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Abstract001

Mixture-of-Experts (MoE) shines brightly in002
large language models (LLMs) and demon-003
strates outstanding performance in plentiful nat-004
ural language processing tasks. However, ex-005
isting methods transforming LLMs from dense006
to MoE face significant data requirements and007
typically rely on large-scale post-training. In008
this paper, we propose Upcycling Instruction009
Tuning (UpIT), a data-efficient approach for010
tuning a dense pre-trained model into a MoE011
instruction model. Specifically, we first point012
out that intermediate checkpoints during in-013
struction tuning of the dense model are nat-014
urally suitable for specialized experts, and then015
propose an expert expansion stage to flexibly016
achieve models with flexible numbers of ex-017
perts, where genetic algorithm and parameter018
merging are introduced to ensure sufficient di-019
versity of new extended experts. To ensure020
that each specialized expert in the MoE model021
works as expected, we select a small amount022
of seed data that each expert excels to pre-023
optimize the router. Extensive experiments024
with various data scales and upcycling settings025
demonstrate the outstanding performance and026
data efficiency of UpIT, as well as stable im-027
provement in expert or data scaling. Further028
analysis reveals the importance of ensuring ex-029
pert diversity in upcycling.030

1 Introduction031

Large Language Models (LLMs) have demon-032

strated remarkable performance on various NLP033

tasks and are gradually becoming part of our daily034

lives through chatbot applications such as Chat-035

GPT, Copilot, etc (Ouyang et al., 2022; Touvron036

et al., 2023; OpenAI, 2024). As LLMs become037

increasingly prevalent, the high computational of038

traditional dense architecture with high computa-039

tional costs in the inference phase poses signifi-040

cant obstacles to downstream deployment. How041

to improve the model performance without propor-042

tionally increasing computing resources become043

a hot topic in the field (Muennighoff et al., 2024; 044

Xue et al., 2024). In response to this challenge, 045

Mixture-of-Experts (MoE) receives extensive atten- 046

tion due to its excellent scalability, which expands 047

model capacity with almost no extra inference over- 048

head (Fedus et al., 2022; Zoph et al., 2022). Re- 049

cently, many MoE-based LLMs have emerged in 050

various scenarios with outstanding effectiveness 051

and efficiency (Dai et al., 2024; Jiang et al., 2024; 052

Zhu et al., 2024a). 053

Upcycling is garnering increasing attention for 054

converting dense LLMs through a series of pro- 055

cesses, including expanding experts, integrating 056

routers, and subsequent post-training, ultimately 057

yielding MoE-style models. As depicted in Fig- 058

ure 1, current solutions are broadly classified into 059

two categories: (a) Vanilla Upcycling, which di- 060

rectly upcycle a dense model to a MoE model by 061

replicating FFN layers, followed by a large-scale 062

post-training to optimize the additional experts and 063

corresponding routers (Komatsuzaki et al., 2023). 064

Due to the homogeneity of experts in the initial 065

stage, a large amount of post-training data is usu- 066

ally necessary, such as ~1T tokens for full parame- 067

ter training or ~5M instruction data for parameter 068

efficient fine-tuning (Dou et al., 2024; Zhu et al., 069

2024a). (b) Specialized Upcycling, which first 070

trains specialized experts based on meticulously de- 071

signed domain-specific datasets and then proceeds 072

with upcycling and post-training (Sukhbaatar et al., 073

2024). Despite having superior performance, it still 074

requires hundreds of billions of elaborately con- 075

structed domain data and lacks flexibility in scaling 076

the number of domain-specific experts. To sum 077

up, although expert specialization slightly reduces 078

data requirements, the current approach to upcy- 079

cling from dense to MoE heavily relies on a large 080

amount of training data, how to efficiently and flexi- 081

bly train a MoE instruction model based on a dense 082

pre-trained model is still an open problem. 083

To answer this question, we first conduct a pi- 084
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Figure 1: Workflow of vanilla upcycling, specialized upcycling, and the proposed upcycling instruction tuning (UpIT)
solutions. UpIT achieves specialized experts with various checkpoints, increases the expert number during the
expert expansion stage, and maintains discrepancy among experts through router initialization, thereby achieving
efficient and flexible upcycling.
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Figure 2: The performance of various checkpoints saved during an instruction tuning process, with a red star
indicating the best performance on each benchmark. Checkpoints saved at different epochs excel in different
benchmarks, demonstrating the potential as specialized experts.

