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ABSTRACT

Current Retrieval-Augmented Generation (RAG) systems concatenate and process
numerous retrieved document chunks for prefill which requires a large volume of
computation, therefore leading to significant latency in time-to-first-token (TTFT).
To reduce the computation overhead as well as TTFT, we introduce TurboRAG, a
novel RAG system that redesigns the inference paradigm of the current RAG sys-
tem by first pre-computing and storing the key-value (KV) caches of documents
offline, and then directly retrieving the saved KV cache for prefill. Hence, online
computation of KV caches is eliminated during inference. In addition, we pro-
vide a number of insights into the mask matrix and positional embedding mech-
anisms, plus fine-tune a pretrained language model to maintain model accuracy
of TurboRAG. Our approach is applicable to most existing large language models
and their applications without any requirement in modification of models and in-
ference systems. Experimental results across a suite of RAG benchmarks demon-
strate that TurboRAG reduces TTFT by up to 9.4x compared to the conventional
RAG systems (on an average of 8.6x), but reserving comparable performance to
the standard RAG systems.

1 INTRODUCTION

Retrieval-augmented generation (RAG) systems have been emerged as a promising direction to al-
leviate some challenges faced by large models (LMs), e.g., hallucinations (Mallen et al., 2023;
Khandelwal et al., 2020; Izacard et al., 2022). As shown in Figure 1a that large-scale documents in
these systems are typically segmented into a myriad of short document chunks that can be embedded
for retrieval. Upon the arrival of a user-input query, the most relevant chunks are then retrieved and
prepended to the input as an augmented query fed to an LM for prefill, followed by decoding in an
autoregressive (AR) manner to generate responses. RAG system effectively utilizes factual docu-
ments as supplementary data to enhance model’s ability to generate more accurate and contextually
rich responses, hence widely adopted by various applications, such as question answering (Siriward-
hana et al., 2023; Han et al., 2024) and content creation (Khattab et al., 2022), etc. However, existing
RAG systems come with several limitations from the system perspective.

First, repeatedly recalled document chunks require recomputation of the key-value (KV) caches,
leading to redundant computation. Second, the augmented document contains substantially more
tokens for prefill which contributes to considerably more computational overhead since the compu-
tation cost of KV caches is quadratic to the input sequence length. It, hence, significantly increases
TTFT, making RAG systems possibly unsuitable for applications that have stringent constraints on
response time. Third, as a side effect of the requirement in substantial computation resources for
concatenated document prefill, the batch size on a single device might be limited.

The fundamental reason for these issues lies in prefill paradigm of the current RAG system, which
involves online computation of the concatenated long documents, i.e. it collects the most relevant
documents and then performs prefill for them together. A natural question arises: can we alter this
paradigm to remarkably reduce the computation overhead of prefill? If we were able to precompute
the KV caches of the retrieved documents offline and let the prefill stage directly uses these saved KV
caches to rebuild the complete KV cache for a request online, a large body of online computation can
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then be completely eliminated, thus significantly reducing system’s TTFT and improving inference
efficiency. This essentially transforms the RAG’s prefill stage into a hybrid paradigm combining
both offline and online processing. Compared to the conventional RAG system, the only issue is
that the transformation may result in inconsistent attention mask matrix and position IDs. Resolving
these inconsistencies would yield an efficient RAG solution.

In this paper, we propose TurboRAG, which is grounded in two observations. First, as illustrated
in Figure 2a, cross-attention among different documents is exceedingly sparse in RAG models and
the text contents between most documents are actually independent. Second, for relative position
embedding techniques, such as RoPE(Su et al., 2024), only the relative distance between two po-
sitions matters. Consequently, the relative positional embeddings of a document are equivalent no
matter the KV cache is computed using the individual document or the entire concatenated docu-
ments. Inspired from these observations, TurboRAG first pre-computes and stores the KV caches
for each document offline. It then injects the relevant KV caches of the retrieved documents into a
user request to construct the complete KV caches for prefill using the independent attention mask
matrix from the Figure 2c and the standard RoPE.

Compared to the conventional RAG system, experimental results across the LongBench multi-
document QA benchmarks demonstrate that TurboRAG reduces TTFT by up to 9.4x and on an
average of 8.6x, with comparable accuracy to the baseline. Simultaneously, during online infer-
ence, TurboRAG reduces computational resource utilization by 98.46% compared to standard RAG,
which significantly increases the maximum supported batch size and enhances throughput. Addi-
tionally, regression experiments indicate that TurboRAG does not exhibit any significant degradation
in other general capabilities compared to standard RAG.

In summary, we make three major contributions. First, we design a novel pipeline that decomposes
the prefill stage of conventional RAG systems into offline and online phases to notably reduce the
overhead of KV cache computation. Second, we propose simple yet effective techniques to handle
attention mask and position IDs so that model accuracy is maintained. Third, we achieve a substan-
tial improvement of 9.4x in TTFT over the state-of-the-art multi-document QA benchmarks without
compromising accuracy.

