
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TURBORAG: ACCELERATING RETRIEVAL-
AUGMENTED GENERATION WITH PRECOMPUTED KV
CACHES FOR CHUNKED TEXT

Anonymous authors
Paper under double-blind review

ABSTRACT

Current Retrieval-Augmented Generation (RAG) systems concatenate and process
numerous retrieved document chunks for prefill which requires a large volume of
computation, therefore leading to significant latency in time-to-first-token (TTFT).
To reduce the computation overhead as well as TTFT, we introduce TurboRAG, a
novel RAG system that redesigns the inference paradigm of the current RAG sys-
tem by first pre-computing and storing the key-value (KV) caches of documents
offline, and then directly retrieving the saved KV cache for prefill. Hence, online
computation of KV caches is eliminated during inference. In addition, we pro-
vide a number of insights into the mask matrix and positional embedding mech-
anisms, plus fine-tune a pretrained language model to maintain model accuracy
of TurboRAG. Our approach is applicable to most existing large language models
and their applications without any requirement in modification of models and in-
ference systems. Experimental results across a suite of RAG benchmarks demon-
strate that TurboRAG reduces TTFT by up to 9.4x compared to the conventional
RAG systems (on an average of 8.6x), but reserving comparable performance to
the standard RAG systems.

1 INTRODUCTION

Retrieval-augmented generation (RAG) systems have been emerged as a promising direction to al-
leviate some challenges faced by large models (LMs), e.g., hallucinations (Mallen et al., 2023;
Khandelwal et al., 2020; Izacard et al., 2022). As shown in Figure 1a that large-scale documents in
these systems are typically segmented into a myriad of short document chunks that can be embedded
for retrieval. Upon the arrival of a user-input query, the most relevant chunks are then retrieved and
prepended to the input as an augmented query fed to an LM for prefill, followed by decoding in an
autoregressive (AR) manner to generate responses. RAG system effectively utilizes factual docu-
ments as supplementary data to enhance model’s ability to generate more accurate and contextually
rich responses, hence widely adopted by various applications, such as question answering (Siriward-
hana et al., 2023; Han et al., 2024) and content creation (Khattab et al., 2022), etc. However, existing
RAG systems come with several limitations from the system perspective.

First, repeatedly recalled document chunks require recomputation of the key-value (KV) caches,
leading to redundant computation. Second, the augmented document contains substantially more
tokens for prefill which contributes to considerably more computational overhead since the compu-
tation cost of KV caches is quadratic to the input sequence length. It, hence, significantly increases
TTFT, making RAG systems possibly unsuitable for applications that have stringent constraints on
response time. Third, as a side effect of the requirement in substantial computation resources for
concatenated document prefill, the batch size on a single device might be limited.

The fundamental reason for these issues lies in prefill paradigm of the current RAG system, which
involves online computation of the concatenated long documents, i.e. it collects the most relevant
documents and then performs prefill for them together. A natural question arises: can we alter this
paradigm to remarkably reduce the computation overhead of prefill? If we were able to precompute
the KV caches of the retrieved documents offline and let the prefill stage directly uses these saved KV
caches to rebuild the complete KV cache for a request online, a large body of online computation can

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

then be completely eliminated, thus significantly reducing system’s TTFT and improving inference
efficiency. This essentially transforms the RAG’s prefill stage into a hybrid paradigm combining
both offline and online processing. Compared to the conventional RAG system, the only issue is
that the transformation may result in inconsistent attention mask matrix and position IDs. Resolving
these inconsistencies would yield an efficient RAG solution.

In this paper, we propose TurboRAG, which is grounded in two observations. First, as illustrated
in Figure 2a, cross-attention among different documents is exceedingly sparse in RAG models and
the text contents between most documents are actually independent. Second, for relative position
embedding techniques, such as RoPE(Su et al., 2024), only the relative distance between two po-
sitions matters. Consequently, the relative positional embeddings of a document are equivalent no
matter the KV cache is computed using the individual document or the entire concatenated docu-
ments. Inspired from these observations, TurboRAG first pre-computes and stores the KV caches
for each document offline. It then injects the relevant KV caches of the retrieved documents into a
user request to construct the complete KV caches for prefill using the independent attention mask
matrix from the Figure 2c and the standard RoPE.

Compared to the conventional RAG system, experimental results across the LongBench multi-
document QA benchmarks demonstrate that TurboRAG reduces TTFT by up to 9.4x and on an
average of 8.6x, with comparable accuracy to the baseline. Simultaneously, during online infer-
ence, TurboRAG reduces computational resource utilization by 98.46% compared to standard RAG,
which significantly increases the maximum supported batch size and enhances throughput. Addi-
tionally, regression experiments indicate that TurboRAG does not exhibit any significant degradation
in other general capabilities compared to standard RAG.

In summary, we make three major contributions. First, we design a novel pipeline that decomposes
the prefill stage of conventional RAG systems into offline and online phases to notably reduce the
overhead of KV cache computation. Second, we propose simple yet effective techniques to handle
attention mask and position IDs so that model accuracy is maintained. Third, we achieve a substan-
tial improvement of 9.4x in TTFT over the state-of-the-art multi-document QA benchmarks without
compromising accuracy.

