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Figure 1: ComposeAnything enables text-to-image generation for complex compositions involving
surreal spatial relationships and high object counts. Unlike layout-conditioned (e.g., RPG (Yang

2024)) and CreatiLayout (Zhang et al.| [2024a)), or reinforcement learning methods (e.g., Flow-
GRPO 2025), it achieves both high visual quality and strong faithfulness to text.

ABSTRACT

Generating images from text with complex object arrangements remains a major
challenge for current text-to-image (T2I) models. Existing training-based solutions,
such as layout-conditioned models or reinforcement learning methods, improve
compositional accuracy but often distort realism, leading to floating objects, broken
physics, and degraded image quality. In this work, we introduce ComposeAnything,
an inference-only framework that enhances compositional generation without re-
training. Our key idea is to replace stochastic noise initialization with composite
object priors— interpretable structured composite of objects, created using 2.5D
layouts generated from large language models and pretrained image generators.
We further propose prior-guided diffusion, which integrates these priors into the
denoising process to enforce compositional correctness while preserving visual
fidelity. This training-free strategy enables seamless generation of compositional
objects and coherent backgrounds, while allowing refinement of inaccurate priors.
ComposeAnything consistently outperforms state-of-the-art inference-only meth-
ods on T2I-CompBench and NSR-1K benchmarks, especially for prompts with
complex spatial relations, high object counts, and surreal scenes. Human evalua-
tions confirm that our method generates images that are not only compositionally
faithful but also visually coherent.

1 INTRODUCTION

Text-to-image (T21) models, particularly diffusion-based ones such as SDXL (Podell et al.} [2023)),
SD3 (Esser et al., 2024) and Flux (Black Forest Labs|, [2024), have achieved remarkable success
in generating individual concepts with high fidelity. However, they struggle with complex object
compositions (Huang et al.l 2023)), especially novel arrangements that deviate from their training
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distribution, often resulting in unnatural mixing of objects, incorrect 2D/3D spatial positioning, and
inaccurate object counts, as shown in Figure[I]

To improve compositional generation, prior work has explored layout control and reinforcement learn-
ing (RL). Layout-based methods use 2D cues (e.g., boxes or blobs) often derived from LLMs (OpenAll
2025) to steer generation (Feng et al., |2023bj |Li et al.| [2023a; |Nie et al., [2024). Training-based
variants adapt pretrained T2I models with layout-conditioning modules (Zhang et al.,2024a; Li et al.}
2023aj [Zhang et al.|, [2023a}; [Wang et al., 2024a), offering stronger spatial control but incurring heavy
training cost and quality degradations under rigid constraints (Zhang et al.,[2024b)) (e.g., CreatiLay-
out (Zhang et al| [20244) in Figure([I)). Inference-only variants guide denoising via attention/latent
manipulation or region-wise denoising (Yang et al.| 2024} |Chefer et al.,[2023} Dahary et al.|[2024)),
preserving quality better but providing weaker control for unusual layouts, higher object counts, and
3D relations because they rely on coarse 2D signals without appearance priors.

RL-based methods such as DDPO (Black et al., [2024), DPOK (Fan et al.,|2023)) and Flow-GRPO (Liu
et al.,|2025) optimize explicit compositional rewards (e.g., counts and spatial relations) to enforce
alignment. While this improves compositional scores, the reward-driven optimization tends to
overexploit the imperfect reward signal, yielding floating objects, faded backgrounds, and broken
physical realism — trading fidelity for composition as shown in Figure|l{and [/| Moreover, rigid
box-conditioned training overfits to layout constraints, compromising image coherence.

We propose ComposeAnything to address these limitations with a purely inference-time solution
that balances accurate composition and visual realism. The key idea is to replace stochastic noise
in pretrained diffusion models with composite object priors: structured object-level priors created
from text using LLM reasoning and off-the-shelf image generators. These priors carry appearance,
count/size, and coarse 2.5D placement with depth cues, going beyond box-only cues. We then
introduce prior-guided diffusion, which integrates the priors in the early stage of denoising. It
combines object-prior reinforcement and spatially controlled denoising. The former preserves
foreground priors in early steps while allowing the model to synthesize coherent backgrounds;
the latter strengthens the spatial arrangement of the composite prior via mask-guided attention
in early diffusion steps where global structure is determined. After these initial steps, we revert
to standard diffusion to refine detail and realism. ComposeAnything outperforms state-of-the-art
inference-only methods on T2I-CompBench (Huang et al.,[2023) and NSR-1K (Feng et al., | 2023b)
under automatic metrics, and achieves significant improvement over human evaluations over all the
baselines. Ablations confirm the contributions of composite object priors and prior-guided diffusion.

Contributions. (i) A training-free interpretable framework that replaces random noise with composite
object priors carrying appearance and coarse 2.5D structure derived from text via LLMs and pretrained
generators. (ii) Prior-guided diffusion that integrates these priors via object-prior reinforcement
and spatially controlled denoising in early steps, balancing compositional fidelity and image quality.
(iii) State-of-the-art quality—compositionality trade-off on challenging benchmarks, particularly for
surreal spatial relations, high-object-count, and generally complex prompts; code to be released.

2 RELATED WORKS

Compositional generation. Compositional T2I aims to produce images that faithfully reflect complex
textual descriptions (Huang et al., 2023 Zhang et al.,|2024b}; Jamwal & S.,2024; Li et al., [2024a;
Wang et al.} 2024aj |Feng et al., [2023b}, |Yang et al.,2024; |Wang et al.| 2024b; |Couairon et al.| 2023}
Lian et al.| [2024). While modern diffusion models (Podell et al., 2023} |[Esser et al., [2024; Black
Forest Labs| [2024) are strong generators, they struggle with novel multi-object arrangements, spatial
relations, and counting.

Training-based layout control. A common direction is to inject explicit spatial conditioning during
training. Methods fine-tune pretrained backbones (Podell et al.| 2023} |[Esser et al., 2024} Black Forest
Labs, [2024; [Chen et al.l 2023 20244} |Pernias et al.l 2023) or add adapters with grounding/alignment
objectives (Wang et al., 2024b; [Jiang et al.| [2024} |[Hu et al., |2024a)). Layout-controlled variants train
conditioning modules for boxes, masks, or keypoints (Li et al.l 2023a; [Zhang et al.,2023a; Wang
et al., | 2024a; Feng et al.| 2024} |Yang et al., 2023} [Zhang et al.,[2024a} |Lin et al., {2025 Zhao et al.,
2023 Zheng et al.,|2023; |Gani et al., 2024; Mou et al.} 2024} [Li et al.,|2024b). These approaches
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Figure 2: The ComposeAnything framework, which enhances text-to-image diffusion models with
layouts and composite object priors for complex compositional generation.

can enforce geometry but require substantial training and often degrade coherence and realism under

hard constraints (Zhang et al.},[2024b)).