2 RELATED WORK

Retrieval-Augmented Generation (RAG) (Lewis et al., 2020) has achieved significant progress in
natural language processing by integrating large language models (LLMs) with external knowledge
databases. This integration enhances the ability of generative models to produce accurate, relevant,
and context-rich responses. Recent studies (Borgeaud et al., 2022; Jiang et al., 2024; Trivedi et al.,
2022; Ram et al., 2023) have demonstrated that RAG significantly outperforms pure generative
models across various benchmarks, thereby gathering considerable amounts of research interests in
various domains such as question answering (Siriwardhana et al., 2023; Han et al., 2024), code gen-
eration (Lu et al., 2022), and content creation (Khattab et al., 2022), etc. However, as a relative new
research topic, the current RAG systems still suffer from some drawbacks, among which low perfor-
mance and long latency are the most prominent ones. Addressing these problems would effectively
make RAG more applicable to latency-sensitive LLM tasks.

As illustrated in Figure 1a, the workflow of a naive RAG system comprises two steps: retrieval
and generation, combining offline preparation with online processing to enhance performance. In
the offline phase, RAG utilizes embedding models such as BGE (Chen et al., 2024a)) and GTE (Li
et al., 2023) to convert external knowledge sources (e.g., document chunks) into high-dimensional
vectors, which are then indexed into a specialized vector database. Upon receiving a user request,
RAG first accesses this vector database to perform a similarity search, retrieving documents that
best match the request based on semantic content. Subsequently, RAG integrates the content of
these retrieved documents with the original user request to form an augmented query, which is input
into the LLM to generate a more informative and contextually relevant response (Topsakal & Akinci,
2023).

Researchers have proposed various methods to optimize the performance of retrieval-augmented
generation (RAG) systems. Some approaches modify the attention computation mechanism to re-
duce computational complexity (Wang et al., 2020; Choromanski et al., 2020; Monteiro et al., 2024;
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(a) Standard RAG (b) TurboRAG

Figure 1: Pipeline of Standard RAG and TurboRAG. TurboRAG pre-compute the KV cache for each
chunk of text and reuse during RAG inference.

Choromanski et al., 2020; Kitaev et al., 2020), serving as general optimizations for the model ar-
chitecture. Furthermore, FiD (Fusion-in-Decoder) (Hofstätter et al., 2023) independently processes
each retrieved passage through the encoder, limiting self-attention to individual passages. This en-
sures that the computational cost scales linearly with the number of passages. The decoder then
aggregates the retrieved information, allowing the model to better extract relevant support from
multiple retrieved passages. Parallel Context Windows (PCW) (Ratner et al., 2022) addresses long-
text processing by dividing texts into smaller chunks and restricting attention computations within
chunks. While this method avoids expensive cross-window attention, it does not resolve position
embedding discontinuities, making it better suited for tasks like RAG where windows are rela-
tively independent. Sparse context selection (Zhu et al., 2024) further accelerates RAG inference by
adding a LLM-based filtering mechanism to reduce the number of retrieved documents processed,
significantly enhancing efficiency in large-scale retrieved documents.

Additional techniques focus on compressing and merging KV caches, as well as distributed infer-
ence, to reduce computational overhead in processing long sequences (Wang et al., 2024; Liu et al.,
2024; Zhang et al., 2024). While effective for general long-text generation, these methods face
challenges in RAG systems due to the dynamic nature of retrieved passages, where directly concate-
nating cached states can lead to accuracy drops. Multi-level caching systems like RAGCache (Jin
et al., 2024) optimize efficiency by reusing intermediate states across queries. However, RAGCache
stores KV caches for identical queries that frequently appear in historical dialogue records, rely-
ing on exact matches between contexts and prompt text. This approach faces two main challenges:
(1) it cannot handle variations in the order of recalled documents; (2) it suffers from a hit rate is-
sue, requiring recalculation when discrepancies occur between the cached context and the current
prompt.

To address the performance issues, we propose TurboRAG, a novel RAG optimization scheme by
precomputing and storing the key-value (KV) caches of document fragments offline. During online
generation, the model directly utilizes these precomputed KV caches, avoiding redundant computa-
tion of the retrieved document fragments. To be best of our knowledge, this is the first work in the
literature that attempts to redesign inference paradigm of the current RAG system by transforming
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(a) Casual Attention (b) Composite Positions (c) Reordered Positions

