout-controlled variants train conditioning modules for boxes, masks, or keypoints (Li et al., 2023a; Zhang et al., 2023a; Wang et al., 2024a; Feng et al., 2024; Yang et al., 2023; Zhang et al., 2024a; Lin et al., 2025; Zhao et al., 2023; Zheng et al., 2023; Gani et al., 2024; Mou et al., 2024; Li et al., 2024b). These approaches

Figure 2: The *ComposeAnything* framework, which enhances text-to-image diffusion models with layouts and composite object priors for complex compositional generation.

can enforce geometry but require substantial training and often degrade coherence and realism under hard constraints (Zhang et al., 2024b).

RL-based compositional control. Reinforcement learning optimizes explicit rewards for counts and spatial relations (e.g., Flow-GRPO (Liu et al., 2025), DDPO (Black et al., 2024), DPOK (Fan et al., 2023)). Such rewards improve compositional scores but can induce distribution shift: models may exploit the reward at the expense of realism (floating objects, faded backgrounds, broken physics), even with KL regularization. This trades fidelity for composition, complementary to hard box-conditioned training.

Training-free (inference-only) control. Another line manipulates pretrained models at inference time, avoiding retraining. Attention- and latent-based methods edit text embeddings or cross-attention to steer local content (Chefer et al., 2023; Feng et al., 2023a; Meral et al., 2024; Trusca et al., 2024; Li et al., 2023b; Rassin et al., 2023; Liu et al., 2022; Agarwal et al., 2023; Gong et al., 2024) and perform region-wise denoising (Yang et al., 2024; Li et al., 2024c). Layout-driven, training-free techniques use LLM-derived 2D layouts (boxes/blobs) to modulate attention or emphasize regions (OpenAI, 2025; Feng et al., 2023b; Li et al., 2023a; Nie et al., 2024; Zhang et al., 2024b; Xie et al., 2023; Dahary et al., 2024; Kim et al., 2023; Ma et al., 2024; Couairon et al., 2023; Chen et al., 2024b; Jamwal & S., 2024; Phung et al., 2024). These preserve base-model quality better than training-based approaches, but control is weaker and brittle for unusual layouts, high object counts, and 3D relations because guidance is limited to *coarse 2D* signals without appearance priors.

Inference-time noise search & initialization. A complementary thread exploits the sensitivity of diffusion to the initial condition—either by searching/optimizing seeds and trajectories (Ma et al., 2025; Guo et al., 2024). These approaches can boost success rates but are compute-intensive and brittle for out-of-distribution, highly compositional prompts. Prior work in image editing leverages noisy initialization/inversion for image to image translation (Meng et al., 2022; Avrahami et al., 2022; Mao et al., 2023).

We instead *generate* the initial condition as *composite object priors*—coarse RGB composites encoding appearance and coarse 2.5D layout, and integrate them with *prior-guided diffusion*. Unlike training-based or RL methods, our approach is *inference-only* and avoids reward-driven distribution shift; unlike prior inference-only methods, it goes beyond attention tweaks and 2D boxes by injecting appearance-aware priors that deliver stronger compositional control while preserving realism.

3 THE PROPOSED METHOD

As illustrated in Figure 2, our *ComposeAnything* framework consists of three key components for compositional text-to-image generation: 1) LLM Planning (Section 3.1): We employ LLMs to transform the input prompt into a structured 2.5D semantic layout, including object captions, bounding boxes and relative depths; 2) Composite Object Prior (Section 3.2): Based on the layout, we generate a coarse composite image that serves as a strong semantic and spatial prior for guiding image synthesis; and 3) Prior Guided Diffusion (Section 3.3): We iteratively initialize noises with the object prior and apply spatially-controlled self-attention to preserve structure in early denoising steps.

3.1 LLM PLANNING

Recent advancements in LLMs have demonstrated their effectiveness in generating high-quality scene layouts from textual descriptions (Feng et al., 2023b; Yang et al., 2024; Hu et al., 2024b).

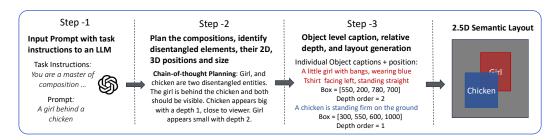


Figure 3: Chain-of-thought LLM planning for generating 2.5D semantic layouts from text.

Hence, we harness GPT-4.1 (OpenAI, 2025) to produce a structured 2.5D semantic layout from the original text. The layout includes the following elements: Object captions $\{y_{o_i}\}_{i=1}^K$ that describe size, orientation and appearance for each identified object; Bounding boxes $\{box_i\}_{i=1}^K$ that specify 2D spatial configuration for each object; Depth values $\{depth_i\}_{i=1}^K$ that reflect relative depth orders for each object to support 3D-aware composition; Background caption y_{bg} describing the background scene; and Compositional caption y_{base} which is a concise summary of the entire image. This process involves several key steps for chain-of-thought reasoning, as illustrated in Figure 3. More details are provided in Appendix E.

3.2 Composite Object Prior

2.5D position-aware composite image generation. Given the isolated object captions from LLM, we first generate individual objects using Stable Diffusion-3 Medium (SD3-M) (Esser et al., 2024). Next, we use a referring expression segmentation model Hyperseg (Wei et al., 2024) to extract objects $\{o_i\}_{i=1}^K$ along with their segmentation masks $\{m_i\}_{i=1}^K$. Each object and its corresponding mask are resized to fit within the designated bounding box generated from the LLM according to a scaling factor $scale_i$. Objects are then composited in a depth-aware order, where objects with smaller depth values are placed above those with larger depth values, thereby establishing occlusion-correct layering in the final scene. This process is formulated as follows: $o_i', m_i' = \text{Resize}(o_i, m_i, scale_i)$; then $o_p, m_p = \text{Compose}(\{o_i'\}, \{m_i'\}, \{box_i\}, \{depth_i\})$. Finally, all objects are composited on a $N \times N$ sized canvas, denoted as o_p . Its corresponding composited mask is denoted as m_p . Figure 2 shows an example of the composite image and mask. The composition of all objects forms the foreground, and the rest is considered the background.

Initializing object prior for diffusion-based models. Our work builds upon existing T2I diffusion models, aiming to enhance its ability to generate images with complex object compositions. Our method is compatible with both denoising diffusion probabilistic models like SDXL (Podell et al., 2023) and recent flow-matching based models like SD3-M (Esser et al., 2024).

The core idea of diffusion models is to learn a generative process by simulating and then reversing a gradual noising procedure. Given an image x_0 from the real data distribution p(x), the forward process transforms x_0 into $x_T \sim \mathcal{N}(0, I)$ through a predefined noise schedule:

$$x_t = \alpha(t)x_0 + \sigma(t)z, \ z \sim \mathcal{N}(0, I), \tag{1}$$

where $t \in [0,T]$ indexes the diffusion timestep. A denoising network $\epsilon(\theta)$ is trained to predict the added noise at each step in the forward process. During inference, image generation starts from pure Gaussian noise x_T and denoises it back to x_0 via the reverse process, which is an ordinary differential model (ODE) on time $t \in [T,0]$ guided by the noise prediction network $\epsilon(\theta)$: $x_{t-\Delta t} \leftarrow x_t - \epsilon(\theta)(x_t,t) \Delta t$.

Our method is inspired by the fact that the reverse ODE can be solved from any $t \in (0,T)$ (Meng et al., 2022). Instead of starting from pure Gaussian noise at t=T, we initialize the process with a noisy object prior at an intermediate timestep $t_p < T$, providing a stronger starting point for generation. Specifically, we follow latent diffusion models (Rombach et al., 2022) where the denoising is applied on the latent space. We use the above composite image o_p to generate an initial noise in the latent space. The image o_p is first encoded through a Variational Autoencoder (VAE) to get the prior latent. Then, we apply the forward process from Eq. (1) at a high noise timestep t_p to obtain the latent object prior, $z^{o_p} = \text{VAE}(o_p)$, and its noised version $\hat{z}_{t_p}^{o_p} = \alpha(t_p)z^{o_p} + \sigma(t_p)z$, with

on the uninformative background region of the latent $\hat{z}_{t_p}^{o_p}$. To achieve this, we use the mask m_p to reinitialize the background with pure Gaussian noise: $z_{t_p}^{o_p} = \hat{z}_{t_p}^{o_p} \odot m_p + z_{bg} \odot (1-m_p)$, where $z_{bg} \sim \mathcal{N}(0,I)$ and \odot indicates element multiplication. This ensures that only the object regions are guided by a prior, while the background remains free to be generated based on the caption. The reverse process still starts from t=T, but uses the composite object prior $z_{t_p}^{o_p}$ as initialization.