RL-based compositional control. Reinforcement learning optimizes explicit rewards for counts
and spatial relations (e.g., Flow-GRPO 2025), DDPO (Black et al.,[2024), DPOK
2023)). Such rewards improve compositional scores but can induce distribution shift: models
may exploit the reward at the expense of realism (floating objects, faded backgrounds, broken
physics), even with KL regularization. This trades fidelity for composition, complementary to hard
box-conditioned training.

Training-free (inference-only) control. Another line manipulates pretrained models at inference
time, avoiding retraining. Attention- and latent-based methods edit text embeddings or cross-attention
to steer local content (Chefer et al., 2023 [Feng et al.| [2023a; Meral et al.| [2024; Trusca et al.| 2024}

et al.| 2023b; [Rassin et al.,[2023; [Liu et al., 20225 |/Agarwal et al.| 2023} |Gong et al., 2024) and perform
region-wise denoising (Yang et al.| 2024} [Li et al., 2024c). Layout-driven, training-free techniques

use LLM-derived 2D layouts (boxes/blobs) to modulate attention or emphasize regions (OpenAl
2025}, [Feng et al., 2023b; [Li et al., [2023a; Nie et al., [2024; [Zhang et al., 2024b} Xie et al., 2023;

Dahary et al.} 2024} [Kim et al., 2023 Ma et al., 2024} [Couairon et al., 2023}, [Chen et al.| 2024b;
Jamwal & S.,2024;|Phung et al.,[2024)). These preserve base-model quality better than training-based

approaches, but control is weaker and brittle for unusual layouts, high object counts, and 3D relations
because guidance is limited to coarse 2D signals without appearance priors.

Inference-time noise search & initialization. A complementary thread exploits the sensitivity of
diffusion to the initial condition—either by searching/optimizing seeds and trajectories
2025} |Guo et al.| [2024). These approaches can boost success rates but are compute-intensive and
brittle for out-of-distribution, highly compositional prompts. Prior work in image editing leverages
noisy initialization/inversion for image to image translation (Meng et al. 2022} [Avrahami et al]
2022; [Mao et al},[2023).

We instead generate the initial condition as composite object priors—coarse RGB composites
encoding appearance and coarse 2.5D layout, and integrate them with prior-guided diffusion. Unlike
training-based or RL methods, our approach is inference-only and avoids reward-driven distribution
shift; unlike prior inference-only methods, it goes beyond attention tweaks and 2D boxes by injecting
appearance-aware priors that deliver stronger compositional control while preserving realism.

3 THE PROPOSED METHOD

As illustrated in Figure 2] our ComposeAnything framework consists of three key components
for compositional text-to-image generation: 1) LLM Planning (Section 3.I): We employ LLMs
to transform the input prompt into a structured 2.5D semantic layout, including object captions,
bounding boxes and relative depths; 2) Composite Object Prior (Section[3.2)): Based on the layout,
we generate a coarse composite image that serves as a strong semantic and spatial prior for guiding
image synthesis; and 3) Prior Guided Diffusion (Section[3.3): We iteratively initialize noises with the
object prior and apply spatially-controlled self-attention to preserve structure in early denoising steps.

3.1 LLM PLANNING

Recent advancements in LLMs have demonstrated their effectiveness in generating high-quality

scene layouts from textual descriptions (Feng et al.| [2023b; [Yang et al}, 2024} [Hu et al., 2024b).
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Figure 3: Chain-of-thought LLM planning for generating 2.5D semantic layouts from text.

Hence, we harness GPT-4.1 (OpenAl, [2025)) to produce a structured 2.5D semantic layout from the
original text. The layout includes the following elements: Object captions {y,, } X, that describe
size, orientation and appearance for each identified object; Bounding boxes {box; } £ that specify
2D spatial configuration for each object; Depth values {depth; } X | that reflect relative depth orders
for each object to support 3D-aware composition; Background caption 4 describing the background
scene; and Compositional caption 45 Which is a concise summary of the entire image. This process
involves several key steps for chain-of-thought reasoning, as illustrated in Figure[3] More details are
provided in Appendix [E]

3.2 COMPOSITE OBJECT PRIOR

2.5D position-aware composite image generation. Given the isolated object captions from LLM,
we first generate individual objects using Stable Diffusion-3 Medium (SD3-M) (Esser et al.| [2024)).
Next, we use a referring expression segmentation model Hyperseg (Wei et al., 2024) to extract
objects {0;} X | along with their segmentation masks {m; }X . Each object and its corresponding
mask are resized to fit within the designated bounding box generated from the LLM according to a
scaling factor scale;. Objects are then composited in a depth-aware order, where objects with smaller
depth values are placed above those with larger depth values, thereby establishing occlusion-correct
layering in the final scene. This process is formulated as follows: o}, m, = Resize(o;, m;, scale;);
then o,, m, = Compose({0}}, {m;}, {boz;}, {depth;}). Finally, all objects are composited on a
N x N sized canvas, denoted as o,. Its corresponding composited mask is denoted as m,. Figure|z|
shows an example of the composite image and mask. The composition of all objects forms the
foreground, and the rest is considered the background.

Initializing object prior for diffusion-based models. Our work builds upon existing T2I diffusion
models, aiming to enhance its ability to generate images with complex object compositions. Our
method is compatible with both denoising diffusion probabilistic models like SDXL (Podell et al.,
2023)) and recent flow-matching based models like SD3-M (Esser et al., 2024).

The core idea of diffusion models is to learn a generative process by simulating and then reversing
a gradual noising procedure. Given an image xo from the real data distribution p(z), the forward
process transforms zg into z7 ~ N(0, I) through a predefined noise schedule:

z = a(t)zo + o(t)z, z ~ N(0,1), (1

where ¢ € [0,T] indexes the diffusion timestep. A denoising network €(6) is trained to predict
the added noise at each step in the forward process. During inference, image generation starts
from pure Gaussian noise x7 and denoises it back to x( via the reverse process, which is an
ordinary differential model (ODE) on time ¢ € [T', 0] guided by the noise prediction network €(¢):
Ti—At < Ty — 6(9)($t7t) At.