2 RELATED WORK

Retrieval-Augmented Generation (RAG) (Lewis et al., 2020) has achieved significant progress in
natural language processing by integrating large language models (LLMs) with external knowledge
databases. This integration enhances the ability of generative models to produce accurate, relevant,
and context-rich responses. Recent studies (Borgeaud et al., 2022; Jiang et al., 2024; Trivedi et al.,
2022; Ram et al., 2023) have demonstrated that RAG significantly outperforms pure generative
models across various benchmarks, thereby gathering considerable amounts of research interests in
various domains such as question answering (Siriwardhana et al., 2023; Han et al., 2024), code gen-
eration (Lu et al., 2022), and content creation (Khattab et al., 2022), etc. However, as a relative new
research topic, the current RAG systems still suffer from some drawbacks, among which low perfor-
mance and long latency are the most prominent ones. Addressing these problems would effectively
make RAG more applicable to latency-sensitive LLM tasks.

As illustrated in Figure 1a, the workflow of a naive RAG system comprises two steps: retrieval
and generation, combining offline preparation with online processing to enhance performance. In
the offline phase, RAG utilizes embedding models such as BGE (Chen et al., 2024a)) and GTE (Li
et al., 2023) to convert external knowledge sources (e.g., document chunks) into high-dimensional
vectors, which are then indexed into a specialized vector database. Upon receiving a user request,
RAG first accesses this vector database to perform a similarity search, retrieving documents that
best match the request based on semantic content. Subsequently, RAG integrates the content of
these retrieved documents with the original user request to form an augmented query, which is input
into the LLM to generate a more informative and contextually relevant response (Topsakal & Akinci,
2023).

Researchers have proposed various methods to optimize the performance of retrieval-augmented
generation (RAG) systems. Some approaches modify the attention computation mechanism to re-
duce computational complexity (Wang et al., 2020; Choromanski et al., 2020; Monteiro et al., 2024;

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(a) Standard RAG (b) TurboRAG

Figure 1: Pipeline of Standard RAG and TurboRAG. TurboRAG pre-compute the KV cache for each
chunk of text and reuse during RAG inference.

Choromanski et al., 2020; Kitaev et al., 2020), serving as general optimizations for the model ar-
chitecture. Furthermore, FiD (Fusion-in-Decoder) (Hofstätter et al., 2023) independently processes
each retrieved passage through the encoder, limiting self-attention to individual passages. This en-
sures that the computational cost scales linearly with the number of passages. The decoder then
aggregates the retrieved information, allowing the model to better extract relevant support from
multiple retrieved passages. Parallel Context Windows (PCW) (Ratner et al., 2022) addresses long-
text processing by dividing texts into smaller chunks and restricting attention computations within
chunks. While this method avoids expensive cross-window attention, it does not resolve position
embedding discontinuities, making it better suited for tasks like RAG where windows are rela-
tively independent. Sparse context selection (Zhu et al., 2024) further accelerates RAG inference by
adding a LLM-based filtering mechanism to reduce the number of retrieved documents processed,
significantly enhancing efficiency in large-scale retrieved documents.

Additional techniques focus on compressing and merging KV caches, as well as distributed infer-
ence, to reduce computational overhead in processing long sequences (Wang et al., 2024; Liu et al.,
2024; Zhang et al., 2024). While effective for general long-text generation, these methods face
challenges in RAG systems due to the dynamic nature of retrieved passages, where directly concate-
nating cached states can lead to accuracy drops. Multi-level caching systems like RAGCache (Jin
et al., 2024) optimize efficiency by reusing intermediate states across queries. However, RAGCache
stores KV caches for identical queries that frequently appear in historical dialogue records, rely-
ing on exact matches between contexts and prompt text. This approach faces two main challenges:
(1) it cannot handle variations in the order of recalled documents; (2) it suffers from a hit rate is-
sue, requiring recalculation when discrepancies occur between the cached context and the current
prompt.

To address the performance issues, we propose TurboRAG, a novel RAG optimization scheme by
precomputing and storing the key-value (KV) caches of document fragments offline. During online
generation, the model directly utilizes these precomputed KV caches, avoiding redundant computa-
tion of the retrieved document fragments. To be best of our knowledge, this is the first work in the
literature that attempts to redesign inference paradigm of the current RAG system by transforming

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) Casual Attention (b) Composite Positions (c) Reordered Positions

Figure 2: The first row presents three distinct setting of attention mask matrices and position IDs. (a)
Lower triangular casual attention, where the entire context is attended to. (b) Independent Atten-
tion and Composite Positions, which use the original position IDs for each chunk. (c) Independent
Attention and Reordered Positions, where each document can only attend to itself and rearrange
the position IDs for tokens in chunk to standard monotone increasing numbers. In the second and
third rows, we present an instance of RAG to visualize and analyze the distribution of the atten-
tion matrices under different settings, as well as the distribution of attention scores from the query
to the context chunks. This instance consists of four text chunks and a user query, as detailed in
Appendix A. In the standard setting shown in the first column of second row, it can be observed
that the attention scores between different chunks are quite sparse; each document primarily fo-
cuses on its internal information. Furthermore, in the third row, the distribution of attention scores
from the query to the context chunks indicates that even when the attention between documents is
fully masked, the distribution of attention scores from the query to the documents does not exhibit
significant variation, remaining concentrated in the documents that contain relevant information.

the online computation of KV caches for the retrieved documents into offline processing. This ap-
proach significantly reduces the computational complexity of the RAG systems and could become a
powerful enabler for LLM applications that have restricted latency constraints.

3 METHODOLOGY

This section presents TurboRAG, a novel approach to improve the performance of conventional
RAG systems without sacrificing accuracy. We formalize the problem in Section 3.1 and discuss
the differences in the attention mask matrix and position IDs between TurboRAG and existing RAG
systems in Section 3.2. Section 3.3 explains how we trained the model to adapt to the new attention
mask matrix and position IDs. We introduce the TurboRAG inference pipeline in Section 3.4.

