
Understanding Predictive Coding as a Second-Order Trust-Region Method

Francesco Innocenti 1 Ryan Singh 1 Christopher L. Buckley 1 2

Abstract

Predictive coding (PC) is a brain-inspired local
learning algorithm that has recently been sug-
gested to provide advantages over backpropaga-
tion (BP) in biologically relevant scenarios. While
theoretical work has mainly focused on the condi-
tions under which PC can approximate or equal
BP, how PC in its “natural regime” differs from
BP is less understood. Here we develop a theory
of PC as an adaptive trust-region (TR) method that
uses second-order information. We show that the
weight update of PC can be interpreted as shifting
BP’s loss gradient towards a TR direction found
by the PC inference dynamics. Our theory sug-
gests that PC should escape saddle points faster
than BP, a prediction which we prove in a shal-
low linear model and support with experiments on
deep networks. This work lays a theoretical foun-
dation for understanding other suggested benefits
of PC.

1. Introduction
Predictive coding (PC) is a long-standing theory of cortical
function belonging to the wider class of bio-inspired local
learning algorithms (e.g. Lillicrap et al. 2016; Scellier &
Bengio 2017; Ororbia & Mali 2019; Meulemans et al. 2020;
Payeur et al. 2021; Dellaferrera & Kreiman 2022; Hinton
2022) which has recently been gaining traction as a bio-
logically plausible alternative to backpropagation (Millidge
et al., 2021; 2022a). The basic premise of PC is that the
brain is constantly trying to minimise prediction errors.

In recent years, there has been considerable effort attempt-
ing to relate PC to BP. Starting with Whittington & Bogacz
(2017) showing that PC can approximate the gradients com-
puted by BP on multi-layer perceptrons (MLPs) when the

1School of Engineering and Informatics, University of
Sussex, Brighton, UK 2VERSES Research Lab, Los Ange-
les, California, USA. Correspondence to: Francesco Innocenti
<F.Innocenti@sussex.ac.uk>.

In ICML Workshop on Localized Learning (LLW), Honolulu,
Hawaii, USA. 2023. Copyright 2023 by the author(s).

influence of the prior is upweighted relative to the obser-
vations, Millidge et al. (2022d) generalised this result to
arbitrary computational graphs including convolutional and
recurrent neural networks. A variation of PC, in which
weights are updated at precisely timed inference steps, was
later shown to be equivalent to BP on MLPs (Song et al.,
2020), a result further generalised by Salvatori et al. (2021)
and Rosenbaum (2022). Finally, Millidge et al. (2022b)
unified these and other approximation results as certain
equilibrium properties of energy-based models (EBMs).

On the other hand, the ways in which PC, in its natural
regime, differ from BP are much less understood. Song
et al. (2022) proposed that PC, and EBMs more generally,
implement a fundamentally different principle of credit as-
signment called “prospective configuration”. According to
this principle, neurons first change their activity to better
predict the output target and then update their weights to
consolidate that activity pattern. Based on a wide range
of empirical results, Song et al. (2022) suggested that PC
can outperform BP in biologically realistic tasks including
online and continual learning.

Recent work has started to provide a theoretical basis for this
principle. For example, Millidge et al. (2022c) showed (i)
that in the linear case the PC inference equilibrium can be in-
terpreted as an average of BP’s feedforward pass values and
the local targets computed by target propagation (TP; Meule-
mans et al. 2020), and (ii) that any critical point of the PC
energy function is also a critical point of the BP loss. In the
online (mini-batches of size one) case, Alonso et al. (2022)
proved that PC approximates implicit gradient descent un-
der specific rescalings of the layer activations. While we
were writing this paper, Alonso et al. (2023) further showed
that when this approximation holds, PC is sensitive to Hes-
sian information for small learning rates. Nevertheless, the
fundamental relationship between PC and BP still remains
to be fully elucidated.

Here, we show that PC can be usefully understood as a
form of adaptive trust-region (TR) algorithm that exploits
second-order information. In particular, we show that the
inference stage of PC can be thought of as solving a TR
problem on the BP loss using a trust region defined by the
Fisher information of the generative model. The PC weight
update can then be interpreted as shifting the loss gradient

1

Understanding Predictive Coding as a Second-Order Trust-Region Method

Low

High

BP

Low

High

PC

Low

High

Linear BPN

Low

High

Linear BPN

2 −2
−2

2

2−2

2

−2

Figure 1. Landscape geometry and gradient descent dynamics of BP vs PC on a toy network. Training loss and energy landscapes of
an example 1MLP trained with BP (left) and PC (right), plotted both as surfaces (top) and contours with superimposed gradient fields
(bottom). Surfaces are plotted at the same scale for comparison, and vector fields are standardised for visualisation. The energy landscape
of PC is plotted at the inference equilibrium F∗ (see Figure 8 for a visualisation of the landscape inference dynamics).

computed by BP towards the TR inference solution. Our
theory suggests that PC should escape saddles faster than BP,
a well-known property of TR methods (Conn et al., 2000;
Dauphin et al., 2014; Yuan, 2015; Levy, 2016; Murray et al.,
2019). We confirm this prediction in a toy model (Section
3) and provide supporting experiments on deep networks
(Section 5).

The rest of the paper is structured as follows. After some
relevant background on PC and TR methods (Section 2),
we build intuition for the differences between PC and BP
by studying a toy network (Section 3). We then present
our theoretical analysis of PC as a TR method (Section 4),
followed by some experiments consistent with our theory
(Section 5). We conclude with a discussion of our results
as well as directions for future research (Section 6). Theo-
rems, derivations and experiment details are all presented in
Appendix A.

2. Preliminaries
2.1. Notation

Matrices and vectors are denoted with capitals A and small
bold characters v, respectively. All vectors are column vec-
tors [·] ∈ Rn×1. The gradient and Hessian of any twice
differentiable objective function f : Rd → R w.r.t. x
are denoted as ∇xf and ∇2

xf , respectively. We will often

abbreviate them as gf (x) and Hf (x), omitting the indepen-
dent variable when it is clear from the context. The largest
and smallest eigenvalues of the Hessian are λmax(Hf)
and λmin(Hf). We denote any critical point of f where
∇xf = 0 as x∗.

2.2. Predictive coding networks (PCNs)

PCNs are energy-based models that implement a hierarchi-
cal Gaussian generative model of the data (Millidge et al.,
2021). Each layer (and neuron within a layer) of a PCN
can change its activity {z(ℓ)}Lℓ=0 and weights {W (ℓ)}Lℓ=1 to
minimise its local prediction errors. More formally, PCNs
minimise an energy function, called the free energy, that can
be reduced to a sum of squares across layers

F =

L∑
ℓ=1

1

2
Π(ℓ)

(
z(ℓ) − ϕ(ℓ)

(
W (ℓ)z(ℓ−1)

))2

(1)

where Π(ℓ) are layer-wise precision (or inverse covariance)
matrices, and ϕ(ℓ) is some activation function (e.g. ReLU).

