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ABSTRACT

Recent studies have shown that bisimulation metrics possess the superiority of
essentially extracting the features related to reinforcement learning tasks. How-
ever, limited by strict assumptions and the inherent conflict between metrics and
sparse rewards, they suffer from serious representation degeneration and even col-
lapse in sparse reward settings. To tackle the problems, we propose a reward-
free weak bisimulation metric-based Scalable Representation Learning approach
(SRL). Specifically, we first introduce the weak bisimulation metric, which by-
passes the intractable reward difference, instead leveraging a trainable Gaussian
distribution to relax the traditional bisimulation metrics. Particularly, the Gaussian
noise creates a flexible information margin for the metric optimization, which mit-
igates potential representation collapse caused by sparse rewards. Additionally,
due to its pure distribution internally, the metric potentially mitigates representa-
tion degeneration resulting from inconsistent computations under strict assump-
tions. To tighten the metric, we accordingly consider continuous differences over
the transition distribution to enhance the accuracy of the initial transition distri-
bution difference, strengthening the extraction of equivalent task features. We
evaluate SRL on challenging DeepMind Control Suite, MetaWorld, and Adroit
tasks with sparse rewards. Empirical results demonstrate that SRL significantly
outperforms state-of-the-art baselines on various tasks. The source code will be
available later.

1 INTRODUCTION

Deep reinforcement learning (DRL) with visual input usually requires learning a low-dimensional
state representation from high-dimensional pixels to serve downstream policy learning (Stooke et al.,
2021; Ze et al., 2024). Recent literature has demonstrated that the quality of state representation is
crucial to the efficiency and performance of policy learning (Tang et al., 2023; Zheng et al., 2024),
and the ideal representation should provide sufficient non-redundant information for DRL decision-
making (Liao et al., 2023).

To achieve this, previous work has introduced numerous effective representation schemes in con-
trastive learning (Liu et al., 2023c), temporal prediction (Machado et al., 2023), and data augmen-
tation (Liu et al., 2023b). However, most existing contrastive and temporal prediction methods are
limited to learning vague classifications of structural features (Guo et al., 2023). Though they may
achieve fast convergence in specific tasks, they struggle with fine-grained feature control (Gao et al.,
2022). Regarding data augmentation-based methods, prior research has not yet clarified which ef-
fective features are associated with different transformations (Ma et al., 2024), and some setups face
difficulties in handling tasks with large action spaces and complex folded regions. Most importantly,
the above methods tend to represent all observable dynamics elements, limited by the task-agnostic
representation learning (Yuan et al., 2022; Zhang et al., 2021). As a result, these methods remain
inadequate for learning tasks with complex dynamics.

In contrast, representation learning built on bisimulation metrics (Ferns et al., 2004; 2011) has fun-
damentally shown promise in accurately extracting task-relevant information (Liao et al., 2023).
Distinct from the aforementioned methods, they extract equivalent task-relevant features by the be-
havioral similarity metric between states in terms of rewards and dynamics models, i.e., transition
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distribution probability (Ferns et al., 2011), which has attracted much attention for their ability to
eliminate all task-irrelevant information (Castro, 2020). Subsequently, related work focuses on over-
coming its dynamics accuracy problem, e.g., π-bisimulation metric (Castro, 2020), and introducing
additional elements or reward variance to enhance the robustness of the metric, e.g., PSE (Agar-
wal et al., 2021) and RAP (Chen & Pan, 2022), making it potentially applicable to large-scale tasks.
Nevertheless, bisimulation metric-induced representation learning still suffers from information loss
and even collapse problems in sparse reward settings (Liao et al., 2023; Zang et al., 2022). This is
because, on the one hand, the idealized metric computations with reward difference significantly
deviate from practical distances, which potentially leads to approximation bias and inaccurate be-
havioral similarity measurement (Zang et al., 2022; Castro et al., 2021); On the other hand, sparse
or zero reward signals can cause bisimulation metrics to converge to an intractable zero-fixed point,
resulting in representation collapse (Liao et al., 2023).

To tackle these issues, we first introduce a weak bisimulation metric, which excludes the unsta-
ble reward differences and instead relaxes the strict bisimulation metric with a trainable Gaussian
distribution. Concretely, the weak bisimulation metric fine-tunes the metric distance by using the
Gaussian noise associated with state transitions, which creates a flexible information margin for the
optimization process, effectively avoiding the potential zero-distance representation between states,
i.e., the representation collapse problem directly caused by sparse reward differences (Liao et al.,
2023). Besides, since the trainable Gaussian distribution shares the same distribution dimensionality
as the transition model in computations, the weak metric can potentially avoid inconsistent compu-
tations and further approximation bias within traditional metrics caused by strict assumptions (Zang
et al., 2022). Although the metric adopts conservative settings, we theoretically demonstrate that
it retains certain favorable properties. In further implementations, to strengthen the metric accord-
ingly, we compute multi-step transition distribution differences on the metric to ensure the accuracy
of the initial behavioral similarity by considering continuous similarity. Overall, our approach selec-
tively performs effective relaxation or strengthening in specific aspects, and thus we term it scalable
representation learning (SRL).
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Figure 1: Comprehensive score performance of
SRL and baselines compared to DrQ-v2 on Deep-
Mind Control, MetaWorld, and Adroit.

Finally, we conduct extensive experiments on chal-
lenging tasks with sparse rewards, i.e., the Deep-
Mind Control, MetaWorld, and Adroit with large
action spaces. Notably, most of these tasks feature
sparse rewards, meaning they receive tiny rewards
before successfully completing a task (Xu et al.,
2024). The experimental results demonstrate that
SRL significantly outperforms recent various state-
of-the-art baselines across a massive number of com-
plex tasks, as highlighted in the best scores shown in
Figure 1. Additionally, ablation studies and visual-
ization experiments (available in Appendix D.1 and
Appendix D.2) strongly validate the effectiveness of
the approach’s components in improving representa-
tion and policy performance.

The primary contributions of this work are as follows: (i) We propose a weak bisimulation met-
ric with relaxed properties to address the potential representation instability in bisimulation metrics
under sparse reward settings; (ii) Within this metric, we consider continuous transition distribution
similarities to strengthen the initial behavior measurement, and then propose a scalable representa-
tion learning approach; (iii) We empirically demonstrate that SRL significantly outperforms state-of-
the-art baselines on various tasks with sparse rewards, effectively extending the inherent advantages
of bisimulation metric-based representations to a wider range of sparse reward scenarios.

2 RELATED WORK

DRL with vision as input aims to learn a policy directly from pixel observations (e.g., RGB images),
which typically requires increasingly powerful feature representation abilities as the problem scales
up (Ze et al., 2023; Nath et al., 2023; Kaufmann et al., 2023; Wang et al., 2023). In earlier work
within the Atari 2600 gaming domain, to alleviate the limited representational capacity of end-to-
end convolutional encoders, most studies converted RGB images to grayscale (Mnih et al., 2015).
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As application scope expanded, recent work has adopted stacked RGB images as input to retain
richer detail features (Yarats et al., 2021a; Yuan et al., 2023), but existing representation abilities
are struggling to handle these complex and unstructured elements. To address this issue, although
self-attention networks (Baee et al., 2021) and Transformers (Parisotto et al., 2020) were introduced
early on to enhance feature extraction, Laskin et al. (2020a) demonstrated that these end-to-end op-
timization methods, sharing DRL gradients, often fail to achieve strong representation performance.
As a result, recent work has increasingly focused on constructing effective self-supervised represen-
tation losses (Li et al., 2022; Yu et al., 2022), often referred to as auxiliary learning tasks. These
approaches typically employ contrastive learning with data augmentation (Liu et al., 2021), latent
reconstruction (Yu et al., 2022; Zhou et al., 2024), variational autoencoders (Liu et al., 2022), or
the methods based on task elements (e.g., rewards), such as bisimulation metrics (Pavse & Hanna,
2024), reward prediction (Zhou et al., 2023), and state prediction (Fujimoto et al., 2024) to achieve
more powerful representations through independent optimization losses.