3.1 PROBLEM FORMALIZATION

Conventionally, given a user query q, we retrieve top k document chunks, [c1, . . . , ck], and send
them to a LLM that sequentially generates the textual outputs. We denote the number of tokens
in x as len(x) and we assume len(ci) = l. In existing RAG, we first compute the prefill using

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

q and the concatenated c, denoted as a concatenated context sequence [c1, . . . , ck, q], to obtain the
corresponding hidden states Xc. At each decoding step t, the model computes attention scores
based on Xc. Let X = [X1,X2, . . . ,Xt] be the hidden states of the tokens generated so far, where
Xt is the hidden state for the current token being generated. The model computes the query Qt, key
Ki, and value Vi matrices for context at position i:

Qt = XtWQ, Ki = Xc
iWK , Vi = Xc

iWV (1)

Here, WQ, WK , and WV are the learned weight matrices. The attention score is computed using
the dot product of the query and the key, scaled by the square root of the dimension of the key
vectors d:

Attention scores =
QtK

T
i√

d
(2)

For RoPE, it is necessary to multiply Qt and Ki by their corresponding position embedding sepa-
rately as shown in Equation 3:

Q
′

t =

q0
q1
q2
q3
...

qd−2

qd−1

⊕

cos tθ0
cos tθ0
cos tθ1
cos tθ1

...
cos tθd/2−1

cos tθd/2−1

+

−q1
q0
−q3
q2
...

−qd−1

qd−2

⊕

sin tθ0
sin tθ0
sin tθ1
sin tθ1

...
sin tθd/2−1

sin tθd/2−1

(3)

where θm = 10000−2m/d. A benefit of this equation is that the position embedding for Q and
K can be computed independently. Furthermore, the final result of the multiplication of the two
position embeddings is solely dependent on the positional difference between them. Since this is an
autoregressive model, we need to apply a causal mask to ensure that the model does not attend to
future tokens. This is typically achieved by multiplying with a lower triangular masking matrix:

Attention scores = Attention scores ∗M (4)

where M is the masking matrix. K
′

and V are generally referred to as KV cache, which is stored
for the subsequent computation of attention scores in the later regressive decoding. The attention
scores are then normalized using the softmax function to obtain attention weights. Finally, the output
for the current token is computed as a weighted sum of the value vectors.

3.2 POSITION ID REARRANGEMENT

This section presents the technique we developed to ensure that the concatenated KV cache com-
puted offline for each document is as effective as the KV cache computed using the whole originally
retrieved documents. Figure 2 illustrates the differences in the attention mask matrix and position
IDs between the two methods.

The online concatenation of the KV cache requires that there is no cross-attention between multiple
document chunks during inference, which is a significant distinction from the lower triangular mask
matrix employed by the current RAG system. We denote this new attention modality in Figure 2c as
Independent Attention, which effectively simulates the scenario of retrieving the KV caches and
concatenating them. As illustrated in Figure 2c, cross-attention between documents are all set to
zero, and when decoding the answer, attention scores are computed among query, answer and all
documents.

Another issue arising from TurboRAG is the computation of position embeddings. The key cache
computed for each ci are denoted as Kci . If the KV caches are simply concatenated, all Kci

will consist of position IDs ranging from 0 to l. Consequently, the finally combined IDs will be
represented as [0, . . . , l, 0, . . . , l, 0, . . . , l], which we refer to as composite positions. This presents
a problem: when decoding at step t, the positional difference between an element in Kci and t does
not correspond to the actual token index difference. For instance, the third element in Xc2 at this
point has a positional difference of t−3, while the actual token index difference should be t−(l+3).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

To resolve this issue, we rearrange the positions of all key cache to obtain [0, . . . , l, l+1, . . . , 2l, 2l+
1, . . . , k · l]. We refer to this new positions arrangement as reordered positions. Equation 3 demon-
strates that RoPE can effectively support reordered positions; it suffices to retain the K and V
from Equation 1 when saving the KV cache. After concatenating KV caches, we can compute the
key cache K

′
using Equation 3 with the new position IDs, which is quite straightforward. For Q,

we can leverage Equation 3 to get Q
′

using its position ID, which is the same as the standard RAG
system.

However, the new attention mask matrix and position embedding could lead to a significant accuracy
drop in question-answering tasks. To mitigate this issue, we need to specifically train the model to
make the LLM be able to handle this new setting. To compare the effects of different positional
indices, we will conduct experiments on both reordered positions and composite positions in
Section 4. Next, we will introduce the training details.

3.3 ADAPTING LLMS FOR PRECOMPUTED CACHE CONCATENATION

In order to enable a pretrained LM to execute diverse instructions, it is a common practice to fine-
tune the LM using a pile of specifically created instruction learning data that encompasses various
instruction tasks. For example, we usually need specialized data to enhance the reading compre-
hension capability used in a RAG model. Instruction learning data is generally constructed in the
following format to train the model.

You are an accurate and reliable AI assistant capable of answering questions by referencing
external documents. Please note that the external documents may not always be related to
the question. The documents are as follows:
<|doc start|>{chunk 1}<|doc end|>
<|doc start|>{chunk 2}<|doc end|>
<|doc start|>{chunk 3}<|doc end|>
...
If the information in the documents contain the correct answer, you will provide an accurate
response. If the documents do not contain the answer, you will refuse to answer.

Question: {que}

Standard supervised fine-tuning (SFT) typically employs the attention mask matrix and position
embeddings shown in Figure 2a to fine-tune the LM using the data with the above format. However,
to make sure that the pretrained LM can accommodate to new patterns exhibited in the mask matrix
and position embedding during inference, TurboRAG used the mask matrix and position embedding
in Figure 2b and Figure 2c to fine-tune the LM. After the fine-tuning, the LM would be able to see
the same context KV cache produced from training while conducting inference. Therefore, it would
not experience the accuracy regression in question-answering tasks.