Figure 2: The first row presents three distinct setting of attention mask matrices and position IDs. (a)
Lower triangular casual attention, where the entire context is attended to. (b) Independent Atten-
tion and Composite Positions, which use the original position IDs for each chunk. (c) Independent
Attention and Reordered Positions, where each document can only attend to itself and rearrange
the position IDs for tokens in chunk to standard monotone increasing numbers. In the second and
third rows, we present an instance of RAG to visualize and analyze the distribution of the atten-
tion matrices under different settings, as well as the distribution of attention scores from the query
to the context chunks. This instance consists of four text chunks and a user query, as detailed in
Appendix A. In the standard setting shown in the first column of second row, it can be observed
that the attention scores between different chunks are quite sparse; each document primarily fo-
cuses on its internal information. Furthermore, in the third row, the distribution of attention scores
from the query to the context chunks indicates that even when the attention between documents is
fully masked, the distribution of attention scores from the query to the documents does not exhibit
significant variation, remaining concentrated in the documents that contain relevant information.

the online computation of KV caches for the retrieved documents into offline processing. This ap-
proach significantly reduces the computational complexity of the RAG systems and could become a
powerful enabler for LLM applications that have restricted latency constraints.

3 METHODOLOGY

This section presents TurboRAG, a novel approach to improve the performance of conventional
RAG systems without sacrificing accuracy. We formalize the problem in Section 3.1 and discuss
the differences in the attention mask matrix and position IDs between TurboRAG and existing RAG
systems in Section 3.2. Section 3.3 explains how we trained the model to adapt to the new attention
mask matrix and position IDs. We introduce the TurboRAG inference pipeline in Section 3.4.

3.1 PROBLEM FORMALIZATION

Conventionally, given a user query q, we retrieve top k document chunks, [c1, . . . , ck], and send
them to a LLM that sequentially generates the textual outputs. We denote the number of tokens
in x as len(x) and we assume len(ci) = l. In existing RAG, we first compute the prefill using
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q and the concatenated c, denoted as a concatenated context sequence [c1, . . . , ck, q], to obtain the
corresponding hidden states Xc. At each decoding step t, the model computes attention scores
based on Xc. Let X = [X1,X2, . . . ,Xt] be the hidden states of the tokens generated so far, where
Xt is the hidden state for the current token being generated. The model computes the query Qt, key
Ki, and value Vi matrices for context at position i:

Qt = XtWQ, Ki = Xc
iWK , Vi = Xc

iWV (1)

Here, WQ, WK , and WV are the learned weight matrices. The attention score is computed using
the dot product of the query and the key, scaled by the square root of the dimension of the key
vectors d:

Attention scores =
QtK

T
i√

d
(2)

For RoPE, it is necessary to multiply Qt and Ki by their corresponding position embedding sepa-
rately as shown in Equation 3:

Q
′

t =



q0
q1
q2
q3
...

qd−2

qd−1


⊕



cos tθ0
cos tθ0
cos tθ1
cos tθ1

...
cos tθd/2−1

cos tθd/2−1


+



−q1
q0
−q3
q2
...

−qd−1

qd−2


⊕



sin tθ0
sin tθ0
sin tθ1
sin tθ1

...
sin tθd/2−1

sin tθd/2−1


(3)

where θm = 10000−2m/d. A benefit of this equation is that the position embedding for Q and
K can be computed independently. Furthermore, the final result of the multiplication of the two
position embeddings is solely dependent on the positional difference between them. Since this is an
autoregressive model, we need to apply a causal mask to ensure that the model does not attend to
future tokens. This is typically achieved by multiplying with a lower triangular masking matrix:

Attention scores = Attention scores ∗M (4)

where M is the masking matrix. K
′

and V are generally referred to as KV cache, which is stored
for the subsequent computation of attention scores in the later regressive decoding. The attention
scores are then normalized using the softmax function to obtain attention weights. Finally, the output
for the current token is computed as a weighted sum of the value vectors.

3.2 POSITION ID REARRANGEMENT

This section presents the technique we developed to ensure that the concatenated KV cache com-
puted offline for each document is as effective as the KV cache computed using the whole originally
retrieved documents. Figure 2 illustrates the differences in the attention mask matrix and position
IDs between the two methods.

The online concatenation of the KV cache requires that there is no cross-attention between multiple
document chunks during inference, which is a significant distinction from the lower triangular mask
matrix employed by the current RAG system. We denote this new attention modality in Figure 2c as
Independent Attention, which effectively simulates the scenario of retrieving the KV caches and
concatenating them. As illustrated in Figure 2c, cross-attention between documents are all set to
zero, and when decoding the answer, attention scores are computed among query, answer and all
documents.

Another issue arising from TurboRAG is the computation of position embeddings. The key cache
computed for each ci are denoted as Kci . If the KV caches are simply concatenated, all Kci

will consist of position IDs ranging from 0 to l. Consequently, the finally combined IDs will be
represented as [0, . . . , l, 0, . . . , l, 0, . . . , l], which we refer to as composite positions. This presents
a problem: when decoding at step t, the positional difference between an element in Kci and t does
not correspond to the actual token index difference. For instance, the third element in Xc2 at this
point has a positional difference of t−3, while the actual token index difference should be t−(l+3).