Previous studies have shown that data augmentation, e.g., rotation, random cropping, random mask-
ing, and CycAug (Laskin et al., 2020b) can enhance representation learning algorithms’ ability to
understand and extract dynamics features (Hansen et al., 2021b; Yarats et al., 2021a). Typically,
some research has proposed contrastive learning with data augmentation, where maximizing mutual
information between positives and anchors (Oord et al., 2018) enhances consistency across different
augmented versions. Nevertheless, Zhang et al. (2021) have pointed out that these methods are of-
ten constrained by task-agnostic learning. In other words, due to the randomness of augmentations,
these approaches tend to extract all possible dynamics features from observations rather than focus
on task-relevant ones (Zhang et al., 2021). To tackle this, some preliminary solutions have been
proposed, which introduce actions (Hansen et al., 2021a) or rewards (Yang et al., 2022) to further
constrain the dynamics feature set derived from data augmentation, resulting in decision vectors that
exclude task-irrelevant features. Although these methods have shown some potential, they tend to
underperform in practice, particularly in sparse reward environments.

Recently, the metric-based representation shows how to leverage task-related elements (e.g., re-
wards) to effectively infer equivalent task information from pixel observations (Liu et al., 2023a).
Compared to methods like data augmentation, their key advantage lies in the theoretically task-
relevant nature of the extracted features (Zang et al., 2024), such as the bisimulation metric-based
approach DBC (Zhang et al., 2021). Specifically, bisimulation metric-based representation learn-
ing leverages bisimulation theory, exploiting rewards and transition distribution differences to in-
fer equivalent task information from observations (Castro, 2020). However, numerous studies have
shown that rigidly applying the bisimulation is not ideal (Chen & Pan, 2022; Castro et al., 2021), fac-
ing two major pitfalls: (i) It is difficult to overcome the computational complexity caused by model
inaccuracy (Castro, 2020); (ii) The idealized metric computations with sparse-reward difference
significantly deviate from practical distances (Liao et al., 2023). For the former, the π-bisimulation
metric (Castro, 2020) mitigates this issue by considering state similarity under a specific policy. For
the latter, while some works suggest relaxing the reward differences within bisimulation by incor-
porating learned reward variance (Chen & Pan, 2022), successfully applying bisimulation metrics to
complex tasks with sparse rewards remains challenging (Liao et al., 2023). Hence, this work seeks
to develop a relaxed bisimulation metric to adapt to such complex settings.

3 PRELIMINARIES

We start with the underlying assumptions of reinforcement learning (RL) and the notations. Follow-
ing this, we review the bisimulation metrics used for representation learning, along with the practical
optimization challenges.

3.1 REINFORCEMENT LEARNING

The interactive environment can be modeled as an infinite-horizon Markov Decision Process (MDP),
defined by the tuple M = (S,A,P, r, γ), where S represents the state space, A is the continuous
action space, P(st+1 | st, at) : S×A×S → [0, 1] defines the transition distribution that captures the
probability from state st to state st+1 with action at, r : S × A → R1 denotes the reward function,
and γ ∈ [0, 1) is the discount factor. As the image frame exhibits partial observability, we define the
state st by stacking consecutive image frames. In the scope of representation learning for DRL, a
parameterized state encoder ϕω : S → Rn that maps a high-dimensional state to a low-dimensional
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vector is learned. Then, the agent’s goal is to learn a good encoder and a policy at ∼ π(ϕω(st)) that
maximizes the future cumulative discounted reward EP,π[

∑∞
t=0 γ

tr(ϕω(st), at)].

3.2 BISIMULATION METRIC

Bisimulation Relation(Givan et al., 2003) (formalized in Appendix B.1) is used to describe the be-
havioral similarity between abstract states, which is defined as if the rewards they obtain and the
probability of the next transition distribution are equal, then they are considered to be behaviorally
equivalent(Yarats et al., 2021a). To soften the Bisimulation Relation in the continuous state space
(Ferns et al., 2011), past work defines the following pseudo-metric d : S × S → R1 to measure
the similarity distance between states.
Theorem 3.1 (π-bisimulation metric (Castro, 2020)). Let d ∈ M be a pseudometric on M set over
space S. A pseudometric transformation function Fπ

B : M → M, is defined as,

Fπ
B(d) (si, sj) =

∣∣∣Eai∼πraisi − Eaj∼πrajsj
∣∣∣+ γW1(d)

(
Pπsi ,P

π
sj

)
(1)

Where transition model Pπsi = Ea∼π(si)Pasi and W1 is the 1-Wasserstein distance. Fπ
B has a least

fixed point dπB and dπB is a π-bisimulation metric.

Theorem 3.2 (Value difference bound (Castro, 2020)). Given any state pair si, sj ∈ S, and policy
π, we have:

|V π (si)− V π (sj)| ≤ dπB (si, sj) (2)

The theorem shows that the value function difference between state pairs is bounded by dπB , which
will be used to compare the value difference bound of the weak bisimulation metric.

A zero bisimulation metric value between states indicates that they exhibit similar behavior and
state values, yet metric-based representation learning does not aim to find perfectly similar states.
Instead, the metric is employed to regularize the encoding distance ∥ϕω(si)− ϕω(sj)∥2, so that
the pixel states can be clustered to the same distance under latent space as the metric dπB(si, sj).
Typically, the optimization of the bisimulation metric-based representation can be defined as,

L (ϕω) := E
[(

∥ϕω (si)− ϕω (sj)∥2 −
∣∣∣Eai∼πraisi − Eaj∼πrajsj

∣∣∣− γW1(d)
(
Pπsi ,P

π
sj

))2]
(3)

Ideally, minimizing L(ϕω) loss be able to make ϕω derive task-relevant features in each state and
thereby learn the state representations guaranteed by bisimulation metrics. Nevertheless, strict as-
sumptions make optimization challenging. In light of this, Zhang et al. (2021) require a stringent
assumption that the states follow a Gaussian distribution, which makes it possible to calculate the
closed-form Wasserstein distance with the Euclidean distance, but this is inconsistent with the L1

distance on the reward, resulting in inaccurate bisimulation (Zang et al., 2022). On the other hand,
strict bisimulation metrics built on rewards are naturally limited to sparse reward settings, which
easily leads to representation collapse (Liao et al., 2023). In this paper, We attempt to improve the
strict bisimulation metric and seek a reasonably scalable metric.

4 METHODOLOGY

In this section, we first investigate the weaknesses of prior bisimulation metric-based representations
in terms of strict assumptions and sparse rewards, as well as the coupling factors that lead to the
weaknesses, and then introduce a relaxed bisimulation metric. Then, to strengthen the weak metric
accordingly, we implement a strengthened representation learning loss that can more strictly and
accurately compute the dynamics transition difference. With these two steps, we finally present a
scalable representation learning approach that is particularly suitable for sparse reward settings.

4.1 PROBLEMS OF BISIMULATION METRICS

Following the work of Castro (2020), we consider the policy-dependent (on-policy) π-bisimulation
metric dπ to optimize the encoder ϕω with parameter ω, where dπ can be selected from existing
π-bisimulation-based dπB(Zhang et al., 2021), MICo(Castro et al., 2021), or RAP (Chen & Pan,
2022).