3.4 THE TURBORAG PIPELINE

With the fine-tuned LLM, the inference pipeline of TurboRAG is enumerated as follows (Figure 1b):

1. Document Encoding (offline): The documents are encoded into embedding vectors using a
transformer-based model like Bert(Devlin et al., 2019). These document embeddings are stored
in a vector index to facilitate efficient similarity search.

2. Document Prefill (offline): Use an LLM to perform prefill offline. It computes the KV caches
for each document and saves them in the database.

3. Query Encoding: The input query is encoded into a vector using the same Bert model.
4. Retrieval: The encoded query is used to perform a similarity search in the vector database to

retrieve the most relevant documents.
5. Contextual KV cache Formation (online): Retrieve the stored KV cache corresponding to the

documents and concatenate them in the way demonstrated in Figure 2. The combined KV cache
forms a comprehensive context for the query.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

6. KV Cache Prefill (online): The LLM processes prefill using the combined KV caches for the
input query.

7. Response Generation (online): After the prefill phase is accomplished, the LLM starts to gen-
erate the response and return to the user.

It is evident that the usage process of TurboRAG is fundamentally consistent with that of standard
RAG, making it highly convenient to use. We will be releasing the modified implementation code
as open source.

4 EXPERIMENTS

This section evaluates performance and accuracy of a number of TurboRAG model variants against
the conventional RAG models. Specifically, we seek to answer the questions below in this section:

• How does TurboRAG perform on document question-answering (QA)?
• What is the overall TTFT performance of TurboRAG compared against the Näive RAG system on

popular benchmarks?
• How large is the regression in the general capabilities of TurboRAG models?
• How efficient is TurboRAG in scaling inference batch sizes?

4.1 EXPERIMENT SETUP

We selected gpt-4o-2024-08-06 as the baseline due to its excellence in many benchmark suites. For
brevity, we refer the conventional RAG system as ”Naı̈ve RAG”. We also fine-tuned two models for
TurboRAG, namely TurboRAG-composite and TurboRAG-reordered corresponding to composite
positions and reordered positions, respectively. All three models are fine-tuned on a dataset com-
posed of 50% document QA data and 50% general tasks (e.g., code, dialogue, reasoning). All data
are publicly accessible. For a detailed composition of the dataset, please refer to Appendix B.

Training Setup We base our training on Qwen2-7B(Yang et al., 2024), performing SFT on the
aforementioned dataset. The fine-tuning was conducted on 32 NVIDIA A100 80GB GPUs with a
batch size of 256 sequences, using a learning rate of 1e-5 and the AdamW optimizer(Loshchilov,
2017). Both Naı̈ve RAG and TurboRAG models were trained using the same data proportions to
ensure comparability.

4.2 DOCUMENT QA ACCURACY

Let’s first evaluate the accuracy of document QA via intensive study on RGB Benchmark(Chen et al.,
2024b), a bilingual benchmark designed to test a model’s ability to answer questions on retrieved
documents. We followed the testing methodology provided by the official guidelines and let each
query extract five documents during the evaluation. In addition, we also measured the accuracy with
varying noise levels from 0.2 to 0.8 (e.g., Noise Ratio = 0.6 means 3 out of 5 retrieved documents
are irrelevant or noisy). In order reveal the effectiveness of fine-tuning, we gauged accuracy of each
TurboRAG configuration with and without fine-tuning.

As shown in Table 1, without fine-tuning, the accuracy drops significantly. Particularly, as the task
difficulty increases (i.e., with a higher noise ratio), the accuracy can decline by nearly 20%. This is
because the RAG models never learned the behavior of the new independent attention and composite
positions employed in inference. Nonetheless, simply fine-tuning the model with the small dataset
enables the TurboRAG models to attain impressive accuracy. Compared to the Näive RAG, even
without fine-tuning, independent attention and reordered positions only decrease the average ac-
curacy by 5.8% (96.8 vs 91.0) and 4.2% (96.8 vs 92.6). After fine-tuning, TurboRAG-reordered
and TurboRAG-composite can effectively maintain the benchmark accuracy gap within 1% com-
pared to the Naı̈ve RAG. They also demonstrated comparable performance to GPT-4o across both
Chinese and English datasets even under high-noise conditions. This highlights the effectiveness
of the proposed modifications in preserving high accuracy when leveraging KV cache in document
QA tasks. Additional experimental data on RGB can be found in Appendix C, which also includes
details on the multi-document integration tasks in the RGB dataset. The results show that even for

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Performance comparison of different models under various noise ratios in English and
Chinese in RGB.

Chinese

Model Noise Ratio

0.2 0.4 0.6 0.8 Avg.

GPT-4o-2024-08-06 98.3 98.0 96.6 87.7 95.2
Naı̈ve RAG 99.0 98.0 96.7 87.3 95.3
TurboRAG-composite w/o fine-tuning 98.3 96.3 93.7 79.0 91.8
TurboRAG-reordered w/o fine-tuning 98.0 96.7 93.3 81.3 92.3
TurboRAG-composite 99.0 97.3 96.0 86.7 94.8
TurboRAG-reordered 98.7 97.3 96.0 90.7 95.7

English

Model Noise Ratio

0.2 0.4 0.6 0.8 Avg.