5
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To resolve this issue, we rearrange the positions of all key cache to obtain [0, . . . , l, l+1, . . . , 2l, 2l+
1, . . . , k · l]. We refer to this new positions arrangement as reordered positions. Equation 3 demon-
strates that RoPE can effectively support reordered positions; it suffices to retain the K and V
from Equation 1 when saving the KV cache. After concatenating KV caches, we can compute the
key cache K

′
using Equation 3 with the new position IDs, which is quite straightforward. For Q,

we can leverage Equation 3 to get Q
′

using its position ID, which is the same as the standard RAG
system.

However, the new attention mask matrix and position embedding could lead to a significant accuracy
drop in question-answering tasks. To mitigate this issue, we need to specifically train the model to
make the LLM be able to handle this new setting. To compare the effects of different positional
indices, we will conduct experiments on both reordered positions and composite positions in
Section 4. Next, we will introduce the training details.

3.3 ADAPTING LLMS FOR PRECOMPUTED CACHE CONCATENATION

In order to enable a pretrained LM to execute diverse instructions, it is a common practice to fine-
tune the LM using a pile of specifically created instruction learning data that encompasses various
instruction tasks. For example, we usually need specialized data to enhance the reading compre-
hension capability used in a RAG model. Instruction learning data is generally constructed in the
following format to train the model.

You are an accurate and reliable AI assistant capable of answering questions by referencing
external documents. Please note that the external documents may not always be related to
the question. The documents are as follows:
<|doc start|>{chunk 1}<|doc end|>
<|doc start|>{chunk 2}<|doc end|>
<|doc start|>{chunk 3}<|doc end|>
...
If the information in the documents contain the correct answer, you will provide an accurate
response. If the documents do not contain the answer, you will refuse to answer.

Question: {que}

Standard supervised fine-tuning (SFT) typically employs the attention mask matrix and position
embeddings shown in Figure 2a to fine-tune the LM using the data with the above format. However,
to make sure that the pretrained LM can accommodate to new patterns exhibited in the mask matrix
and position embedding during inference, TurboRAG used the mask matrix and position embedding
in Figure 2b and Figure 2c to fine-tune the LM. After the fine-tuning, the LM would be able to see
the same context KV cache produced from training while conducting inference. Therefore, it would
not experience the accuracy regression in question-answering tasks.

3.4 THE TURBORAG PIPELINE

With the fine-tuned LLM, the inference pipeline of TurboRAG is enumerated as follows (Figure 1b):

1. Document Encoding (offline): The documents are encoded into embedding vectors using a
transformer-based model like Bert(Devlin et al., 2019). These document embeddings are stored
in a vector index to facilitate efficient similarity search.

2. Document Prefill (offline): Use an LLM to perform prefill offline. It computes the KV caches
for each document and saves them in the database.

3. Query Encoding: The input query is encoded into a vector using the same Bert model.
4. Retrieval: The encoded query is used to perform a similarity search in the vector database to

retrieve the most relevant documents.
5. Contextual KV cache Formation (online): Retrieve the stored KV cache corresponding to the

documents and concatenate them in the way demonstrated in Figure 2. The combined KV cache
forms a comprehensive context for the query.

6
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6. KV Cache Prefill (online): The LLM processes prefill using the combined KV caches for the
input query.

7. Response Generation (online): After the prefill phase is accomplished, the LLM starts to gen-
erate the response and return to the user.

It is evident that the usage process of TurboRAG is fundamentally consistent with that of standard
RAG, making it highly convenient to use. We will be releasing the modified implementation code
as open source.

4 EXPERIMENTS

This section evaluates performance and accuracy of a number of TurboRAG model variants against
the conventional RAG models. Specifically, we seek to answer the questions below in this section:

• How does TurboRAG perform on document question-answering (QA)?
• What is the overall TTFT performance of TurboRAG compared against the Näive RAG system on

popular benchmarks?
• How large is the regression in the general capabilities of TurboRAG models?
• How efficient is TurboRAG in scaling inference batch sizes?

4.1 EXPERIMENT SETUP

We selected gpt-4o-2024-08-06 as the baseline due to its excellence in many benchmark suites. For
brevity, we refer the conventional RAG system as ”Naı̈ve RAG”. We also fine-tuned two models for
TurboRAG, namely TurboRAG-composite and TurboRAG-reordered corresponding to composite
positions and reordered positions, respectively. All three models are fine-tuned on a dataset com-
posed of 50% document QA data and 50% general tasks (e.g., code, dialogue, reasoning). All data
are publicly accessible. For a detailed composition of the dataset, please refer to Appendix B.