Our method is inspired by the fact that the reverse ODE can be solved from any ¢ € (0,7 (Meng
et al., [2022)). Instead of starting from pure Gaussian noise at ¢t = 7', we initialize the process
with a noisy object prior at an intermediate timestep ¢, < 7', providing a stronger starting point
for generation. Specifically, we follow latent diffusion models (Rombach et al., [2022) where the
denoising is applied on the latent space. We use the above composite image o,, to generate an initial
noise in the latent space. The image o,, is first encoded through a Variational Autoencoder (VAE) to
get the prior latent. Then, we apply the forward process from Eq. (]I[) at a high noise timestep %,, to
obtain the latent object prior, z°> = VAE(0,), and its noised version 73:: = a(ty)z° + o(tp)z, with

4
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z ~ N(0, ). Since the background in o, is empty, we avoid conditioning the generation process
on the uninformative background region of the latent é‘flf To achieve this, we use the mask m,, to
reinitialize the background with pure Gaussian noise: zf: = 2,?; ©myp + 2pg © (1 —my,). where
zbg ~ N (0, 1) and © indicates element multiplication. This ensures that only the object regions

are guided by a prior, while the background remains free to be generated based on the caption. The
reverse process still starts from ¢ = T, but uses the composite object prior zfj as initialization.

3.3 PRIOR-GUIDED DIFFUSION

We propose two mechanisms to in-

corporate the guidance from the com- e .® J 2q
posite object prior in the denoising
process. Figure @ illustrates the prior-
guided diffusion method. .
Spatial 2% Object Prior
Control Reinforcement

&

s

3
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Object prior reinforcement. To pre-
vent excessive corruption of the fore-
ground object prior, we initialized
the foreground with noise at time ¢,,
while the background is still initial-
ized with pure Gaussian noise at 7.
However, during denoising from ¢ =
T, this mismatch in noise levels leads to inaccurate noise predictions for the foreground region, which
potentially distort its semantics and structure. To address this, we propose a novel foreground prior
reinforcement algorithm. During the denoising steps from 7' to ¢,,, we repeatedly restore the original
object prior in the foreground regions to protect them from degradation. Specifically, we overwrite the
foreground region in the current latent z;_; with the initial object prior, while retaining the denoised
background: z;_1 < zf: Omp+ 221 0 (1 —my).

Figure 4: Overview of prior-guided diffusion. Spatial-
controlled denoising is applied for each aligned text and
region pair to strengthen spatial control. We further re-inject
the object prior zf}f into predicted z;_; to reinforce the prior.

This iterative replacement ensures that the semantic integrity and spatial structure of the object prior
are preserved throughout the early diffusion steps. At the same time, the background is progressively
refined in the presence of a fixed foreground, allowing for coherent integration between the two.

Once the latent reaches time ¢,,, both foreground and background are aligned in terms of noise level
and the global structure becomes stable. From this point onward, denoising proceeds without any
additional intervention, allowing for natural refinement and generative flexibility. Notably, decreasing
t,, strengthens the object prior while reducing generative flexibility.

Spatial-controlled denoising. To further enhance object-level spatial control in T2I generation, we
propose a spatial-controlled attention mechanism that explicitly strengthens the alignment between
between specific image regions and their corresponding region textual descriptions.

Our method builds on Multi-Modal Diffusion Transformers, a dual-stream architecture used in Stable
Diffusion 3 (Esser et al.,|2024), which processes text and image modalities in parallel. In addition to
the base prompt embeddings 32*¢, we introduce a set of K object prompt embeddings {3/}, and
one background prompt embedding 4/%9. These are independently processed by the text stream, while
the image stream receives only the latent image embeddings.

During the self-attention, the image latent z; is split into two latents: 1) a base latent 22**¢, and 2) an

object-background latent z{®. Given object masks {m;}X | and background mask my,, we segment
29 into separate objects and background latents:

{20 }E) = Segment (2’ {m} <), 27 = Segment(2{", my).
Each object latent z;* and its corresponding prompt embedding y,, are concatenated and passed
through a Joint Self-Attention (JSA) module:
6 = [(Way 97 )s Wa - 200 by = [(Why - 97)s Whaz{)], of = [(Woy - 97 ); (W - 28],

e, 2] « Softmax({ZLED) s

Vd
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where W.,, project prompt embeddings and W, project image latents. For simplicity, we reuse the
same notation for the input and output of the transformer layer. This spatial-controlled self-attention
is applied at each transformer layer, enabling precise control over object placement and appearance
while preserving global visual consistency. The same mechanism is applied to the background:

[?Jfg7 Zf 9+ JSA(yf 9, zf 7). The original base attention is applied on the base prompt and the base
latent embeddings [y?®5¢, 2295¢] « JSA(ybase, zbase).

After the last transformer layer, the object and background latents are denoised from ¢ — ¢t — 1. The

updated object latents {z7" ; } X, and background latent zf 9| are then composed back into z® | using
the segmentation masks.

Finally, we merge the base latent and object-background latent with a weighted sum: z;_; =
ztbisl"‘ * ratiopgse + z;’ﬁl * (1 — ratiopgse ). It balances global coherence from the base latent and
fine-grained spatial control from the object-background latent. We apply the spatial control for the
initial N, denoising steps.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Evaluation benchmarks. We evaluate our method on T2I-CompBench (Huang et al., 2023) and
NSR-1k (Feng et al.,|2023b)) datasets. They contain prompts rich in spatial, 3D, numeric, generally
complex and surreal compositions. We evaluate our method on four categories from T2I-CompBench:
2D Spatial, Numeracy (Count), 3D Spatial, and Complex, each containing 300 prompts. For NSR-1K,
we report results on the Spatial (283 prompts) and Count (672 prompts) categories.

Evaluation metrics. For the 2D-spatial and numeracy categories, we follow the standard evaluation
protocols from T2I-CompBench and NSR-1k. Object detectors are used to identify, count, and
measure spatial relations. For the 3D-spatial category, the original T2I-CompBench metric relies on
outdated depth and detection models, resulting in unreliable scores. To address this, we introduce
an MLLM-based metric aligned with recent evaluation standards (Zhang et al.,[2023b) using GPT-
4.1 (OpenAl, 2025). The model is prompted to identify all required objects and assess their 3D
spatial relations. The final score is normalized to 0-100 and averaged over all examples. Further
details on the limitations of the original metric and our new metric are provided in Appendix [F] For
the complex category, we adopt the 3-in-1 metric from T2I-CompBench, which averages the CLIP
similarity score, spatial accuracy (via object detection), and BLIP-VQA accuracy. This composite
score better aligns with human judgment.