Here we consider PCNs trained in a so-called “discrimina-
tive” direction which have been shown to recapitulate the
performance of BP on small-to-medium machine learning
tasks (Millidge et al., 2022a) and suggested to provide addi-
tional benefits in more biologically realistic settings (Song
et al., 2022), although at a much higher computational infer-

2

Understanding Predictive Coding as a Second-Order Trust-Region Method

ence cost. To train a discriminative PCN, the bottom layer
is clamped to some data (e.g. labels), z(L) = x, while the
top layer is fixed to some “prior” (e.g. images), z(0) = y.
The energy (Eq. 1) is minimised in two phases, first w.r.t.
the neural activities (inference) and then w.r.t. the weights
(learning)

Inference: ∆z(ℓ) = −η
∂F
∂z(ℓ)

(2)

Learning: ∆W (ℓ) = −α
∂F

∂W (ℓ)
(3)

where η, α are the respective step sizes. In practice, at every
step of training, this minimisation is performed by running
the inference dynamics to equilibrium ∆z(ℓ) ≈ 0, followed
by a single weight (e.g. GD) update ∂F/∂W (ℓ)|z∗ . This re-
flects the intuition that the neural (activity) dynamics operate
at a faster timescale than the synaptic (weight) dynamics.

2.3. Trust region (TR) methods

TR methods are often introduced as alternatives to “line-
search” algorithms. Whereas line-search techniques such
as GD first determine a direction and then a step size (or
learning rate), TR methods begin by selecting a step (or
region, known as the “trust region”) and then optimise for
the optimal direction within that region. More formally,
given an objective f(θt) we want to minimise, a general
TR problem (Conn et al., 2000; Dauphin et al., 2014; Yuan,
2015) can be formulated as

∆θ = argmin
∆θ

f̃(θt) s.t. ∆θTA∆θ ≤ p (4)

where f̃(θt) indicates different Taylor approximations of the
objective, and A is some positive-definite matrix defining
the norm or geometry of the trust region bounded by some
radius p. Specific TR algorithms can therefore be derived by
(i) different approximations f̃(θt), (ii) different geometries
induced by A, and by (iii) whether A depends on the current
state of the parameters θt and is therefore in some sense
“adaptive”.

Indeed, line-search methods can be seen as special cases
of TR problems (Conn et al., 2000). For example, GD can
be derived as a TR problem (Eq. 4) assuming a linear ap-
proximation of the objective f̃(θ) = f(θ) + gT∆θ and an
Euclidean geometry (or ℓ2 penalty) given by A = I . Solv-
ing for the optimal parameter change gives the GD update
∆θ∗ = −αg where the global learning rate is related to
the trust region size α =

√
p/||g||. Note that this formula-

tion also makes explicit that “vanilla” GD is a non-adaptive
algorithm (unless some learning rate schedule αt is em-
ployed). Similarly, a damped or trust-region Newton (TRN)
method can be obtained by using a quadratic approximation
f̃(θ) = f(θ) + gT∆θ +∆θTH∆θ, leading to the update
∆θ∗ = −(H + 1

αI)
−1g.

3. A Toy Model
Here we study a toy model, an MLP with a single linear
hidden unit (1MLP) f(x) = w2w1x, which allows us to
compare BP and PC exactly. An example of the landscape
geometry and gradient descent (GD) dynamics of the 1MLP
weights trained by BP and PC is shown in Figure 1 (see
Appendix A.1 for details). For BP the landscape is simply
the loss landscape, while for PC the landscape is the energy
landscape at the inference equilibrium.

Even in this minimal setting, we can observe marked qualita-
tive and quantitative differences between the two algorithms.
In particular, PC seems to evade the saddle, taking a more
direct path to the closest manifold of solutions. This is
reflected in the geometry of the equilibrated energy land-
scape, which shows both a flatter “trap” direction leading
to the saddle and a more negatively curved “escape” direc-
tion leading to a valley of solutions. Indeed, we provide
proof that PC will escape this saddle faster than BP for any
non-degenerate problem (Theorem A.3).

More generally, the (stochastic) gradient field of PC seems
to be better aligned with the solutions than that of BP. As
shown in Figure 2, on average the PC update points much
closer and reliably than BP to the optimal direction (i.e.
towards the closest solution).

1 5

0.8

0.9

1 PC
SGD
TRN

Batch

Figure 2. PC weight update direction is closer to optimal than
BP on 1MLPs. For the first 5 training batches, we plot the mean
cosine similarity between the optimal weight direction ∆w∗ and
the update ∆w computed by PC (i) −∇wF∗, (ii) BP with SGD,
−∇wL, and a (iii) trust-region Newton (TRN) method −(H +
λI)−1∇wL with λ = 2. Shaded regions indicate the standard
error of the mean (SEM) across 10 random weight initialisations.

A second observation is the apparent slowdown of PC near
a minimum. In the 1MLP case, we prove that this is be-
cause the manifold of minima of the equilibrated energy
is flatter than that of the loss (Theorem A.4). This also
means that during training PC will be more robust to weight
perturbations near a minimum (see Figure 6), which could
be important in more biological, online settings.

Thus, in this toy example, we show that PC inference effec-
tively reshapes the geometry of the weight landscape such

3

Understanding Predictive Coding as a Second-Order Trust-Region Method

0 5
0

1

2 PC
BP

ReLU, L = 1

Batch

Tr
ai

n
lo

ss

0 5
0

1

2 PC
BP

ReLU, L = 1

Batch

Tr
ai

n
lo

ss

0 23
0

2

PC
BP

ReLU, L = 5

Batch

Tr
ai

n
lo

ss

0 5
0

1

2 PC
BP

ReLU, L = 1

Batch

Tr
ai

n
lo

ss

0 29
0

2

4
PC
BP

ReLU, L = 10

Batch

Tr
ai

n
lo

ss

0 5
0

1

2 PC
BP

ReLU, L = 1

Batch

Tr
ai

n
lo

ss

0 2
0

0.5

PC
BP

Tanh, L = 1

Batch

Tr
ai

n
lo

ss

0 733

0.5

1 PC
BP

Tanh, L = 10

Batch

Tr
ai

n
lo

ss

0 13

0.5

1 PC
BP

Tanh, L = 5

Batch
Tr

ai
n

lo
ss

0 9
0

0.5

PC
BP

Linear, L = 1

Batch

Tr
ai

n
lo

ss

0 644

0.5

1 PC
BP

Linear, L = 10

Batch

Tr
ai

n
lo

ss

0 23

0.5

1 PC
BP

Linear, L = 5

Batch

Tr
ai

n
lo

ss

Figure 3. PC can train deeper chains significantly faster than BP. Mean training loss of 1D networks (deep chains) trained with BP and
PC (see Appendix A.4 for details). Rows and columns indicate different activation functions (Linear, Tanh and ReLU) and depths or
number of hidden layers L = {1, 5, 10}, respectively. Each network type was optimised for learning rate, and training was stopped when
the loss stopped decreasing. Shaded regions represent SEM across 3 different initialisations.

that GD (i) escapes the saddle faster and (ii) takes longer to
converge close to a minimum while being more robust to
perturbations.