3.3 PRIOR-GUIDED DIFFUSION

We propose two mechanisms to incorporate the guidance from the composite object prior in the denoising process. Figure 4 illustrates the priorguided diffusion method.

Object prior reinforcement. To prevent excessive corruption of the foreground object prior, we initialized the foreground with noise at time t_p , while the background is still initialized with pure Gaussian noise at T. However, during denoising from t=

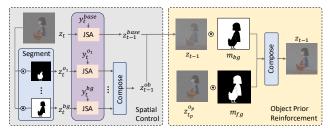


Figure 4: Overview of prior-guided diffusion. Spatial-controlled denoising is applied for each aligned text and region pair to strengthen spatial control. We further re-inject the object prior $z_{t_n}^{o_p}$ into predicted z_{t-1} to reinforce the prior.

T, this mismatch in noise levels leads to inaccurate noise predictions for the foreground region, which potentially distort its semantics and structure. To address this, we propose a novel foreground prior reinforcement algorithm. During the denoising steps from T to t_p , we repeatedly restore the original object prior in the foreground regions to protect them from degradation. Specifically, we overwrite the foreground region in the current latent z_{t-1} with the initial object prior, while retaining the denoised background: $z_{t-1} \leftarrow z_{t_p}^{o_p} \odot m_p + z_{t-1} \odot (1-m_p)$.

 $z \sim \mathcal{N}(0, I)$. Since the background in o_p is empty, we avoid conditioning the generation process

This iterative replacement ensures that the semantic integrity and spatial structure of the object prior are preserved throughout the early diffusion steps. At the same time, the background is progressively refined in the presence of a fixed foreground, allowing for coherent integration between the two.

Once the latent reaches time t_p , both foreground and background are aligned in terms of noise level and the global structure becomes stable. From this point onward, denoising proceeds without any additional intervention, allowing for natural refinement and generative flexibility. Notably, decreasing t_p strengthens the object prior while reducing generative flexibility.

Spatial-controlled denoising. To further enhance object-level spatial control in T2I generation, we propose a spatial-controlled attention mechanism that explicitly strengthens the alignment between between specific image regions and their corresponding region textual descriptions.

Our method builds on Multi-Modal Diffusion Transformers, a dual-stream architecture used in Stable Diffusion 3 (Esser et al., 2024), which processes text and image modalities in parallel. In addition to the base prompt embeddings y^{base} , we introduce a set of K object prompt embeddings $\{y^{o_i}\}_{i=1}^K$ and one background prompt embedding y^{bg} . These are independently processed by the text stream, while the image stream receives only the latent image embeddings.

During the self-attention, the image latent z_t is split into two latents: 1) a base latent z_t^{base} , and 2) an object-background latent z_t^{ob} . Given object masks $\{m_i\}_{i=1}^K$ and background mask m_{bg} , we segment z_t^{ob} into separate objects and background latents:

$$\{z_t^{o_i}\}_{i=1}^K = \operatorname{Segment}(z_t^{ob}, \{m_i\}_{i=1}^K), \quad z_t^{bg} = \operatorname{Segment}(z_t^{ob}, m_{bg}).$$

Each object latent $z_t^{o_i}$ and its corresponding prompt embedding y_{o_i} are concatenated and passed through a Joint Self-Attention (JSA) module:

$$\begin{split} q_t^i &= [(W_{qy} \cdot y_t^{o_i}); (W_{qz} \cdot z_t^{o_i})], \quad k_t^i = [(W_{ky} \cdot y_t^{o_i}); (W_{kz}.z_t^{o_i})], \quad v_t^i = [(W_{vy} \cdot y_t^{o_i}); (W_{vz} \cdot z_t^{o_i})], \\ &[y_t^{o_i}, z_t^{o_i}] \ \leftarrow \ \text{Softmax}(\frac{(q_t^i)(k_t^i)}{\sqrt{d}}) \cdot v_t^i \end{split}$$

where $W_{\cdot y}$ project prompt embeddings and $W_{\cdot z}$ project image latents. For simplicity, we reuse the same notation for the input and output of the transformer layer. This spatial-controlled self-attention is applied at each transformer layer, enabling precise control over object placement and appearance while preserving global visual consistency. The same mechanism is applied to the background: $[y_t^{bg}, z_t^{bg}] \leftarrow \mathrm{JSA}(y_t^{bg}, z_t^{bg})$. The original base attention is applied on the base prompt and the base latent embeddings $[y_t^{base}, z_t^{base}] \leftarrow \mathrm{JSA}(y_t^{base}, z_t^{base})$.

After the last transformer layer, the object and background latents are denoised from $t \to t-1$. The updated object latents $\{z_{t-1}^{o_i}\}_{i=1}^K$ and background latent z_{t-1}^{bg} are then composed back into z_{t-1}^{ob} using the segmentation masks.

Finally, we merge the base latent and object-background latent with a weighted sum: $z_{t-1} = z_{t-1}^{base} * \operatorname{ratio}_{base} + z_{t-1}^{ob} * (1 - \operatorname{ratio}_{base})$. It balances global coherence from the base latent and fine-grained spatial control from the object-background latent. We apply the spatial control for the initial N_{sc} denoising steps.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Evaluation benchmarks. We evaluate our method on T2I-CompBench (Huang et al., 2023) and NSR-1k (Feng et al., 2023b) datasets. They contain prompts rich in spatial, 3D, numeric, generally complex and surreal compositions. We evaluate our method on four categories from T2I-CompBench: 2D Spatial, Numeracy (Count), 3D Spatial, and Complex, each containing 300 prompts. For NSR-1K, we report results on the Spatial (283 prompts) and Count (672 prompts) categories.

Evaluation metrics. For the 2D-spatial and numeracy categories, we follow the standard evaluation protocols from T2I-CompBench and NSR-1k. Object detectors are used to identify, count, and measure spatial relations. For the 3D-spatial category, the original T2I-CompBench metric relies on outdated depth and detection models, resulting in unreliable scores. To address this, we introduce an MLLM-based metric aligned with recent evaluation standards (Zhang et al., 2023b) using GPT-4.1 (OpenAI, 2025). The model is prompted to identify all required objects and assess their 3D spatial relations. The final score is normalized to 0–100 and averaged over all examples. Further details on the limitations of the original metric and our new metric are provided in Appendix F. For the complex category, we adopt the 3-in-1 metric from T2I-CompBench, which averages the CLIP similarity score, spatial accuracy (via object detection), and BLIP-VQA accuracy. This composite score better aligns with human judgment.

Implementation details. We use GPT-4.1 (OpenAI, 2025) for LLM planning and SD3-Medium (SD3-M) (Esser et al., 2024) as the base diffusion model if not otherwise specified. We fix total 28 steps for denoising. The generation process is controlled by two key hyper-parameters: (1) t_p – The time at which noise is sampled and applied to the prior image in the forward diffusion. As t_p goes from (T to 0), prior strength increases, which increases faithfulness while reducing generative flexibility. (2) N_{sc} – The number of steps for spatially controlled denoising. A higher value enforces stronger spatial control. The two hyper-parameters enable highly controllable generation and can be tuned to balance the composition performance and image quality, as demonstrated in Appendix A. For the experiments in this section, we sample t_p corresponding to a high noise of 91.3% from the Flow matching schedule and set $N_{sc}=3$ steps.

4.2 ABLATIONS

Object prior quality. The correctness of object priors is crucial for high quality image generation. We use the same metrics for evaluating the final image to evaluate the generated composite object prior. As shown in Table 1, the performance of the object priors is closely correlated with that of the final generated images. Notably, our prior-guided diffusion is applied only during the initial denoising steps. This design preserves the

Table 1: Performance of Object Priors (OP) and the corresponding Final Image (FI) on T2I-Compbench.