ϕ∗ = argmax
ϕ∈Φ

E
[(
∥ϕω (si)− ϕω (sj)∥2 − dπ (si, sj)

)2]
(4)
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In optional dπ , since Wasserstein distance is powerful to calculate the distributions’ distance, it is
often used to calculate internal state transition distribution difference W1(d

π)(Pπsi ,P
π
sj ). However,

for large-scale tasks with continuous state space, it becomes impractical due to the need to enu-
merate all possible states. Thus, Zhang et al. (2021) require the strict assumption that the state
distribution is a Gaussian, so that the closed-form Wasserstein distance can be calculated with the
Euclidean distance in the latent space, which alleviates the computational complexity. However,
there is an inconsistency (which can also be understood as a “dimensionality difference”) between
the L1 distance on rewards and the Euclidean distance, resulting in approximation deviation and fur-
ther informative degradation (Zang et al., 2022). Although Castro et al. (2021) developed the MICo
distance to maintain the consistency of the distance property, this distance that violates the ”zero
self-distance (Zang et al., 2022)” property may cause the representations to fail. Ultimately, this
inconsistency between the transition distribution difference and reward difference makes the above
objective (Equation (4)) difficult to optimize.

Besides the problem, the representation performance upon strict bisimulation metrics is unstable
when facing sparse reward settings.
Theorem 4.1 (Liao et al. (2023)). π-bisimulation metrics have an upper bound determined by their
policy π : diam (S; dπ) = supsi,sj∈S d

π (si, sj) ≤ 1
1−γ supsi,sj∈S

∣∣Eai∼πraisi − Eaj∼πr
aj
sj

∣∣.
The proof can be found in the work (Liao et al., 2023). Theorem 4.1 shows that for a specific
transition (si, sj), if it yields zero reward signals, the equation |Eai∼πraisi − Eaj∼πr

aj
sj | = 0, which

may cause a degenerate solution diam(S; dπ) = 0. Deeply, this indicates that the latent distance
between the states converges to a fixed zero, meaning that a collapsed encoder has been learned. For
simple dense reward settings, the above problem is more likely to occur in the early training stage,
because the initial policy may perform poorly everywhere. Still, from a long-term perspective,
the π-bisimulation metrics will be gradually improved and become an advantage. But seriously,
when in sparse reward settings, the reward collected by the policy may be zero everywhere, which
may lead to constant representation collapse. Although part of the encoder’s training gradients is
backpropagated from Temporal-Difference loss in the Critic (Yarats et al., 2021b), this problem will
still seriously interfere with the training of ϕω .

4.2 WEAK BISIMULATION METRIC

We can easily conclude that the internal inconsistency problem of strict bisimulation metrics and
the limitation of sparse rewards are actually coupled with the reward signal of the environment. In
other words, the reward signal is a fundamental factor that causes the potential performance failure
of the metrics. To comprehensively solve the above problems, we first introduce the following weak
bisimulation metric to relax typical metrics.
Definition 4.2 (weak bisimulation metric). Let M be the set of all pseudometrics on space S. A
pseudometric transformation function Fπ

W : M → M, is defined as,

Fπ
W (d) (si, sj) = ϵ (si, sj)− γW1(d)

(
Pπsi ,P

π
sj

)
(5)

where ϵ(si, sj) ∼ N (µc, fV ar) with a constant µc and a nonlinear function fV ar(si, sj ; θ) as mean
and variance respectively.

As shown in Definition 4.2, we define the weak bisimulation metric as consisting of the Wasser-
stein distance of state transition distributions and the parameterized Gaussian distribution ϵ(si, sj),
without the reward difference term.

We emphasize that this is not a semplice combination as it has the following considerations. First,
since the reward signal itself is very small under sparse rewards, its contribution to similarity mea-
surements is also weak in a sense. For relaxation reasons, we abandon the consideration of the
|Eai∼πraisi − Eaj∼πr

aj
sj | in Equation (4) and instead introduce a trainable Gaussian distribution

ϵ(si, sj). Specifically, the mean µc,(>0) of ϵ(si, sj) is a tiny constant set according to the sparse
reward difference (see Appendix A.2 for details), which aims to potentially provide a non-zero met-
ric to the worst-case dπ(si, sj), thereby preventing the degenerate solution diam(S; dπ) = 0 caused
by zero reward. In addition, since the variance of ϵ(si, sj) is determined by the trainable function
fV ar, this also allows the metric to be fine-tuned according to the current transition (si, sj). Finally,
we embed the Gaussian distribution ϵ(si, sj) into a computational dimensionality consistent with
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the transition distribution, potentially avoiding the previous inconsistent computational problem be-
tween the L1 reward and the Wasserstein distance. This alignment ensures that the overall objective
is optimized in the correct approximation direction.

We theoretically analyze some corresponding properties of the weak bisimulation metric below.
Lemma 4.3 (weak bisimulation metric). The weak-bisimulation metric is a contraction mapping
w.r.t the L∞ norm on RS×S , and there exists a fixed-point dπW for Fπ

W .

The proof is available in Appendix A.1. This theory shows that the weak bisimulation metric can
converge to a fixed point with iterative learning for any state pairs.
Theorem 4.4 (Value difference bound). Given states si and sj , and a policy π, we have,

|V π (si)− V π (sj)| ≤ dπW (si, sj) (6)

The proof can be found in Appendix A.2. Theorem 4.4 demonstrates that the difference of the state
value function between any state pair is bounded by the weak bisimulation metric dπW (si, sj).
Theorem 4.5 (relaxed value difference bound). Given states si and sj , and a policy π, we have,

dπB (si, sj) ≤ dπW (si, sj) (7)

The proof is provided in Appendix A.2, which shows that dπW (si, sj) can achieve the difference
upper bound of relaxing the original π-bisimulation metric dπB(si, sj). It is worth noting that, al-
though it might reduce the correlation between the learned representation and the value function
and further introduce redundant information (Chen & Pan, 2022), its advantages could outweigh the
drawbacks due to the targeted relaxation for the intractable reward difference term. Specifically, in
sparse reward settings, the reward term not only contributes minimally but also risks disrupting the
learned representation. For this reason, we conservatively replace the reward term with a Gaussian
distribution and set its mean µc ≥ |Eai∼πraisi − Eaj∼πr

aj
sj | (the reward term is typically minimal,

details in Appendix A.2), aiming to release only the uncontrollable information measured by the
reward difference. Although our metric may introduce certain redundant information, it is at least
improvable rather than deadly. Therefore, we still consider this targeted relaxation as a beneficial
strategy, with its existing shortcomings set to be addressed in future improvements.

4.3 THE SCALABLE REPRESENTATION LEARNING

This section analyzes the optimization objective grounded in weak bisimulation and further consid-
ers strengthening the objective by accumulating state transition distribution differences accordingly.
These two steps ultimately lead to a scalable representation learning loss.

First, according to the weak bisimulation metric (Equation (5)) in Definition 4.2, we set the learning
target as:

T (si, sj ; ω̄, θ) = ϵθ (z̄i, z̄j) + Es∼P̂
a∼π

γW1 (d
π
W )
(
P̂πψ (z̄i, a) , P̂πψ (z̄j , a)

)
(8)

where z = ϕω(s) represents the latent state, z̄ is frozen with gradient-free parameter ω̄, and ψ
denotes the parameter of the learned dynamics model P̂ . The variance of ϵθ(z̄i, z̄j) draws from
the network fV ar(z̄i, z̄j ; θ) with parameters θ. Notably, we train the distribution function ϵθ by
sampling ϵ̃ ∼ N (µc, fV ar). To ensure its differentiability, we need to reparameterize ϵ̃ by, ϵ̃ =
µc + σ1fV ar(z̄i, z̄j ; θ), where σ1 ∼ N (0, 1).