4. PC as a Trust-Region Method
Here we show that the inference stage of PC (Eq. 2) solves
a TR problem (Eq. 4) on the BP loss in activity space, while
the learning stage (Eq. 3) essentially uses the TR solution
to shift the GD direction. To make this connection, we
perform a second-order Taylor expansion of the free energy
(Eq. 1) centred around the feedforward pass values zt (see
Appendix A.3 for a full derivation):

F(z) = L(zt) + gL(zt)
T∆z

+
1

2
∆zTI(zt)∆z+O(∆z3) (5)

where ∆z = (z − zt), gL is the gradient of the loss, and
I(zt) is the Fisher information of the target given by the
generative model p(y|z). This approximation allows us to
characterise how (to second order) the PC energy diverges
from the BP loss during inference. We observe that Eq. 5
defines a TR problem (Eq. 4) in activity space with a linear
approximation of the loss plus an adaptive, second-order
geometry given by A = I(zt). The solution to this TR

problem (Eq. 5) is given by

z∗ ≈ zt − I(zt)−1gL(zt) (6)

How does this TR solution found by the inference dynamics
impact the weight update of PC and so its learning dynam-
ics? Recall that in PC the weights are updated after the
activities have (approximately) converged (Section 2.2). We
therefore calculate the weight gradient of the energy at the
inference solution (see Appendix A.3)

∂F
∂W

∣∣∣∣
z∗︸ ︷︷ ︸

PC direction

≈ ∂zt
∂W

I(zt)−1gL(zt)︸ ︷︷ ︸
TR direction

+ gL(W)︸ ︷︷ ︸
BP direction

(7)

where gL(W) is the loss gradient w.r.t. the weights, and
∂zt

∂W is a change of coordinates from activity to weight space.
Thus, we see that the gradient on the equilibrated energy
effectively shifts the GD direction of the loss gradient in
the direction of the TR inference solution mapped back into
weight space. We can then think of the equilibrated energy
landscape F∗ as a more “trustworthy” landscape—a land-
scape which should be easier to gradient descend—than the
loss landscape L when I(zt) provides useful information.

We can gain insight into these GD dynamics (Eq. 7) by
considering the contribution of the Fisher information I(zt).

4

Understanding Predictive Coding as a Second-Order Trust-Region Method

1 4686

0.05

0.1 PC
BP

Linear, L = 10

Batch

Tr
ai

n
lo

ss

1 6560

0.05

0.1
PC
BP

ReLU, L = 10

Batch

Tr
ai

n
lo

ss

1 500

0.05

0.1 PC
BP

Tanh, L = 10

Batch

Tr
ai

n
lo

ss

Figure 4. Faster convergence of PC in deep and wide networks trained on MNIST. Mean training loss of deep (L = 10) and wide
(n = 500) networks trained to classify MNIST for 3 random initialisation (see Appendix A.4 for details). SEMs are not visible.

For example, in directions of high Fisher information or
model curvature—corresponding to directions of high latent
variance—the PC weight update will be biased towards the
TR solution. TR methods are known to be better at escaping
saddles (Conn et al., 2000; Dauphin et al., 2014; Yuan, 2015;
Levy, 2016; Murray et al., 2019), which is exactly what we
observe in the 1MLP case (Section 3). Indeed, we find that
the weight direction taken by PC is much closer to that of
a TRN method than BP with GD (see Figure 2). In areas
of low Fisher information, on the other hand, PC will tend
to look more, but not exactly, like GD, since the curvature
will not be zero (unless we are at a critical point where the
gradient also vanishes). This is what we seem to observe in
the 1MLP case near a minimum, where the model curvature
does not seem to provide useful information and slows down
convergence. Our theory, then, qualitatively recapitulates
the landscape geometry and GD dynamics of PC in the
1MLP case (Section 3).

5. Experiments
Here we report some experiments consistent with the hy-
pothesis, proved for 1MLPs (Theorem A.3) and suggested
by our analysis of PC as a TR method (Section 4), that PC
escapes saddles faster than BP.

5.1. Deep chains

As a first step, we compared the loss dynamics of BP vs PC
on “deep chains” f(x) = wLϕL(. . . ϕ1(w1x)) trained on
toy regression tasks (see Appendix A.4 for details). These
univariate or one-dimensional networks are the ideal mini-
mal case to test the hypothesis that PC escapes saddles faster
than BP since for certain activation functions the number
of saddles is exponentially related to the number of hidden
layers. Specifically, chains with invertible activations such
as linear or Tanh are invariant to

∏L
ℓ=1 2

nℓ = 2L “sign-flip”,
saddle-inducing symmetries (Chen et al., 1993; Bishop &
Nasrabadi, 2006), as nℓ = 1 for all layers. Therefore, since
(S)GD is known to slow down near saddles (Dauphin et al.,
2014; Du et al., 2017; Jin et al., 2021), we should expect BP

to slow down with depth, while PC should converge more
quickly if it indeed avoids saddles faster.

ReLU breaks this type of weight symmetry (while preserv-
ing positive rescalings) and so its associated saddles, but at
the cost of introducing flat regions in the landscape. Because
curvature information can be useful in such regions, and
because PC seems to use second-order information, we also
tested ReLU chains. Following previous work (Alonso et al.,
2022; Song et al., 2022), we performed a learning rate grid
search for each experiment to ensure that any differences
were not due to inherently different learning rates between
PC and BP (see Appendix A.4). We plot the loss dynamics
during training rather than testing because we are interested
in optimisation rather than generalisation. Nevertheless,
the results do not significantly differ and we report the test
losses in Appendix A.4.

Confirming our main prediction, we find that PC can train
deeper chains with saddle-inducing activations significantly
faster than BP (Figure 3). For linear and Tanh activations,
we observe that BP’s convergence with SGD significantly
slows down with more layers. Indeed, we see the emergence
of phase transitions with increased depth, a phenomenon
observed in the loss dynamics of deep linear networks (Saxe
et al., 2013). We also find significant speed benefits of
PC in “saddle-breaking” ReLU chains, suggesting that PC
uses second-order information to evade flat regions. Finally,
we note that both BP and PC were unable to train very
deep chains (L = 15), likely due to vanishing/exploding
gradients.

