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Abstract

Self-reflection helps de-hallucinate Large Lan-001
guage Models (LLMs). However, the effec-002
tiveness of self-reflection remains insufficiently003
validated in the context of Small Language004
Models (SLMs), which exhibit limited seman-005
tic capacities. In particular, we demonstrate006
that the conventional self-reflection paradigm,007
such as Self-Refine, fails to deliver robust re-008
sponse refinement for models with parameter009
sizes of 10 billion or smaller, even when com-010
pared to generations elicited through Chain-011
of-Thought (CoT) prompting. To improve012
SLMs’ self-reflection, we redesign Self-Refine013
and introduce Entrospect1 (Entropy-aware In-014
trospection), an information-theoretic frame-015
work based on prompt engineering.016

We evaluated Entrospect using accuracy and017
average time consumption metrics to com-018
prehensively assess its precision and compu-019
tational efficiency. Experiments conducted020
across four distinct SLMs and four baseline021
methods demonstrate that Entrospect achieves022
state-of-the-art performance on validation tasks.023
Notably, under identical model and data set-024
tings, Entrospect delivers a remarkable im-025
provement of up to 36.2% in reasoning accu-026
racy while enhancing computational efficiency027
by as much as 10 times compared to its prede-028
cessor, Self-Refine.029

1 Introduction030

Large Language Models have advanced rapidly,031

impacting many fields with improved natural lan-032

guage generation (Brown et al., 2020; Chang et al.,033

2024). However, their tendency to produce halluci-034

nations—especially counterfactual ones—poses a035

critical challenge to reliability (Zhang et al., 2023;036

Huang et al., 2023). Hallucinations occur when037

models generate factually incorrect or nonsensical038

outputs, undermining their trustworthiness and hin-039

dering real-world adoption. Addressing this issue040

is essential for improving their practical utility and041

acceptance (Weidinger et al., 2021, 2022).042

1The project is intended to be open-source soon after the
publication. For reviewers, we attached the examples of En-
trospect’s outputs to the submission.

Figure 1: The single-round refinement of an initial re-
sponse for the same query, comparing Self-Refine and
our proposed Entrospect. Self-Refine fully relies on
the model’s self-reflected feedback, where any biases
introduced during reflect are directly carried over into re-
fine, hindering constructive improvements. On the other
hand, our Entrospect identifies the optimal revision sug-
gestion from an itemized ouput of the self-reflection,
enabling Entrospect to achieve more robust and reliable
response refinement.

To address these challenges, self-reflection has 043

been proposed as a solution to counterfactual hal- 044

lucinations, particularly for black-box models with 045

inaccessible parameters (Madaan et al., 2024). 046

However, its effectiveness is limited in Small Lan- 047

guage Models (SLMs), which often lack suffi- 048

cient semantic capabilities, inducing frequent oc- 049

curences of imperfect feedback, encompassing 050

the self-reflected revision suggestions. Given the 051

widespread use of SLMs in resource-constrained 052

environments (Li et al., 2024; Wang et al., 2024), 053

this limitation is particularly significant. In such 054

cases, self-reflection may fail to consistently assist 055

in the corrections of outputs, highlighting the need 056

for more robust and scalable approaches. 057

Given the challenges of applying self-reflection 058

to SLMs, a key question arises: how might we con- 059
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Figure 2: Entrospect contributes furtherance to the re-
sponse refinement of SLMs particulary over its prede-
cessor, Self-Refine, across three major aspects.