Spatial	Numeracy	3D	Complex
OP 45.79	68.06	86.71	
FI 48.24	68.21	77.16	

structural benefits of the prior while allowing subsequent steps to introduce generative flexibility,

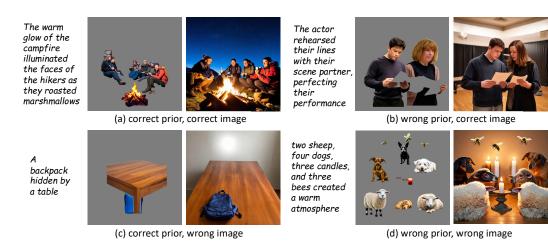


Figure 5: LLM generated object prior and their corresponding final image generation.

which helps correct inaccuracies in the initial composite. As illustrated in Figure 5(b), the final images can resolve issues present in the priors such as missing elements, incorrect orientation, size, and overall incoherence of the composite. Composition correctness and image quality/coherence can be easily balanced by tuning the hyper-parameters as shown in Appendix A. More detailed human evaluations on the quality of prior image and the corresponding generation is presented in Appendix B. Moreover, the correlation between the prior and the generation suggests that manually refining the prior can enhance performance, enabling interpretable generation with a human in the loop. We validate this on a few hard examples in Appendix C which show significant improvement.

Prior-guided diffusion. Table 2 shows the contribution of object prior reinforcement and spatial-controlled denoising in the prior-guided diffusion process. Each component significantly enhances performance over the base SD3-M model (Esser et al., 2024). Specifically, the object prior reinforcement yields absolute gains of over 14 and 6% in spatial and numeric cate-

Table 2: Impact of object prior reinforcement and spatial-controlled denoising on T2I-CompBench.

Prior	Spatial	2D	Numeracy	3D	Complex
Reinforce	Control				
×	×	31.32	60.22	49.43	37.71
\checkmark	×	45.33	66.08	77.38	38.16
×	\checkmark	43.56	64.42	75.48	37.41
\checkmark	\checkmark	48.24	68.21	77.16	38.66

gories, respectively, while spatial-controlled denoising improves performance by over absolute 12 and 4%. When combined, these components further boost results, demonstrating their complementary roles in achieving precise and controlled text-to-image generation.

Improvement over base models. We integrate our method on architecturally diverse models with training paradigms, spanning both diffusion and flow-matching frameworks, including the U-Net-based SDXL (Podell et al., 2023), the Transformer-based SD3-M (Esser et al., 2024) and FLUX (Black Forest Labs, 2024). All methods are evaluated under the same object prior and layout to ensure comparability. As shown in Table 3, our approach yields significant improvements over all base models, un-

Table 3: Performance of different base models, with ComposeAnything consistently improving results.

Method	2D-Spatial		ompBench 3D-Spatial	Complex
SDXL	21.33	49.88	47.12	32.37
+ ComposeAnything	44.64	57.22	71.03	36.20
SD3	31.32	60.22	49.43	37.71
+ ComposeAnything	48.24	68.21	77.16	38.66
FLUX	26.13	60.58	59.51	37.03
+ ComposeAnything	44.21	67.83	76.14	37.36

derscoring its ability to generalize across fundamentally different architectures.

4.3 Comparison to state of the art

Inference-based methods. We compare our method against state of the art inference-based approaches, including general pretrained T2I models (SDv1 (Rombach et al., 2022), SDXL (Podell et al., 2023), SD3-M (Esser et al., 2024), and FLUX (Black Forest Labs, 2024)), layout-guided

Table 4: Comparison for inference-based methods on the T2I-CompBench and NSR-1k benchmarks.

Method	T2I-CompBench				NSR-1K	
Method	2D-Spatial	Count	3D-Spatial	Complex	Spatial	Count
SD-v1 (Rombach et al., 2022)	12.46	44.61	_	30.80	16.89	31.45
Attend-Excite v2 (Chefer et al., 2023)	14.55	47.67	-	34.01	26.86	39.41
SDXL (Podell et al., 2023)	21.33	49.88	47.12	32.37	31.57	30.62
RealCompo (Zhang et al., 2024b)	31.73	65.92	-	_	-	-
SD3-M (Esser et al., 2024)	31.32	60.22	49.43	37.71	44.43	44.61
FLUX (Black Forest Labs, 2024)	26.13	60.58	59.51	37.03	39.29	55.97
RPG (Yang et al., 2024)	40.26	56.39	50.93	36.53	52.24	39.81
Inference-scale (Ma et al., 2025)	31.51	67.89	_	38.10	-	-
ComposeAnything (Ours)	48.24	68.21	77.16	38.66	63.80	59.36

training-free approaches (RPG (Yang et al., 2024) and RealCompo (Zhang et al., 2024b)), and a noise search method (inference time scaling (Ma et al., 2025)). As shown in Table 4, our method achieves the best performance on all the metrics, consistently adhering to the input prompt.

To further assess image coherence and perceptual quality, we conduct human evaluations. The rater annotation guidelines are detailed in Appendix D. We compare with the state-of-the-art method RPG (Yang et al., 2024). As shown in Figure 6, human raters consistently prefer our method over RPG across all metrics. Qualitative comparisons in Figure 7 further highlight that baselines such as SD3-M (Esser et al., 2024) and RPG (Yang et al., 2024) often fail to follow the input prompt. In particular, they struggle with challenging spatial relations (e.g., a chicken behind the clock) and maintaining the correct object counts (e.g., number of giraffes, microwaves).

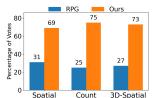


Figure 6: Human evaluations against inference-based method RPG.

Figure 7: State-of-the-art comparison against SD3-M (Esser et al., 2024), RPG (Yang et al., 2024), Creatilayout (Zhang et al., 2024a), and Flow-GRPO (Liu et al., 2025) on complex surreal prompts.

Table 5: Comparison against training methods on the T2I-CompBench and NSR-1k

Method	T2I-CompBench				NSR-1K	
Method	2D-Spatial	Count	3D-Spatial	Complex	Spatial	Count
LayoutGPT (Feng et al., 2023b)	45.81	60.27	_	_	60.6	55.6
CreatiLayout (Zhang et al., 2024a)	47.36	62.15	68.85	34.6	59.8	63.4
Flow-GRPO (Liu et al., 2025)	54.47	67.52	48.49	38.42	74.09	65.27
Training-free						
ComposeAnything (Ours)	48.24	68.21	77.16	38.66	63.80	59.36

Training-based methods. The compared training-based methods include layout-to-image models with box conditioning such as Gligen (Li et al., 2023a), CreatiLayout (Zhang et al., 2024a), and Reinforcement learning method like Flow-GRPO (Liu et al., 2025).

Quantitative comparisons with automatic metrics are presented in Table 5. Although training-based methods outperform our training-free method in some categories where they were optimized for these metrics, they tend to change the real image distribution to fit the surreal image prompts, which significantly compromise the image quality, resulting in floating objects,

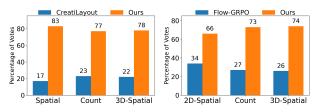


Figure 8: Human evaluations against training-based methods CreatiLayout and Flow-GRPO.

faded background and broken physics, as shown in Figure 7. Therefore, we further conduct human evaluations (Figure 8), where our method is consistently preferred over both Flow-GRPO and CreatiLayout. By leveraging object priors and integrating them into the denoising process, our method achieves a better balance between compositional fidelity and visual quality.

Efficiency. We provide computation time comparisons in Table 6. We compute the time over prompts with 3, 5, 7, 10 objects and average over all. For fair comparison, we use the same LLM planning for CreatiLayout and our method. As RPG uses region crops instead of object layout, we use their original LLM planning module, which is less efficient than ours. For prior generation, we generate and segment all

Method	LLM planning	Prior generation	Image generation	
CreatiLayout	4.98	_	4.92	9.90

Table 6: Runtime breakdown (seconds).

(SD3-M) 4.98 4.50 5.62 Ours (SD3-M) 15.1 RPG (SDXL) 9.14 12.98 22.11 Ours (SDXL) 4.98 4.50 4.97 14.45

objects in parallel using multiple GPUs to reduce the computation time, allowing scalability. For image generation, our method applies prior reinforcement and SCD only for the first few steps (6 and 3 respectively out of 28 steps). This leads to faster overall generation compared to RPG, which applies regional diffusion throughout all steps.

5 CONCLUSION

In this work, we introduce *ComposeAnything*, a novel inference-time framework for compositional text-to-image generation that leverages object-level guidance derived from LLM-generated 2.5D semantic layouts. By introducing a composite object prior for structured initialization and prior-guided diffusion, our approach enables precise object placement and robust semantic grounding without any additional training. *ComposeAnything* achieves state-of-the-art performance on T2I-CompBench and NSR-1K, effectively balancing image quality and prompt fidelity even under complex or surreal scenarios. Our results highlight the potential of LLM-driven reasoning and composite prior guidance in advancing compositional T2I generation.