5.2. Deep and wide networks

Next, we compared PC and BP on wide, as well as deep,
networks f(x) = W (L)ϕ(L)(. . . ϕ(1)(W (1)x)). Wide net-
works introduce even more saddles due to the permutation
symmetries between hidden units (Bishop & Nasrabadi,
2006; Brea et al., 2019; Simsek et al., 2021). Swapping any
two neurons in same layer (or their incoming and outgoing
weights) does not change the output. A layer with n hidden
units has n! permutation symmetries, leading a network to

5

Understanding Predictive Coding as a Second-Order Trust-Region Method

have at least a total of
∏L

ℓ=1 nℓ!2
nℓ symmetries and associ-

ated saddles. We trained 10-layer networks with constant
width n1 = · · · = nL = 500 to classify MNIST digits
(see Appendix A.5) and find speed-ups for PC similar to
those observed in deep chains for all of the above activation
functions (Figure 4).

6. Discussion
In summary, we showed that PC can be cast as an adaptive
trust-region method that exploits second-order information.
Our theory suggested that PC should escape saddle points
faster than BP, a prediction which we verified in a toy model
and supported with experiments on deep networks. This is
consistent with previously reported speed-ups of PC over
BP (Song et al., 2020; Alonso et al., 2022). For example,
Song et al. (2020) found that PC converged significantly
faster than BP on a 15-layer, LeakyReLU network of width
64 trained on Fashion-MNIST with Adam. Using batch
size 1, Alonso et al. (2022) found significant speed-ups of
PC compared to BP for relatively shallower (L = 3) and
wider (n = 1024) ReLU networks trained to classify and
reconstruct CIFAR-10. Our theory provides an explanation
of these results in terms of faster saddle escaping.

More generally, together these results suggest that the
second-order information used by PC contains information
about the curvature of the loss landscape. Indeed, Alonso
et al. (2023) showed that PC approximates TRN in the case
of batch size 1. However, our theory is independent of
batch size, and the empirical results suggest that PC exploits
second-order information for large mini-batches too. In
future work, we aim to better understand the nature of the
second-order information used by PC and investigate its
convergence benefits in more depth.

While we have shown the potential benefits of PC’s infer-
ence scheme, its computational cost remains the major limi-
tation of PC, making it orders of magnitude more expensive
than BP. Indeed, our results explain this high inference cost
by revealing the implicit computation and inversion of a
Fisher matrix. However, promising amortised PC schemes
have been developed (Tschantz et al., 2022), and future work
should investigate whether the benefits of iterative inference
can be retained with amortisation.

Although we did not explore this, our theory can recover
previous approximation results to BP and TP relying on the
ratio of bottom-up vs top-down information (Whittington
& Bogacz, 2017; Millidge et al., 2022c). In particular, vary-
ing layer-wise precisions (see Section 2.2) can be seen as
adjusting different axes of the trust region or, equivalently,
per-parameter learning rates (see Figure 9 for an illustration).
Indeed, because of the duality between TR and line-search
methods (Conn et al., 2000), our theory admits an alterna-

tive interpretation of PC as an adaptive gradient method
(AGM), conceptually similar to state-of-the-art optimisers
like Adam (Kingma & Ba, 2014). Notably, AGMs have
also been shown to escape saddle points faster than standard
SGD (Staib et al., 2019). Studying the relationship between
PC and AGMs is therefore an interesting future research
direction.

A recent paper by Pogodin et al. (2023) suggests that our
theory could be potentially tested against biological data.
The authors showed that under certain assumptions the ge-
ometry of weight updates can be inferred from the weight
distributions and suggested that an Euclidean geometry, as
defined by standard GD, is inconsistent with the empirically
observed log-normal distributions of synaptic weights. This
is in line with our result that PC uses a non-Euclidean (nat-
ural) geometry with the Fisher information as the metric.
To distinguish between different non-Euclidean geometries,
however, experimental data both before and after learning
is needed, since different geometries can lead to the same
post-learning distribution depending on the pre-learning
distribution (Pogodin et al., 2023).

Related, our study has implications for whether the brain
may approximate GD. It seems to be widely accepted that
the brain estimates gradients on some objective or loss func-
tion (Marblestone et al., 2016; Richards et al., 2019; Lilli-
crap et al., 2020; Hennig et al., 2021; Richards & Kording,
2023), and much (if not most) work trying develop bio-
plausible algorithms assumes (either explicitly or implicitly)
that the aim is to approximate BP and GD. Richards &
Kording (2023) suggest that this claim could be experimen-
tally tested by looking at how synaptic changes following
learning on some task correlate with the true gradient of
some loss for that task. Whether or not PC is a good model
of learning in the brain, our results show that first-order,
gradient updates on a sum of local losses (in this case the
free energy) can look like second-order updates on a global
loss1. This raises the possibility that the brain could use
curvature information of the loss by still doing GD, just on
a sum of local objectives. If so, synaptic changes may not
correlate with the loss gradient and should also be compared
with second-order updates.

Finally, our theory can be seen as an important step in pro-
viding a more solid theoretical footing to the principle of
“prospective configuration” (Song et al., 2020) and its associ-
ated empirical benefits. We are excited by the possibility of
extending this framework to explain, and perhaps uncover,
other advantages and disadvantages of PC, such as robust-
ness to small batch sizes and reduced weight interference.

1Furthermore, our results suggest that GD on a natural geome-
try approximates TRN on an Euclidean geometry.

6

Understanding Predictive Coding as a Second-Order Trust-Region Method

Code availability
Code to reproduce all results and plots will be made publicly
available on GitHub upon publication of this work.

Acknowledgements
We would like to thank Dhruva V. Raman for helpful dis-
cussions in the early stages of this project. F. I. is funded by
the Sussex Neuroscience 4-year PhD Programme. R. S. was
supported by the Leverhulme Trust through the be.AI Doc-
toral Scholarship Programme in biomimetic embodied AI.
C. L. B. was partially supported by the European Innovation
Council (EIC) Pathfinder Challenges, Project METATOOL
with Grant Agreement (ID: 101070940).

References
Alonso, N., Millidge, B., Krichmar, J., and Neftci, E. O. A

theoretical framework for inference learning. Advances
in Neural Information Processing Systems, 35:37335–
37348, 2022.

Alonso, N., Krichmar, J., and Neftci, E. Understanding and
improving optimization in predictive coding networks.
arXiv preprint arXiv:2305.13562, 2023.

Anandkumar, A. and Ge, R. Efficient approaches for escap-
ing higher order saddle points in non-convex optimization.
In Conference on learning theory, pp. 81–102. PMLR,
2016.