lot experiment on dense models to observe the085

characteristics of models at different epochs dur-086

ing standard instruction tuning. Figure 2 shows087

checkpoints saved at different epochs exhibit inter-088

leaved performance across benchmarks in various089

domains. In practical terms, we categorize nine090

benchmarks into four domains: factual knowledge,091

reasoning, coding, and world knowledge, where the092

performance on each benchmark generally shows093

an upward trend followed by a downward trend, but094

the position of the maximum value varies. For ex-095

ample, the model trained at epoch 2 demonstrates096

superior performance on HellaSwag and Natual097

Question, whereas the model trained at epoch 0.25098

performs best on MMLU. In other words, mod-099

els with different training steps demonstrate vary-100

ing expertise in handling distinct domains. This101

phenomenon inspires us to consider that different102

checkpoints during instruction tuning are inher-103

ently suitable for constructing specialized experts.104

In light of the above findings, we propose 105

Upcycling Instruction Tuning (UpIT), which starts 106

from a dense pre-trained model and trains a MoE 107

instruction model with a flexible number of ex- 108

perts, following the basic thought of specialized 109

upcycling. Figure 1 illustrates the four stages of 110

UpIT. Specifically, (1) Expert Preparation. Con- 111

sidering the differences among checkpoints in the 112

pilot experiment, it is sufficient to fine-tune the 113

dense pre-trained model and save checkpoints at 114

fixed intervals to prepare for specialized experts, 115

without undertaking meticulous checkpoint selec- 116

tion. (2) Expert Expansion. Given the fixed check- 117

points, we extend a flexible number of new experts 118

based on genetic algorithms. In each iteration, we 119

select two experts with the greatest differences, 120

merge their parameters and obtain a new expert. 121

We also perform parameter scaling and dropping 122

before merging to simulate the mutation and fur- 123

ther promote the discrepancy of experts. (3) Router 124
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Initialization. Traditional routers are randomly ini-125

tialized and insensitive to expert capabilities. Here,126

we assign each expert their skilled data and intro-127

duce an auxiliary binary classification loss to pre-128

optimize the corresponding routing vector, ensur-129

ing that all experts are capable of fully exhibiting130

their strengths in the MoE model. (4) Model Upcy-131

cling. Before post-training, we merge the param-132

eters of multiple dense models into a MoE model.133

Unlike existing methods, the pre-optimized routing134

vectors are merged into a routing matrix, serving135

as the final router.136

Overall, by leveraging the differences in existing137

dense checkpoints and introducing the expert ex-138

pansion stage, UpIT comprehensively reduces the139

cost of acquiring specialized experts and improves140

the flexibility of expert numbers. Router initializa-141

tion further maintains expert diversity, thereby en-142

couraging more effective utilization of data charac-143

teristics during the post-training of the MoE model.144

From an implementation perspective, UpIT divides145

standard instruction tuning into two parts, where146

the first part is responsible for expert preparation,147

and the second is post-training after upcycling. Be-148

tween these two stages, we find that only 1% of149

the training data (approximately 500 to 5,000 sam-150

ples) is enough to pre-optimize the routing vectors,151

which means that UpIT efficiently upcycles from152

dense to MoE without significantly increasing the153

overall data requirements.154

We conduct extensive experiments under LoRA155

and FFN-based upcycling settings, with LoRA and156

FFN as experts. For a fair comparison, we train all157

models on IDEA dataset (Wu et al., 2024a), con-158

sidering data sizes ranging from 50K to 500K, and159

evaluate the performance of nine benchmarks. Ex-160

perimental results show that UpIT is consistently161

better under both settings than dense instruction162

tuning and other upcycling baselines. Especially in163

situations with small amounts of training data, ex-164

isting upcycling methods often can not work well,165

while UpIT utilizes the discrepancy of experts and166

achieves better results than dense baselines. More-167

over, UpIT exhibits excellent scalability, with ex-168

pected performance improvements when increas-169

ing training data, total expert number, or activated170

expert number. The router visualization and abla-171

tion study also verify the overall promoting effect172

of expert diversity on upcycled MoE models. In173

summary, the main contributions are as follows:174

(1) We propose UpIT, an efficient specialized175

upcycling method via parameter merging, which176

Algorithm 1: Workflow of UpIT
Input: Dense pre-trained model Θd, training dataset

D, target number of experts n.