REFERENCES

- Aishwarya Agarwal, Srikrishna Karanam, K J Joseph, Apoorv Saxena, Koustava Goswami, and Balaji Vasan Srinivasan. A-star: Test-time attention segregation and retention for text-to-image synthesis. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 2283–2293, October 2023.
- Omri Avrahami, Dani Lischinski, and Ohad Fried. Blended diffusion for text-driven editing of natural images. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2022.
- Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion models with reinforcement learning. In *The Twelfth International Conference on Learning Representations*, 2024.
- Black Forest Labs. FLUX. https://blackforestlabs.ai, 2024.
- Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, and Daniel Cohen-Or. Attend-and-excite: Attention-based semantic guidance for text-to-image diffusion models. *ACM Trans. Graph.*, 2023.
- Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James Kwok, Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-α: Fast training of diffusion transformer for photorealistic text-to-image synthesis, 2023. URL https://arxiv.org/abs/2310.00426.
- Junsong Chen, Yue Wu, Simian Luo, Enze Xie, Sayak Paul, Ping Luo, Hang Zhao, and Zhenguo Li. Pixart-δ: Fast and controllable image generation with latent consistency models, 2024a. URL https://arxiv.org/abs/2401.05252.
- Minghao Chen, Iro Laina, and Andrea Vedaldi. Training-free layout control with cross-attention guidance. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*, 2024b.
- Guillaume Couairon, Marlène Careil, Matthieu Cord, Stéphane Lathuilière, and Jakob Verbeek. Zero-shot spatial layout conditioning for text-to-image diffusion models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, 2023.
- Omer Dahary, Or Patashnik, Kfir Aberman, and Daniel Cohen-Or. Be yourself: Bounded attention for multi-subject text-to-image generation. In *European Conference on Computer Vision (ECCV)*, 2024.
- Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English, and Robin Rombach. Scaling rectified flow transformers for high-resolution image synthesis. In *International Conference on Machine Learning (ICML)*, 2024.
- Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel, Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Reinforcement learning for fine-tuning text-to-image diffusion models. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
- Weixi Feng, Xuehai He, Tsu-Jui Fu, Varun Jampani, Arjun Reddy Akula, Pradyumna Narayana, Sugato Basu, Xin Eric Wang, and William Yang Wang. Training-free structured diffusion guidance for compositional text-to-image synthesis. In *The Eleventh International Conference on Learning Representations*, 2023a.
- Weixi Feng, Wanrong Zhu, Tsu-Jui Fu, Varun Jampani, Arjun Reddy Akula, Xuehai He, S Basu, Xin Eric Wang, and William Yang Wang. LayoutGPT: Compositional visual planning and generation with large language models. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023b.

- Yutong Feng, Biao Gong, Di Chen, Yujun Shen, Yu Liu, and Jingren Zhou. Ranni: Taming text-to-image diffusion for accurate instruction following. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2024.
 - Hanan Gani, Shariq Farooq Bhat, Muzammal Naseer, Salman Khan, and Peter Wonka. LLM blueprint: Enabling text-to-image generation with complex and detailed prompts. In *The Twelfth International Conference on Learning Representations*, 2024.
 - Biao Gong, Siteng Huang, Yutong Feng, Shiwei Zhang, Yuyuan Li, and Yu Liu. Check locate rectify: A training-free layout calibration system for text-to-image generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 6624–6634, June 2024.
 - Xiefan Guo, Jinlin Liu, Miaomiao Cui, Jiankai Li, Hongyu Yang, and Di Huang. Initno: Boosting text-to-image diffusion models via initial noise optimization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2024.
 - Xiwei Hu, Rui Wang, Yixiao Fang, Bin Fu, Pei Cheng, and Gang Yu. Ella: Equip diffusion models with llm for enhanced semantic alignment. *CoRR*, 2024a.
 - Ziniu Hu, Ahmet Iscen, Aashi Jain, Thomas Kipf, Yisong Yue, David A Ross, Cordelia Schmid, and Alireza Fathi. Scenecraft: An LLM agent for synthesizing 3D scenes as blender code. In *Forty-first International Conference on Machine Learning*, 2024b.
 - Kaiyi Huang, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2I-compBench: A comprehensive benchmark for open-world compositional text-to-image generation. *Advances in Neural Information Processing Systems*, 36:78723–78747, 2023.
 - Vikram Jamwal and Ramaneswaran S. Composite diffusion: whole >= sparts. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*, 2024.
 - Dongzhi Jiang, Guanglu Song, Xiaoshi Wu, Renrui Zhang, Dazhong Shen, Zhuofan Zong, Yu Liu, and Hongsheng Li. Comat: Aligning text-to-image diffusion model with image-to-text concept matching. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.
 - Yunji Kim, Jiyoung Lee, Jin-Hwa Kim, Jung-Woo Ha, and Jun-Yan Zhu. Dense text-to-image generation with attention modulation. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, 2023.
 - Baiqi Li, Zhiqiu Lin, Deepak Pathak, Jiayao Li, Yixin Fei, Kewen Wu, Xide Xia, Pengchuan Zhang, Graham Neubig, and Deva Ramanan. Evaluating and improving compositional text-to-visual generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops*, 2024a.
 - Ming Li, Taojiannan Yang, Huafeng Kuang, Jie Wu, Zhaoning Wang, Xuefeng Xiao, and Chen Chen. Controlnet ++: Improving conditional controls with efficient consistency feedback. In *European Conference on Computer Vision (ECCV)*, 2024b.
 - Sen Li, Ruochen Wang, Cho-Jui Hsieh, Minhao Cheng, and Tianyi Zhou. Mulan: Multimodal-llm agent for progressive multi-object diffusion. *arXiv* preprint arXiv:2402.12741, 2024c.
 - Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan Li, and Yong Jae Lee. Gligen: Open-set grounded text-to-image generation. In *Conference on Computer Vision and Pattern Recognition (CVPR)*, 2023a.
 - Yumeng Li, Margret Keuper, Dan Zhang, and Anna Khoreva. Divide bind your attention for improved generative semantic nursing. In *BMVC*, 2023b.
 - Long Lian, Boyi Li, Adam Yala, and Trevor Darrell. LLM-grounded diffusion: Enhancing prompt understanding of text-to-image diffusion models with large language models. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856.

- Han Lin, Jaemin Cho, Abhay Zala, and Mohit Bansal. Ctrl-adapter: An efficient and versatile framework for adapting diverse controls to any diffusion model. In *The Thirteenth International Conference on Learning Representations*, 2025.
 - Jie Liu, Gongye Liu, Jiajun Liang, Yangguang Li, Jiaheng Liu, Xintao Wang, Pengfei Wan, Di Zhang, and Wanli Ouyang. Flow-grpo: Training flow matching models via online rl. *arXiv preprint arXiv:2505.05470*, 2025.
 - Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B. Tenenbaum. Compositional visual generation with composable diffusion models. In *European Conference on Computer Vision (ECCV)*, 2022.
 - Nanye Ma, Shangyuan Tong, Haolin Jia, Hexiang Hu, Yu-Chuan Su, Mingda Zhang, Xuan Yang, Yandong Li, Tommi Jaakkola, Xuhui Jia, and Saining Xie. Inference-time scaling for diffusion models beyond scaling denoising steps. *arXiv preprint arXiv:2501.09732*, 2025.
 - Wan-Duo Kurt Ma, Avisek Lahiri, J.P. Lewis, Thomas Leung, and W. Bastiaan Kleijn. Directed diffusion: direct control of object placement through attention guidance. In *Association for the Advancement of Artificial Intelligence (AAAI)*, 2024.
 - Jiafeng Mao, Xueting Wang, and Kiyoharu Aizawa. Guided image synthesis via initial image editing in diffusion model. In *Proceedings of the 31st ACM International Conference on Multimedia*, 2023.
 - Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon. SDEdit: Guided image synthesis and editing with stochastic differential equations. In *International Conference on Learning Representations (ICLR)*, 2022.
 - Tuna Han Salih Meral, Enis Simsar, Federico Tombari, and Pinar Yanardag. Conform: Contrast is all you need for high-fidelity text-to-image diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2024.
 - Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, and Ying Shan. T2i-adapter: learning adapters to dig out more controllable ability for text-to-image diffusion models. In *Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence*, 2024.
 - Weili Nie, Sifei Liu, Morteza Mardani, Chao Liu, Benjamin Eckart, and Arash Vahdat. Compositional text-to-image generation with dense blob representations. In *Forty-first International Conference on Machine Learning*, 2024.
 - OpenAI. GPT-4.1. https://openai.com/index/gpt-4-1/, 2025.
 - Pablo Pernias, Dominic Rampas, Mats L. Richter, Christopher J. Pal, and Marc Aubreville. Wuerstchen: An efficient architecture for large-scale text-to-image diffusion models, 2023. URL https://arxiv.org/abs/2306.00637.
 - Quynh Phung, Songwei Ge, and Jia-Bin Huang. Grounded text-to-image synthesis with attention refocusing. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2024.
 - Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image synthesis, 2023. URL https://arxiv.org/abs/2307.01952.
 - Royi Rassin, Eran Hirsch, Daniel Glickman, Shauli Ravfogel, Yoav Goldberg, and Gal Chechik. Linguistic binding in diffusion models: Enhancing attribute correspondence through attention map alignment. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
 - Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Conference on Computer Vision and Pattern Recognition (CVPR)*, 2022.