Bishop, C. M. and Nasrabadi, N. M. Pattern recognition
and machine learning, volume 4. Springer, 2006.

Brea, J., Simsek, B., Illing, B., and Gerstner, W. Weight-
space symmetry in deep networks gives rise to permuta-
tion saddles, connected by equal-loss valleys across the
loss landscape. arXiv preprint arXiv:1907.02911, 2019.

Chen, A. M., Lu, H.-m., and Hecht-Nielsen, R. On the
geometry of feedforward neural network error surfaces.
Neural computation, 5(6):910–927, 1993.

Conn, A. R., Gould, N. I., and Toint, P. L. Trust region
methods. SIAM, 2000.

Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Gan-
guli, S., and Bengio, Y. Identifying and attacking the
saddle point problem in high-dimensional non-convex
optimization. Advances in neural information processing
systems, 27, 2014.

Dellaferrera, G. and Kreiman, G. Error-driven input modu-
lation: solving the credit assignment problem without a
backward pass. In International Conference on Machine
Learning, pp. 4937–4955. PMLR, 2022.

Du, S. S., Jin, C., Lee, J. D., Jordan, M. I., Singh, A., and
Poczos, B. Gradient descent can take exponential time
to escape saddle points. Advances in neural information
processing systems, 30, 2017.

Ge, R., Huang, F., Jin, C., and Yuan, Y. Escaping from sad-
dle points—online stochastic gradient for tensor decom-
position. In Conference on learning theory, pp. 797–842.
PMLR, 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE inter-
national conference on computer vision, pp. 1026–1034,
2015.

Hennig, J. A., Oby, E. R., Losey, D. M., Batista, A. P.,
Byron, M. Y., and Chase, S. M. How learning unfolds in
the brain: toward an optimization view. Neuron, 109(23):
3720–3735, 2021.

Hinton, G. The forward-forward algorithm: Some prelim-
inary investigations. arXiv preprint arXiv:2212.13345,
2022.

Jin, C., Ge, R., Netrapalli, P., Kakade, S. M., and Jordan,
M. I. How to escape saddle points efficiently. In Interna-
tional conference on machine learning, pp. 1724–1732.
PMLR, 2017.

Jin, C., Netrapalli, P., Ge, R., Kakade, S. M., and Jordan,
M. I. On nonconvex optimization for machine learning:
Gradients, stochasticity, and saddle points. Journal of the
ACM (JACM), 68(2):1–29, 2021.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Lee, J. D., Simchowitz, M., Jordan, M. I., and Recht, B.
Gradient descent only converges to minimizers. In Con-
ference on learning theory, pp. 1246–1257. PMLR, 2016.

Levy, K. Y. The power of normalization: Faster evasion of
saddle points. arXiv preprint arXiv:1611.04831, 2016.

Lillicrap, T. P., Cownden, D., Tweed, D. B., and Akerman,
C. J. Random synaptic feedback weights support error
backpropagation for deep learning. Nature communica-
tions, 7(1):13276, 2016.

Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J.,
and Hinton, G. Backpropagation and the brain. Nature
Reviews Neuroscience, 21(6):335–346, 2020.

Marblestone, A. H., Wayne, G., and Kording, K. P. To-
ward an integration of deep learning and neuroscience.
Frontiers in computational neuroscience, 10:94, 2016.

7

Understanding Predictive Coding as a Second-Order Trust-Region Method

Meulemans, A., Carzaniga, F., Suykens, J., Sacramento,
J., and Grewe, B. F. A theoretical framework for target
propagation. Advances in Neural Information Processing
Systems, 33:20024–20036, 2020.

Millidge, B., Seth, A., and Buckley, C. L. Predictive coding:
a theoretical and experimental review. arXiv preprint
arXiv:2107.12979, 2021.

Millidge, B., Salvatori, T., Song, Y., Bogacz, R., and
Lukasiewicz, T. Predictive coding: towards a future of
deep learning beyond backpropagation? arXiv preprint
arXiv:2202.09467, 2022a.

Millidge, B., Song, Y., Salvatori, T., Lukasiewicz, T., and
Bogacz, R. Backpropagation at the infinitesimal infer-
ence limit of energy-based models: Unifying predictive
coding, equilibrium propagation, and contrastive hebbian
learning. arXiv preprint arXiv:2206.02629, 2022b.

Millidge, B., Song, Y., Salvatori, T., Lukasiewicz, T., and
Bogacz, R. A theoretical framework for inference and
learning in predictive coding networks. arXiv preprint
arXiv:2207.12316, 2022c.

Millidge, B., Tschantz, A., and Buckley, C. L. Predictive
coding approximates backprop along arbitrary compu-
tation graphs. Neural Computation, 34(6):1329–1368,
2022d.

Murray, R., Swenson, B., and Kar, S. Revisiting normalized
gradient descent: Fast evasion of saddle points. IEEE
Transactions on Automatic Control, 64(11):4818–4824,
2019.

Ororbia, A. G. and Mali, A. Biologically motivated algo-
rithms for propagating local target representations. In
Proceedings of the aaai conference on artificial intelli-
gence, volume 33, pp. 4651–4658, 2019.

Payeur, A., Guerguiev, J., Zenke, F., Richards, B. A., and
Naud, R. Burst-dependent synaptic plasticity can coordi-
nate learning in hierarchical circuits. Nature neuroscience,
24(7):1010–1019, 2021.

Pogodin, R., Cornford, J., Ghosh, A., Gidel, G., Lajoie,
G., and Richards, B. Synaptic weight distributions
depend on the geometry of plasticity. arXiv preprint
arXiv:2305.19394, 2023.

Richards, B. A. and Kording, K. P. The study of plasticity
has always been about gradients. The Journal of Physiol-
ogy, 2023.

Richards, B. A., Lillicrap, T. P., Beaudoin, P., Bengio, Y.,
Bogacz, R., Christensen, A., Clopath, C., Costa, R. P.,
de Berker, A., Ganguli, S., et al. A deep learning frame-
work for neuroscience. Nature neuroscience, 22(11):
1761–1770, 2019.

Rosenbaum, R. On the relationship between predictive
coding and backpropagation. Plos one, 17(3):e0266102,
2022.

Salvatori, T., Song, Y., Lukasiewicz, T., Bogacz, R., and
Xu, Z. Predictive coding can do exact backpropagation
on convolutional and recurrent neural networks. arXiv
preprint arXiv:2103.03725, 2021.

Saxe, A. M., McClelland, J. L., and Ganguli, S. Exact
solutions to the nonlinear dynamics of learning in deep
linear neural networks. arXiv preprint arXiv:1312.6120,
2013.