Therefore, we give the preliminary representation learning loss based on the target,

Lweak(ϕω, θ) = ED
[
∥ϕω (si)− ϕω (sj)∥2 − T (si, sj ; ω̄, θ)

]
(9)

Although the above objective is effective, it is not enough. As aforementioned, Theorem 4.5 has
shown that our metric dπW has a looser value difference bound than the vanilla bisimulation metric,
resulting in introducing potentially redundant information in addition to the superiority of avoiding
unstable representations.

To improve this, we try to strengthen the transition distribution difference of the weak bisimulation
metric. Specifically, we further come up with the cumulative W1(P̂πz̄ , P̂πz̄ ) distance of the subse-
quent T -step transition distributions started with (si, sj). The purpose is to make its subsequent
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distributions as consistent as possible, thereby improving the distance’s accuracy of the initial tran-
sition distribution. To balance the accuracy of the parameterized dynamics model P̂ , T is actually
set to 2, see Section 5.3 for detailed analysis. Notably, since the transition distribution differences
are executed over the 50-dimensional latent state, the resulting computational overhead is negligible.
As a result, we define the following scalable representation learning loss,

Lweak(ϕω, θ) = ED

[
∥ϕω (si)− ϕω (sj)∥2 − T (T ) (si, sj ; ω̄; θ)

]2
(10)

with the learning target,

T (T ) (si, sj ; ω̄, θ) = ϵθ (z̄i, z̄j) +

t=T∑
t=1

Es∼P̂
a∼π

[
γtW1

(
P̂πψ
(
z̄i

(t), a(t)
)
, P̂πψ

(
z̄j

(t), a(t)
))]

(11)

Specifically, due to sparse rewards or zero rewards, methods based on bisimulation metrics are prone
to mistakenly infer that two states are bisimilarity based on the one-step transition difference, which
causes the encoder to converge prematurely. In fact, a similar problem was also pointed out in
the work of Kemertas & Aumentado-Armstrong (2021), which showed that trajectory information
may be needed to assist bisimulation metrics under sparse rewards. Given this, we propose the
above operation on the weak metric to ensure the consistency of continuous transitions, i.e., latent
trajectories, thereby improving the accuracy of current behavior similarity and the extraction of
further task-relevant features.

In summary, we propose the above scalable representation learning loss (Equation (10)), where the
scalability lies in the purposeful relaxation of the original bisimulation metric and the strict operation
of the transfer distribution differentiation, as well as their potential mutual constraints.

4.4 OVERALL ARCHITECTURE

Figure 2: Overall Architecture. We use the archi-
tecture to describe scalable representation learning for
deep reinforcement learning.

We extend the scalable representation learning
loss Lweak(ϕω, θ) built on the weak bisimula-
tion metric to the visual RL algorithm DrQ-v2
(Yarats et al., 2021b), as shown in Figure 2. The
encoder ϕω is the core optimization component
in the architecture, and its training gradients are
propagated by the scalable representation learn-
ing loss and Temporal-Difference loss (Lee &
He, 2019). Additionally, during the optimiza-
tion of Lweak(ϕω, θ), a dynamics model P̂πψ
needs to be trained synchronously. Finally, the
primary loss denotes Lweak +Lπ +LQ, where
Lπ+LQ is the internal Actor-Critic loss (avail-
able in Appendix C.1) of DrQ-v2. The detailed
algorithm can be found in Appendix C.3.

5 EXPERIMENTS

This section aims to verify SRL’s representation ability and policy performance in visual tasks with
sparse rewards. We extensively compare SRL with state-of-the-art baselines across three visual
environments, ranging from classic physics control to robotic manipulation: DeepMind Control
Suite (DMControl) (Tassa et al., 2018), MetaWorld (Yu et al., 2020), and Adroit (Rajeswaran et al.,
2017) (depicted in Figure 3). It is worth noting that most of these task settings are highly challenging,
featuring rich visual details or large action spaces. Furthermore, the agent can only obtain a larger
reward by continuous trial and error until it successfully completes a task.

Baselines. We compare against DrQ-v2 (Yarats et al., 2021b), DBC (Zhang et al., 2021), and DrM
(Xu et al., 2024) DRL baselines that focus on representation ability or sparse-reward settings. DrQ-
v2 is a powerful method based on data augmentation, achieving state-of-the-art sample efficiency
on the DMControl benchmark. Of its lesser hyperparameters and stable performance, DrQ-v2 is
commonly used as the foundational framework for various DRL methods (Xu et al., 2024). DBC is
a bisimulation metric-based representation learning method, where the metric calculates the reward
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Figure 3: Illustration of partial tasks in DMControl, MetaWorld, and Adroit.

and transition distribution difference according to strict assumptions. It shows the superior ability
to extract task features in the Distracting DMControl benchmark (Stone et al., 2021). DrM, a state-
of-the-art method, proposes a dormant ratio minimization to promote representation and exploration
under sparse rewards, achieving the best performance in various environments such as MetaWorld.

Settings. We employ the same encoder and hyperparameter settings in the involved methods.
Specifically, the encoder consists of a 4-layer convolution network and a 2-layer full connection
network with 1024 hidden neurons, which maps three stacked RGB observation images with size
9× 84× 84 to a 50-dimensional feature vector for policy learning. Moreover, we utilize the Adam
optimizer (Kingma, 2014) with a batch size of 256 and a learning rate of 1e−4. Distinct from the
previous replay buffer with a size of 1e6, we set it to the challenging size of 2e5. The full hyperpa-
rameters are available in Appendix C.2.

5.1 DMCONTROL EXPERIMENTS

DMControl Suite. DMControl Suite is a widely used benchmark for DRL algorithms, which pro-
vides physics control tasks in different difficulties and supports rendering third-person pixel obser-
vations as training input (Tassa et al., 2018). We choose complex walker run, walker walk,
reacher hard and quadruped run tasks with sparse rewards properties to evaluate our
method. The illustrations of DMControl tasks can be seen in Fig. 3. (a).
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Figure 4: Experimental results on 4 complex tasks in DMControl. Each curve is averaged over three
seeds with one standard deviation shaded in the default setting. For each seed, the mean episode
reward is evaluated every 5,000 training steps, averaging over 10 episodes.

DMControl results. We show the evaluation curves of the SRL method compared with baselines on
DMControl in Figure 4. From the upward trend and the convergence range of curves, our method has
achieved the best performance in the four tasks, both in terms of convergence speed and best mean
episodic rewards. Specifically, with the policy and value network modules kept consistent, the SRL
equipped with the weak bisimulation representation learning (red line) significantly outperforms the
latest DrM (green line), showing a substantial improvement in the DMControl domain. Notably,
compared to the DBC method (yellow line), which is also grounded in bisimulation representation,
SRL learns a robust and efficient policy for some challenging tasks, such as the reacher hard
task. Overall, we preliminarily conclude that the relaxed weak bisimulation metric-based represen-
tation enhances the encoder’s ability to extract task-relevant features, providing high-quality latent
states for policy learning.

Table 1: Comparison results of the best mean
episode reward on complex DMControl tasks.