1 // Expert Preparation
2 Fine-tune the dense model Θd on D and obtain a

series of checkpoints C = {Θ1
d, . . . ,Θ

m
d }.

3 Initialize expert models E = {E1, . . . ,Em} from
checkpoints C.

4 // Expert Expansion
5 Merge new expert model with Algorithm 2 and put

them into the set E = {E1, . . . ,Em, . . . ,En}.
6 // Router Initialization
7 Initialize routing vectors R = {r1, . . . , rn} for

expert models E .
8 Construct expert-specific data Ds = {D1

s , . . . ,Dn
s }

with Algorithm 3.
9 for i = 1 to n do

10 Fine-tune expert layer ei in Ei and
corresponding routing vector ri on Di

s with
Equation 1.

11 // Model Upcycling
12 Initialize router R by concatenating all routing

vectors R.
13 Initialize the MoE model Θm with expert models E

and router R.
14 Fine-tune the MoE model Θm on D.

Output: MoE Instruction model Θm.

can achieve an instruction model with a flexible 177

number of experts. To best of our knowledge, it 178

is the first attempt to utilize intermediate dense 179

checkpoints for model upcycling. 180

(2) We emphasize the importance of expert dis- 181

crepancy in upcycling and incorporate the idea into 182

the entire design of UpIT. The innovative router ini- 183

tialization stage ensures that all specialized experts 184

play to their strengths in the final MoE model. 185

(3) Extensive experiments under LoRA and FFN- 186

based settings show that UpIT significantly outper- 187

forms existing methods in scenarios with sufficient 188

and insufficient data, exhibiting outstanding flexi- 189

bility, scalability, and performance upper bound. 190

2 Methodology 191

In this section, we provide a detailed exposition of 192

UpIT. Generally speaking, UpIT extends the con- 193

cept of specialized upcycling. Instead of carefully 194

curating domain-specific datasets, it further utilizes 195

intermediate checkpoints to reduce data require- 196

ments. It also expands certain aspects related to the 197

experts to adapt to the flexible number of experts 198

and pre-optimizes routing vectors. This is done 199

to ensure that each expert in the instruction MoE 200

model can leverage its unique strengths. The basic 201

concepts of MoE and Upcycling are described in 202

Appendix A.2. We also conduct an in-depth discus- 203
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sion on the effectiveness of UpIT in Appendix A.1.204

2.1 Workflow of UpIT205

Starting from the dense pre-trained model, UpIT206

achieves a MoE instruction model. Algorithm 1207

provides the working sketch. In this section, we208

provide a detailed explanation of each process.209

Expert Preparation. In the instruction tuning210

of LLMs, as shown in Figure 2, the performance211

of intermediate checkpoints varies across differ-212

ent benchmarks, and different checkpoints exhibit213

unique strengths in different domains, highlighting214

the potential to serve as specialized experts. Com-215

pared to the labour-intensive method of training di-216

verse expert models with massive domain-specific217

data (Sukhbaatar et al., 2024), we believe that the218

natural variations among checkpoints provide a219

more efficient pathway to developing specialized220

expert models. By training dense models to gener-221

ate multiple checkpoints and saving them at regular222

intervals during training, we can easily obtain a223

series of expert models proficient in different do-224

mains, resulting in a more cost-effective method225

for preparing specialized expert models.226

Expert Expansion. Given that the fixed num-227

ber of checkpoints only sometimes corresponds228

with the flexible requirements of expert number,229

acquiring additional checkpoints entails redundant230

training if the number of experts exceeds the saved231

checkpoints. Here, we propose to address these232

challenges by generating distinct experts from ex-233

isting ones without extensive retraining (see also234

Algorithm 2). Specifically, we draw inspiration235

from genetic algorithms, where two experts with236

the greatest differences are selected as parents in237

each iteration. We simulate the mutation process by238

randomly assigning weights to the parents and ap-239

ply DARE (Yu et al., 2024) to introduce mutations240

into the newly created expert further, enhancing its241

discrepancy and adaptability. Such an expansion242

process not only eliminates the need for additional243

retraining but also facilitates the flexible expansion244

of the number of experts, ultimately improving the245

scalability of UpIT.246

Router Initialization. Since routers remain247

randomly initialized after upcycling, which leads248

to the misallocation of tokens in the early post-249

training stages, in UpIT, such misallocation will250

weaken the expert differences in the previous stage251

and impact the learning efficiency of MoE models.252

To solve this problem, we propose a data selec-253

tion approach to curate expert-specific data tailored254
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Figure 3: Performance comparison of UpIT and vanilla
upcycling methods under different size of training data.
Detailed results in Section A.8