Implementation details. We use GPT-4.1 (OpenAl, |2025) for LLM planning and SD3-Medium
(SD3-M) (Esser et al., |2024) as the base diffusion model if not otherwise specified. We fix total
28 steps for denoising. The generation process is controlled by two key hyper-parameters: (1) ¢, —
The time at which noise is sampled and applied to the prior image in the forward diffusion. As ¢,
goes from (T to 0), prior strength increases, which increases faithfulness while reducing generative
flexibility. (2) Ng. — The number of steps for spatially controlled denoising. A higher value enforces
stronger spatial control. The two hyper-parameters enable highly controllable generation and can be
tuned to balance the composition performance and image quality, as demonstrated in Appendix [A]
For the experiments in this section, we sample ¢, corresponding to a high noise of 91.3% from the
Flow matching schedule and set N, = 3 steps.

4.2 ABLATIONS

Object prior quality. The correctness of object priors  Taple 1: Performance of Object Priors

is crucial for high quality image generation. We use (QOP) and the corresponding Final Image
the same metrics for evaluating the final image to eval- (R) on T2I-Compbench.

uate the generated composite object prior. As shown in
Table[I] the performance of the object priors is closely
correlated with that of the final generated images. No- OP 45779 68.06 86.71 35.04
tably, our prior-guided diffusion is applied only during FI 4824 6821 77.16 38.66
the initial denoising steps. This design preserves the

structural benefits of the prior while allowing subsequent steps to introduce generative flexibility,

Spatial Numeracy 3D Complex
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Figure 5: LLM generated object prior and their corresponding final image generation.

which helps correct inaccuracies in the initial composite. As illustrated in Figure 5(b), the final
images can resolve issues present in the priors such as missing elements, incorrect orientation, size,
and overall incoherence of the composite. Composition correctness and image quality/coherence
can be easily balanced by tuning the hyper-parameters as shown in Appendix [A] More detailed
human evaluations on the quality of prior image and the corresponding generation is presented in
Appendix [B] Moreover, the correlation between the prior and the generation suggests that manually
refining the prior can enhance performance, enabling interpretable generation with a human in the
loop. We validate this on a few hard examples in Appendix [C|which show significant improvement.

Prior-guided diffusion. Table[2Jshows Type 2: Impact of object prior reinforcement and spatial-

the contribution of object prior rein-  controlled denoising on T2I-CompBench.
forcement and spatial-controlled de-

noising in the prior-guided diffusion )
process. Each component significantly ~Reinforce Control
enhances performance over the base % 3132 6022 4943 37.71

SD3-M model (Esser et all [2024). < 4533 6608 77.38 38.16
Specifically, the object prior reinforce- /4356 6442 7548 3741

ment yields absolute gains of over 14
and 6% in spatial and numeric cate- v 4824 6821 77.16 38.66

gories, respectively, while spatial-controlled denoising improves performance by over absolute 12 and
4%. When combined, these components further boost results, demonstrating their complementary
roles in achieving precise and controlled text-to-image generation.

Prior  Spatial 2D Numeracy 3D Complex

X N X

Improvement over base models. We  Taple 3: Performance of different base models, with Com-

integrate our method on architecturally  pose Anything consistently improving results.
diverse models with training paradigms, T21-CompBench

spanning both diffusion and flow- Method P .
matching frameworks, including the U- 2D-Spatial Count 3D-Spatial Complex

Net-based SDXL @, SDXL 21.33 49.88 47.12 32.37
the Transformer-based SD3-M (Esser] + ComposeAnything 44.64 5722  71.03 36.20
Labs| [2024). All methods are evaluated 4 ComposeAnything 4824 6821 77.16  38.66

under the same object prior and layout
to ensure comparability. As shown in
Table 3] our approach yields significant
improvements over all base models, un-
derscoring its ability to generalize across fundamentally different architectures.

FLUX 26.13  60.58  59.51 37.03
+ ComposeAnything 4421 67.83 76.14 37.36

4.3 COMPARISON TO STATE OF THE ART

Inference-based methods. We compare our method against state of the art inference-based ap-

proaches, including general pretrained T2I models (SDv1 (Rombach et al., 2022), SDXL
2023), SD3-M (Esser et al., [2024), and FLUX (Black Forest Labs| [2024)), layout-guided
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Table 4: Comparison for inference-based methods on the T2I-CompBench and NSR-1k benchmarks.

Method T2I-CompBench NSR-1K
2D-Spatial Count 3D-Spatial Complex Spatial Count
SD-v1 (Rombach et al.,[2022) 1246  44.61 - 30.80 16.89 31.45
Attend-Excite v2 (Chefer et_al.l, 2023) 1455  47.67 - 3401 26.86 39.41
SDXL (Podell et al. 2133  49.88  47.12 3237  31.57 30.62
RealCompo (Zhang et al.| [2024b 31.73 6592 - - - -
SD3-M (Esser et al.|[2024 3132 6022 4943 37.71 4443 44.61
FLUX (Black Forest Labs, [2024) 26.13  60.58  59.51 37.03  39.29 5597
RPG (Yang et al.[[2024) 40.26  56.39  50.93 36.53 52.24 39.81
Inference-scale (Ma et al., 2025) 3151 67.89 - 38.10 - -
ComposeAnything (Ours) 4824 68.21 77.16 38.66 63.80 59.36

training-free approaches (RPG 2024) and RealCompo (Zhang et al.,[2024b)), and a noise
search method (inference time scaling (Ma et al.|2025)). As shown in Table[d our method achieves
the best performance on all the metrics, consistently adhering to the input prompt.

To further assess image coherence and perceptual quality, we con- m—_RPG__ s Ours
duct human evaluations. The rater annotation guidelines are de- 69 =
tailed in Appendix [D} We compare with the state-of-the-art method
RPG 2024). As shown in Figure[6] human raters con-
sistently prefer our method over RPG across all metrics. Qualitative
comparisons in Figure [7] further highlight that baselines such as .
SD3-M [2024) and RPG 2024) often fail to ~_ ~ Seatial  Count ~3D-Spatial
follow the input prompt. In particular, they struggle with challenging Figure 6:  Human evalua-
spatial relations (e.g., a chicken behind the clock) and maintaining tions against inference-based
the correct object counts (e.g., number of giraffes, microwaves). method RPG.