GPT-4o-2024-08-06 99.0 99.3 98.3 96.3 98.2
Naı̈ve RAG 99.7 99.3 99.3 94.3 98.2
TurboRAG-composite w/o fine-tuning 98.0 96.3 91.3 75.0 90.2
TurboRAG-reordered w/o fine-tuning 98.0 97.3 90.7 85.7 92.9
TurboRAG-composite 99.3 98.0 96.7 92.7 96.7
TurboRAG-reordered 99.0 98.3 96.0 93.7 96.8

queries requiring information synthesis across multiple documents, TurboRAG-reordered achieves
accuracy comparable to that of Näive RAG.

To validate that our method proposed techniques are also directly applicable to long text input cases,
we inspected TurboRAG’s accuracy on an additional long-text RAG benchmark dataset, Long-
Bench(Bai et al., 2023). As shown in Table 2, TurboRAG also exhibits comparable answer accuracy
to that of Naı̈ve RAG in such use scenarios.

In all experiments, the performance of TurboRAG-composite was consistently inferior to that of
TurboRAG-reordered, particularly in more challenging contexts such as LongBench. This observa-
tion further validates the necessity of maintaining the accuracy of relative positional differences in
positional encoding.

Table 2: Performance of Naive RAG and TurboRAG on LongBench multi-document QA (subcate-
gories).

Subcategory
(Metric)

Context
Token

Query
Token

Score TTFT (ms)

Naı̈ve Turbo
Composite

Turbo
Reordered Naı̈ve Turbo

Reordered Speedup

MuSiQue (F1) 16349 18.8 22.12 23.64 27.37 1610 171 9.4x
2WikimQA (F1) 7553 17.0 35.02 34.28 39.51 709 101 7.0x
DuReader (Rouge-L) 10642 6.0 34.57 33.37 33.03 1007 116 8.7x
HotpotQA (F1) 13453 20.1 40.21 35.78 45.28 1333 147 9.1x
Avg. 11999 15.5 32.99 31.76 36.29 1165 134 8.6x

4.3 GENERAL CAPABILITY REGRESSION

To ensure that the non-standard attention masks and position IDs usded in fine-tuning does not
negatively affect the models’ general capabilities, we accomplished regression tests using the Open-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Compass1 benchmark on various mainstream tasks. As summarized in Table 3, the modifications
had minimal impact on the base capabilities of the models. TurboRAG-reordered showed strong
generalization across tasks, with no significant performance degradation compared to Naı̈ve RAG.

Table 3: Regression experiments of Naı̈ve RAG and TurboRAG. Evaluated by OpenCompass.

Model MMLU TriviaQA GSM-8K MATH

Naı̈ve RAG 69.57 56.90 79.12 39.54
TurboRAG-reordered 70.73 56.47 79.45 40.58

Sub +1.16 -0.43 +0.33 +1.04

4.4 TTFT PERFORMANCE

Now we assess the impact of TurboRAG on inference speed. All models are evaluated on the
LongBench dataset, with specific focus on its multi-document QA tasks. The experiments were
conducted on the Huggingface transformers2 using FlashAttention2(Dao, 2023) and an NVIDIA
A100 80GB GPU. As shown in Table 2, TurboRAG-reordered improves the performance of TTFT
by 8.6x on average, with a peak speedup of 9.4x, compared to Naı̈ve RAG for long-documents
processing. This reduction substantiates that TurboRAG can significantly reduce TTFT, thereby
enhancing user experience, and consequently enables the expansion of RAG applications to cases
with stringent latency requirement. The main reason of reduction in the TTFT is that the online
computation overhead of KV caches for long text is largely alleviated as TurboRAG shifts the KV
cache computation for each document to offline processing.

4.5 BATCH SCALING

Compared to Naı̈ve RAG, TurboRAG requires to transfer KV cache from CPU to GPU, which may
introduce extra communication overhead that degrades performance measured by TTFT. To evaluate
the magnitude of the communication cost, we carried out experiments under a fixed total recall text
length of 8192 and a query length of 128. We gathered a series of TTFT numbers with batch
size ranging from 1 to 8 in two settings. One transferred the KV cache from CPU to GPU using
PCIE Gen4, while the other assumed that the KV cache was prefetched to the GPU memory thereby
excluding the impact of communication. Additionally, we measured the computational load for both
Naı̈ve RAG and TurboRAG under different settings. The method for calculating computational load
is detailed in Appendix D.

Table 4: Generation throughput and latency on an A100 GPU.

Batch size Metric Naı̈ve Turbo Speedup Turbo
w/o h2d

Speedup
w/o h2d

1 TTFT (ms) 711 175 4.1x 44 16.1xTFLOPs 136.36 2.09 2.09

2 TTFT (ms) 1408 325 4.3x 56 25.1xTFLOPs 272.72 4.19 4.19

4 TTFT (ms) 2842 666 4.3x 97 29.3xTFLOPs 545.46 8.39 8.39

6 TTFT (ms) 4373 928 4.7x 134 32.6xTFLOPs 818.20 12.58 12.58

8 TTFT (ms) 5812 1429 4.1x 177 32.8xTFLOPs 1090.93 16.78 16.78

1https://github.com/open-compass/opencompass
2https://huggingface.co/

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

From Table 4, it is evident that as the batch size increases, the speedup ratio (decrease in TTFT) also
increases without any degradation in performance. When the batch size is small, the pressure on
computational resources is insufficient, resulting in a TTFT speedup value of only 16.1x between
Naı̈ve RAG and TurboRAG. As the batch size increases, GPU becomes over-utilized for naive RAG,
thus leading to substantially higher latency in TTFT compared to TurboRAG. Table 4 also illustrates
that, even in scenarios requiring the transfer of the KV cache from host to device (h2d), TurboRAG
still achieves a fourfold speed improvement compared to Naı̈ve RAG. In addition, we collected
the TFLOPs consumed by both the näive RAG and TurboRAG for each batch size, as shown in
the Metric column of Table 9. It can be seen that TurboRAG achieves astonishingly less TFLOPs,
i.e. approximately 98.46% reduction compared to Naı̈ve RAG. For shorter context lengths, we also
conducted comparative TTFT tests, and the results are recorded in Appendix E. Additionally, if
each text chunk contains 200 tokens, recalling and concatenating 5 segments results in a total of
1000 tokens. According to the experimental results, even with a batch size of 1, a commendable
speedup of up to two times can be achieved.