- Maria Mihaela Trusca, Wolf Nuyts, Jonathan Thomm, Robert Honig, Thomas Hofmann, Tinne Tuytelaars, and Marie-Francine Moens. Object-attribute binding in text-to-image generation: Evaluation and control. *arXiv preprint arXiv:2404.13766*, 2024.
 - Xudong Wang, Trevor Darrell, Sai Saketh Rambhatla, Rohit Girdhar, and Ishan Misra. Instancediffusion: Instance-level control for image generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2024a.
 - Zirui Wang, Zhizhou Sha, Zheng Ding, Yilin Wang, and Zhuowen Tu. Tokencompose: Text-to-image diffusion with token-level supervision. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2024b.
 - Cong Wei, Yujie Zhong, Haoxian Tan, Yong Liu, Zheng Zhao, Jie Hu, and Yujiu Yang. Hyperseg: Towards universal visual segmentation with large language model, 2024. URL https://arxiv.org/abs/2411.17606.
 - Jinheng Xie, Yuexiang Li, Yawen Huang, Haozhe Liu, Wentian Zhang, Yefeng Zheng, and Mike Zheng Shou. Boxdiff: Text-to-image synthesis with training-free box-constrained diffusion. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, 2023.
 - Ling Yang, Zhaochen Yu, Chenlin Meng, Minkai Xu, Stefano Ermon, and Bin CUI. Mastering text-to-image diffusion: Recaptioning, planning, and generating with multimodal LLMs. In *International Conference on Machine Learning (ICML)*, 2024.
 - Zhengyuan Yang, Jianfeng Wang, Zhe Gan, Linjie Li, Kevin Lin, Chenfei Wu, Nan Duan, Zicheng Liu, Ce Liu, Michael Zeng, and Lijuan Wang. Reco: Region-controlled text-to-image generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2023.
 - Hui Zhang, Dexiang Hong, Tingwei Gao, Yitong Wang, Jie Shao, Xinglong Wu, Zuxuan Wu, and Yu-Gang Jiang. Creatilayout: Siamese multimodal diffusion transformer for creative layout-to-image generation. *arXiv preprint arXiv:2412.03859*, 2024a.
 - Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models. In *International Conference on Computer Vision (ICCV)*, 2023a.
 - Xinchen Zhang, Ling Yang, YaQi Cai, Zhaochen Yu, Kai-Ni Wang, xie jiake, Ye Tian, Minkai Xu, Yong Tang, Yujiu Yang, and Bin CUI. Realcompo: Balancing realism and compositionality improves text-to-image diffusion models. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024b.
 - Xinlu Zhang, Yujie Lu, Weizhi Wang, An Yan, Jun Yan, Lianke Qin, Heng Wang, Xifeng Yan, William Yang Wang, and Linda Ruth Petzold. Gpt-4v (ision) as a generalist evaluator for vision-language tasks. *arXiv preprint arXiv*:2311.01361, 2023b.
 - Yibo Zhao, Liang Peng, Yang Yang, Zekai Luo, Hengjia Li, Yao Chen, Wei Zhao, Qinglin Lu, Wei Liu, and Boxi Wu. Local conditional controlling for text-to-image diffusion models. *CoRR*, abs/2312.08768, 2023.
 - Guangcong Zheng, Xianpan Zhou, Xuewei Li, Zhongang Qi, Ying Shan, and Xi Li. Layoutdiffusion: Controllable diffusion model for layout-to-image generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2023.

APPENDIX

We start with the analysis of the impact of two key hyper-parameters in our framework in Section A. Section B provides more detailed results of the correctness of object prior and final images, including human evaluation and qualitative examples. Section C demonstrates potential for human-in-the-loop manual prior correction for better generation. Section D introduces the human evaluation details for state-of-the-art comparison. Section E presents the LLM prompt for 2.5D semantic layout generation and illustrates an output example. Section F details the LLM prompt for evaluating the 3D-Spatial category. Finally, Section G describes the use of LLMs in our work.

A IMPACT OF KEY HYPER-PARAMETERS

We analyze the effect of two key hyper-parameters t_p and N_{sc} , as discussed in Section 4.1 of the main paper. t_p is the time at which noise is sampled and applied to the prior image in the forward diffusion. It controls the object prior reinforcement strength (OPR). Lower values denote stronger priors. N_{sc} is the number of steps for spatially controlled denoising. It controls the spatial-controlled denoising strength (SCD). Larger values result in stronger control.

Figure 9 presents object priors and corresponding generated images for two text prompts, under varying t_p and N_{sc} values. In the first row of each example, N_{sc} is fixed at 3 to isolate the impact of OPR with different t_p . At low OPR strength, the final image fails to preserve the *appearance and semantics* of the prior, for example, the butterfly appears in front of the cup not on top of it, and the number of clocks and microwaves is incorrect. As the strength of OPR increases, objects' semantics and appearance such as color, shape and number are more strongly retained. However, excessive reinforcement reduces generative flexibility, leading to over-constrained and less natural outputs.

In the second row of each example, t_p is fixed at 0.91 to examine the effect of N_{sc} . Low SCD strength leads to limited spatial control, with objects leaking in background (extra cup), objects getting merged (both dogs merged), and incorrect object counts. As we increase the SCD strength, object positions and sizes from the prior are more faithfully preserved in the final image. However, too strong spatial control results in low-quality compositions such as rigid placements, incoherent scene, floating objects similar to training-based box-conditioned methods (Zhang et al., 2024a).

Therefore, in our experiments, we set $t_p=0.91$ and $N_{sc}=3$ to strike a balance between faithful prompt adherence, generative flexibility, and overall scene coherence. Both hyper-parameters are beneficial and complementary to reliably produce correct spatial relations, accurate object counts and high-quality images.

B DETAILED EVALUATION OF OBJECT PRIORS AND FINAL IMAGES

To better assess the quality of object priors and their influence on final image generation, we categorize results into four combinations: i) correct prior – correct image, ii) correct prior – incorrect image, iii) incorrect prior – correct image, iv) incorrect prior – incorrect image.

We conduct a human evaluation using 30 samples per category, i.e., pairs of the prior and final image, across the 2D-Spatial, 3D-Spatial, and Numeracy categories in T2I-Compbench. For each sample, annotators perform a 4-way classification task, judging the correctness of both the prior and the resulting image. The annotation interface is illustrated in Figure 11.

Figure 10 presents the results of the human evaluation. As seen in the bar plots for the 2D and 3D-Spatial categories, the majority of samples fall into the correct-prior and correct-image category. In contrast, the Numeracy category shows a higher occurrence of correct-prior but incorrect-image cases. This is primarily due to the increasing number of objects, where relative object sizes in the prior affect its realism and quality. While our model's generative flexibility helps correct such visual artifacts during image synthesis, it often does so at the expense of count accuracy, leading to mismatches in object quantities, as illustrated in Figure 11 (bottom). Moreover, as the number of objects increases, the priors tend to become less coherent overall, resulting in a greater frequency of incorrect-prior and incorrect-image cases.



Figure 9: Effect of Object Prior Reinforcement and Spatial-Controlled Denoising. Increasing either strength enhances appearance fidelity and spatial precision, but reduces generative flexibility.

Figure 12 - 15 provide more examples of the object priors and corresponding final images on T2I-Compbench dataset, including 2D-spatial, 3D-spatial, non-spatial, numeracy and complex prompt categories.

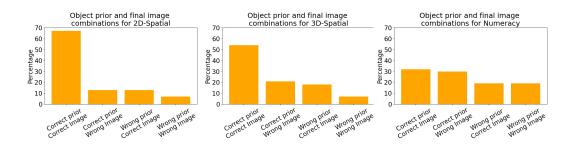


Figure 10: Human evaluation results on the correctness of prior and final image pairs on the three categories of T2I-Compbench dataset.