Percentage of Votes
A o ®
S o o
w
et

N
=)

SD3-M RPG Creatilayout Flow-GRPO ComposeAnything (ours)

‘\'i Two giraffes
two breads
three eggs
four

M strawberry
and three

, microwaves

Four camels,
w four bowls
and 1 phone

> i |
Figure 7: State-of-the-art comparison against SD3-M (Esser et al., 2024), RPG (Yang et al,[2024),
Creatilayout (Zhang et al.,[20244), and Flow-GRPO (Liu et al.| 2025) on complex surreal prompts.
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Table 5: Comparison against training methods on the T2I-CompBench and NSR-1k

Method T2I-CompBench NSR-1K
etho 2D-Spatial Count 3D-Spatial Complex Spatial Count

LayoutGPT (Feng et al.,|2023b) 45.81 60.27 - - 60.6 55.6

CreatiLayout (Zhang et al.|[2024a) 4736  62.15  68.85 34.6 59.8 634

Flow-GRPO (Liu et al., 2025 5447 6752 48.49 3842  74.09 65.27

Training-free

ComposeAnything (Ours) 48.24  68.21 77.16 38.66 63.80 59.36

Training-based methods. The compared training-based methods include layout-to-image models
with box conditioning such as Gligen (Li et al.| [2023a)), CreatiLayout (Zhang et al.| |2024a)), and
Reinforcement learning method like Flow-GRPO (Liu et al., 2025).

Quantitative comparisons with auto- mm CreatiLayout Ours = Flow-GRPO ours

83 73 74

©
S

matic metrics are presented in Table[5] 77 78 66

Although training-based methods out-
perform our training-free method in
some categories where they were op-
timized for these metrics, they tend to
change the real image distribution to % Spatial  Count _3D-Spatial %20-Spatial  Count  3D-Spatial

fit the surreal image prompts, which  Fjgure 8: Human evaluations against training-based methods
significantly compromise the image CreatiLayout and Flow-GRPO.

quality, resulting in floating objects,

faded background and broken physics, as shown in Figure[7] Therefore, we further conduct human
evaluations (Figure[8), where our method is consistently preferred over both Flow-GRPO and Cre-
atiLayout. By leveraging object priors and integrating them into the denoising process, our method
achieves a better balance between compositional fidelity and visual quality.

©
o

E -
o o
-}
=}

Percentage of Votes
Percentage of Votes
'S
S

N

o
N
o

Efficiency. We provide computation time Table 6: Runtime breakdown (seconds).
comparisons in Table[6] We compute the LLM Prior Image  Total

time over prompts with 3, 5, 7, 10 objects Method . . . .

; : planning generation generation time
and average over all. For fair comparison,
we use the same LLM planning for Cre- CreatiLayout

atiLayout and our method. As RPG uses (SD3-M) 4.98 h 4.92 9.90
region crops instead of object layout, we  Ours (SD3-M) 4.98 4.50 5.62 15.1
use their original LLM planning module, RPG (SDXL) 9.14 - 1298 22.11
which is less efficient than ours. For prior  Qurs (SDXL)  4.98 4.50 4.97 14.45

generation, we generate and segment all
objects in parallel using multiple GPUs to reduce the computation time, allowing scalability. For
image generation, our method applies prior reinforcement and SCD only for the first few steps (6
and 3 respectively out of 28 steps). This leads to faster overall generation compared to RPG, which
applies regional diffusion throughout all steps.

5 CONCLUSION

In this work, we introduce ComposeAnything, a novel inference-time framework for compositional
text-to-image generation that leverages object-level guidance derived from LLM-generated 2.5D
semantic layouts. By introducing a composite object prior for structured initialization and prior-guided
diffusion, our approach enables precise object placement and robust semantic grounding without any
additional training. ComposeAnything achieves state-of-the-art performance on T2I-CompBench
and NSR-1K, effectively balancing image quality and prompt fidelity even under complex or surreal
scenarios. Our results highlight the potential of LLM-driven reasoning and composite prior guidance
in advancing compositional T2I generation.
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APPENDIX

We start with the analysis of the impact of two key hyper-parameters in our framework in Section [A]
Section [B] provides more detailed results of the correctness of object prior and final images, including
human evaluation and qualitative examples. Section [C|demonstrates potential for human-in-the-loop
manual prior correction for better generation. Section [D|introduces the human evaluation details for
state-of-the-art comparison. Section [E]presents the LLM prompt for 2.5D semantic layout generation
and illustrates an output example. Section[F details the LLM prompt for evaluating the 3D-Spatial
category. Finally, Section [G]describes the use of LLMs in our work.

A IMPACT OF KEY HYPER-PARAMETERS

We analyze the effect of two key hyper-parameters ¢,, and N, as discussed in Section 4.1 of the
main paper. 1, is the time at which noise is sampled and applied to the prior image in the forward
diffusion. It controls the object prior reinforcement strength (OPR). Lower values denote stronger
priors. N, is the number of steps for spatially controlled denoising. It controls the spatial-controlled
denoising strength (SCD). Larger values result in stronger control.

Figure [J] presents object priors and corresponding generated images for two text prompts, under
varying t,, and N values. In the first row of each example, IV, is fixed at 3 to isolate the impact of
OPR with different ¢,,. At low OPR strength, the final image fails to preserve the appearance and
semantics of the prior, for example, the butterfly appears in front of the cup not on top of it, and the
number of clocks and microwaves is incorrect. As the strength of OPR increases, objects’ semantics
and appearance such as color, shape and number are more strongly retained. However, excessive
reinforcement reduces generative flexibility, leading to over-constrained and less natural outputs.

In the second row of each example, ¢, is fixed at 0.91 to examine the effect of N,.. Low SCD
strength leads to limited spatial control, with objects leaking in background (extra cup), objects
getting merged (both dogs merged), and incorrect object counts. As we increase the SCD strength,
object positions and sizes from the prior are more faithfully preserved in the final image. However,
too strong spatial control results in low-quality compositions such as rigid placements, incoherent
scene, floating objects similar to training-based box-conditioned methods (Zhang et al.}2024a).

Therefore, in our experiments, we set ¢, = 0.91 and N, = 3 to strike a balance between faithful
prompt adherence, generative flexibility, and overall scene coherence. Both hyper-parameters are
beneficial and complementary to reliably produce correct spatial relations, accurate object counts and
high-quality images.

B DETAILED EVALUATION OF OBJECT PRIORS AND FINAL IMAGES

To better assess the quality of object priors and their influence on final image generation, we categorize
results into four combinations: i) correct prior — correct image, ii) correct prior — incorrect image, iii)
incorrect prior — correct image, iv) incorrect prior — incorrect image.