Training Setup We base our training on Qwen2-7B(Yang et al., 2024), performing SFT on the
aforementioned dataset. The fine-tuning was conducted on 32 NVIDIA A100 80GB GPUs with a
batch size of 256 sequences, using a learning rate of 1e-5 and the AdamW optimizer(Loshchilov,
2017). Both Naı̈ve RAG and TurboRAG models were trained using the same data proportions to
ensure comparability.

4.2 DOCUMENT QA ACCURACY

Let’s first evaluate the accuracy of document QA via intensive study on RGB Benchmark(Chen et al.,
2024b), a bilingual benchmark designed to test a model’s ability to answer questions on retrieved
documents. We followed the testing methodology provided by the official guidelines and let each
query extract five documents during the evaluation. In addition, we also measured the accuracy with
varying noise levels from 0.2 to 0.8 (e.g., Noise Ratio = 0.6 means 3 out of 5 retrieved documents
are irrelevant or noisy). In order reveal the effectiveness of fine-tuning, we gauged accuracy of each
TurboRAG configuration with and without fine-tuning.

As shown in Table 1, without fine-tuning, the accuracy drops significantly. Particularly, as the task
difficulty increases (i.e., with a higher noise ratio), the accuracy can decline by nearly 20%. This is
because the RAG models never learned the behavior of the new independent attention and composite
positions employed in inference. Nonetheless, simply fine-tuning the model with the small dataset
enables the TurboRAG models to attain impressive accuracy. Compared to the Näive RAG, even
without fine-tuning, independent attention and reordered positions only decrease the average ac-
curacy by 5.8% (96.8 vs 91.0) and 4.2% (96.8 vs 92.6). After fine-tuning, TurboRAG-reordered
and TurboRAG-composite can effectively maintain the benchmark accuracy gap within 1% com-
pared to the Naı̈ve RAG. They also demonstrated comparable performance to GPT-4o across both
Chinese and English datasets even under high-noise conditions. This highlights the effectiveness
of the proposed modifications in preserving high accuracy when leveraging KV cache in document
QA tasks. Additional experimental data on RGB can be found in Appendix C, which also includes
details on the multi-document integration tasks in the RGB dataset. The results show that even for
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Table 1: Performance comparison of different models under various noise ratios in English and
Chinese in RGB.

Chinese

Model Noise Ratio

0.2 0.4 0.6 0.8 Avg.

GPT-4o-2024-08-06 98.3 98.0 96.6 87.7 95.2
Naı̈ve RAG 99.0 98.0 96.7 87.3 95.3
TurboRAG-composite w/o fine-tuning 98.3 96.3 93.7 79.0 91.8
TurboRAG-reordered w/o fine-tuning 98.0 96.7 93.3 81.3 92.3
TurboRAG-composite 99.0 97.3 96.0 86.7 94.8
TurboRAG-reordered 98.7 97.3 96.0 90.7 95.7

English

Model Noise Ratio

0.2 0.4 0.6 0.8 Avg.

GPT-4o-2024-08-06 99.0 99.3 98.3 96.3 98.2
Naı̈ve RAG 99.7 99.3 99.3 94.3 98.2
TurboRAG-composite w/o fine-tuning 98.0 96.3 91.3 75.0 90.2
TurboRAG-reordered w/o fine-tuning 98.0 97.3 90.7 85.7 92.9
TurboRAG-composite 99.3 98.0 96.7 92.7 96.7
TurboRAG-reordered 99.0 98.3 96.0 93.7 96.8

queries requiring information synthesis across multiple documents, TurboRAG-reordered achieves
accuracy comparable to that of Näive RAG.

To validate that our method proposed techniques are also directly applicable to long text input cases,
we inspected TurboRAG’s accuracy on an additional long-text RAG benchmark dataset, Long-
Bench(Bai et al., 2023). As shown in Table 2, TurboRAG also exhibits comparable answer accuracy
to that of Naı̈ve RAG in such use scenarios.

In all experiments, the performance of TurboRAG-composite was consistently inferior to that of
TurboRAG-reordered, particularly in more challenging contexts such as LongBench. This observa-
tion further validates the necessity of maintaining the accuracy of relative positional differences in
positional encoding.

Table 2: Performance of Naive RAG and TurboRAG on LongBench multi-document QA (subcate-
gories).

Subcategory
(Metric)

Context
Token

Query
Token

Score TTFT (ms)

Naı̈ve Turbo
Composite

Turbo
Reordered Naı̈ve Turbo

Reordered Speedup

MuSiQue (F1) 16349 18.8 22.12 23.64 27.37 1610 171 9.4x
2WikimQA (F1) 7553 17.0 35.02 34.28 39.51 709 101 7.0x
DuReader (Rouge-L) 10642 6.0 34.57 33.37 33.03 1007 116 8.7x
HotpotQA (F1) 13453 20.1 40.21 35.78 45.28 1333 147 9.1x
Avg. 11999 15.5 32.99 31.76 36.29 1165 134 8.6x

4.3 GENERAL CAPABILITY REGRESSION

To ensure that the non-standard attention masks and position IDs usded in fine-tuning does not
negatively affect the models’ general capabilities, we accomplished regression tests using the Open-
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Compass1 benchmark on various mainstream tasks. As summarized in Table 3, the modifications
had minimal impact on the base capabilities of the models. TurboRAG-reordered showed strong
generalization across tasks, with no significant performance degradation compared to Naı̈ve RAG.