struct a framework that effectively integrates self-060

reflection to improve the precision of SLM outputs,061

all while preserving the computational efficiency?062

In response to this challenge, we propose Entro-063

spect, an information-theoretic framework predi-064

cated on Self-Refine that lessens the dependency on065

explicit semantic outputs from the model. Contrary066

to Self-Refine’s equal consideration of all revision067

suggestions, Entrospect employs an unsupervised068

mechanism to identify the most effective revision069

candidate, minimizing the impact of inferior ones,070

as illustrated in Figure 1.071

Specifically, Entrospect is implemented with an072

Optimal Revision Suggestion Selector (ORSS) In-073

spired by (Wu et al., 2024) and (Yang et al., 2024b),074

the ORSS intervenes between the “reflect” and the075

“refine” stages that are tightly connected in the Self-076

Refine’s pipeline. It evaluates revision suggestions077

generated through self-reflection and identifies the078

one that minimizes the semantic uncertainty in the079

model’s refinement of the prior response, where080

low-quality suggestions conceivably ruining the081

successive procedures are ruled out. This selective082

approach distinguishes Entrospect from its prede-083

cessors, enhancing both the quality and reliability084

of the refined responses.085

Architecturally, Entrospect retains the simplic-086

ity and efficiency of Self-Refine, operating as087

a parameter-free, recurrent finite-state machine088

(FSM) where modules are interconnected through089

purpose-specific prompts. This design ensures090

computational efficiency while maintaining the091

flexibility to adapt to diverse conversational AI092

tasks. Figure 2 summarizes the multifaceted con- 093

tributions of Entrospect, the central focus of this 094

study. 095

We evaluated Entrospect on natural lan- 096

guage reasoning tasks, including the MATH 097

dataset (Hendrycks et al., 2021) for math reason- 098

ing and HaluEval (Li et al., 2023) for hallucina- 099

tion detection. The results show Entrospect outper- 100

forms baselines like zero-shot, few-shot, Chain-of- 101

Thought (CoT), and Self-Refine. These findings 102

underscore two critical advances: 103

1. Selective Use of Self-Reflection: We high- 104

light that the outcomes of a model’s self- 105

reflection should not be directly or entirely 106

relied upon as guidance for the response re- 107

finement. 108

2. ORSS-Driven Optimization: Our proposed 109

Entrospect improves Self-Refine by introduc- 110

ing ORSS, an information-theoretic mecha- 111

nism that unsupervisedly identifies the opti- 112

mal revision from multiple candidates. Com- 113

bined with our semantic similarity-based stop- 114

ping condition, Entrospect allows a more ro- 115

bust and systematic approach to self-reflection 116

for response refinement. Compared to its pre- 117

cursor, Self-Refine, Entrospect accomplishes 118

a remarkable performance boost, delivering 119

up to 36.2% improvement in accuracy under 120

identical dataset and model conditions, while 121

elevating computational efficiency by as much 122

as 10 times. 123

2 Related Work 124

2.1 Self-Reflection of Language Models 125

The empirical foundation of self-reflection is that 126

given some queries, language models may not be 127

able to provide proper answers every time (Yan 128

and Xu, 2023). Self-reflection assists in alleviating 129

such problems by explicitly instructing a language 130

model to review its generated response, providing 131

a feedback on potential deficiencies within the cur- 132

rent response and how they could be eliminated. 133

The feedback is subsequently used for guiding the 134

refinement of the previous answer. This procedure 135

can be fully automated through a prompt-driven 136

framework, by which a language model iteratively 137

reflects and refines the answer to a query on its 138

own (Lee et al., 2024). 139

Techniques like Self-Refine introducing mech- 140

anisms for models to improve their own re- 141
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sponses (Madaan et al., 2024), especially in142