Scellier, B. and Bengio, Y. Equilibrium propagation: Bridg-
ing the gap between energy-based models and backprop-
agation. Frontiers in computational neuroscience, 11:24,
2017.

Simsek, B., Ged, F., Jacot, A., Spadaro, F., Hongler, C.,
Gerstner, W., and Brea, J. Geometry of the loss landscape
in overparameterized neural networks: Symmetries and
invariances. In International Conference on Machine
Learning, pp. 9722–9732. PMLR, 2021.

Song, Y., Lukasiewicz, T., Xu, Z., and Bogacz, R. Can
the brain do backpropagation?—exact implementation
of backpropagation in predictive coding networks. Ad-
vances in neural information processing systems, 33:
22566–22579, 2020.

Song, Y., Millidge, B., Salvatori, T., Lukasiewicz, T., Xu,
Z., and Bogacz, R. Inferring neural activity before plas-
ticity: A foundation for learning beyond backpropagation.
bioRxiv, pp. 2022–05, 2022.

Staib, M., Reddi, S., Kale, S., Kumar, S., and Sra, S. Es-
caping saddle points with adaptive gradient methods. In
International Conference on Machine Learning, pp. 5956–
5965. PMLR, 2019.

Tschantz, A., Millidge, B., Seth, A. K., and Buckley, C. L.
Hybrid predictive coding: Inferring, fast and slow. arXiv
preprint arXiv:2204.02169, 2022.

Whittington, J. C. and Bogacz, R. An approximation of the
error backpropagation algorithm in a predictive coding
network with local hebbian synaptic plasticity. Neural
computation, 29(5):1229–1262, 2017.

Yuan, Y.-x. Recent advances in trust region algorithms.
Mathematical Programming, 151:249–281, 2015.

8

Understanding Predictive Coding as a Second-Order Trust-Region Method

A. Appendix
A.1. Toy model experiments

1MLPs were trained with BP and PC to predict a simple
linear function y = −x where x ∼ N (1, 0.1). We used a
uniform weight initialisation w ∼ U(−1, 1) and SGD with
batch size 64 and learning rate α = 0.2 to clearly visualise
the algorithms’ learning trajectory. Training was stopped
when the test loss reached a small tolerance Ltest < 0.001.
For PC, standard Euler integration was used to solve the
inference dynamics (Eq. 2), with a feedforward pass initiali-
sation, step size η = 0.1, and T = 20 inference iterations
(which were sufficient to reach equilibrium). Precisions
were set to one, Π(1) = Π(2) = 1.

In Figure 2, we computed the cosine similarity between the
optimal weight direction ∆w∗ = (w∗

1 − w1, w
∗
2 − w2) and

the algorithms’ GD update at a given point ∆w = −∇wf

cos(∆w∗,∆w) =
⟨∆w∗,∆w⟩
∥∆w∗∥∥∆w∥ (8)

which is simply a normalised dot product. To calculate the
optimal direction, at each training mini-batch we solved
for the shortest (Euclidean) distance from the current it-
erate w = (w1, w2) to the manifold of solutions w∗ =
(w∗

1 ,
y

w∗
1x

) = (w∗
1 ,− 1

w∗
1
)

D =

√(
− 1

w∗
1

− w2

)2

+ (w∗
1 − w1)2 (9)

To minimise this distance, we set the partial derivative of
the distance w.r.t. the optimal weight w∗

1 to zero

∂D

∂w∗
1

=
(w∗

1)
4 − (w∗

1)
3w1 − w∗

1w2 − 1

(w∗
1)

3

√(
− 1

w∗
1
− w2

)2

+ (w∗
1 − w1)2

= 0

(10)
Finding the roots of this derivative means solving for the
quartic polynomial in the numerator, for which we used
numpy.

A.2. Toy model proofs

Here we present our two theorems on 1MLPs, showing (i)
that PC escapes the saddle point induced by the symmetry
in the 1MLP weights faster than BP, and (ii) that the 1MLP
mimina of the equilibrated energy are flatter that those of
the loss.

Definition A.1. 1MLP problem. We define a 1MLP prob-
lem as any non-degenerate linear function of the form
y = mx, x, y ̸= 0 that can in principle be learned by a
1MLP f(x) = w2w1x where x, y indicate the input and
output to the network, respectively.

Definition A.2. (Strict) saddle. A critical point w∗ of
f(w) where ∇f(w∗) = 0 is a saddle if the Hessian at
that point has at least one positive and one negative eigen-
value, λmax(∇2f(w∗)) > 0, λmin(∇2f(w∗)) < 0. In
the literature, these critical points are known as strict or
non-degenerate saddles (Ge et al., 2015; Anandkumar & Ge,
2016; Jin et al., 2017).

Consider the BP mean squared error loss and PC energy (Eq.
1) associated with a 1MLP problem (Definition A.1)

L =
1

2
(y − w2w1x)

2 (11)

F =
1

2
(z − w1x)

2 +
1

2
(y − w2z)

2 (12)

where z indicates the value of the hidden unit or latent in
PC (which is free to vary). Without loss of generality, we
assume a single input-output pair. Note that we can change
the sign of the weights without changing the objectives,
f(w) = f(−w). This is known as a “sign-flip symmetry”
and induces a saddle in the weight landscape (Chen et al.,
1993; Bishop & Nasrabadi, 2006). Now recall that we are
interested in how PC inference (Eq. 2) affects the weight
update (Eq. 3). In the linear case, we can analytically solve
for the inference equilibrium ∂F

∂z = 0, z∗ = w1x+w2y
1+w2

2
and

evaluate the energy at this fixed point

F∗ =
L

1 + w2
2

(13)

The origin w∗ = (0, 0) is critical point of both the loss
and the equilibrated energy since their gradient is zero,
∇wL(w∗) = ∇wF∗(w∗) = 0. To confirm that this point
is a saddle (Definition A.2), we look at the Hessians

HL(w
∗) =

[
0 −xy

−xy 0

]
(14)

HF∗(w∗) =

[
0 −xy

−xy −y2

]
(15)

and see that indeed they both have positive and nega-
tive eigenvalues λ(HL) = ±xy, λ(HF∗) = 1

2 (−y2 ±
y
√
4x2 + y2). Crucially, however, the eigenvalues of the

energy are smaller than those of the loss{
λmax(HF∗) < λmax(HL)

λmin(HF∗) < λmin(HL)
(16)

which can be shown by using the fact that the square root
of a sum is always smaller than the sum of the square roots,√
a2 + b2 <

√
a2 +

√
b2 for a, b ̸= 0. This result is suffi-

cient to prove that PC will escape the saddle faster than BP,
since the near-saddle (S)GD dynamics are controlled by the
local curvature. To see this, consider a second-order Taylor
expansion of objective f around the saddle

f(w∗ +∆w) ≈ f(w∗) +
1

2
∆wTHf∆w (17)