Table 3: Regression experiments of Naı̈ve RAG and TurboRAG. Evaluated by OpenCompass.

Model MMLU TriviaQA GSM-8K MATH

Naı̈ve RAG 69.57 56.90 79.12 39.54
TurboRAG-reordered 70.73 56.47 79.45 40.58

Sub +1.16 -0.43 +0.33 +1.04

4.4 TTFT PERFORMANCE

Now we assess the impact of TurboRAG on inference speed. All models are evaluated on the
LongBench dataset, with specific focus on its multi-document QA tasks. The experiments were
conducted on the Huggingface transformers2 using FlashAttention2(Dao, 2023) and an NVIDIA
A100 80GB GPU. As shown in Table 2, TurboRAG-reordered improves the performance of TTFT
by 8.6x on average, with a peak speedup of 9.4x, compared to Naı̈ve RAG for long-documents
processing. This reduction substantiates that TurboRAG can significantly reduce TTFT, thereby
enhancing user experience, and consequently enables the expansion of RAG applications to cases
with stringent latency requirement. The main reason of reduction in the TTFT is that the online
computation overhead of KV caches for long text is largely alleviated as TurboRAG shifts the KV
cache computation for each document to offline processing.

4.5 BATCH SCALING

Compared to Naı̈ve RAG, TurboRAG requires to transfer KV cache from CPU to GPU, which may
introduce extra communication overhead that degrades performance measured by TTFT. To evaluate
the magnitude of the communication cost, we carried out experiments under a fixed total recall text
length of 8192 and a query length of 128. We gathered a series of TTFT numbers with batch
size ranging from 1 to 8 in two settings. One transferred the KV cache from CPU to GPU using
PCIE Gen4, while the other assumed that the KV cache was prefetched to the GPU memory thereby
excluding the impact of communication. Additionally, we measured the computational load for both
Naı̈ve RAG and TurboRAG under different settings. The method for calculating computational load
is detailed in Appendix D.

Table 4: Generation throughput and latency on an A100 GPU.

Batch size Metric Naı̈ve Turbo Speedup Turbo
w/o h2d

Speedup
w/o h2d

1 TTFT (ms) 711 175 4.1x 44 16.1xTFLOPs 136.36 2.09 2.09

2 TTFT (ms) 1408 325 4.3x 56 25.1xTFLOPs 272.72 4.19 4.19

4 TTFT (ms) 2842 666 4.3x 97 29.3xTFLOPs 545.46 8.39 8.39

6 TTFT (ms) 4373 928 4.7x 134 32.6xTFLOPs 818.20 12.58 12.58

8 TTFT (ms) 5812 1429 4.1x 177 32.8xTFLOPs 1090.93 16.78 16.78

1https://github.com/open-compass/opencompass
2https://huggingface.co/
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From Table 4, it is evident that as the batch size increases, the speedup ratio (decrease in TTFT) also
increases without any degradation in performance. When the batch size is small, the pressure on
computational resources is insufficient, resulting in a TTFT speedup value of only 16.1x between
Naı̈ve RAG and TurboRAG. As the batch size increases, GPU becomes over-utilized for naive RAG,
thus leading to substantially higher latency in TTFT compared to TurboRAG. Table 4 also illustrates
that, even in scenarios requiring the transfer of the KV cache from host to device (h2d), TurboRAG
still achieves a fourfold speed improvement compared to Naı̈ve RAG. In addition, we collected
the TFLOPs consumed by both the näive RAG and TurboRAG for each batch size, as shown in
the Metric column of Table 9. It can be seen that TurboRAG achieves astonishingly less TFLOPs,
i.e. approximately 98.46% reduction compared to Naı̈ve RAG. For shorter context lengths, we also
conducted comparative TTFT tests, and the results are recorded in Appendix E. Additionally, if
each text chunk contains 200 tokens, recalling and concatenating 5 segments results in a total of
1000 tokens. According to the experimental results, even with a batch size of 1, a commendable
speedup of up to two times can be achieved.

5 LIMITATION

This section discusses some limitations this paper has that we intentionally leave as the future work
to further improve.