question-answering (QA) scenarios, to enhance143

generation quality. This approach has been fur-144

ther advanced in research such as Reflexion and145

Agent-Pro (Shinn et al., 2024; Zhang et al., 2024b),146

which extend self-reflection to agentic scenarios,147

increasing the efficiency and success rate of task148

execution during scenario exploration and trajec-149

tory execution. However, there remains significant150

room for improvement in its performance, particu-151

larly when it comes to SLMs.152

Through extensive review, we found lack of re-153

port on the effectiveness of self-reflection applied154

to models which possess fewer than 10 billion pa-155

rameters. Its success relies heavily on the context156

generated during the self-reflection process (Cheng157

et al., 2024) and is prone to overconfidence in its158

generated content (Zhang et al., 2024a), including159

biases.160

We assessed the self-reflective capabilities of161

several SLMs across a variety of tasks, with Self-162

Refine chosen as a baseline approach. Our find-163

ings reveal that reflective thinking of these models164

fails to produce meaningful improvements in their165

generative performance. Entrospect is specifically166

designed to enhance the performance of SLMs by167

leveraging information theory to assist in the self-168

reflection process.169

2.2 Enhancing the Reasoning Capabilities of170

Small Language Models171

Recent studies have made significant strides in en-172

hancing the reasoning capabilities of SLMs. Bi et173

al. introduced Solution-Guidance Fine-Tuning (Bi174

et al., 2024), focusing on problem understanding175

and decomposition to improve SLMs’ generaliza-176

tion and reasoning abilities. Wang and Lu explored177

continual pre-training on a synthetic dataset to in-178

ject multi-step reasoning abilities into moderate-179

sized models (Wang and Lu, 2023). Fu et al. spe-180

cialized small models towards multi-step reason-181

ing through knowledge distillation from large mod-182

els (Fu et al., 2023). Yu et al. developed TRIPOST,183

an algorithm enabling small models to self-improve184

via interaction with large ones (Yu et al., 2023).185

However, these methods often necessitate a sub-186

stantial amount of additional data, whether it is187

synthetically created or derived from larger models,188

which may not be readily accessible or easy to pro-189

duce. They entail a certain degree of computational190

overhead, be it in data generation, pre-training, or191

iterative training processes. Differently, Entrospect 192

does not require any additional data or specialized 193

training, thus drastically reducing both overhead 194

and resource demands, allowing broader applica- 195

bility across diverse domains and use cases. 196

3 Methodology 197

3.1 Problem Definition 198

While frameworks like Self-Refine aim to automate 199

response refinement in language models through 200

self-reflection, they do not inherently ensure that 201

such refinements are beneficial. This limitation 202

is particularly pronounced in SLMs, where con- 203

strained semantic capabilities lead to unreliable 204

self-reflections, resulting in reflective contamina- 205

tion. Reflective contamination occurs when the 206

model’s self-generated feedback contains biases, 207

which can degrade rather than improve the refined 208

response. 209

To formalize this problem, consider the t-th 210

refinement round, where the model Mθ gener- 211

ates feedback Ft based on the query Q, reflection 212

prompt Preflect, and current response At. This feed- 213

back, represented asMθ (Q∥At∥Preflect), consists 214

of two components: 1) A valid portion St = ρtFt, 215

which supports effective refinement. 2) Reflective 216

contamination Nt = (1− ρt)Ft, which introduces 217

biases. Here, ρt ∈ (0, 1) represents the proportion 218

of valid feedback in Ft. The refined response At+1 219

is then generated using Ft, Q, and the refinement 220

prompt Prefine, expressed as: 221

At+1 =Mθ (Q∥At∥Ft∥Prefine)

= At + αS
t St − αN

t Nt

= At + αS
t ρtFt − αN

t (1− ρt)Ft

= At +
[(
αS
t + αN

t

)
ρt − αN

t

]
Ft,

(1) 222

where αS
t and αN

t are partial attention factors 223

(α ∈ (0, 1)) applied to the valid and contaminated 224

portions of Ft, respectively. 225

The Core Problem: 226

1. A successful refinement requires At+1 ≥ At, 227

but this is not guaranteed. When ρt is low 228

(i.e., the feedback contains more contamina- 229

tion), the refined response may degrade, as 230

described by the condition: 231

ρt <
αN
t

αS
t + αN

t

. (2) 232
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Figure 3: The pipeline of our Entrospect prompt-driven framework, extending the original Self-Refine structure with
an Optimal Revision Suggestion Selector (ORSS) and a universal semantic similarity-based stopping condition .
The framework requires no supervised pre-training or access to the model’s internal parameters, granting it to be
generalizable to various language models and reasoning tasks.

2. SLMs, with their limited semantic compe-233

tence, often exhibit low ρt and high αN
t (or234

low αS
t ), making them prone to degradation235

during the refinement phase of the response.236

Objective: Within the realm of black-box mod-237

els, αS
t , αN

t and ρt are inaccessible. This presents238

a significant obstacle in accurately differentiating239

between St and Nt. An alternative perspective in-240

volves concentrating exclusively on the optimal241

component of Ft. Entrospect proposes an unsu-242

pervised mechanism driven by information theory,243

providing a systematic solution to this complica-244

tion.245

3.2 Optimal Revision Suggestion Selector246

By employing a formatting prompt, we can steer247

the model’s self-reflective output towards a system-248

atic arrangement of multiple revision suggestions.249

In this way, Ft is characterized as an ensemble250

of strings
{
f0
t , f

1
t , . . . , f

n
t

}
, framing our goal as251

“discerning an optimal revision suggestion from252

this set”. However, in the absence of supervision,253

defining what constitutes optimal becomes a funda-254

mental issue.255

To address this, we propose a solution called256

the Optimal Revision Suggestion Selector (ORSS),257

which uses heuristic information-theoretic ap-258

proaches for prompt selection (Wu et al., 2024;259

Yang et al., 2024b). These studies suggest that260

an optimal prompt should minimize the semantic261

uncertainty of a language model when processing262

a query, which is equivalent to maximizing the263

conditional mutual information (CMI) between the264

input and the output. Unlike recent work which265

assumes a manually constructed prompt pool, Ft266

as the candidate set in our case is constructed in an267

automatic fashion, where revision suggestions be- 268

come prompt candidates, and the one to be selected 269

renders the maximum CMI following Equation 3: 270

f∗
t =arg max

ft∈Ft

I (At+1; ft | Q∥At) ,

where I = H (At+1 | Q∥At)

−H (At+1 | ft, Q∥At) .