9

Understanding Predictive Coding as a Second-Order Trust-Region Method

where the gradient vanishes. As shown by Lee et al. (2016),
taking a gradient descent step of size α from this approxi-
mation leads to the following recursive update

wt+1 = (I − αHf)
t+1w0

=

nw∑
i=1

(1− αλi)
t+1⟨eiw0⟩ei (18)

where w0 = (w∗ + ∆w), nw = 2 is the number of pa-
rameters, and {λi}nw

i are the Hessian eigenvalues with cor-
responding eigenvectors {ei}nw

i . We see that (S)GD will
be attracted to, and repelled from, the saddle depending on
the degree of curvature along those directions. Because the
equilibrated energy has smaller Hessian eigenvalues than
the loss at the saddle (Eq. 16), PC will be simultaneously
less attracted to and more repelled from it than BP. In dy-
namical systems terms, the energy saddle turns out to be
more “unstable”—and therefore easier to escape—than the
loss saddle.

Theorem A.3. Given any 1MLP problem (Definition A.1)
which induces a saddle (Definition A.2) at the origin in
weight space, (S)GD on the equilibrated PC energy (Eq. 13)
will escape the saddle faster than on the quadratic BP loss
(Eq. 11).

°0.5 0 0.5

w1

°0.5

0

0.5

w
2

BP

°0.5 0 0.5

w1

°0.5

0

0.5

w
2

PC

°1.5 °1 °0.5

w1

0.5

1

1.5

w
2

BP

°1.5 °1 °0.5

w1

0.5

1

1.5

w
2

PC

°1.5 °1 °0.5

w1

0.5

1

1.5

w
2

BP

°1.5 °1 °0.5

w1

0.5

1

1.5

w
2

PC

Figure 5. Gradient flow of BP vs PC near different critical
points on a toy network. Continuous-time GD dynamics in the
vicinity of the saddle (top) and an example minimum (bottom) of
a 1MLP trained with BP and PC on the same regression problem
illustrated in Figure 1. Comparing with the discrete and stochastic
gradient fields (Figure 1), we observe that the continuous dynamics
are a good approximation.

We can also see this by taking the continuous limit of the
near-saddle GD dynamics α → 0 (Eq. 18, Figure 5), leading
to the linear ODE system

ẇ(t) = −Hfw(t) (19)

with solution w(t) = QeΛtQTw(0) and initial condition
w(0) = (w∗ +∆w).

Using the same approach, we can also show that any 1MLP
global minimum2 of the equilibriated energy is flatter than
any corresponding minimum of the loss. Formally, the Hes-
sian eigenvalues of equilibrated energy will also be smaller
than those of the loss at any minimum. Because 1MLPs
already pose an overparameterised (underdetermined) prob-
lem, there is no unique solution but rather a manifold. That
is, for any value of one weight, there exists only one optimal
value of the other, e.g. w∗ = (y

w2x
, w2). These are also

all critical points of both the loss and energy, since their
gradient is zero ∇wL(w∗) = ∇wF∗(w∗) = 0. To verify
that this is a manifold of minima, as before we look at the
Hessian and see that they both have one zero eigenvalue
λmin(HL) = λmin(HF∗) = 0 and one positive eigenvalue
λmax(HL) =

w4
2x

2+y2

w2
2

and λmax(HF∗) =
w4

2x
2+y2

w2
2(1+w2

2)
. It

is straightforward to see that the positive curvature of the
energy is smaller than that of the loss, λmax(HF∗) <
λmax(HL).

Theorem A.4. Given any 1MLP problem (Definition A.1),
the minima of the equilibrated PC energy (Eq. 13) are flatter
than the corresponding minima of the quadratic BP loss (Eq.
11).

Performing the same GD analysis as above (Eqs. 17, 18)
around this manifold of minima leads to the conclusion
that GD will converge slower than BP in the vicinity of a
minimum but also be more robust to random weight pertur-
bations where the local approximation holds (Figure 6). As
before we can make a similar argument for the continuous
case, illustrated in Figure 5.

A.3. Derivations of theoretical results

Free energy expansion. Recall the free energy is the sum
of local prediction errors

F =
1

2
(y−z(L))2+

L−1∑
ℓ=1

1

2
Π(ℓ)

(
z(ℓ)−ϕ(ℓ)(W (ℓ)z(ℓ−1))

)2
(20)

Let the feedforward activations be defined as {z(ℓ)t =

ϕ(ℓ)(. . . ϕ(1)(W (1)z
(0)
t))}Lℓ=1 and further we define the dif-

ference between ∆z = (z − zt). Performing a Taylor

2It is easy to show that these minima are global since saddles
are the only other type of critical point in this problem.

10

Understanding Predictive Coding as a Second-Order Trust-Region Method

0

0.2

0.4

0.6
PC
BP

P
er

tu
rb

ed
 M

S
E

Figure 6. PC is more robust to near-minimum weight pertur-
bations than BP on toy network. Mean squared error (MSE)
between output target and weight-perturbed prediction (y − ŷ)2

of BP and PC trained on the same 1MLP problem illustrated in
Figure 1. Weights were perturbed with i.i.d. Gaussian noise
ξ ∼ N (0, 0.5). Error bars indicate SEM across 10 different seeds.

expansion we see,

F(z) = F(zt) + JT
F (zt)∆z

+
1

2
∆zTHF (zt)∆z+O(∆z3) (21)

and observe the following: F(zt) = L(zt), JT
F (zt) =

gL(zt), since in both cases the terms in the sum col-
lapse at the feedforward values. Further, HF (zt) ≈
−∂2Ey,x ln p(y,z,x)

∂z2 |zt= I(zt) can be seen as the Fisher
information of the feedforward values, w.r.t. to the model p.
Hence:

F(z) = L(zt) + gTL(zt)∆z

+
1

2
∆zTI(zt)∆z+O(∆z3) (22)

Approximate inference solution. If we assume O(∆z3)
is a small contribution, we can approximate the inference
equilibrium by finding the stationary point of the second-
order expansion, yielding

z∗ ≈ zt − I(zt)−1gL(zt) (23)

Approximate weight update. After the activities converge
(at inference equilibrium), PC takes a gradient step on the
free energy (Section 2.2). In order to find this we first
calculate ∂F

∂W = ∂zt

∂W
∂F
∂zt

:

∂F
∂W

=
∂zt
∂W

[
−∆z− I(zt)T∆z+O(∆z2)

]
(24)

Finally, plugging in the equilibrium value z∗

∂F
∂W

∣∣∣∣
z∗

≈ ∂zt
∂W

[
I(zt)−1gL(zt) + gL(zt)