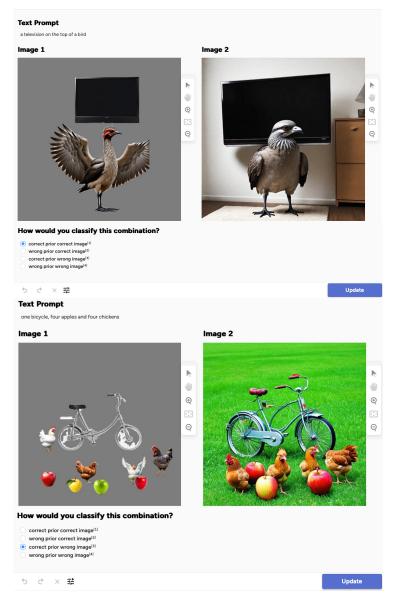


Figure 11: Labeling interface for evaluating object prior and the final image.

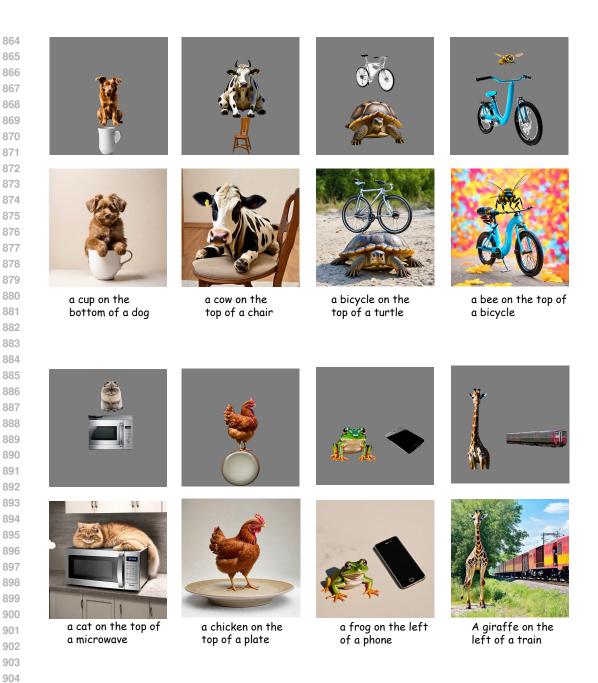


Figure 12: Object prior and the corresponding generation for 2D-Spatial compositions from T2I-compbench.

The soft, furry kittens played together in a pile on the warm, cozy blanket, their tiny paws batting at colorful balls of yarn

The vibrant, glittering lights Two hot dogs sit on a green of the carnival rides spun and twirled in dizzying circles, thrilling and delighting the adventurous

paper plate near a soda cup which are sitting on a white picnic table while a bike and a silver car are parked nearby.

The brown dog was lying on the green mat

The long red scarf draped over the short black jacket.

The bumpy sphere was suspended in mid-air next to the spiky star and the fuzzy heart.

two men and one pig played in the yard

The woodcarver is creating a sculpture of a bird from a block of wood

Figure 13: Object prior and the corresponding generation for Complex compositions from T2I-Compbench.

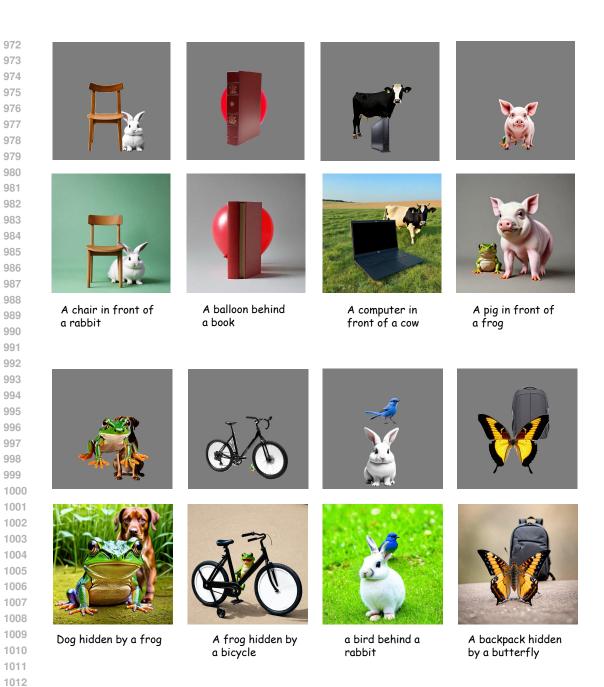


Figure 14: Object prior and the corresponding generation for 3D-Spatial compositions from T2I-compbench.

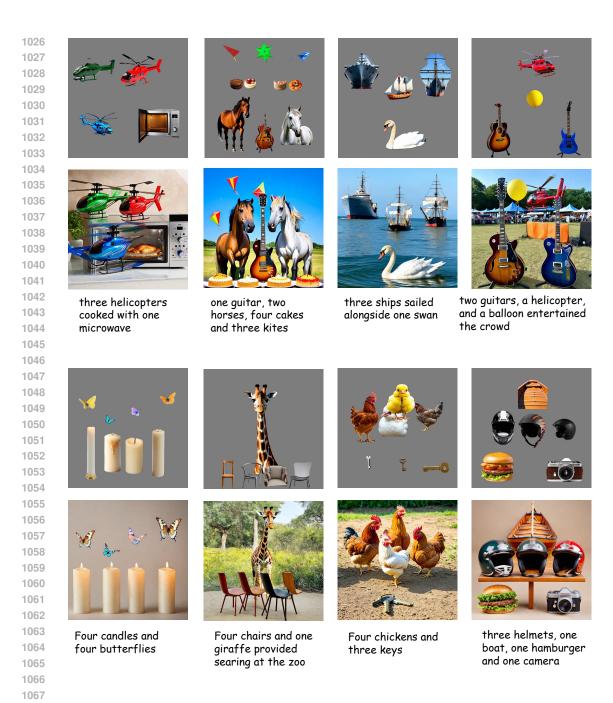


Figure 15: Object prior and the corresponding generation for Numeracy compositions from T2I-compbench.

C MANUAL PRIOR ADJUSTMENT

Our framework enables interpretable generation with multiple options for human in the loop to improve object priors, such as editing intermediate-generated LLM layouts, modifying object and background captions, and selecting the most suitable objects for the composed prior image. Better prior images significantly enhance the quality of final images, making human guidance a powerful tool for improving overall results. Figure 16 shows by simply changing the positions and resizing the objects in the prior image, our method can correct generated image.

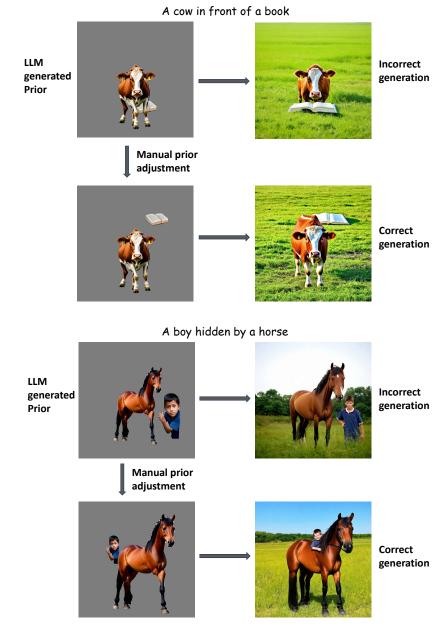


Figure 16: Manual prior adjustment

D LABELING INTERFACE FOR HUMAN EVALUATIONS

We conduct human evaluations against the SOTA methods on three categories in T2I-CompBench: 2D-Spatial, 3D-Spatial and Count. For each category, we randomly sample 30 prompts and perform pairwise comparisons. Five raters participated in the evaluation, with 30% of images overlapping across raters to measure inter-annotator agreement. The average agreement scores were around 80% for all categories.

Figure 17 shows the human evaluation instructions and interface. The instructions focuses on prioritizing both correctness to prompt focusing on 2D-3D spatial relations and object count. Also to select images with higher quality. As can be seen in the "six horses" image, both images have 6 horses, but the first image has better quality.