(3) 271

In Equation 3, Q∥At stands for the prompt 272

“Please provide a refined solution of <Q> 273

given <A t>”, and (ft, Q∥At) signifies a slightly 274

different prompt “Please provide a refined 275

solution of <Q> given <A t>. <f t>”. The 276

two Hs characterize the marginal entropy and the 277

conditional entropy in classical information theory, 278

respectively. The value of CMI I stands for the ex- 279

tent to which a revision suggestion ft enhances 280

the model’s confidence in the refinement applied 281

to the current answer At. 282

3.3 Eliciting the Convergence of Entrospect 283

We established a universal mechanism to enable 284

Entrospect to automatically terminate its iterations. 285

The core principle is that, at the semantic level, At 286

and At+1 are essentially equivalent. Consequently, 287

when a language model employs greedy search 288

(temperature = 0) for output sampling, subse- 289

quent outputs naturally converge toward consis- 290

tency, rendering the increments from reflection and 291

refinement negligible. Given these circumstances, 292

the framework no longer introduces meaningful 293

improvements to the response, a state we defined 294

as “convergence”. More precisely, we leverage the 295

cosine similarity S (·, ·) to quantify the degree of 296

semantic resemblance between two answers, mod- 297

eled as 298

4



S (A1, A2) =
v1 · v2

∥v1∥∥v2∥

=

∑m
i=1(v1i · v2i)√∑m

i=1 v
2
1i ·

√∑m
i=1 v

2
2i

,
(4)299

where v =
[
v1 v2 . . . vm

]T indicates300

the A’s tokenized vector in a continuous, m-301

dimensional semantic space. The range of S is302

[−1, 1], with a higher value referring to a stronger303

semantic similarity between the two entities com-304

pared. Leveraging semantic similarity as a stop-305

ping condition for the iterative refinement proce-306

dure guarantees an appropriate termination junc-307

ture, thus optimizing performance results.308

3.4 Framework of Entrospect309

Slightly different from the three-step process of310

respond→ reflect→ refine adopted by Self-Refine,311

Entrospect follows an extended four-step strategy:312

respond→ reflect→ select→ refine. In the follow-313

ing, we detail each step sequentially; see Figure 3314

for an intuitive illustration of the pipeline and Al-315

gorithm 1 for implementation guidance.316

Respond: The iterations begin with the language317

model generating an initial answer A0 for the input318

query Q.319

Reflect and Select: During iteration t, the model320

Mθ, guided by the prompt Preflect, the original321

query Q, and the current answer At, generates322

a set of candidate revision suggestions denoted323

as Ft =
{
f0
t , f

1
t , . . . , f

n
t

}
. The prompt Preflect324

serves as a directive that instructs the model on325

how to evaluate potential deficiencies in the current326

answer and construct appropriate Ft accordingly.327

Thereafter, the ORSS selects the optimal f∗
t that328

maximizes the CMI between the input and the out-329

put of the model. In practical implementation, the330

Cross-Entropy Loss LCE output by the model for a331

given input can be used to calculate the marginal332

entropy and the conditional entropy, allowing for333

the straightforward computation of the CMI.334

Refine: Leveraging the f∗
t as the key instruction to335

the refinement, the modelMθ utilizes the prompt336

Prefine, in conjunction with the original query Q337

and the current answer At, to generate an updated338

answer At+1.339

Stop Condition: Subsequent to the generation of340

the At+1, we exert the semantic textual similar-341

ity measure to check whether the iterative process342

Algorithm 1 The algorithm pipeline of Entrospect

Require: query Q, model Mθ, prompt Preflect

(:= Pf ), prompt Prefine (:= Pr), semantic sim-
ilarity threshold Sth

1: A0 ←Mθ (Q) ▷ Respond
2: At ← A0

3: while True do
4: Ft ←Mθ (Pf∥Q∥At) ▷ Reflect
5:

{
f0
t , f

1
t , . . . , f

n
t

}
← list(Ft) ▷ Itemize

6: Imax ← 0
7: for ft in list(Ft) do ▷ Select (ORSS)
8: Hmarg

t ← LCE (Mθ (Pr∥Q∥At))
9: Hcond

t ← LCE (Mθ (Pr∥Q∥At∥ft))
10: It ← Hmarg

t −Hcond
t

11: if It > Imax then
12: f∗

t ← ft
13: end if
14: end for
15: At+1 ←Mθ (Pr∥Q∥At∥f∗

t ) ▷ Refine
16: if S (At, At+1) ≥ Sth then
17: break
18: end if
19: At ← At+1

20: end while
21: return At+1

should be terminated. When At and At+1 exhibit 343

a high degree of semantic resemblance, this sug- 344

gests that Entrospect has entered a state of conver- 345

gence from the current iteration onward. Following 346

that, At+1 is designated as the final output. To 347

meet the requirements of long-text encoding with 348

high representational fidelity, we opted for the Jina 349

Embeddings V3 (Sturua et al., 2024) with a ded- 350

icated LoRA adapter for text-matching tasks, an 351

encoder-based model which natively supports an 352

input sequence length of up to 8192 tokens. In our 353

experiments, S ≥ 0.9 is adopted as the threshold 354

for considering At and At+1 semantically equiva- 355

lent. 356

We detailed the instructions involved in the op- 357

eration process of Entrospect in Figure 6. 358

4 Experiments and Results 359

4.1 Experimental Settings 360

We evaluated Entrospect equipped by four of 361

the latest SLMs, including DeepSeek-R1-distilled 362

Qwen 2.5 1.5B (Yang et al., 2024a; Guo et al., 363

2025), Qwen 2.5 7B (Yang et al., 2024a), Llama 3.1 364

8B (AI, 2024), and GLM-4 9B (GLM et al., 2024), 365
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as compared to the baselines (see Section 4.4) on366

a math reasoning dataset and a hallucination de-367

tection dataset, namely MATH (Hendrycks et al.,368

2021) and HaluEval (Li et al., 2023). Each SLM369

was quantized to INT4 precision with either Auto-370

GPTQ or BitsAndBytes (Pan, 2023; Dettmers et al.,371

2022).372

4.2 Datasets373

To comprehensively assess whether Entrospect374

heightens the ubiquitous reasoning performance375

of SLMs, we sourced our validation data from two376

representative datasets, MATH and HaluEval, with377

illustrative examples provided in Table 2.378

Table 1: Accuracies (%) of various methods equipped by
four of the latest SLMs on reasoning tasks MATH (The
average accuracies of level 1 to level 5) and HaluEval.
We highlight the best results in bold.

Model
Name Method MATH HaluEval

DeepSeek-
R1-Distilled

Qwen 2.5
Instruct 1.5B

Zero-Shot 94.2 80.5
5-Shot 90.2 29.5

Zero-Shot CoT 91.3 91.0
Self-Refine 88.5 80.0
Entrospect 98.4 95.5

Qwen 2.5
Instruct 7B

Zero-Shot 78.2 94.5
5-Shot 72.8 91.0

Zero-Shot CoT 83.8 98.0
Self-Refine 73.0 97.5
Entrospect 86.0 100.0

Llama 3.1
Instruct 8B

Zero-Shot 61.7 94.5
5-Shot 56.5 94.0

Zero-Shot CoT 73.7 94.5
Self-Refine 44.3 95.0
Entrospect 80.5 99.5

GLM 4
Instruct 9B

Zero-Shot 55.0 98.5
5-Shot 57.9 97.5

Zero-Shot CoT 65.8 97.5
Self-Refine 56.8 97.5
Entrospect 69.7 100.0

MATH (Hendrycks et al., 2021): a dataset de-379

signed to measure the mathematical reasoning ca-380

pabilities of language models, consisting of prob-381

lems sourced from high school math competitions,382

tagged with difficulty levels from 1 to 5 and cov-383

ering a wide range of topics including algebra, ge-384

ometry, number theory, and combinatorics. MATH385

is notable for its complexity compared to the other386

datasets of the same category (Frieder et al., 2024),387

e.g. GSM8K (Cobbe et al., 2021). Besides, the388

latest findings have unveiled that MATH suffers389

less leakage than GSM8K does from the worsen-390

Figure 4: The Accuracy-ATC results derived from evalu-
ating Entrospect and Self-Refine across four models and
two tasks. The dividing lines in the chart correspond
to the decision boundaries determined by linear SVMs
fit on the data points of Entrospect and Self-Refine.
Data points positioned closer to the top-left corner sig-
nify a more favorable trade-off between computational
efficiency and reasoning accuracy, indicating superior
overall performance.