5 LIMITATION

This section discusses some limitations this paper has that we intentionally leave as the future work
to further improve.

Limitation 1: Storage overhead. TurboRAG essentially trades space for time. For example, Qwen2-
7B has 28 layers, 8 KV heads and its head dimension is 128. Assuming each chunk contains 512
tokens, the KV cache size in FP16 is 2×2×28×8×128×512 = 28M. The KV cache for 1 million
text chunks requires 28 TB storage. While this storage may be acceptable for small to medium-
sized applications, it could pose a problem for larger applications that involve billions of document
chunks. In addition, a KV cache retrieval system will be needed to provide quick access to required
KV cache chunks. However, we have noticed an increasing number of works to handle KV cache
compression (Wang et al., 2024; Liu et al., 2024; Zhang et al., 2024), which can effectively reduce
the storage requirements and are orthogonal to our work. Integrating these KV cache compression
techniques into TurboRAG will be our next direction of work. Beyond disk storage, the process
of loading the KV cache from disk to memory in TurboRAG also puts pressure on memory usage.
During the inference phase, if the batch size is very large and the recalled KV cache is excessive
while the system memory is limited (for example, when deployed on a personal laptop), it may also
impact system performance.

Limitation 2: Model fine-tuning. Another Issue is that the current pipeline still requires fine-tuning
of the model, which limits its applicability and prevents it from being directly used on newly emerg-
ing state-of-the-art LLMs. We are currently exploring ways to reduce or even eliminate this depen-
dency on fine-tuning.

6 CONCLUSION AND DISCUSSION

This paper presented a novel approach to training and utilizing RAG that significantly reduces the
time required for prefill computations when concatenating retrieved text fragments. Other tech-
niques such as KV cache compression are orthogonal to our method, hence can be directly used
to reduce latency and ease storage pressure. Our work raises a interesting question in whether
cross-attention between different fragments is truly necessary. If three individuals have a piece of
information, and I (Q) interact with each person (K) to obtain their information (V), and then in-
tegrate these three pieces into a complete response, would this be sufficient? The three individuals
might not need to communicate with each other. Furthermore, in the inference process for long
texts, many computation of cross-attention might also be redundant.

Another intriguing point is the role of positional embedding. In experiments that extend context
window of LLM via position interpolation, LLMs initially are pretrained with a short context length
and then continued training with a small amount of data using a longer context length. This enables
the model to interpolate positions and learn two sets of position embeddings. In our work, we
also exposed the model to two different sets of positional embeddings, demonstrating LLM’s strong
adaptability to various positional embeddings.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
context understanding. arXiv preprint arXiv:2308.14508, 2023.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al.
Improving language models by retrieving from trillions of tokens. In International conference on
machine learning, pp. 2206–2240. PMLR, 2022.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge dis-
tillation. arXiv preprint arXiv:2402.03216, 2024a.

Jiawei Chen, Hongyu Lin, Xianpei Han, and Le Sun. Benchmarking large language models in
retrieval-augmented generation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 17754–17762, 2024b.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019. URL https://arxiv.org/
abs/1810.04805.

Rujun Han, Yuhao Zhang, Peng Qi, Yumo Xu, Jenyuan Wang, Lan Liu, William Yang Wang, Bonan
Min, and Vittorio Castelli. Rag-qa arena: Evaluating domain robustness for long-form retrieval
augmented question answering. arXiv preprint arXiv:2407.13998, 2024.

Sebastian Hofstätter, Jiecao Chen, Karthik Raman, and Hamed Zamani. Fid-light: Efficient and
effective retrieval-augmented text generation. In Proceedings of the 46th International ACM
SIGIR Conference on Research and Development in Information Retrieval, pp. 1437–1447, 2023.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Atlas: Few-shot learning
with retrieval augmented language models, 2022. URL https://arxiv.org/abs/2208.
03299.

Wenqi Jiang, Shuai Zhang, Boran Han, Jie Wang, Bernie Wang, and Tim Kraska.
Piperag: Fast retrieval-augmented generation via algorithm-system co-design. arXiv preprint
arXiv:2403.05676, 2024.

Chao Jin, Zili Zhang, Xuanlin Jiang, Fangyue Liu, Xin Liu, Xuanzhe Liu, and Xin Jin.
Ragcache: Efficient knowledge caching for retrieval-augmented generation. arXiv preprint
arXiv:2404.12457, 2024.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Generalization
through memorization: Nearest neighbor language models, 2020. URL https://arxiv.
org/abs/1911.00172.

Omar Khattab, Keshav Santhanam, Xiang Lisa Li, David Hall, Percy Liang, Christopher Potts,
and Matei Zaharia. Demonstrate-search-predict: Composing retrieval and language models for
knowledge-intensive nlp. arXiv preprint arXiv:2212.14024, 2022.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

11

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2208.03299
https://arxiv.org/abs/2208.03299
https://arxiv.org/abs/1911.00172
https://arxiv.org/abs/1911.00172

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards
general text embeddings with multi-stage contrastive learning. arXiv preprint arXiv:2308.03281,
2023.