to each expert model and pre-optimize additional 255

routing vectors to ensure the discrepancy among 256

experts (see also Algorithm 3). Specifically, we 257

initially embed one-dimensional routing vectors R 258

before the MoE layer in each transformer block and 259

participate in the training process as expert-specific 260

routers. Next, we introduce an auxiliary loss Laux 261

intending to maximize the output probability of cor- 262

responding routing vectors. This ensures that the 263

likelihood of tokens being assigned to appropriate 264

experts increases when they pass through the router. 265

The pre-optimizing objective of i-th expert model 266

is formulated as follows, 267

Oi = min
Ei

(αLlm(Ei) + (1− α)Laux(Ei)) (1) 268

where α is the balance coefficient, which we set 269

to 0.5 in our experiments, and Llm(·) is the causal 270

language model loss. The auxiliary loss Laux(·) is 271

defined as follows, 272

Laux(Ei) = CrossEntropy(Sigmoid(hri), I) (2) 273

where hri is the output of routing vector and I is the 274

unit matrix. We use Sigmoid function to scale the 275

output to (0, 1) and minimize its difference from 276

I, which is equivalent to maximizing the output 277

probability of the routing vector on the data that 278

current expert model excels at. 279

Model Upcycling. Finally, we upcycle the dense 280

model Θd to MoE model Θm by merging all the 281
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HumanE. GSM8K HellaS. BBH MMLU NQ Tri.QA ARC-c ARC-e Avg.

LoRA-based Models
Llama 2 7B 14.63 13.95 26.58 34.73 39.84 10.06 62.06 37.29 50.26 32.16
LoRA 22.56 45.72 65.36 37.14 49.33 14.99 50.15 61.36 81.13 47.53

Self-MoE(8E,A2) 28.05 46.70 64.27 38.67 49.63 21.11 48.67 64.41 82.19 49.30
PESC(8E,A2) 28.05 46.55 63.14 37.59 46.12 16.68 49.58 61.36 74.60 47.07
LoRAMoEPT(8E,A2) 34.15 47.61 60.89 37.40 46.61 17.62 46.33 60.68 74.60 47.32
LoRAMoESFT(8E,A2) 28.66 49.81 67.62 38.88 50.54 20.55 50.16 62.37 81.31 49.99
UpIT(8E,A2) 35.37 49.51 66.00 40.27 50.31 24.52 55.27 65.08 83.60 52.21

Self-MoE(16E,A2) 30.20 47.61 65.36 37.14 49.33 24.52 51.11 62.71 82.19 50.02
PESC(16E,A2) 31.10 47.62 63.14 37.59 49.08 20.83 49.58 63.05 77.62 48.85
LoRAMoEPT(16E,A2) 40.24 46.55 65.89 36.39 48.53 19.36 46.19 61.69 76.01 48.98
LoRAMoESFT(16E,A2) 30.12 49.62 66.77 40.21 50.96 20.83 52.63 63.41 80.67 50.58
UpIT(16E,A2) 40.62 48.37 66.62 39.43 50.70 25.62 56.61 67.46 84.66 53.34

FFN-based Models
Sheared Llama 2.7B 5.49 1.74 25.09 26.62 26.98 6.43 38.89 22.37 24.69 19.81
SFT 26.22 29.19 38.01 26.46 33.93 8.42 18.61 42.37 58.55 31.31

Self-MoE(4E,A2) 6.71 8.87 32.11 27.65 28.81 18.45 42.27 33.22 47.44 27.28
UpcyclePT(4E,A2) 31.71 35.10 43.40 30.23 37.93 13.74 34.72 45.08 58.73 36.74
UpcycleSFT(4E,A2) 23.17 33.97 50.27 29.50 38.90 15.18 34.20 48.14 65.08 37.60
UpIT(4E,A2) 31.34 33.81 48.97 29.53 40.84 14.71 36.99 47.80 65.96 38.88