ing cheating on model training (Xu et al., 2024), 391

underlining its fairness. We randomly chose 120 392

samples from each difficulty level to serve as our 393

experimental dataset. 394

HaluEval (Li et al., 2023): a dataset that gauges 395

the performance of language models in recognizing 396

hallucinations, featuring general user queries and 397

task-specific examples across question answering, 398

dialogue, and text summarization. We randomly 399

sampled 200 pairs from this dataset, providing a ro- 400

bust evaluation platform for analyzing the effective- 401

ness of our framework in detecting and reducing 402

hallucinations. 403

4.3 Evaluation Metrics 404

We selected two evaluation metrics, i.e. Accuracy 405

and Average Time Consumption (Han et al., 2023; 406

Xu et al., 2023; Xiao et al., 2024), to provide both 407

qualitative and quantitative insights into the effec- 408

tiveness of Entrospect. 409

Accuracy: a pivotal evaluation metric, is de- 410
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lineated as the proportion of problems cor-411

rectly resolved relative to the total number of412

problems the model attempts, computed via413

Acorrect/ (Acorrect +Awrong) × 100%. A higher414

accuracy signifies that a prompting scheme is more415

effective in lifting the model’s reasoning outcomes.416

Average Time Consumption: We measured the417

Average Time Consumption (ATC) of the selected418

prompting schemes, spanning from the moment419

the input is supplied to the generation of the final420

output. Given the sample size N of the valida-421

tion set, ATC is calculated by 1
N

∑N
k (tko − tki),422

where tko−tki denotes the duration, counted in sec-423

onds, from the moment the k-th input is supplied424

to the time the k-th output is generated. A smaller425

ATC embodies better computational efficiency of a426

prompting method, which is vital for industrial im-427

plementation, notably on edge computing devices428

running local SLMs. In our assessments, both of429

the above metrics are considered for more compre-430

hensive analysis.431

4.4 Baseline Selection432

We compared Entrospect against the following433

well-established prompting methods as well as its434

ablated version, functioning as robust benchmarks435

for appraising the performance uplift in SLMs436

achieved with Entrospect.437

Zero-Shot and Few-Shot Prompting (Brown438

et al., 2020): Zero-shot prompting directs a lan-439

guage model to perform tasks with only high-level440

instructions, often sacrificing accuracy for complex441

inputs. Conversely, few-shot prompting supplies442

demonstrations to improve context awareness and443

performance, yet its success hinges on the qual-444

ity of examples, which may not fully capture task445

complexity and may be labor-intensive to gather in446

practice.447

Chain-of-Thought Prompting (Wei et al., 2022):448

An approach that guides language models to gen-449

erate a structured reasoning path before arriving at450

the final answer, encouraging more systematic and451

transparent problem solving. A key downside is452

the increased potential for longer outputs, as irrele-453

vant, inaccurate, and repetitive steps may appear in454

the generated thought chain, especially concerning455

SLMs, impairing the overall outcome.456

Self-Refine (Madaan et al., 2024): The framework457

allows a model to iteratively revise its own out-458

puts with identified errors from the self-reflection’s459

feedback. Despite its potential, such a strategy460

Figure 5: (A higher Number of Correct Outputs is bet-
ter) Constrained on a fixed 5 rounds of refinement rather
than the stopping condition, the ablated Entrospect falls
into suboptimal performance in contrast to the complete
version across both tasks and all involved models. This
highlights the significance and efficacy of importing se-
mantic similarity comparison as the stopping condition
for our framework.

may introduce unnecessary or incorrect changes 461

during the refinement cycles, especially for SLMs, 462

as mentioned in Section 1. 463

Ablated Entrospect: The variant of Entrospect 464

without the semantic similarity-based stopping con- 465

dition. Instead, a manual setting of 5 fixed itera- 466

tions is assigned. This baseline serves as the abla- 467

tion study that verifies the efficacy of our nominated 468

convergence policy. 469

4.5 Results 470

We report the Entrospect’s state-of-the-art compe- 471

tences versus the baseline prompting approaches, 472

especially Self-Refine, in augmenting the SLMs’ 473

semantic reasoning across two validation tasks. 474

Entrospect improves reasoning accuracies: Dis- 475

played in Table 1 and 3, SLMs armed with En- 476

trospect outshines all other baselines pertaining 477

to the reasoning accuracies across both MATH 478

and HaluEval validation sets. In contrast specif- 479

ically to Self-Refine, Entrospect yields a maximum 480

improvement of 36.2% with Llama 3.1 Instruct 481
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8B (44.3% → 80.5%) on the MATH dataset and482