Yuhan Liu, Hanchen Li, Yihua Cheng, Siddhant Ray, Yuyang Huang, Qizheng Zhang, Kuntai Du,
Jiayi Yao, Shan Lu, Ganesh Ananthanarayanan, et al. Cachegen: Kv cache compression and
streaming for fast large language model serving. In Proceedings of the ACM SIGCOMM 2024
Conference, pp. 38–56, 2024.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung-won Hwang, and Alexey Svyatkovskiy. Reacc:
A retrieval-augmented code completion framework. arXiv preprint arXiv:2203.07722, 2022.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Hajishirzi.
When not to trust language models: Investigating effectiveness of parametric and non-parametric
memories, 2023. URL https://arxiv.org/abs/2212.10511.

João Monteiro, Étienne Marcotte, Pierre-André Noël, Valentina Zantedeschi, David Vázquez, Nico-
las Chapados, Christopher Pal, and Perouz Taslakian. Xc-cache: Cross-attending to cached con-
text for efficient llm inference. arXiv preprint arXiv:2404.15420, 2024.

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin Leyton-Brown, and
Yoav Shoham. In-context retrieval-augmented language models. Transactions of the Association
for Computational Linguistics, 11:1316–1331, 2023.

Nir Ratner, Yoav Levine, Yonatan Belinkov, Ori Ram, Inbal Magar, Omri Abend, Ehud Karpas,
Amnon Shashua, Kevin Leyton-Brown, and Yoav Shoham. Parallel context windows for large
language models. arXiv preprint arXiv:2212.10947, 2022.

Shamane Siriwardhana, Rivindu Weerasekera, Elliott Wen, Tharindu Kaluarachchi, Rajib Rana, and
Suranga Nanayakkara. Improving the domain adaptation of retrieval augmented generation (rag)
models for open domain question answering. Transactions of the Association for Computational
Linguistics, 11:1–17, 2023.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Oguzhan Topsakal and Tahir Cetin Akinci. Creating large language model applications utilizing
langchain: A primer on developing llm apps fast. In International Conference on Applied Engi-
neering and Natural Sciences, volume 1, pp. 1050–1056, 2023.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving re-
trieval with chain-of-thought reasoning for knowledge-intensive multi-step questions. arXiv
preprint arXiv:2212.10509, 2022.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Zheng Wang, Boxiao Jin, Zhongzhi Yu, and Minjia Zhang. Model tells you where to merge: Adap-
tive kv cache merging for llms on long-context tasks. arXiv preprint arXiv:2407.08454, 2024.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36, 2024.

12

https://arxiv.org/abs/2212.10511

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yun Zhu, Jia-Chen Gu, Caitlin Sikora, Ho Ko, Yinxiao Liu, Chu-Cheng Lin, Lei Shu, Liangchen
Luo, Lei Meng, Bang Liu, et al. Accelerating inference of retrieval-augmented generation via
sparse context selection. arXiv preprint arXiv:2405.16178, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A DOCUMENT Q&A EXAMPLE

Query When is the premiere of ’Carole King & James Taylor: Just Call Out My
Name’?

Document 1 Duke capped off a remarkable season by beating UCF 30-13 on Wednesday
in the Military Bowl — the program’s first bowl win since 2018. With the
win, Duke got to nine wins for the first time since 2014. Mike Elko has done
one of the best coaching jobs in the country in his first season with the Blue
Devils. The program was barely competitive in David Cutcliffe’s final seasons
on the job, going a combined 5-18 (1-17 ACC) in his final two years. With
Wednesday’s win, Duke finished the season 9-4 overall with a 5-3 mark in ACC
play. It was just the third season in school history that the Blue Devils had
finished with a winning conference record and won a bowl game. Washington:
After going 4-8 in 2021, Washington capped off a tremendous turnaround by
beating Texas 27-20 in the Alamo Bowl. With the win, Washington finished the
season with 11 wins — the most it has had in a season since 2016. That’s the
year the Huskies reached the College Football Playoff...

Document 2 Personal PreferencePreference is a 1987 board game created by Donal Carl-
ston that involves guessing the order in which a player prefers foods, activities,
people, and other items compared to one another. The game was published
by Broderbund in the United States, Playtoy Industries in Canada, and Parker
Brothers International in Britain.updated version by the original creator was
launched on Kickstarter on May 1, 2023. The new version contains updated
cultural references and new categories.1987 Versiongame contains cards in four
categories: Food & Drink, Activities, People, and Potpourri (miscellaneous).
Each card has a photo or drawing on each side and text indicating what that
side represents (e.g., chocolate éclairs, climbing a mountain, Harrison Ford,
spy novels). Each round, one player draws four cards from one category, or one
from each category, depending on the player’s position on the board. Each card
is placed in a colored quadrant of the board...

Document 3 However, the concert tour took place in honor of the 40th anniversary. The two
might have aged since they first performed together but neither Carole King
nor James Taylor have lost a beat in all these years!The concert film includes
the following songs:(You Make Me Feel Like) A Natural WomanSomething
in the Way She MovesSo Far AwayCarolina in My MindCountry RoadSmack-
water JackWhere You Lead (lyrics changed up as the city they’re playing in
replaces New York)Your Smiling FaceBeautifulShower The PeopleWay Over
YonderSweet Baby James (this kicks off the second half of the film)Up on
the RoofIt’s Too LateFire and RainI Feel the Earth MoveYou’ve Got a Friend-
How Sweet It Is (To Be Loved by You)You Can Close Your EyesMexico (end
credits)DIRECTOR: Frank MarshallFEATURING: Carole King, James Tay-
lor, Danny Kortchmar, Peter Asher, Russ Kunkel, Leland SklarADDITIONAL
MUSICIANS: Andrea Zonn, Arnold McCuller, Kate Markowitz, Robbie Kon-
dorCarole King & James Taylor: Just Call Out My Name premiered January
2, 2022, at 9:00pm ET/PT on CNN. The film will be available on demand via
cable/satellite systems, CNNgo platforms, and CNN mobile apps, beginning
Monday, January 3, through Sunday, January 16.