Self-MoE(8E,A2) 10.62 22.73 34.69 28.95 30.10 15.68 37.68 40.00 50.37 30.09
UpcyclePT(8E,A2) 26.22 34.04 51.57 28.95 39.84 13.57 33.86 53.22 66.49 38.64
UpcycleSFT(8E,A2) 22.56 33.66 46.26 29.25 39.19 14.76 35.18 49.15 67.72 37.53
UpIT(8E,A2) 32.19 35.64 49.15 30.23 40.38 14.57 37.93 49.10 68.43 39.74

Table 1: Performance comparison under Lora-based and FFN-based upcycling settings, where (xE,Ay) indicates
that y out of x experts are activated, Lora-based UpIT(16E,A2)and FFN-based UpIT(8E,A2)are expanded from
Lora-based UpIT(8E,A2)and FFN-based UpIT(4E,A2), respectively. Bold text and underlined text denote the best
and second-best results in each group.

expert models E and routing vectors R. Specif-282

ically, for the initialization of experts, we utilize283

pre-optimized expert models from E . In terms of284

router initialization, we concatenate all routing vec-285

tors from R to form a complete router R ∈ Rdh,n,286

where dh is the dimension of hidden states, This287

way, the obtained MoE block could allocate dif-288

ferent tokens to experts skilled in processing them.289

Finally, we continue to utilize D for post-training290

to achieve the final MoE model.291

2.2 Training Details292

To comprehensively evaluate the effectiveness of293

UpIT, we utilize two types of upcycling settings:294

(1) FFN-based Upcycling: Initially, we fully295

fine-tune all parameters of the dense pre-trained296

model to accumulate several expert models. In the297

expert expansion stage, we apply the genetic algo-298

rithm to construct expert modules (i.e. FFN layers),299

average the parameters of backbone modules (i.e.300

all layers except FFN) in candidate expert models,301

and result in new diverse expert models. We select302

expert-specific data to pre-optimize the FFN layers303

and routing vectors during the router initialisation 304

stage. Finally, in the model upcycling stage, we 305

average the backbone parameters of all expert mod- 306

els and concatenate the routing vectors, integrating 307

FFN layers to produce the final MoE models. 308

(2) LoRA-based Upcycling: The key difference 309

from FFN-based upcycling is that in parameter- 310

efficient fine-tuning, parameters of backbone mod- 311

ules remain unchanged. Instead, we augment FFN 312

layers with LoRA matrices, and operate on the val- 313

ues of LoRA matrices during expert expansion. 314

Following previous work (Fedus et al., 2022), 315

during post-training, we also use load balancing 316

loss, Lload = n ·
∑n

i=1 fi ·Pi, where n is the expert 317

number, fi is the fraction of tokens dispatched to 318

expert Ei, Pi is the average fraction of the router 319

probability allocated for expert Ei. 320

3 Experiments 321

3.1 Experimental Setup 322

Baselines. To assess the effectiveness of UpIT, 323

we compare its performance against several base- 324

lines. For LoRA-based settings, we consider the 325
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Figure 4: Performance comparison of UpIT and vanilla
upcycling methods under different total and activated
experts. Detailed results in Section A.9.