15.5% with DeepSeek-R1-Distilled Qwen 2.5 In-483

struct 1.5B (80.0% → 95.5%) on the HaluEval484

dataset. Moreover, Figure 7 highlights Entrospect’s485

robustness beyond handling math problems with486

a fixed complexity. When set against Self-Refine,487

Entrospect consistently offers more substantial mit-488

igation against the overall degradation of reasoning489

accuracy as the problem difficulty rises, securing a490

reduced decay rate as much as 52.8%.491

The exceptional computational efficiency: As492

depicted in Figure 4, Entrospect reaches conver-493

gence faster than Self-Refine across most instances.494

on the MATH dataset, Entrospect reduces runtime495

by an average factor of up to 2.8 (e.g., Llama 3.1496

8B + Entrospect), meanwhile demonstrating even497

more pronounced efficiency gains on the HaluEval498

dataset, with runtime reductions reaching up to 10-499

fold (e.g., DeepSeek R1-Distill Qwen 2.5 1.5B +500

Entrospect). Beyond its efficiency advantages, Fig-501

ure 4 highlights Entrospect’s ability to strike a supe-502

rior balance between computational efficiency and503

accuracy, driving substantial overall performance504

enhancements in SLMs.505

To investigate potential correlations between506

model parameter sizes and the ATC outcomes507

achieved by Entrospect, we employed Spearman’s508

rank correlation coefficient alongside correspond-509

ing p-values (Spearman, 2010). However, no statis-510

tically significant relationship was observed within511

the scope of our experiments (MATH: corr =512

−0.600, p = 0.400; HaluEval: corr = −0.200,513

p = 0.800).514

Ablation study: To validate whether the seman-515

tic similarity-based stopping condition is crucial516

for propelling a higher reasoning accuracy of En-517

trospect, we conducted an ablation study by re-518

moving this mechanism and fixing the number of519

refinement cycles to 5. Figure 5 illustrates that the520

ablated Entrospect constantly underperforms com-521

pared to the complete implementation, witnessing522

performance deficits of 1.8→ 8.9% on the MATH523

dataset and 1.5%→ 3.5% on the HaluEval dataset524

across all tested SLMs. The results solidify the role525

of the semantic similarity-guided stopping condi-526

tion as a cornerstone for enhancing Entrospect’s527

overall performance.528

5 Conclusion529

This paper introduces Entrospect, an opti-530

mized Self-Refine framework that leverages an531

information-theoretic Optimal Revision Sugges- 532

tion Selector to provide optimal revision sugges- 533

tions during the self-reflection stage while elimi- 534

nating ineffective ones for efficient refinement of 535

initial responses from SLMs. Besides, the con- 536

vergence of Entrospect is made possible with a 537

dedicated semantic similarity-determined stopping 538

condition. Through our holistic evaluations, Entro- 539

spect claimed state-of-the-art relative to the base- 540

line methods on both of our reasoning tasks across 541

four SLMs of diverse parameter sizes, obtaining a 542

maximum 36.2% reasoning accuracy uplift and at 543

most 10 times the computational efficiency exclu- 544

sively over its antecedent, Self-Refine. 545

We aspire for this study to inspire further ad- 546

vancements in small language models research 547

and furnishes new perspectives for information- 548

theoretic prompt engineering. 549

Limitations 550

There remains much room for promoting Entro- 551

spect, and our future studies shall prioritize the 552

following key limitations: 553

More solid definition of an optimal revision sug- 554

gestion: The ORSS of Entrospect, grounded in 555

maximizing the conditional mutual information, 556

operates as an approximate selection technique in 557

unsupervised settings. This approach gauges the 558

quality of a revision suggestion by leveraging the 559

model’s intrinsic output uncertainty as a pivotal de- 560

terminant. However, its reliability is compromised 561

when the model demonstrates undue confidence in 562

erroneous outputs. As a result, it is imperative to 563

pursue a more precise and theoretically grounded 564

definition of what constitutes an optimal revision 565

suggestion in our future studies. 566

Beyond semantic similarity comparison as the 567

stopping condition: A high semantic similarity 568

between consecutive refinement iterations as a sign 569

of convergence is logically aligned with language 570

models adopting greedy search sampling. In con- 571

versational situations, however, sampling methods 572

such as Top-K and nucleus sampling are more reg- 573

ularly used to ensure generative variability. Our 574

future work will seek to modify the current con- 575

vergence mechanism tailored to these sampling 576

configurations. 577
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Figure 6: (Referred in Section 3.4) The detailed instructions used for all prompting nodes (modules) within the
Entrospect framework during the evaluation phases. These instructions guide the SLMs through the process of
generating an initial response, reflecting on its deficiencies, selecting the optimal revision, and refining the response
based on the selected suggestion.
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Table 2: (Referred in Section 4.2) Representative data samples from the MATH and HaluEval datasets, demonstrating
a mathematical reasoning problem and a reading comprehension task.