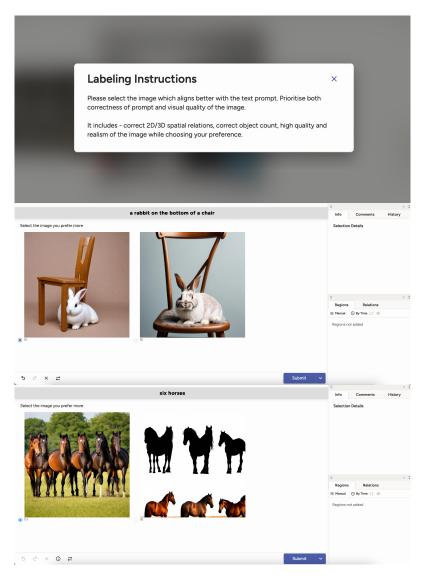


Figure 17: Labeling interface for human evaluations.

1188 LLM PLANNING INSTRUCTIONS 1189 1190 1191 Figures 18 - 22 show the detailed instructions for LLM planning. 1192 Figure 23 shows the output from the LLM for an example alongside the prior and final image. 1193 1194 You are a master of composition who excels at extracting key objects, their counts, attributes, and 2D 1195 and 3D spatial relationships from input text. You supplement the original text with imaginative details to 1196 create visually compelling layouts that adhere to beautiful aesthetics. 1197 Objective: 1198 Given a concise image prompt, plan the layout, extract all key objects, their positions, relative depth and 1199 generate captions to guide compositional image generation. The task involves 8 steps: 1. Plan the layout focusing on foreground object selection, plausibility to put the objects in a layout for a 1201 coherent image generation, location, orientation, size, depth, background etc. 1202 2. Correct the language of the input prompt and rewrite it in simple and easy words. 1203 3. Extract only foreground solid objects as planned and list down each object one by one 4. Create individual object caption that provide isolated visual details with no information leak from 1205 other objects. Strictly no mention of other objects in any way. 5. Produce relative depth for each object. 1207 Produce bounding boxes for each object. 1208 7. Generate a compositional image caption that describes the entire scene and respects the spatialrelation, count and, attributes, of the objects. 1209 Generate an isolated one word/phrase background prompt. 1210 1211 Rules and Guidelines: 1212 1. Plan the layout: 1213 a. Identify foreground objects that can be easily placed within a 2D box layout without severe 1214 entanglements. 1215 - Examples: "3 rabbits and 4 deers near a car" → all the 3 rabbits, 4 deers and, the car can be 1216 separately placed at 8 distinct locations in the layout. "A pig on top of a man" ightarrow A pig can be easily 1217 placed on top of a man as two individual boxes in a 2D layout. "A table placed on a rug" \rightarrow The two 1218 objects overlap, but can be easily placed in a 2D layout, as there are no severe 3D entanglements. b. Entangled Object Interactions: When objects are part of each other, or are too entangled they 1219 should be treated as a single object. 1220 - Examples: A woman wearing a ring → Extract only woman, instead of separate woman and ring objects. A man throwing a basketball ightarrow Extract only man, because it is hard to accurately place the ball 1222 in the hands on the players in simple 2D layouts, so consider the two objects as a single entity. "A 1223 woman in white shirt and black jeans" ightarrow Extract only Woman as it is hard to disentangle clothes from 1224 1225 c. Keep the original counts, spatial positions, attributes intact. 1226 d. If exact spatial relations, count, color etc are not provided deduce from it. For example: "four bears 1227 and four sofas and less number of cats". Deduce the number of cats, in this case it could be one or two. 1228 And the cats could be in foreground near to the viewer, lying down together. Bears in the midground sitting or playing, and sofas arranged neatly in the back. 1229 e. Do not extract elements that describe the environment, background, or intangible phenomena that 1230 can't be put in box layout. Example exclude background features like 'wall', 'floor', 'ceiling', 'bathroom', 1231 tiles', 'kitchen', 'room', 'field', 'grass', 'sky', 'river', 'forest', 'rain', 'sunset', 'snow', 'fog', 'wind', 'city', 1232 'scent', 'fragrance', 'heat', 'fire', 'waterdrops', 'water', etc'' 1233 f. Consider the 3D positioning, objects closer to viewer should appear a little bigger and the object far in the back should appear a little smaller.

Figure 18: Instructions for LLM planning (to be continued).

1236

1237

1239 1240 1241 2. Rewrite the caption:

a. Correct the language if there are any mistakes.b. Do not reinterpret, reverse, or replace any meaning

c. rewrite it based on the planning

<u> </u>	Internet and a
_	d object Extraction:
	nly foreground objects without severe entanglements as planned.
	eep the original counts, and enumerate every object one at a time.
c. Make sur	re to extract the accurate counts and enumerate every object one at a time.
4. Object Des	criptions (isolated objects):
a. Describe	each object individually with strictly no information leak from other objects. Only
focus on obje	ct's own attributes, and the way it interacts with the scene, but not other objects.
b. Strictly D	on't mention any detail of other objects or background, while describing the current
object.	
c. Strictly n	o mention of other objects count, positions, attributes etc. in any way.
	on should be very consise in one line.
5. Relative De	anth.
	y extracted object predict the relative depth of the object based on the given prompt
	n. If there are a total of 3 objects, 2 in the foregroud and 1 behind them depth
siloula be: 0b	ject1: 1, object2: 1, object3: 2.
6. Bounding F	Box Layout (Relative Sizes):
	unding boxes to reflect any surreal or exaggerated proportions.
	g boxes should be generally big, covering major parts of the image.
	g boxes must be placed such that every object remains visibly distinct on a 2D canvas.
	pjects differ in depth, they must not fully occlude or obscure one another.
	cts close to the viewer in the foreground size should be bigger than the objects in far
-	hasize depth). Also consider the original size of the objects.
back (to cirip	table depth// 1850 consider the original size of the objects.
7. Compositio	on Caption (Scene-Level):
a. Craft a ui	nified caption that highlights how all extracted objects interact within the scene.
Objects shoul	d cover most of the part of the image. Mention a one phrase background.
b. If the inp	out caption is a surreal composition, then imagine the object interactions accordingly
	a coherent scene.
c. Emphasiz	ze object attributes, spatial relationships, and background.
O Doekaroun	d (isolated background):
_	
	nention a one phrase background, with no object information.
	ed, extract the background information from the input caption. Example: A white
aoor in a pink	s bathroom. Here pink bathroom should be the backround.
9. Output For	mat rules:
-	ving format strictly:
	leading: "Objects:"
•	ect name]
	ect_name]
-	escriptions heading: "Object_Descriptions"
-	
	ch object, use the following structure:
	n Heading: "Caption_object_n(isolated):"
	Heading: "Relative_depth_n:"
	x Heading: "Box_object_n:"
•	tional caption heading: "Compositional_caption:"
Rackgrou	ind caption heading: "Background_caption:"
c. Bounding	g boxes should include absolute positions in the format [x_top, y_top, x_bottom,
c. Bounding	g boxes should include absolute positions in the format [x_top, y_top, x_bottom, r a 1024x1024 resolution canvas.

Figure 19: Instructions for LLM planning (to be continued).

d. Strictly both compositional caption and object captions should not be more than 70 words.

Exa	amples:
Ev	amula 1.
	ample 1: green balloon on the bottom of a cat
ا ا	reen balloon on the bottom of a cat
Pla	anning: "a green balloon on the bottom of a cat" could mean that the cat is sitting on a balloon
	a surreal or a playful scene. Both the objects can be easily put in a 2D layout as they are not
	avily entangled. Cat is sitting on a ballon so both have the same depth.
Re	written caption:
a v	vhite cat is sitting on top of a green balloon
	jects:
	green balloon
2.	cat
ļ	
	ject_Descriptions:
	ption_object_1(isolated): A green balloon is lying on the floor.
	lative_depth_1: 1
	x_object_1: [300, 700, 724, 1024] ption object 2(isolated): A white cat, sits calmly with its legs and tail folded.
	lative_depth_2: 1
	x_object_2: [200, 300, 824, 750]
ьо	x_object_z. [200, 300, 824, 730]
Co	mpositional_caption: A fluffy white cat, full of vibrant energy is sitting playfully on top of a blue
	Iloon in a cosy room.
	ckground_caption: A cosy room
Exa	ample 2:
Th	e soft, fluffy texture of the cotton candy melted in the mouth, a sugary treat of childhood
no	stalgia.
	anning: Since both the objects "boy" and "cotton candy" are interacting closely in an intrecate
	ly "melted in the mouth", it is hard to put the two objects in a 2D layout as the object is in the
	outh of the boy, there are occlusions and orientation complexities, qualifying for severe
	tanglement. So considering both the objects as one. The boy could be holding a cotton candy
on	his left and eating it.
n -	
	written caption:
	poy is eating a soft fluffy cotton candy.
	ojects: boy
1.	ьоу
Oh	ject_Descriptions:
	ption_object_1(isolated): A little boy facing left is eating a pink cotton candy.
	lative_depth_1: 1
	x_object_1: [300, 150, 700, 874]
	Z-3Z-1
Co	mpositional_caption: A little boy facing left eagerly enjoys a fluffy pink cotton candy in a lively
	rk, his eyes sparkle with excitement.
[
Ba	ckground_caption: a lively park