Document 4 I was also raised to see the correlation between life and the game of football
and how the process of preparation leads to success in both.” Jason earned a
bachelors in history, government and philosophy at Adams State in 2005, and
a masters in criminal justice administration from the University of Phoenix in
2007. He added a second master’s in educational methods from the University
of Tulsa in 2012. He was a defensive coordinator at the University of Montana,
a co-defensive coordinator at Adams State, a defensive coordinator at Valdosta
State and the Colorado School of Mines, a defensive advisor at Temple Univer-
sity, served as a defensive assistant at Oklahoma State for two years — after a
two-season stay with fellow FBS program Tulsa as outside linebackers coach...

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B DATA PROPORTIONS

Table 5: Sampling Ratios of Different Data Types during Model Fine-tuning

Data Type Sampling Ratio
Document Q&A 50%
General Dialogue 25%
Reasoning 10%
Code 10%
Others 5%

Table 6: Specific Data and Quantities of Document Q&A

Data Name Language Quantity
glave-rag-v1 English 51,153
CovidQA English 1,519
E-Manual English 1,186
PubMedQA English 22,050
MS Marco English 2,267
FinQA English 14,268
ExpertQA English 1,824
HotpotQA English 17,796
TechQA English 1,496
HAGRID English 3,214
DelusionQA English 1,642
BioASQ English 4,619
CUAD English 2,040
TAT-QA English 29,766
BaiduSTI Chinese 4,032
DuReader Chinese 10,000
BaiduBaike Chinese 13,615
Wiki Chinese 9,265

C SUPPLEMENTARY INFORMATION FOR RGB

Table 7: Comparison of TTFT in RGB for Naı̈ve RAG and TurboRAG.

Model Context Length (tokens) TTFT (ms) Speedup
Naı̈ve RAG 743 87 2.42xTurboRAG 36

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 8: Performance comparison of different models under various noise ratios in RGB Information
Integration Task.

Chinese
Model Noise 0.2 Noise 0.4 Noise 0.6 Avg.

Naı̈ve RAG 50 46 29 42
TurboRAG-composite w/o fine-tuning 35 27 18 27
TurboRAG-reordered w/o fine-tuning 30 21 20 24
TurboRAG-composite 53 41 32 42
TurboRAG-reordered 56 44 32 44

English
Model Noise 0.2 Noise 0.4 Noise 0.6 Avg.

Naı̈ve RAG 57 48 36 47
TurboRAG-composite w/o fine-tuning 40 27 27 31
TurboRAG-reordered w/o fine-tuning 31 23 19 24
TurboRAG-composite 58 48 34 47
TurboRAG-reordered 57 51 34 47

D COMPUTATIONAL LOAD CALCULATION

Here, we present the method for calculating FLOPS, while omitting the computation of lm head due
to its relatively small proportion. Let the number of input tokens be denoted as ninput and the context
length as ncontext. For a LLM utilizing the Swiglu activation function, the relevant parameters include
layer num, head num, kv head num, head size, hidden size, and intermediate size. For each token:

• The computational cost of the QKV transformation for each layer, denoted as Cqkv, is given
by:

Cqkv = 2× hidden size × (head num + 2× kv head num)× head size

• The computational cost of the attention mechanism for each layer, denoted as Cattn, is
expressed as:

Cattn = 2× head num × head size × ncontext

• The computational cost of the projection following the attention mechanism for each layer,
denoted as Co, is given by:

Co = 2× hidden size2

• The computational cost of the multilayer perceptron (MLP) for each layer, denoted as Cmlp,
can be represented as:

Cmlp = 2× 3× hidden size × intermediate size

Therefore, the total computational cost can thus be expressed as:

FLOPS = ninput × layer num × (Cqkv + Cattn + Co + Cmlp)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

E COMPARATIVE TTFT ANALYSIS FOR DIFFERENT CONTEXT LENGTHS

Table 9: TTFT (ms) for different context lengths and batch sizes on an A100 GPU.

Seq Length Query Length Batch Size Naı̈ve Turbo
256 128 1 44.00 41.62
256 128 2 68.19 195.96
256 128 4 127.19 165.73
256 128 8 242.31 120.62
512 128 1 59.16 37.16
512 128 2 101.84 47.58
512 128 4 205.61 133.14
512 128 8 398.18 179.94

1024 128 1 97.89 48.79
1024 128 2 186.02 89.08
1024 128 4 359.95 139.70
1024 128 8 711.19 189.81

17

	Introduction
	RELATED WORK
	Methodology
	PROBLEM FORMALIZATION
	Position ID Rearrangement
	Adapting LLMs for Precomputed Cache Concatenation
	The TurboRAG Pipeline

	Experiments
	Experiment Setup
	Document QA Accuracy
	General Capability Regression
	TTFT Performance
	Batch Scaling

	Limitation
	CONCLUSION AND DISCUSSION
	Document Q&A Example
	Data proportions
	Supplementary Information for RGB
	Computational Load Calculation
	Comparative TTFT Analysis for Different Context Lengths