Limitation 1: Storage overhead. TurboRAG essentially trades space for time. For example, Qwen2-
7B has 28 layers, 8 KV heads and its head dimension is 128. Assuming each chunk contains 512
tokens, the KV cache size in FP16 is 2×2×28×8×128×512 = 28M. The KV cache for 1 million
text chunks requires 28 TB storage. While this storage may be acceptable for small to medium-
sized applications, it could pose a problem for larger applications that involve billions of document
chunks. In addition, a KV cache retrieval system will be needed to provide quick access to required
KV cache chunks. However, we have noticed an increasing number of works to handle KV cache
compression (Wang et al., 2024; Liu et al., 2024; Zhang et al., 2024), which can effectively reduce
the storage requirements and are orthogonal to our work. Integrating these KV cache compression
techniques into TurboRAG will be our next direction of work. Beyond disk storage, the process
of loading the KV cache from disk to memory in TurboRAG also puts pressure on memory usage.
During the inference phase, if the batch size is very large and the recalled KV cache is excessive
while the system memory is limited (for example, when deployed on a personal laptop), it may also
impact system performance.

Limitation 2: Model fine-tuning. Another Issue is that the current pipeline still requires fine-tuning
of the model, which limits its applicability and prevents it from being directly used on newly emerg-
ing state-of-the-art LLMs. We are currently exploring ways to reduce or even eliminate this depen-
dency on fine-tuning.

6 CONCLUSION AND DISCUSSION

This paper presented a novel approach to training and utilizing RAG that significantly reduces the
time required for prefill computations when concatenating retrieved text fragments. Other tech-
niques such as KV cache compression are orthogonal to our method, hence can be directly used
to reduce latency and ease storage pressure. Our work raises a interesting question in whether
cross-attention between different fragments is truly necessary. If three individuals have a piece of
information, and I (Q) interact with each person (K) to obtain their information (V), and then in-
tegrate these three pieces into a complete response, would this be sufficient? The three individuals
might not need to communicate with each other. Furthermore, in the inference process for long
texts, many computation of cross-attention might also be redundant.

Another intriguing point is the role of positional embedding. In experiments that extend context
window of LLM via position interpolation, LLMs initially are pretrained with a short context length
and then continued training with a small amount of data using a longer context length. This enables
the model to interpolate positions and learn two sets of position embeddings. In our work, we
also exposed the model to two different sets of positional embeddings, demonstrating LLM’s strong
adaptability to various positional embeddings.
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A DOCUMENT Q&A EXAMPLE

Query When is the premiere of ’Carole King & James Taylor: Just Call Out My
Name’?

Document 1 Duke capped off a remarkable season by beating UCF 30-13 on Wednesday
in the Military Bowl — the program’s first bowl win since 2018. With the
win, Duke got to nine wins for the first time since 2014. Mike Elko has done
one of the best coaching jobs in the country in his first season with the Blue
Devils. The program was barely competitive in David Cutcliffe’s final seasons
on the job, going a combined 5-18 (1-17 ACC) in his final two years. With
Wednesday’s win, Duke finished the season 9-4 overall with a 5-3 mark in ACC
play. It was just the third season in school history that the Blue Devils had
finished with a winning conference record and won a bowl game. Washington:
After going 4-8 in 2021, Washington capped off a tremendous turnaround by
beating Texas 27-20 in the Alamo Bowl. With the win, Washington finished the
season with 11 wins — the most it has had in a season since 2016. That’s the
year the Huskies reached the College Football Playoff...

Document 2 Personal PreferencePreference is a 1987 board game created by Donal Carl-
ston that involves guessing the order in which a player prefers foods, activities,
people, and other items compared to one another. The game was published
by Broderbund in the United States, Playtoy Industries in Canada, and Parker
Brothers International in Britain.updated version by the original creator was
launched on Kickstarter on May 1, 2023. The new version contains updated
cultural references and new categories.1987 Versiongame contains cards in four
categories: Food & Drink, Activities, People, and Potpourri (miscellaneous).
Each card has a photo or drawing on each side and text indicating what that
side represents (e.g., chocolate éclairs, climbing a mountain, Harrison Ford,
spy novels). Each round, one player draws four cards from one category, or one
from each category, depending on the player’s position on the board. Each card
is placed in a colored quadrant of the board...

Document 3 However, the concert tour took place in honor of the 40th anniversary. The two
might have aged since they first performed together but neither Carole King
nor James Taylor have lost a beat in all these years!The concert film includes
the following songs:(You Make Me Feel Like) A Natural WomanSomething
in the Way She MovesSo Far AwayCarolina in My MindCountry RoadSmack-
water JackWhere You Lead (lyrics changed up as the city they’re playing in
replaces New York)Your Smiling FaceBeautifulShower The PeopleWay Over
YonderSweet Baby James (this kicks off the second half of the film)Up on
the RoofIt’s Too LateFire and RainI Feel the Earth MoveYou’ve Got a Friend-
How Sweet It Is (To Be Loved by You)You Can Close Your EyesMexico (end
credits)DIRECTOR: Frank MarshallFEATURING: Carole King, James Tay-
lor, Danny Kortchmar, Peter Asher, Russ Kunkel, Leland SklarADDITIONAL
MUSICIANS: Andrea Zonn, Arnold McCuller, Kate Markowitz, Robbie Kon-
dorCarole King & James Taylor: Just Call Out My Name premiered January
2, 2022, at 9:00pm ET/PT on CNN. The film will be available on demand via
cable/satellite systems, CNNgo platforms, and CNN mobile apps, beginning
Monday, January 3, through Sunday, January 16.