following baselines. (1) LoRA (Hu et al., 2021), (2)326

Self-MoE (Kang et al., 2024), (3) PESC (Wu et al.,327

2024a), (4) LoRAMoEPT (Dou et al., 2024), and (5)328

LoRAMoESFT. For FFN-based settings, we com-329

pare UpIT with (1) SFT, (2) Self-MoE (Kang et al.,330

2024), (3) UpcyclePT (Komatsuzaki et al., 2023),331

and (4) UpcycleSFT. More detailed descriptions of332

the baselines can be found in Appendix A.5.333

Dataset. Following (Wu et al., 2024a), we334

simultaneously train UpIT and compared base-335

lines on a diverse set of datasets, encompassing336

Magicoder (Wei et al., 2023) for coding, Meta-337

MathQA (Yu et al., 2023) for mathematical and338

SlimORCA (Lian et al., 2023) for general abilities339

from various subjects. We do not perform quality340

filtering or other operations on the three datasets.341

We randomly sample data in a 1:1:3 ratio to create342

the final training dataset with 500K samples.343

More training details and additional experimen-344

tal results can be found in Appendix A.4 and A.7.345

3.2 Main Results346

Table 1 presents an analysis of benchmark results347

for LoRA and FFN-based models across various348

domains, revealing the following key insights.349

(1) The UpIT demonstrates remarkable per-350

formance across various benchmarks, high-351

lighting its effectiveness compared to existing352

upcycle solutions. Specifically, when com-353

pared with LoRAMoESFT(8E,A2), the LoRA-354

based UpIT(8E,A2) achieves an average per- 355

formance improvement of 2.22%. When 356

the number of experts is expanded to 16, 357

UpIT(16E,A2) sustains a competitive edge 358

over LoRAMoESFT(16E,A2), exhibiting a lead 359

of 2.76%. Similar trends are observed in 360

FFN-based scenarios, where UpIT(4E,A2)and 361

UpIT(8E,A2) outperform UpcycleSFT(4E,A2) 362

and UpcycleSFT(8E,A2) by 1.28% and 2.21%. 363

This comprehensive analysis further corroborates 364

the applicability of UpIT across diverse MoE ar- 365

chitectures, consistently yielding optimal perfor- 366

mance. 367

(2) In comparisons with PESC(8E,A2)and 368

PESC(16E,A2), which take adapter struc- 369

ture as experts, LoRAMoEPT(8E,A2) and 370

LoRAMoEPT(16E,A2) display respective advan- 371

tages of 0.25% and 0.13%, thereby underscoring a 372

slightly superiority of LoRA-based MoE models 373

over adapter-based counterparts. More than 374

that, in FFN-based upcycling, two Self-MoE 375

models experience a collapse in performance, a 376

phenomenon not observed in LoRA-based settings. 377

We posit that this is due to the excessive number 378

of expert parameters introduced in FFN-based 379

upcycling, and the small data in instruction 380

tuning is insufficient to differentiate the experts 381

sufficiently, which hinders the ability of only 382

training routers to fit the diverse data effectively. 383

3.3 Scaling the Training Dataset 384

To assess the data-efficient nature of UpIT, we val- 385

idate UpIT and vanilla upcycling approaches by 386

randomly sampling 50K, 100K, and 200K samples 387

from the full 500K dataset, enabling experiments 388

across four data sizes. As illustrated in Figure 3, 389

we have several intriguing findings. 390

(1) In the context of LoRA-based scenarios, 391

UpIT(8E,A2) demonstrates comparable perfor- 392

mance to LoRAMoE(8E,A2)trained on 500K sam- 393

ples, with only 50K training samples. When scaling 394

up to 16 experts, UpIT(16E,A2)outperforms Lo- 395

RAMoE(16E,A2)trained on the full 500K dataset 396

again with 100K training samples. These findings 397

extend to FFN-based settings, underscoring the 398

data-efficient essence of UpIT and the ability to 399

diminish the data demands of upcycling notably. 400

(2) Both existing LoRA and FFN-based models 401

face performance growth saturation issues with tra- 402

ditional SFT (LoRA) and vanilla upcycling strate- 403

gies. Specifically, while a noticeable performance 404

increase occurs as the dataset scales from 50K to 405
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Figure 5: Proportion of tokens dispatched to each expert on different benchmarks, where experts in UpIT exhibit
stronger diversity than LoRAMoE.

Avg.

UpIT(Front.Half) 51.37
UpIT(Uniform) 51.71
UpIT(Back.Half) 52.21

Avg.

UpIT(w/o EE) 53.31
UpIT(Random) 52.41
UpIT(Genetic) 53.34

Avg.

UpIT(w/o Init) 49.96
UpIT(Random) 49.30
UpIT(Skilled) 52.21

Table 2: Further analysis containing different checkpoint selection approaches (left), different expert expansion
methods (middle), and different router initialization strategies (right). Detailed results are shown in Section A.11.1,
A.11.2, and A.11.3