Methods walker w walker r reacher h quad r

DrQ 944.5±24.6 755.2±33.2 871.8±30.1 570.2±76.9
DBC 648.4±105.6 634.7±38.3 342.9±109.5 530.9±83.7
DrQ-v2 963.5±11.4 789.6±19.9 784.0±104.6 626.4±120.1
SRL (ours) 965.9±2.0 803.2±10.2 935.7±12.1 732.4±9.9

Table 1 records the comparison results on the
best mean episode reward. The result shows
that SRL has achieved a significant improve-
ment in the best reward compared to baselines.
In comparison, the sibling method, i.e., DBC
almost achieved the lowest score in the diffi-
cult DMControl task, especially the worst per-
formance in reacher hard.
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5.2 ROBOTIC MANIPULATION EXPERIMENTS

Robotic Manipulation tasks. The experiments are evaluated on MetaWorld and Adroit environ-
ments with sparse-reward settings, where MetaWorld contains various mechanical arm tasks (e.g.,
coffee-push) and Adroit aims to control a dexterous hand with a large action space to achieve
various delicate tasks. The illustrations of MetaWorld and Adroit tasks can be seen in Figure 3 (b)
and Figure 3 (c). We emphasize that the field of robotic manipulations is extremely challenging
for visual DRL algorithms without real state information. On the one hand, the kinematic struc-
ture characteristics of these tasks are extremely complex, requiring the representation algorithm to
fundamentally understand the dynamics knowledge and extract the implicit task-relevant features;
On the other hand, due to the obvious sparse reward nature, it requires the agent to have long-term
planning abilities and remarkable representation performance under sparse rewards.
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Figure 5: Experimental results on 6 complex tasks with sparse rewards in MetaWorld. Each curve is
averaged over three seeds with one standard deviation shaded in the default setting. For each seed,
the mean episode reward is evaluated every 5,000 training steps, averaging over 10 episodes.

MetaWorld results. As depicted in Figure 5, we evaluate the performance of SRL against base-
lines on 6 complex tasks with sparse rewards in MetaWorld. Following the experimental de-
tails of the work (Xu et al., 2024), we use task success rate as the core comparison metric and
train for 1–4 M (1e6) environment steps based on the convergence of tasks. Overall, the SRL
method achieves the highest success rate in all tasks and is significantly higher than the sub-
optimal DrM method. For instance, in the stick-pull task, our method achieves an aver-
age success rate of nearly 90%, while the baseline struggles to break 30%. In addition, com-
bined with the reward curves in Figure 10 (in Appendix D.3), we can also observe that SRL
can quickly obtain rewards and learn policies, and the learning is more stable. In contrast, al-
though the DBC policy has rich task-related elements, it is difficult to obtain reward signals in
most tasks, far below the SRL performance. This further empirically shows that, although the
bisimulation metric can strictly guarantee that DBC with reward difference achieves equivalent
task-relevant information, it is still unable to combine rewards to infer equivalent task features,
yet even obtains a damaged representation space, resulting in inefficient policies in these tasks.

[h]

0 1 2 3 4
env steps (×106)

0%

20%

40%

60%

80%

100%

su
cc

es
s r

at
e

pen

0.0 0.5 1.0 1.5 2.0
env steps (×106)

0%

20%

40%

60%

80%

100%

hammer

DrM
DBC
DrQ-v2
SRL (ours)

Figure 6: Experimental results on two Adroit tasks
with sparse rewards over three seeds.

Adroit results. To verify the visual represen-
tation ability of SRL under extremely complex
dynamics structures, we also evaluated it on the
Pen and Hammer tasks in the Adroit environ-
ment, as shown in Figure 6. Despite the po-
tential blind spots or overlaps of observations
rendered from a fixed-position third-person per-
spective, experimental results show that our
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method can still accelerate training and outperform state-of-the-art methods in these tasks. As for
the baseline, we found that DrQ-v2 has difficulty using data augmentation to understand the features
of the Adroit task with complex visual structures, which leads to ineffective policy learning. This
is consistent with Zhang et al. (2021) and previous experimental results. In addition, although DrM
is good at representation learning under sparse rewards, it is still difficult to surpass our method,
especially in the hammer task.

In Table 2, we record the best mean success rate of SRL and baselines in MetaWorld and Adroit
tasks. Our method has a success rate of more than 90% in most tasks and learns an effective policy.
In addition, the overall variance of SRL is smaller than that of baselines, so the learned policy is
more robust.

Table 2: Comparison results of the best mean success rate (%) on complex MetaWorld and Adroit
tasks with sparse rewards.

Methods pick-place coffee-push stick-pull box-close coffee-pull soccer pen hammer

DrM 86.4±2.9 73.5±14.0 27.8±35.8 95.7±2.5 53.8±7.2 48.8±2.0 73.3±4.1 61.3±43.6
DBC 25.3±10.9 44.7±5.2 16.1±13.6 0.0±0.0 49.2±11.3 29.6±8.5 83.3±1.9 0.0±0.0
DrQ-v2 98.7±1.9 63.0±6.1 2.5±3.5 97.5±2.0 60.8±5.1 52.5±4.4 26.7±27.2 6.0±8.5
SRL (ours) 99.3±0.9 98.0±0.0 92.9±4.6 98.0±0.0 83.1±6.2 67.9±4.8 93.5±1.7 93.7±3.4

5.3 ABLATION STUDY
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Figure 7: Ablation study in SRL. Each result is the
average of three seeds, where the boundary represents
the standard deviation. DrQ-v2 can be regarded as a
degenerate version with N = 0.

As depicted in Figure 7, to observe how the
T -step transition distribution differences affect
weak bisimulation metric-based representation
learning, we execute the ablation study of SRL
with the settings of step T = {1, 2, 3} in sev-
eral tasks. To better distinguish the conver-
gence performance among policies, we record
the score of 1/2 total training frames. From the
figure, we can draw the following results: i)
The performance of the SRL policies with T =
{1, 2, 3} settings all surpasses the DrQ-v2 (T =
0), which strongly demonstrates the effective-
ness of the fundamental weak bisimulation met-
ric; ii) For the specific T = {1, 2, 3}, the poli-
cies performance is SRLT=2 > SRLT=1 >
SRLT=3. In other words, cumulative multi-
step transition distribution differences have the
potential to improve the representation ability
of weak bisimulation metric, but its perfor-
mance tends to decay with the increase of the steps. We argue that the decay at T = 3 may be
led by the accumulated deviation of the learned dynamics model P̂ψ . For this reason, we set T = 2
to tighten the state similarity measure of the weak bisimulation metric in the scalable representation
learning loss, achieving the best representation learning performance. Note again that since the tran-
sition differences are performed on the latent states, the computational overhead remains negligible.

6 CONCLUSION

In this paper, we propose a simple but efficient scalable representation learning approach (SRL)
based on a new weak bisimulation metric in sparse reward settings. Overall, SRL alleviates the po-
tential inefficient representations and limitations caused by strict bisimulation metrics under sparse
reward settings by relaxing the reward difference term and strengthening the effectiveness of transi-
tion distribution differences. Additionally, we briefly analyze the favorable value difference bound
and the convergence of the weak bisimulation metric. Extensive comparative experiments across
complex tasks in the DMControl, MetaWorld, and Adroit environments verify the state-of-the-art
performance of these simple settings. Finally, SRL extends the methods’ advantages built on the
bisimulation concept, i.e., inherently good at extracting task-relevant information, to a wider range
of sparse-reward task scenarios.
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Nicklas Hansen, Rishabh Jangir, Guillem Alenyà Ribas, Pieter Abbeel, Alexei Efros A, Lerrel Pinto,
and Xiaolong Wang. Self-supervised policy adaptation during deployment. In International
Conference on Learning Representations, ICLR 2021: Vienna, Austria, May 04 2021, pp. 1–18.
OpenReview. net, 2021a.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Stabilizing deep q-learning with convnets and vision
transformers under data augmentation. Advances in neural information processing systems, 34:
3680–3693, 2021b.

Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and
Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. Nature,
620(7976):982–987, 2023.

Mete Kemertas and Tristan Aumentado-Armstrong. Towards robust bisimulation metric learning.
Advances in Neural Information Processing Systems, 34:4764–4777, 2021.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Vijay R Konda and John N Tsitsiklis. Actor-citic agorithms. In Proceedings of the 12th International
Conference on Neural Information Processing Systems, pp. 1008–1014, 1999.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representa-
tions for reinforcement learning. In International conference on machine learning, pp. 5639–
5650. PMLR, 2020a.

Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Rein-
forcement learning with augmented data. Advances in neural information processing systems, 33:
19884–19895, 2020b.

Donghwan Lee and Niao He. Target-based temporal-difference learning. In International Confer-
ence on Machine Learning, pp. 3713–3722. PMLR, 2019.

Xiang Li, Jinghuan Shang, Srijan Das, and Michael Ryoo. Does self-supervised learning really im-
prove reinforcement learning from pixels? Advances in Neural Information Processing Systems,
35:30865–30881, 2022.

Weijian Liao, Zongzhang Zhang, and Yang Yu. Policy-independent behavioral metric-based repre-
sentation for deep reinforcement learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 8746–8754, 2023.

Fangchen Liu, Hao Liu, Aditya Grover, and Pieter Abbeel. Masked autoencoding for scalable and
generalizable decision making. Advances in Neural Information Processing Systems, 35:12608–
12618, 2022.

Guoqing Liu, Chuheng Zhang, Li Zhao, Tao Qin, Jinhua Zhu, Li Jian, Nenghai Yu, and Tie-Yan
Liu. Return-based contrastive representation learning for reinforcement learning. In International
Conference on Learning Representations, 2021.

Qiyuan Liu, Qi Zhou, Rui Yang, and Jie Wang. Robust representation learning by clustering with
bisimulation metrics for visual reinforcement learning with distractions. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, pp. 8843–8851, 2023a.

Siao Liu, Zhaoyu Chen, Yang Liu, Yuzheng Wang, Dingkang Yang, Zhile Zhao, Ziqing Zhou, Xie
Yi, Wei Li, Wenqiang Zhang, et al. Improving generalization in visual reinforcement learning via
conflict-aware gradient agreement augmentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 23436–23446, 2023b.

Sicong Liu, Xi Sheryl Zhang, Yushuo Li, Yifan Zhang, and Jian Cheng. On the data-efficiency
with contrastive image transformation in reinforcement learning. In The Eleventh International
Conference on Learning Representations, 2023c.

Guozheng Ma, Linrui Zhang, Haoyu Wang, Lu Li, Zilin Wang, Zhen Wang, Li Shen, Xueqian Wang,
and Dacheng Tao. Learning better with less: effective augmentation for sample-efficient visual
reinforcement learning. Advances in Neural Information Processing Systems, 36, 2024.

Marlos C Machado, Andre Barreto, Doina Precup, and Michael Bowling. Temporal abstraction in
reinforcement learning with the successor representation. Journal of Machine Learning Research,
24(80):1–69, 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Somjit Nath, Gopeshh Subbaraj, Khimya Khetarpal, and Samira Ebrahimi Kahou. Discovering
object-centric generalized value functions from pixels. In International Conference on Machine
Learning, pp. 25755–25768. PMLR, 2023.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant Jayakumar,
Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb Noury, et al. Stabilizing transformers
for reinforcement learning. In International conference on machine learning, pp. 7487–7498.
PMLR, 2020.

Brahma Pavse and Josiah Hanna. State-action similarity-based representations for off-policy evalu-
ation. Advances in Neural Information Processing Systems, 36, 2024.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

Austin Stone, Oscar Ramirez, Kurt Konolige, and Rico Jonschkowski. The distracting con-
trol suite–a challenging benchmark for reinforcement learning from pixels. arXiv preprint
arXiv:2101.02722, 2021.

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning
from reinforcement learning. In International conference on machine learning, pp. 9870–9879.
PMLR, 2021.

Yunhao Tang, Zhaohan Daniel Guo, Pierre Harvey Richemond, Bernardo Avila Pires, Yash Chan-
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Appendices

A PROOFS

A.1 THE PROOF OF LEMMA 4.3

Lemma 4.3 (weak bisimulation metric). The weak-bisimulation metric is a contraction mapping
w.r.t the L∞ norm on RS×S , and there exists a fixed-point dπW for Fπ

W .

Proof. To prove that the Fπ
W function has a fixed point dπW , we first need to prove that it is a

contraction mapping.

As Definition 4.2, given the fixed expectation of ϵ(si, sj), weak-bisimulation metric is,

Fπ
W (d) (si, sj) = ϵ (si, sj)− γW1(d)

(
Pπsi ,P

π
sj

)
(12)

Consider d, d′ ∈ M, we derive,

|Fπ
W (d) (si, sj)−Fπ

W (d′) (si, sj)| (13)

= ϵ (si, sj) +W1(d)
(
Pπsi ,P

π
sj

)
− ϵ (si, sj)−W1(d

′)
(
Pπsi ,P

π
sj

)
=
∣∣∣γ (W1(d)

(
Pπsi ,P

π
sj

)
−W1 (d

′)
(
Pπsi ,P

π
sj

))∣∣∣
=

∣∣∣∣∣∣γ
∑
s′i,s

′
j

π (ai|si)π (aj |sj)Paisi (s
′
i)Pajsj

(
s′j
)
(d− d′)

(
s′i, s

′
j

)∣∣∣∣∣∣
≤ γ ∥d− d′∥∞ .

Therefore, Fπ
W (d) is a contraction mapping w.r.t. the L∞ norm and there exists a unique fixed-point

dπW for Fπ
W (d).

A.2 PROOFS OF THEOREM 4.4 AND THEOREM 4.5

Before proving Theorem 4.4 and Theorem 4.5, we need to present a weak assumption regard-
ing the reward expectation under sparse reward settings. Then, we set the hyperparameter µc ≥
|Eai∼πraisi − Eaj∼πr

aj
sj |, where µc is the mean of the trainable Gaussian distribution ϵ(si, sj) in the

weak bisimulation meric, i.e., µc = Esi,sj∼P [ϵ(si, sj)].

Assumption A.1 (sparse-reward expectation). Given a reward function raisi = r(si, ai) with sparse
reward settings, the expectation of raisi before obtaining the success reward satisfies Eat∼πratst ≤ C1,
where C1 is a sufficiently small constant.

Taking the verification environment of this work with sparse rewards as an example, experience
shows that almost all transition rewards are usually minimal or even zero before reaching the goal.
Therefore, the above Assumption A.1 is a weak assumption that is easy to satisfy in a sparse reward
environment.

Then, based on the above weak assumptions, we can easily obtain,

0 ≤
∣∣∣Eai∼πraisi − Eaj∼πrajsj

∣∣∣ ≤ 2C1. (14)

In order to make |Eai∼πraisi − Eaj∼πr
aj
sj | ≤ µc hold, we only need to satisfy C1 ≤ 1/2µc in the

actual implementation, where the hyperparameters C1 and µc can be seen in Appendix C.2.

In light of the above conclusions, we then prove Theorem 4.4 and Theorem 4.5 respectively.