]
≈ ∂zt

∂W
I(zt)−1gL(zt) + gL(W) (25)

A.4. Deep chain experiments

We trained deep chains using SGD with batch size 64. To
control for the learning rate α, we peformed a grid search
over lrs = {1e−4, 1e−3, 1e−2, 1e−1, 1e−0} and compared
the loss dynamics for the learning rate with the lowest train-
ing loss for each algorithm. Linear and Tanh chains were
trained on the same regression task used for the toy models,
y = −x with x ∼ N (1, 0.1), and initialised with PyTorch
default’s He initialisation (He et al., 2015). ReLU chains
were instead trained to predict a positive linear function
y = 2x to avoid mapping to zero. For the same reason,
weights were initialised from a uniform distribution with
positive interval w ∼ U(0.5, 1).
We recorded training and test loss on every batch from ini-
tialisation and stopped training if either (i) the training loss
on the current batch was smaller than Ltrain < 0.01, (ii) the
average training loss (estimated every 500 batches) did not
decrease, or (iii) the loss diverged to infinity (typically be-
cause of high learning rates). For PC, we used an inference
schedule similar to that of Song et al. (2022), halving the
step size dt = 0.1 up to two times with maximum T = 500
training iterations.

0 5
0

1

2 PC
BP

ReLU, L = 1

Batch

Te
st

 lo
ss

0 5
0

1

2 PC
BP

ReLU, L = 1

Batch

Te
st

 lo
ss

0 23
0

2

PC
BP

ReLU, L = 5

Batch

Te
st

 lo
ss

0 5
0

1

2 PC
BP

ReLU, L = 1

Batch

Te
st

 lo
ss

0 29
0

2

4
PC
BP

ReLU, L = 10

Batch

Te
st

 lo
ss

0 5
0

1

2 PC
BP

ReLU, L = 1

Batch

Te
st

 lo
ss

0 13

0.5

1
PC
BP

Tanh, L = 5

Batch

Te
st

 lo
ss

0 2
0

0.5

PC
BP

Tanh, L = 1

Batch

Te
st

 lo
ss

0 733

0.5

1
PC
BP

Tanh, L = 10

Batch

Te
st

 lo
ss

0 23

0.5

1
PC
BP

Linear, L = 5

Batch

Te
st

 lo
ss

0 9
0

0.5

PC
BP

Linear, L = 1

Batch

Te
st

 lo
ss

0 644

0.5

1
PC
BP

Linear, L = 10

Batch

Te
st

 lo
ss

Figure 7. Mean test losses for the deep chain experiments de-
scribed in Section 5.

A.5. Experiments on deep and wide networks

10-layer networks of width n = 500 were trained on MNIST
with SGD, batch size 64, and the same learning rate grid
search used for deep chains. As standard, the MNIST im-
ages were normalised. Training was stopped if the training
loss did not decrease from the previous epoch or diverged
to infinity. For PC, all details were the same as deep chains
(Appendix A.4) except for T = 1000 maximum inference
iterations, used to ensure that any failure to train highly
overparameterised networks was not due to insufficient in-
ference.

11

Understanding Predictive Coding as a Second-Order Trust-Region Method

A.6. Supplementary figures

Low

High

PC, t = 0

Low

High

PC, t = 1

Low

High

PC, t = 10

wt+1 = wt ≠ ÷(emax⁄maxe
T
max�w + emin⁄mine

T
min�w) (17)

Y
]
[

⁄max(HFú) < ⁄max(HL)
⁄min(HFú) < ⁄min(HL)

(18)

÷ æ 0

ẇ(t) = ≠Hfw(0), w(0) = (wú + �w) (19)

t = 0 (20)

t = 1 (21)

t = 10 (22)

3

wt+1 = wt ≠ ÷(emax⁄maxe
T
max�w + emin⁄mine

T
min�w) (17)

Y
]
[

⁄max(HFú) < ⁄max(HL)
⁄min(HFú) < ⁄min(HL)

(18)

÷ æ 0

ẇ(t) = ≠Hfw(0), w(0) = (wú + �w) (19)

t = 0 (20)

t = 1 (21)

t = 10 (22)

3

wt+1 = wt ≠ ÷(emax⁄maxe
T
max�w + emin⁄mine

T
min�w) (17)

Y
]
[

⁄max(HFú) < ⁄max(HL)
⁄min(HFú) < ⁄min(HL)

(18)

÷ æ 0

ẇ(t) = ≠Hfw(0), w(0) = (wú + �w) (19)

t = 0 (20)

t = 1 (21)

t = 10 (22)

3

Figure 8. Inference dynamics of PC energy landscape of a toy
network. Evolution of the free energy landscape as a function of
the 1MLP weights over inference, plotted at initialisation (t = 0),
the first inference step (t = 1), and equilibrium (t = 10) for the
same problem illustrated in Figure 1.

Low

High

PC

Low

High

PC

wt+1 = wt ≠ ÷(emax⁄maxe
T
max�w + emin⁄mine

T
min�w) (17)

Y
]
[

⁄max(HFú) < ⁄max(HL)
⁄min(HFú) < ⁄min(HL)

(18)

÷ æ 0

ẇ(t) = ≠Hfw(0), w(0) = (wú + �w) (19)

t = 0 (20)

t = 1 (21)

t = 10 (22)

“ = 1 (23)

“ = 1/2 (24)

“ = 2 (25)

3

Low

High

PC

wt+1 = wt ≠ ÷(emax⁄maxe
T
max�w + emin⁄mine

T
min�w) (17)

Y
]
[

⁄max(HFú) < ⁄max(HL)
⁄min(HFú) < ⁄min(HL)

(18)

÷ æ 0

ẇ(t) = ≠Hfw(0), w(0) = (wú + �w) (19)

t = 0 (20)

t = 1 (21)

t = 10 (22)

“ = 1 (23)

“ = 1/2 (24)

“ = 2 (25)

3

wt+1 = wt ≠ ÷(emax⁄maxe
T
max�w + emin⁄mine

T
min�w) (17)

Y
]
[

⁄max(HFú) < ⁄max(HL)
⁄min(HFú) < ⁄min(HL)

(18)

÷ æ 0

ẇ(t) = ≠Hfw(0), w(0) = (wú + �w) (19)

t = 0 (20)

t = 1 (21)

t = 10 (22)

“ = 1 (23)

“ = 1/2 (24)

“ = 2 (25)

3

Figure 9. Equilibrated PC energy landscape as a function of
the ratio of bottom-up vs top-down information γ = Π1/Π2 in
a toy network. Varying γ can be seen as adjusting the size of the
trust region or per-parameter learning rates. Increasing the relative
influence of the input (γ = 2) recovers BP, while increasing that
of the output (γ = 1/2) recovers TP.

12