200K, the performance growth stabilizes as it con-406

tinues to expand from 200K to 500K, with the av-407

erage performance exhibiting a log-like curve. In408

contrast, UpIT shows nearly linear growth trends409

in FFN-based models and even exhibits accelerated410

performance gains as the dataset size increases in411

LoRA-based models. This strongly indicates that412

MoE models trained using UpIT could efficiently413

capture the principles of token dispatch more and414

possess a higher performance upper bound.415

3.4 Scaling the Number of Experts416

To examine the impact of scaling the number of417

total experts and activated experts on MoE mod-418

els, we investigate the effects of UpIT and vanilla419

upcycling methods with different expert numbers.420

The first conclusion drawn from Figure 4 is that421

UpIT demonstrates superior performance across422

all configurations. Furthermore, as the number of423

activated experts increases, the growth trend of av-424

erage performance gradually slows down, which is425

attributed to the fact that the evaluation benchmark426

is domain-specific, and simply increasing the num-427

ber of activated parameters does not consistently428

yield substantial improvements. We also find that429

under the same activated parameters, as the number430

of experts increases, vanilla upcycling even expe-431

riences several performance drops, whereas UpIT432

consistently shows improvements in performance.433

Due to the inefficiency of data utilization in vanilla434

upcycling, increasing the number of experts during435

training leads to a reduction in data allocation for436

each expert, and the router fails to dispatch tokens437

to experts appropriately, results in unpredictable 438

model performance. 439

3.5 Router Analysis 440

To assess the efficiency and interoperability of 441

UpIT, understanding its token dispatch mechanism 442

is essential. We comprehensively analyze the dis- 443

tribution patterns of designated experts across four 444

representative benchmarks: HumanEval, GSM8K, 445

NQ, and MMLU. The results of this examination 446

are illustrated in Figure 5, focusing specifically on 447

the 15th layer of LoRAMoE and UpIT with 8 total 448

experts and 2 activated experts. Significantly, Ex- 449

pert 4 exhibits significantly higher activation within 450

the HumanEval benchmark compared to the other 451

datasets, while Expert 3 demonstrates a substantial 452

activation rate in MMLU compared to other experts. 453

The analysis reveals that, aside from exhibiting 454

slight routing preferences in GSM8K, LoRAMoE 455

dispatches tokens evenly among the experts across 456

the other three benchmarks. In contrast, UpIT ac- 457

curately allocates tokens from different domains to 458

specific experts, highlighting the significant differ- 459

entiation among routers and experts, resulting in a 460

more data-efficient model upcycling routine. 461

3.6 Explore the Upper Bound of UpIT 462

In the main experiment, we aligned total train- 463

ing amounts fairly to compare UpIT with baseline 464

methods. Here, we extend the training epochs to 465

better understand the performance upper bound of 466

UpIT. For the baselines, we continue training for 467

an additional 4 epochs, but they do not show sig- 468
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Figure 6: Performance comparison of UpIT and vanilla
upcycling methods with different training epochs where
x represent training epochs. For UpIT, we consider dif-
ferent allocations of the training epochs between expert
preparation and model upcycling. Detailed results are
shown in Section A.10