Theorem 4.4 (Value difference bound). Given states si and sj , and a policy π, we have,

|V π (si)− V π (sj)| ≤ dπW (si, sj) (15)
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Proof. We follow the work (Castro, 2020) to prove the value function difference bound. To
prove the above theory, we first introduce the standard value function V πn+1(si) = Eai∼πraisi +
γ
∑
s′∈S Pπsi(s

′)V πn (s′) and the update operation with the property of contraction mapping (see
Lemma 4.3),

dπW,n+1 (si, sj) = ϵ (si, sj) + γW1 (d
π
n)
(
Pπsi ,P

π
sj

)
(16)

with initial V π0 ≡ 0 and dπW,0 ≡ 0.

Then, we proceed it by induction. For initial case n = 0, obviously |V π0 (si)− V π0 (sj)| ≤
dπW,0(si, sj) holds, and we then suppose true up to case n. Therefore, we have,∣∣V πn+1 (si)− V πn+1 (sj)

∣∣
=

∣∣∣∣∣Eai∼πraisi + γ
∑
s′∈S

Pπsi (s
′)V πn (s′)−

(
Eaj∼πrajsj + γ

∑
s′∈S

Pπsj (s
′)V πn (s′)

)∣∣∣∣∣
≤ Eai∼πraisi − Eaj∼πrajsj +

∣∣∣∣∣γ∑
s′∈S

V πn (s′) (Pπs (s′)− Pπt (s′))

∣∣∣∣∣
≤
∣∣∣Eai∼πraisi − Eaj∼πrajsj

∣∣∣+ ∣∣∣γW (
dπW,n

) (
Pπsi ,P

π
sj

)∣∣∣
= (
∣∣∣Eai∼πraisi − Eaj∼πrajsj

∣∣∣− ϵ (si, sj)) + (ϵ (si, sj)−
∣∣∣γW (

dπW,n
) (

Pπsi ,P
π
sj

)∣∣∣)
≤ ϵ (si, sj) +

∣∣∣γW (dπn)
(
Pπsi ,P

π
sj

)∣∣∣ = dπW,n+1 (si, sj) (17)

where the second inequality comes from the dual representation of the Wasserstein distance (Villani,
2021), and the last inequality is true when satisfying C1 ≤ 1/2µc based on the Assumption A.1.
By the above steps, we can summarize that, ∀n ∈ N,∀si, sj ∈ S , |V πn+1(si) − V πn+1(sj)| ≤
dπW,n+1(si, sj) holds.

Theorem 4.5 (relaxed value difference bound). Given states si and sj , and a policy π, we have,

dπB (si, sj) ≤ dπW (si, sj) (18)

Proof. To prove dπB(si, sj) ≤ dπW (si, sj), we just need to prove dπW (si, sj) − dπB(si, sj) ≥ 0.
Clearly, given C1 ≤ 1/2µC , we have,

dπW (si, sj)− dπB (si, sj)

=
(
γW1(d)

(
Pπsi ,P

π
sj

)
+ ϵ (si, sj)

)
−
(∣∣∣Eai∼πraisi − Eaj∼πrajsj

∣∣∣+ γW1(d)
(
Pπsi ,P

π
sj

))
= ϵ (si, sj)−

∣∣Eai∼πraisi − Eai∼πraisi
∣∣ ≥ 0 (19)

Then, dπB(si, sj) ≤ dπW (si, sj) holds.

B BACKGROUND SUPPLEMENT

B.1 BISIMULATION RELATION

Bisimulation Relations can be applied to group states in Markov Decision Processes (MDPs) that are
behaviorally equivalent, aiding in state space reduction and efficient policy learning. Bisimulation
Relation is defined as follows.
Definition B.1 (Bisimulation Relations (Givan et al., 2003)). Given an MDP M = (S,A,P, r), a
relation E ⊆ S × S is a bisimulation relation, if whenever (si, sj) ∈ E the following properties
hold,

R(si, a) = R(sj , a) ∀a ∈ A (20)
P(G|si, a) = P(G|sj , a) ∀a ∈ A, ∀G ∈ SB (21)

where SE is the partition of S defined by the relationE (the set of all groupsG of equivalent states),
and P

(
G
∣∣s, a) =∑s′∈G P

(
s′
∣∣s, a).
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B.2 REPRESENTATIONS IN SPARSE REWARDS

Reward signals can implicitly represent specific or abstract regions in observations that cause re-
wards (Yarats et al., 2021a). Recently, some work has modeled reward signals to obtain useful
representation information from observations, such as bisimulation metric representation based on
reward differences (Wang et al., 2024). However, when faced with real tasks with sparse rewards,
metrics tend to converge to the zero-fixed point due to continuous zero rewards, i.e., representa-
tion collapse (Liao et al., 2023). Although prior work has shown that modeling reward sequences
can collect richer reward signals (Kemertas & Aumentado-Armstrong, 2021; Yang et al., 2022), the
above problem is still difficult to avoid. Instead, it is more important to balance the dependence on
reward utilization in sparse reward environments.

C IMPLEMENTATIONS

C.1 ACTOR-CRITIC

Following the work Yarats et al. (2021b), we employ the Actor-Critic (AC) algorithm (Konda &
Tsitsiklis, 1999) as the backbone framework of DrQ-v2, where the DrQ-v2 is the basic structure of
the above experimental approaches. In general, AC is an off-policy reinforcement learning algorithm
for continuous control, consisting of a Critic network with a value function Qϑ(st, at) and an Actor
network with a policy function πυ(st). Similar to Barth-Maron et al. (2018), this setting uniformly
uses the n-step return value to enhance the Temporal-Difference error estimation, and uses double
Qk=0 and Qk=1 to alleviate the overestimation bias. Therefore, we train the Critic network using
the following loss:

LQ (ϑk, ϕω) = ED

[
Qϑk

(ϕω (st) , at)−

(
n−1∑
i=0

γirt+i + γn min
k=0,1

Qtgt
ϑ̄k

(ϕ (st+n) , at+n)

)]2
(22)

where Qtgt
ϑ̄k

is the target Q function with frozen network parameters ϑ̄k, and ϑ̄k is updated from the
exponential moving average (EMA) of the trainable parameters ϑk. D represents the experience
replay buffer in off-policy DRL.

In addition, since DrQ-v2 adopts a deterministic policy, I train the Actor network with parameter υ
with the following loss,

Lπ(υ) = −ED

[
min
k=0,1

Qϑk
(ϕω (st) , πυ (ϕω (st)) + ε)

]
(23)

where the action noise ε ∼ clip(N (0, σ2)) is used to ensure the stochastic nature in the deterministic
policy. In the interactive phase, ε ∼ N (0, σ2

t ) , where σt is scheduled standard deviation for the
exploration noise. Notably, the encoder parameters ϕω will not be trained by the Actor gradient, see
DrQ-v2 for details.

C.2 HYPERPARAMETERS

For the approaches involved in the experimental section, the main encoder network consists of 4
convolutional layers with the same filter sizes 3 × 3 and strides 2, 1, 1 and 1, respectively. In the
Actor and Critic networks, an encoder trunk network is independently set up to map the encoded
convolution output to a 50-dimensional feature vector, thereby serving the learning of policies and
value functions. For the settings of the SRL representation module, we set a 2-step transition dis-
tribution difference to achieve a trade-off between the utilization of the dynamics model and the
deviation caused by its accuracy. In addition, we set the sparse reward expectation C1 = 0.1 in
Assumption A.1. To satisfy the condition C1 ≤ 1/2µc, we conservatively set the mean µc = 0.5
of the Gaussian distribution function N (µc,Σθ). It is worth noting that the replay buffer size in
this work is set to 2e5, which is 20% of the previous capacity. This can effectively verify the effi-
ciency of approaches while avoiding huge resource consumption. In fact, the experimental results
also show that the replay buffer size of 2e5 may be sufficient. Please see the table below for detailed
hyperparameters.
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Table 3: Networks dimensions and hyperparameters.