Dataset Query Label
MATH What is the simplified numerical value of

a+11b
a−b if 4a+3b

a−2b = 5?
Let’s play with the given condition a lit-
tle. Clearing out the denominator gives
4a+ 3b = 5(a− 2b) = 5a− 10b. Selec-
tively combine like terms by adding 9b−
4a to both sides to get 12b = a− b. This

gives
12b

a− b
= 1. Now, we want to find

a+ 11b

a− b
. Rewrite this as

a− b+ 12b

a− b
=

a− b

a− b
+

12b

a− b
= 1+1 = 2 , and we are

done.
HaluEval The following is a reading comprehension

task, which provides a passage, a question
related to the passage, and an answer to
the question: [Passage] The ValleyCats
play at Joseph L. Bruno Stadium which
opened in 2002 on the campus of Hud-
son Valley Community College located in
Troy. Joseph Bruno Stadium is a stadium
located on the campus of Hudson Valley
Community College in Troy, New York.
[Question] The Tri-City ValleyCats play
at which stadium located on the campus
of Hudson Valley Community College in
Troy, New York? [Answer] Troy Commu-
nity Stadium, located on Hudson Valley
Community College campus. Please deter-
mine whether the given answer is correct.
If it is correct, output ‘PASS’; if it is in-
correct, output ‘FAIL’.

FAIL
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Table 3: (Referred in Section 4.5) The extended table of accuracies(%) on the MATH dataset, providing a detailed
breakdown of all results across Level 1 to Level 5, where Entrospect performs the best with all SLMs relative to the
baseline prompting methods across all difficulty levels. We highlight the best results in bold.

Model Name Method MATH-L1 MATH-L2 MATH-L3 MATH-L4 MATH-L5

DeepSeek-R1-
Distilled Qwen 2.5

Instruct 1.5B

Zero-Shot 97.5 95.0 96.7 91.7 90.0
5-Shot 96.7 92.5 94.2 91.7 75.8

Zero-Shot CoT 75.0 98.3 98.3 93.3 91.7
Self-Refine 90.0 89.2 90.8 88.3 84.2
Entrospect 99.2 99.2 99.2 96.7 97.5

Qwen 2.5 Instruct
7B

Zero-Shot 91.7 92.5 85.8 73.3 47.5
5-Shot 90.8 92.5 81.7 62.5 36.7

Zero-Shot CoT 95.0 93.3 91.7 79.2 60.0
Self-Refine 85.0 89.2 82.5 65.8 42.5
Entrospect 95.0 95.8 91.7 84.2 63.3

Llama 3.1 Instruct
8B

Zero-Shot 87.5 74.2 60.8 48.3 37.5
5-Shot 88.3 70.0 62.5 41.7 20.0

Zero-Shot CoT 91.7 83.3 77.5 65.8 50.0
Self-Refine 72.5 54.2 43.3 28.3 23.3
Entrospect 95.0 88.3 84.2 74.2 60.8

GLM 4 Instruct 9B

Zero-Shot 82.5 66.7 55.0 46.7 24.2
5-Shot 86.7 66.7 66.7 44.2 25.0

Zero-Shot CoT 90.0 81.7 75.8 51.7 30.0
Self-Refine 85.0 69.2 63.3 45.0 21.7
Entrospect 92.5 85.8 79.2 56.7 34.2
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Figure 7: (Referred in Section 4.5) We employed linear regression to model the decline in reasoning accuracy, as
measured by Entrospect and Self-Refine on the MATH validation set with increasing difficulty levels. The four
charts correspond to the four distinct SLMs we evaluated, where the decay rate equals the slope of each fitted
decay line. A decay rate with a larger absolute value indicates a more rapid deterioration in reasoning accuracy as
the difficulty level rises. Across all tested models, observations indicate that as the difficulty level of the test data
increases, the performance degradation exhibited by Entrospect is, overall, less pronounced than that of Self-Refine.
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