Figure 20: Instructions for LLM planning (to be continued).

```
1350
          Example 3:
1351
          two helmets and three ships
1352
1353
          Planning: There are three ships and two helmets, each treated as individual, rigid objects to be
1354
          placed independently in the scene. Given their differing scales, the ships (being much larger)
1355
          should be positioned in the background, while the smaller helmets should be placed in the
1356
          foreground.
1357
          Depth Assignment: Helmets: depth = 1 (foreground). Ships: depth = 2 (background)
1358
          Size Ratio: To reflect realistic scale in a 2D layout, the bounding boxes for helmets and ships should
1359
          follow an approximate size ratio of 1:2, with ships appearing larger.
1360
          Placement Details: The helmets should be located near the bottom of the scene, close to the
1361
          shore in the foreground. The ships should appear near the horizon, conveying depth and distance.
1362
          Among the three ships: two can be large and face forward (toward the viewer), while the third, a
1363
          smaller wooden ship, can be placed in the center, angled left to reveal more of its body and shape.
1364
          Rewritten caption: Three ships are sailing in the sea near the horizon, while two helmets are
1365
          placed on the shore in the foreground
1367
          Objects:
1368
          1. ship
1369
          2. ship
1370
          3. ship
1371
          4. helmet
1372
          5. helmet
1373
1374
          Object_Descriptions:
1375
          Caption_object_1(isolated): A metalic ship facing front.
1376
          Relative_depth_1: 2
1377
          Box_object_1: [50, 0, 350, 510]
1378
          Caption_object_2(isolated): A metalic ship facing front.
1379
          Relative depth 2:2
1380
          Box object 2: [650, 90, 1000, 520]
1381
          Caption object 3(isolated): A small wooden ship facing left.
1382
          Relative depth 3:2
          Box object 3: [234, 550, 824, 750]
1384
          Caption object 4(isolated): A black helmet.
1385
          Relative_depth_4: 1
1386
          Box object 4: [100, 790, 400, 1020]
1387
          Caption_object_5(isolated): A red helmet.
1388
          Relative_depth_5: 1
1389
          Box object 5: [600, 780, 900, 1020]
1390
          Compositional_caption: Two majestic ships sail across the horizon with towering masts and
1391
          curved hulls in the sea. One small wooden ship is in the middle. In the foreground, two helmets,
1392
          one sleek black and the other bold red rest side by side on the shore.
1393
1394
          Background_caption: a sea shore
1395
```

Figure 21: Instructions for LLM planning (to be continued).

Example 4: A plane is hidden by a blue frog Planning: The frog and the plane are separate, non-entangled objects and can be laid out independently in a 2D composition. Since the frog hides the plane, the frog should be large and positioned in the foreground (depth 1), while the plane appears smaller in the background (depth 2). To preserve visibility, the frog is placed slightly left of center, and the plane is positioned more toward the right. The frog partially overlaps the left edge of the plane, but at least half of the plane remains clearly visible. Rewritten Caption: a blue frog in the front hides a plane in the back Objects: 1. blue frog 2. plane Caption_object_1(isolated): A blue frog facing front sitting calmly Relative_depth_1: 1 Box_object_1: [200, 300, 700, 900] Caption_object_2(isolated): A commercial airplane on ground facing left Relative_depth_2: 2 Box_object_2: [520, 350, 920, 550] Compositional_caption: A frog is sitting in close in the foreground hiding a commercial airplane in far back Background_caption: A runway

Figure 22: Instructions for LLM planning.

Input Prompt: The soft, warm glow of the campfire illuminated the faces of the hikers, as they roasted marshmallows and swapped stories.

Planning: The "faces of the hikers" are illuminated by the campfire, while they roast marshmallows and swap stories. Since roasting marshmallows requires close hand-object interaction, this counts as a heavy entanglement. The group of hikers is treated as a single foreground object, with the campfire as another. Both can be easily placed in a visually coherent 2D layout:, the campfire in the foreground (at depth = 1) the group of seated or standing hikers((at depth = 2) arranged in a semicircle behind it, both occupying significant portions of the image. Background is implied as outdoors at night, likely in a forest or clearing.

Rewritten caption:

A group of hikers sit around a glowing campfire, their faces lit warmly as they roast marshmallows and share stories.

Objects:

- 1. campfire
- 2. group of hikers

Object_Descriptions:

Caption_object_1(isolated): A glowing campfire with bright orange flames and flickering light.

Relative_depth_1: 1

Box_object_1: [350, 700, 674, 980]

Caption_object_2(isolated): A group of hikers sitting and relaxing, with sticks, faces softly lit. Relative_depth_2: 2

Box_object_2: [150, 350, 874, 850]

Compositional_caption: A warm campfire glows brightly in the evening, and a group of hikers sits closely around it, their faces softly illuminated. The hikers hold marshmallow sticks and enjoy stories together beneath the night sky.

Background_caption: a starry night outdoors

Figure 23: LLM planning for object prior generation, with final generated image.

1512 1513	F 3D METRIC EVALUATION WITH LLM
1514	For the 3D-spatial category, the original T2I-CompBench metric relies on depth estimation and
1515	bounding box detection, which we found inaccurate and overly punitive to the generated image.
1516	Evidence of these limitations appears in Table X (10) of the T2I-CompBench++ paper (Huang et al.,
1517	2023), where methods showing clear improvements in human evaluation achieve marginal or negative
1518	scores with the original metric. For example Attn-Exct+SDv2 vs. SDv2 shows +3.6 improvement in
1519	human evaluation but -0.08 in the original metric. To address this, we introduce an MLLM-based
1520	metric using GPT-4.1 (OpenAI, 2025). The model is prompted to first identify all required objects and then assess their 3D spatial relations. Scores are assigned as follows: 0 if objects are missing
1521	or 3D relations are wrong, 1 if all objects are present but the 3D relations are ambiguous, and 2 if
1522 1523	everything is correct. We normalize the total score to a 0–100 scale and average over all examples.
1524	Figure 24 presents the detailed instructions given to the LLM for evaluating 3D-spatial relations.
1525	11gure 24 presents the detailed histractions given to the EEN for evaluating 3D spatial relations.
1526	Title: Evaluate Spatial Relationships in the generated image.
1527	Title. Evaluate Spatial Nelationships in the generated image.
1528	Objective : Your task is to evaluate whether the spatial relationship described in the prompt is
1529	correctly represented in 3D space within the image.
1530	
1531	Prompt Example:
1532	"A red cube is in front of a green sphere."
1533	
1534	How to Evaluate:
1535	Identify the two objects described in the prompt (e.g., "red cube" and "green sphere"). Understand the spatial relationship using 3D positioning:
1536 1537	"in front of" → Object A is closer to the viewer than Object B
1538	"behind" or "hidden by" → Object A is farther away than Object B, regardless of whether it's
1539	partially visually obscured or not
1540	Ignore visual occlusion — an object can still be considered "hidden by" another object if it is
1541	clearly located behind it in 3D space, even if visible.
1542	
1543	Scoring Criteria (0–2):
1544	2 = Correct - The relative 3D positions match the prompt clearly.
1545	1 = Partially Correct - The 3D relationship is somewhat consistent but ambiguous or hard to judge. 0 = Incorrect - The spatial relationship is clearly wrong or objects are missing.
1546	0 – incorrect - the spatial relationship is clearly wrong or objects are missing.
1547	Additional Notes:
1548	Focus on relative position in 3D space, not on visibility or occlusion.
1549	If you're unsure about depth ordering, choose 1 and leave a short comment.
1550	Ignore visual rendering quality, shadows, or object realism.
1551 1552	
1553	Output format: First think about it in steps following the above instructions, then give a one line
1554	answer as follows:
	I I

Figure 24: LLM instructions for evaluating 3D-spatial relations.

"Score = 2"

G LLM USAGE

We use LLMs for three main purposes:

- Methodology. We use LLMs to automatically generate 2.5D image layouts from text.
- Evaluation. We use LLMs to automatically evaluate images for one of our metrics.
- Writing. We used LLMs to check grammar and refine phrasing during writing of this paper.