Hyperparameter Shared Setting
Training steps 1 ∼ 4M
Seed frames 4000
Exploration steps 2000
Evaluation episodes 10
Replay buffer capacity 2e5

Episode length 1000 for DMControl, 500 for MetaWorld,
200 for pen and 100 for hammer

Batch size 512 for walker run and walker walk,
otherwise 256

Frame stack 1 for Adroit, otherwise 3
Discount factor γ 0.97 for MetaWorld, otherwise 0.99
State dims 9× 84× 84
Encoder conv kernels [32,32,32,32]
Encoder conv filter size [3× 3, 3× 3, 3× 3, 3× 3]
Encoder conv strides [2,1,1,1]
Hidden dims 1024
Latent state dims 50
Action repeat 2
n-step returns 3
Optimizer Adam
Learning rate 1e−4

τQ 0.01
Gradient training frequency 2
Exploration temperature 0.1
Hyperparameter SRL Setting
State transition step T 2
Sparse reward expectation C1 0.1
Trainable Gaussian distribution mean µc 0.5

C.3 LEARNING ALGORITHM

We describe the main algorithm steps as follows.

Algorithm 1 Scalable Representation Learning (SRL)

1: Initialize a replay buffer D with size N , encoder ϕ, policy π , latent model P̂ψ .
2: for m← 1 to (# epochs) do
3: for i← 1 to (# episodes per epoch) do
4: Encode state zt = ϕω(st)
5: Execute action at ∼ πϕ(zt) + ε where ε ∼ N (0, σ2

t ).
6: Run a step in environments st+1 ∼ P(·|st, at)
7: Collect data D ← D ∪ {st, at, rt+1, st+1}
8: end for
9: for k ← 1 to (# gradient steps) do

10: Sample batch Bi ∼ D
11: Rearrange batch Bj = Rearrange(Bi)
12: Sample a trainable Gaussian noise ϵ̃ = µc + σ1fθ(ϕω̄(sj), ϕω̄(sj)), where σ1 ∼ N (0, 1)

13: Train encoder EBi,Bj [∥ϕω(si)− ϕω(sj)∥2 − T (T )(si, sj ; ω̄, θ)] with P̂πψ in Equation (10)
14: Train the Actor-Critic: EBi [LQ(ϑk=0,1, ϕω) + Lπ(π)] in Equation (22) and Equation (23)
15: Train latent model EBi∥P̂πψ(·|z̄t, at)− z̄t+1∥2 with frozen latent states
16: Update target critics:EBi Q

tgt
ϑ̄k
← τQQϑk + (1− τQ)Q

tgt
ϑ̄k

, ∀k = 0, 1

17: end for
18: end for
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D EXPERIMENTAL SUPPLEMENT

D.1 THE BEHAVIOR SIMILARITY UNDER ENCODER SPACES

To quantitatively analyze the accuracy of the converged SRL and DBC encoders in terms of behav-
ioral similarity metrics, we calculate the encoding distances d = ∥ϕω(si)− ϕω(sj)∥2, (0 ≤ i, j <
500) of their pairwise combinations over 500 states and show the two pairs of states with the small-
est encoding distance in Figure 8. It is worth noting that to avoid combinations with too close state
transition steps, we set |i− j| ≥ 250 to ensure the effectiveness of the encoding distance.

As depicted in Figure 8, on the left and right sides, we display the two closest groups of encoded
distances for each DMC task under the SRL and DBC encoders, respectively. We can easily observe
that the two sets of encoding states with the closest distance identified by the SRL encoder, also have
very similar behavioral manifestation or task features intuitively. For example, in the walker run,
the differences between the states in each group are almost indistinguishable. In contrast, although
the states classified by the DBC method have certain similarities, there are obvious differences in
the detailed behaviors, so the effect is not good enough. In summary, the above results show that the
weak bisimulation metric can effectively cluster similar states, and this ability actually requires SRL
to accurately extract task-relevant features in the state, which strongly proves that SRL has powerful
representation learning performance.

(a) walker_walk

(b) walker_run

(c) quadruped_run

(d) reacher_hard

SRL DBC

Figure 8: Comparison of the behavioral similarity of state pairs under the latent space of SRL and
DBC encoders. Left: SRL, Right: DBC.

D.2 TASK-RELEVANT VISUALIZATIONS

As shown in Figure 9, we visualize the regions (green) of interest learned by convergent SRL and
DBC encoders in the MetaWorld environment. Overall, we can observe that the features extracted
by the SRL encoder (left side) are generally more complete and unambiguous. Interestingly, upon
closer inspection, we notice that the SRL encoder may have also learned to recognize and emphasize
potential safety boundaries, such as the operation boundaries on the desktop in the box-close
task. In contrast, the encoding abilities of DBC (right) are bad, as they either only notice partial
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components (e.g., cups and pallets), while failing to capture potential task components (e.g., buttons
and target points), or result in disorganized and unclear visualized regions, such as the box-close
task. More importantly, the task relationships between components, the abstract features of logic,
and the scope of the components themselves seem difficult to represent. Due to the lack of an overall
understanding of the task, it is difficult for the DBC to perform each necessary operation in an orderly
manner and complete the task. To sum up, SRL can more systematically and clearly extract the entity
features and abstract features required to support decision-making tasks compared to the baseline,
and demonstrates strong representation learning capabilities in sparse reward environments.

(a) pick-place

(c) soccer

(b) coffee-pull

(d) box-close

(f) Stick-pull

(e) coffee-push.

SRL DBC

Figure 9: Visualization comparison between task-relevant features captured by the SRL and DBC
encoders. Left: SRL, Right: DBC, with green heatmaps representing the task-relevant regions
of interest as identified by the final convolutional layer of each encoder. Note that we employed
consistent color parameters across both visualizations to ensure a fair comparison.
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D.3 REWARD COMPARISON

As shown in Figure 10 and Figure 11, we report the comparison curves of mean episode rewards
between SRL and baselines in the MetaWorld and Adroit environments, respectively. The highest
episode reward results are recorded in Table 4. We can observe that, despite the difficulty of the task
settings, our method achieves the highest rewards across all tasks. As a key baseline for bisimulation-
based methods, DBC performed poorly in almost all tasks, and in some cases, it struggled to achieve
dense rewards within the limited training frames.
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Figure 10: Learning curves of rewards for SRL and baselines on 6 complex tasks with sparse rewards
in MetaWorld. Each curve represents the average of three random seeds, with the shaded regions
indicating the standard deviation.
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Figure 11: Learning curves of rewards for SRL and baselines on two complex tasks with sparse
rewards in Adroit. Each curve represents the average of three random seeds, with the shaded regions
indicating the standard deviation.

Table 4: Comparison results of the best mean episode reward on complex MetaWorld and Adroit
tasks with sparse rewards.

Methods pick-place coffee-push stick-pull box-close coffee-pull soccer pen hammer

DrM 3345±80 2213±898 3091±168 2538±747 1424±253 1298±280 65.2±7.0 45.8±59.5
DBC 986±479 630±383 843±647 395±122 1665±58 784±241 60.6±3.7 2.7±0.0
DrQ-v2 4061±76 1460±59 2294±421 2242±788 1225±572 1598±168 31.2±20.0 9.1±13.6
SRL (ours) 4281±194 4254±73 4319±110 3650±203 2916±559 1925±211 79.4±8.0 171.3±13.6
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