We conduct a human evaluation using 30 samples per category, i.e., pairs of the prior and final image,
across the 2D-Spatial, 3D-Spatial, and Numeracy categories in T2I-Compbench. For each sample,
annotators perform a 4-way classification task, judging the correctness of both the prior and the
resulting image. The annotation interface is illustrated in Figure[TT]

Figure [T0] presents the results of the human evaluation. As seen in the bar plots for the 2D and
3D-Spatial categories, the majority of samples fall into the correct-prior and correct-image category.
In contrast, the Numeracy category shows a higher occurrence of correct-prior but incorrect-image
cases. This is primarily due to the increasing number of objects, where relative object sizes in
the prior affect its realism and quality. While our model’s generative flexibility helps correct such
visual artifacts during image synthesis, it often does so at the expense of count accuracy, leading to
mismatches in object quantities, as illustrated in Figure [TT] (bottom). Moreover, as the number of
objects increases, the priors tend to become less coherent overall, resulting in a greater frequency of
incorrect-prior and incorrect-image cases.
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Increase Object Prior Reinforcement Strength
t,=0.91

Increase Spatial Controlled Denoising Strength

Ngc=1 Ngc=6

A cup on top of a
butterfly

two apples, one bag,
two dogs, four
clocks and three
microwaves

Figure 9: Effect of Object Prior Reinforcement and Spatial-Controlled Denoising. Increasing either
strength enhances appearance fidelity and spatial precision, but reduces generative flexibility.

Figure[12]- [I3] provide more examples of the object priors and corresponding final images on T2I-
Compbench dataset, including 2D-spatial, 3D-spatial, non-spatial, numeracy and complex prompt
categories.
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Object prior and final image Object prior and final image Object prior and final image
combinations for 2D-Spatial
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Figure 10: Human evaluation results on the correctness of prior and final image pairs on the three
categories of T2I-Compbench dataset.

Text Prompt

atelevision on the top of a bird

Image 1 Image 2

How would you classify this combination?

(®) correct prior correct image!!!
wrong prior correct image!?!
correct prior wrong image!*!
wrong prior wrong image'!

Er

i

T

Text Prompt

one bicycle, four apples and four chickens

Image 1 Image 2

How would you classify this combination?

correct prior correct image!?!

wrong prior correct image!?!
(® correct prior wrong image'®!

wrong prior wrong image!

.
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Figure 11: Labeling interface for evaluating object prior and the final image.
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The soft, furry kittens The vibrant, glittering lights Two hot dogs sit on a green

played together in a pile on of the carnival rides spun  paper plate near a soda cup The brown dog was

lying on the green

the warm, cozy blanket, and twirled in dizzying which are sitting on a white mat
their tiny paws batting at  circles, thrilling and picnic table while a bike and a
colorful balls of yarn delighting the adventurous silver car are parked nearby.

The long red scarf The bumpy sphere was two men and The woodcarver is
draped over the suspended in mid-air one pig played creating a sculpture
short black jacket. next to the spiky star in the yard of a bird from a

and the fuzzy heart. block of wood

Figure 13: Object prior and the corresponding generation for Complex compositions from T2I-
Compbench.
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Figure 14: Object prior and the corresponding generation for 3D-Spatial compositions from T2I-
compbench.
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C MANUAL PRIOR ADJUSTMENT

Our framework enables interpretable generation with multiple options for human in the loop to
improve object priors, such as editing intermediate-generated LLM layouts, modifying object and
background captions, and selecting the most suitable objects for the composed prior image. Better
prior images significantly enhance the quality of final images, making human guidance a powerful
tool for improving overall results. Figure[T6]shows by simply changing the positions and resizing the
objects in the prior image, our method can correct generated image.

A cow in front of a book

LLM Incorrect
generated —— . generation
Prior s y
Manual prior
adjustment
Correct
generation
A boy hidden by a horse
LLM
generated Incorrect
Prior generation
Manual prior
adjustment
Correct
. generation

Figure 16: Manual prior adjustment
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D LABELING INTERFACE FOR HUMAN EVALUATIONS

We conduct human evaluations against the SOTA methods on three categories in T2I-CompBench:
2D-Spatial, 3D-Spatial and Count. For each category, we randomly sample 30 prompts and perform
pairwise comparisons. Five raters participated in the evaluation, with 30% of images overlapping
across raters to measure inter-annotator agreement. The average agreement scores were around 80%
for all categories.

Figure [T7] shows the human evaluation instructions and interface. The instructions focuses on
prioritizing both correctness to prompt focusing on 2D-3D spatial relations and object count. Also
to select images with higher quality. As can be seen in the "six horses" image, both images have 6
horses, but the first image has better quality.

Labeling Instructions

Please select the image which aligns better with the text prompt. Prioritise both
correctness of prompt and visual quality of the image.

It includes - correct 2D/3D spatial relations, correct object count, high quality and
realism of the image while choosing your preference.

a rabbit on the bottom of a chair Info Comments History

Selection Details

.

six horses Info Comments History

Select the image you prefer more Selection Details

Figure 17: Labeling interface for human evaluations.
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E LLM PLANNING INSTRUCTIONS

Figures|18|-[22|show the detailed instructions for LLM planning.
Figure 23| shows the output from the LLM for an example alongside the prior and final image.

You are a master of composition who excels at extracting key objects, their counts, attributes, and 2D
and 3D spatial relationships from input text. You supplement the original text with imaginative details to
create visually compelling layouts that adhere to beautiful aesthetics.

Objective:

Given a concise image prompt, plan the layout, extract all key objects, their positions, relative depth and
generate captions to guide compositional image generation. The task involves 8 steps:

1. Plan the layout focusing on foreground object selection, plausibility to put the objects in a layout for a
coherent image generation, location, orientation, size, depth, background etc.

2. Correct the language of the input prompt and rewrite it in simple and easy words.

3. Extract only foreground solid objects as planned and list down each object one by one

4. Create individual object caption that provide isolated visual details with no information leak from
other objects. Strictly no mention of other objects in any way.

5. Produce relative depth for each object.

6. Produce bounding boxes for each object.

7. Generate a compositional image caption that describes the entire scene and respects the spatial-
relation, count and, attributes, of the objects.

8. Generate an isolated one word/phrase background prompt.

Rules and Guidelines:
1. Plan the layout:

a. ldentify foreground objects that can be easily placed within a 2D box layout without severe
entanglements.

- Examples: "3 rabbits and 4 deers near a car" - all the 3 rabbits, 4 deers and, the car can be
separately placed at 8 distinct locations in the layout. "A pig on top of a man" = A pig can be easily
placed on top of a man as two individual boxes in a 2D layout. "A table placed on a rug" - The two
objects overlap, but can be easily placed in a 2D layout, as there are no severe 3D entanglements.

b. Entangled Object Interactions: When objects are part of each other, or are too entangled they
should be treated as a single object.