Document 4 I was also raised to see the correlation between life and the game of football
and how the process of preparation leads to success in both.” Jason earned a
bachelors in history, government and philosophy at Adams State in 2005, and
a masters in criminal justice administration from the University of Phoenix in
2007. He added a second master’s in educational methods from the University
of Tulsa in 2012. He was a defensive coordinator at the University of Montana,
a co-defensive coordinator at Adams State, a defensive coordinator at Valdosta
State and the Colorado School of Mines, a defensive advisor at Temple Univer-
sity, served as a defensive assistant at Oklahoma State for two years — after a
two-season stay with fellow FBS program Tulsa as outside linebackers coach...
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B DATA PROPORTIONS

Table 5: Sampling Ratios of Different Data Types during Model Fine-tuning

Data Type Sampling Ratio
Document Q&A 50%
General Dialogue 25%
Reasoning 10%
Code 10%
Others 5%

Table 6: Specific Data and Quantities of Document Q&A

Data Name Language Quantity
glave-rag-v1 English 51,153
CovidQA English 1,519
E-Manual English 1,186
PubMedQA English 22,050
MS Marco English 2,267
FinQA English 14,268
ExpertQA English 1,824
HotpotQA English 17,796
TechQA English 1,496
HAGRID English 3,214
DelusionQA English 1,642
BioASQ English 4,619
CUAD English 2,040
TAT-QA English 29,766
BaiduSTI Chinese 4,032
DuReader Chinese 10,000
BaiduBaike Chinese 13,615
Wiki Chinese 9,265

C SUPPLEMENTARY INFORMATION FOR RGB

Table 7: Comparison of TTFT in RGB for Naı̈ve RAG and TurboRAG.

Model Context Length (tokens) TTFT (ms) Speedup
Naı̈ve RAG 743 87 2.42xTurboRAG 36
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Table 8: Performance comparison of different models under various noise ratios in RGB Information
Integration Task.

Chinese
Model Noise 0.2 Noise 0.4 Noise 0.6 Avg.

Naı̈ve RAG 50 46 29 42
TurboRAG-composite w/o fine-tuning 35 27 18 27
TurboRAG-reordered w/o fine-tuning 30 21 20 24
TurboRAG-composite 53 41 32 42
TurboRAG-reordered 56 44 32 44

English
Model Noise 0.2 Noise 0.4 Noise 0.6 Avg.

Naı̈ve RAG 57 48 36 47
TurboRAG-composite w/o fine-tuning 40 27 27 31
TurboRAG-reordered w/o fine-tuning 31 23 19 24
TurboRAG-composite 58 48 34 47
TurboRAG-reordered 57 51 34 47

D COMPUTATIONAL LOAD CALCULATION

Here, we present the method for calculating FLOPS, while omitting the computation of lm head due
to its relatively small proportion. Let the number of input tokens be denoted as ninput and the context
length as ncontext. For a LLM utilizing the Swiglu activation function, the relevant parameters include
layer num, head num, kv head num, head size, hidden size, and intermediate size. For each token:

• The computational cost of the QKV transformation for each layer, denoted as Cqkv, is given
by:

Cqkv = 2× hidden size × (head num + 2× kv head num)× head size

• The computational cost of the attention mechanism for each layer, denoted as Cattn, is
expressed as:

Cattn = 2× head num × head size × ncontext

• The computational cost of the projection following the attention mechanism for each layer,
denoted as Co, is given by:

Co = 2× hidden size2

• The computational cost of the multilayer perceptron (MLP) for each layer, denoted as Cmlp,
can be represented as:

Cmlp = 2× 3× hidden size × intermediate size

Therefore, the total computational cost can thus be expressed as:

FLOPS = ninput × layer num × (Cqkv + Cattn + Co + Cmlp)
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E COMPARATIVE TTFT ANALYSIS FOR DIFFERENT CONTEXT LENGTHS

Table 9: TTFT (ms) for different context lengths and batch sizes on an A100 GPU.

Seq Length Query Length Batch Size Naı̈ve Turbo
256 128 1 44.00 41.62
256 128 2 68.19 195.96
256 128 4 127.19 165.73
256 128 8 242.31 120.62
512 128 1 59.16 37.16
512 128 2 101.84 47.58
512 128 4 205.61 133.14
512 128 8 398.18 179.94

1024 128 1 97.89 48.79
1024 128 2 186.02 89.08
1024 128 4 359.95 139.70
1024 128 8 711.19 189.81
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