- Examples: A woman wearing a ring - Extract only woman, instead of separate woman and ring
objects. A man throwing a basketball - Extract only man, because it is hard to accurately place the ball
in the hands on the players in simple 2D layouts, so consider the two objects as a single entity. "A
woman in white shirt and black jeans" - Extract only Woman as it is hard to disentangle clothes from
the person.

c. Keep the original counts, spatial positions, attributes intact.

d. If exact spatial relations, count, color etc are not provided deduce from it. For example: "four bears
and four sofas and less number of cats". Deduce the number of cats, in this case it could be one or two.
And the cats could be in foreground near to the viewer, lying down together. Bears in the midground
sitting or playing, and sofas arranged neatly in the back.

e. Do not extract elements that describe the environment, background, or intangible phenomena that
can't be put in box layout. Example exclude background features like 'wall’, 'floor', 'ceiling', 'bathroom’,
'tiles', 'kitchen', 'room’, 'field’, 'grass’', 'sky', 'river', 'forest’, 'rain’, 'sunset’, 'snow', 'fog', 'wind', 'city’,
'scent’, 'fragrance’, 'heat’, 'fire', 'waterdrops', ‘'water’, etc"

f. Consider the 3D positioning, objects closer to viewer should appear a little bigger and the object far
in the back should appear a little smaller.

2. Rewrite the caption:
a. Correct the language if there are any mistakes.
b. Do not reinterpret, reverse, or replace any meaning
c. rewrite it based on the planning

Figure 18: Instructions for LLM planning (to be continued).

23



Under review as a conference paper at ICLR 2026

3. Foreground object Extraction:
a. Extract only foreground objects without severe entanglements as planned.
b. Strictly keep the original counts, and enumerate every object one at a time.
c. Make sure to extract the accurate counts and enumerate every object one at a time.

4. Object Descriptions (isolated objects):

a. Describe each object individually with strictly no information leak from other objects. Only
focus on object's own attributes, and the way it interacts with the scene, but not other objects.

b. Strictly Don't mention any detail of other objects or background, while describing the current
object.

c. Strictly no mention of other objects count, positions, attributes etc. in any way.

d. Description should be very consise in one line.

5. Relative Depth:

a. For every extracted object predict the relative depth of the object based on the given prompt
or imagination. If there are a total of 3 objects, 2 in the foregroud and 1 behind them depth
should be: objectl: 1, object2: 1, object3: 2.

6. Bounding Box Layout (Relative Sizes):

a. Scale bounding boxes to reflect any surreal or exaggerated proportions.

b. Bounding boxes should be generally big, covering major parts of the image.

¢. Bounding boxes must be placed such that every object remains visibly distinct on a 2D canvas.
Even when objects differ in depth, they must not fully occlude or obscure one another.

d. For objects close to the viewer in the foreground size should be bigger than the objects in far
back (to emphasize depth). Also consider the original size of the objects.

7. Composition Caption (Scene-Level):

a. Craft a unified caption that highlights how all extracted objects interact within the scene.
Objects should cover most of the part of the image. Mention a one phrase background.

b. If the input caption is a surreal composition, then imagine the object interactions accordingly
and compose a coherent scene.

c. Emphasize object attributes, spatial relationships, and background.

8. Background (isolated background):

a. Strictly mention a one phrase background, with no object information.

b. If provided, extract the background information from the input caption. Example: A white
door in a pink bathroom. Here pink bathroom should be the backround.

9. Output Format rules:
Use the following format strictly:
Object class heading: "Objects:"
1. [object_name]
2. [object_name]
Object descriptions heading: "Object_Descriptions"
For each object, use the following structure:
Caption Heading: "Caption_object_n(isolated):"
Depth Heading: "Relative_depth_n:"
Bounding Box Heading: "Box_object_n:"
Compositional caption heading: "Compositional_caption:"
Background caption heading: "Background_caption:"
c. Bounding boxes should include absolute positions in the format [x_top, y_top, x_bottom,
y_bottom] for a 1024x1024 resolution canvas.
d. Strictly both compositional caption and object captions should not be more than 70 words.

Figure 19: Instructions for LLM planning (to be continued).
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Examples:

Example 1:
a green balloon on the bottom of a cat

Planning: "a green balloon on the bottom of a cat" could mean that the cat is sitting on a balloon
in a surreal or a playful scene. Both the objects can be easily put in a 2D layout as they are not
heavily entangled. Cat is sitting on a ballon so both have the same depth.

Rewritten caption:
a white cat is sitting on top of a green balloon

Objects:
1. green balloon
2. cat

Object_Descriptions:

Caption_object_1(isolated): A green balloon is lying on the floor.
Relative_depth_1:1

Box_object_1: [300, 700, 724, 1024]

Caption_object_2(isolated): A white cat, sits calmly with its legs and tail folded.
Relative_depth_2: 1

Box_object_2: [200, 300, 824, 750]

Compositional_caption: A fluffy white cat, full of vibrant energy is sitting playfully on top of a blue
balloon in a cosy room.
Background_caption: A cosy room

Example 2:
The soft, fluffy texture of the cotton candy melted in the mouth, a sugary treat of childhood
nostalgia.

Planning: Since both the objects "boy" and "cotton candy" are interacting closely in an intrecate
way "melted in the mouth", it is hard to put the two objects in a 2D layout as the object is in the
mouth of the boy, there are occlusions and orientation complexities, qualifying for severe
entanglement. So considering both the objects as one. The boy could be holding a cotton candy
on his left and eating it.

Rewritten caption:

A boy is eating a soft fluffy cotton candy.
Objects:

1. boy

Object_Descriptions:

Caption_object_1(isolated): A little boy facing left is eating a pink cotton candy.
Relative_depth_1:1

Box_object_1: [300, 150, 700, 874]

Compositional_caption: A little boy facing left eagerly enjoys a fluffy pink cotton candy in a lively
park, his eyes sparkle with excitement.

Background_caption: a lively park

Figure 20: Instructions for LLM planning (to be continued).
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Example 3:
two helmets and three ships

Planning: There are three ships and two helmets, each treated as individual, rigid objects to be
placed independently in the scene. Given their differing scales, the ships (being much larger)
should be positioned in the background, while the smaller helmets should be placed in the
foreground.

Depth Assignment: Helmets: depth = 1 (foreground). Ships: depth = 2 (background)

Size Ratio: To reflect realistic scale in a 2D layout, the bounding boxes for helmets and ships should
follow an approximate size ratio of 1:2, with ships appearing larger.

Placement Details: The helmets should be located near the bottom of the scene, close to the
shore in the foreground. The ships should appear near the horizon, conveying depth and distance.
Among the three ships: two can be large and face forward (toward the viewer), while the third, a
smaller wooden ship, can be placed in the center, angled left to reveal more of its body and shape.

Rewritten caption: Three ships are sailing in the sea near the horizon, while two helmets are
placed on the shore in the foreground

Objects:
1. ship

2. ship

3. ship

4. helmet
5. helmet

Object_Descriptions:

Caption_object_1(isolated): A metalic ship facing front.
Relative_depth_1: 2

Box_object_1:[50, 0, 350, 510]
Caption_object_2(isolated): A metalic ship facing front.
Relative_depth_2: 2

Box_object_2: [650, 90, 1000, 520]
Caption_object_3(isolated): A small wooden ship facing left.
Relative_depth_3: 2

Box_object_3: [234, 550, 824, 750]
Caption_object_4(isolated): A black helmet.
Relative_depth_4: 1

Box_object_4: [100, 790, 400, 1020]
Caption_object_5(isolated): A red helmet.
Relative_depth_5:1

Box_object_5: [600, 780, 900, 1020]

Compositional_caption: Two majestic ships sail across the horizon with towering masts and
curved hulls in the sea. One small wooden ship is in the middle. In the foreground, two helmets,

one sleek black and the other bold red rest side by side on the shore.

Background_caption: a sea shore

Figure 21: Instructions for LLM planning (to be continued).
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Example 4:
A plane is hidden by a blue frog

Planning: The frog and the plane are separate, non-entangled objects and can be laid out
independently in a 2D composition. Since the frog hides the plane, the frog should be large and
positioned in the foreground (depth 1), while the plane appears smaller in the background (depth
2). To preserve visibility, the frog is placed slightly left of center, and the plane is positioned more
toward the right. The frog partially overlaps the left edge of the plane, but at least half of the
plane remains clearly visible.

Rewritten Caption: a blue frog in the front hides a plane in the back

Objects:

1. blue frog

2. plane

Caption_object_1(isolated): A blue frog facing front sitting calmly

Relative_depth_1:1

Box_object_1: [200, 300, 700, 900]

Caption_object_2(isolated): A commercial airplane on ground facing left

Relative_depth_2: 2

Box_object_2: [520, 350, 920, 550]

Compositional_caption: A frog is sitting in close in the foreground hiding a commercial airplane in
far back

Background_caption: A runway

Figure 22: Instructions for LLM planning.
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Input Prompt: The soft, warm glow of the campfire illuminated the faces of the
hikers, as they roasted marshmallows and swapped stories.

Planning: The "faces of the hikers" are illuminated by the campfire, while they roast
marshmallows and swap stories. Since roasting marshmallows requires close hand-object
interaction, this counts as a heavy entanglement. The group of hikers is treated as a single
foreground object, with the campfire as another. Both can be easily placed in a visually coherent
2D layout:, the campfire in the foreground (at depth = 1) the group of seated or standing hikers((at
depth = 2) arranged in a semicircle behind it, both occupying significant portions of the image.
Background is implied as outdoors at night, likely in a forest or clearing.

Rewritten caption:
A group of hikers sit around a glowing campfire, their faces lit warmly as they roast marshmallows
and share stories.

Objects:
1. campfire
2. group of hikers

Object_Descriptions:

Caption_object_1(isolated): A glowing campfire with bright orange flames and flickering light.
Relative_depth_1: 1

Box_object_1: [350, 700, 674, 980]

Caption_object_2(isolated): A group of hikers sitting and relaxing, with sticks, faces softly lit.
Relative_depth_2: 2
Box_object_2: [150, 350, 874, 850]

Compositional_caption: A warm campfire glows brightly in the evening, and a group of hikers sits
closely around it, their faces softly illuminated. The hikers hold marshmallow sticks and enjoy

stories together beneath the night sky.

Background_caption: a starry night outdoors

Figure 23: LLM planning for object prior generation, with final generated image.
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F 3D METRIC EVALUATION WITH LLM

For the 3D-spatial category, the original T2I-CompBench metric relies on depth estimation and
bounding box detection, which we found inaccurate and overly punitive to the generated image.
Evidence of these limitations appears in Table X (10) of the T2I-CompBench++ paper (Huang et al.|
2023)), where methods showing clear improvements in human evaluation achieve marginal or negative
scores with the original metric. For example Attn-Exct+SDv2 vs. SDv2 shows +3.6 improvement in
human evaluation but -0.08 in the original metric. To address this, we introduce an MLLM-based
metric using GPT-4.1 (OpenAl, 2025). The model is prompted to first identify all required objects
and then assess their 3D spatial relations. Scores are assigned as follows: 0 if objects are missing
or 3D relations are wrong, 1 if all objects are present but the 3D relations are ambiguous, and 2 if
everything is correct. We normalize the total score to a 0—100 scale and average over all examples.

Figure [24] presents the detailed instructions given to the LLM for evaluating 3D-spatial relations.

Title: Evaluate Spatial Relationships in the generated image.

Objective: Your task is to evaluate whether the spatial relationship described in the prompt is
correctly represented in 3D space within the image.

Prompt Example:
"A red cube is in front of a green sphere.”

How to Evaluate:

Identify the two objects described in the prompt (e.g., “red cube” and “green sphere”).
Understand the spatial relationship using 3D positioning:

"in front of" = Object A is closer to the viewer than Object B

"behind" or "hidden by" -> Object A is farther away than Object B, regardless of whether it's
partially visually obscured or not

Ignore visual occlusion — an object can still be considered "hidden by" another object if it is
clearly located behind it in 3D space, even if visible.

Scoring Criteria (0-2):

2 = Correct - The relative 3D positions match the prompt clearly.

1 = Partially Correct - The 3D relationship is somewhat consistent but ambiguous or hard to judge.
0 = Incorrect - The spatial relationship is clearly wrong or objects are missing.

Additional Notes:

Focus on relative position in 3D space, not on visibility or occlusion.

If you’re unsure about depth ordering, choose 1 and leave a short comment.
Ignore visual rendering quality, shadows, or object realism.

Output format: First think about it in steps following the above instructions, then give a one line
answer as follows:

"Score = 2"

Figure 24: LLM instructions for evaluating 3D-spatial relations.
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G LLM USAGE

We use LLMs for three main purposes:

* Methodology. We use LLMs to automatically generate 2.5D image layouts from text.
* Evaluation. We use LLMs to automatically evaluate images for one of our metrics.

* Writing. We used LLMs to check grammar and refine phrasing during writing of this paper.
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