nificant performance gains. Instead, we expand469

the training for UpIT in two ways: UpIT(2,6) in-470

cludes 2 epochs for expert preparation followed471

by 6 epochs for post-training, while UpIT(4,4)472

comprises 4 epochs for expert preparation followed473

by 4 epochs for post-training. Figure 6 shows that474

UpIT demonstrates continuous performance im-475

provement with more training epochs, indicating476

greater potential than the baselines. Besides, it is477

interesting that UpIT(4,4) experiences longer iter-478

ation epochs during expert preparation, with greater479

divergences between expert models, leading to a480

more rapid upward trend. In the post-training stage,481

after only 4 epochs, it achieves comparable results482

to UpIT(2,6) and is expected to reach higher per-483

formance in the upper bound.484

3.7 Further Analysis485

Different Checkpoint Selection Strategies dur-486

ing Expert Preparation. In this section, we would487

like to answer the question of how to select check-488

points if the number of saved checkpoints exceeds489

the required number of experts. As shown in Ta-490

ble 2 (left), the latter-half selection performs bet-491

ter. Detailed results in Table 13 indicate that the492

primary performance differences stem from im-493

provements in mathematical reasoning and coding494

abilities as training progresses, and selecting later 495

checkpoints might enhance these capabilities. 496

Different Parameter Merging Strategies dur- 497

ing Expert Expansion. Next, we investigate vari- 498

ous expert merging strategies. Table 2 (mid) reveals 499

that the genetic algorithm-based expert expansion 500

achieves performance comparable to the method of 501

constructing experts with more checkpoints, high- 502

lighting the effectiveness of our merging strategy in 503

generating diverse experts. Additionally, merging 504

two randomly selected expert models in each round 505

results in a performance decline, again validating 506

the importance of maintaining expert diversity. 507

Different Data Selection Strategies during 508

Router Initialization. We compare the expert- 509

specific data selection approach with two alterna- 510

tives: without the router initialization stage and 511

randomly selecting data to pre-optimize routing 512

vectors. Table 2 (right) illustrates a significant per- 513

formance decline that occurs without router initial- 514

ization, underscoring the importance of this stage 515

and the effectiveness of utilizing checkpoints as ex- 516

perts. Furthermore, performance diminishes when 517

the training data is randomly selected, due to the 518

loss of inherent diversity among checkpoints when 519

using similar data in pre-optimizing different expert 520

models. Overall, the phenomenon in this paper is 521

similar to the findings of discussing expert diversity 522

in existing work (Lo et al., 2024) 523

4 Conclusion 524

In this paper, we present a novel, flexible, scal- 525

able, and data-efficient approach, Upcycling In- 526

struction Tuning (UpIT), for transforming dense 527

pre-trained models into MoE instruction models. 528

By leveraging intermediate checkpoints as special- 529

ized experts and implementing an expert expansion 530

stage with genetic algorithms and parameter merg- 531

ing, UpIT successfully enhances expert diversity 532

while allowing for a flexible number of experts. 533

The strategic selection of seed data ensures that 534

each expert and router performs optimally within 535

the MoE framework. Our extensive experiments 536

demonstrate that UpIT not only achieves superior 537

performance across various benchmarks but also 538

maintains stability in expert and data scaling. Fur- 539

ther analysis emphasizes the critical importance of 540

expert diversity in the upcycling process. Overall, 541

UpIT offers a promising pathway for enhancing the 542

efficiency and effectiveness of MoE models, paving 543

the way for future advancements in the field. 544
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Limitations545

Our proposed UpIT method innovatively uses in-546

termediate checkpoints to prepare experts. Addi-547

tionally, during the router initialization stage, it548

strengthens the discrepancy among experts and pre-549

optimizes the routers, endowing UpIT with pow-550

erful data-efficient nature. Meanwhile, an expert551

expanding method based on the genetic algorithm552

is employed to effectively enhance scalability and553

alleviate the situation of insufficient checkpoints.554

Although UpIT has already addressed the deficien-555

cies of existing Upcycling approaches, there are556

still the following limitations and aspects that can557

be further explored in the future.558

(1) In order to verify the universality of the UpIT559

method, we have chosen the basic LoRA and FFN-560

based MoE architectures. The performance of561

UpIT in many more advanced MoE architectures562

is worthy of in-depth study.563

(2) UpIT adopts an expert expansion method564

based on the genetic algorithm, and we have also565

observed the potential of expert expansion. More566

advanced expert expansion methods are worthy of567

future exploration.568

(3) Due to the limitations of computing re-569

sources, the overall scale of our MoE model does570

not exceed 10 billion parameters. Therefore, it is571

also worth attempting to apply the UpIT framework572

in larger-scale MoE models.573
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A Appendix 824

A.1 Discussion on the Effectiveness of UpIT 825

In this section, we mainly want to discuss why the 826

UpIT framework is effective. 827

In this paper, we aim to emphasize the impor- 828

tance of expert discrepancy in upcycling and in- 829

corporate the idea into the entire design of UpIT. 830

Figure 1 highlights that there is a certain discrep- 831

ancy among intermediate checkpoints, and differ- 832

ent checkpoints are proficient in different domains. 833

Both our PPL-based data selection method and the 834

router initialization stage make use of this charac- 835

teristic among intermediate checkpoints, strength- 836

ening the discrepancy among experts and enabling 837

the routers to correctly allocate tokens. Therefore, 838

the motivation of the UpIT method originates from 839

the discrepancy among checkpoints and effectively 840

reinforces this discrepancy. Eventually, the MoE 841

model after upcycling can obtain differentiated ex- 842

perts in advance and routers that can correctly allo- 843

cate tokens. As a result, it can effectively reduce the 844

data requirements and improve the performance. 845

A.2 Basic Concepts of MoE 846

In this section, we briefly review some basic con- 847

cepts of MoE models. 848

Mixture-of-Experts (MoE). MoE significantly 849

scale up the total parameter number and increases 850

the knowledge capacity of language models, by se- 851

lectively activating some of the parameters during 852

inference, it does not proportionally increase the 853

computational workload. In transformers-based 854

models, the feed-forward neural network (FFN) 855

layer in each transformer block is typically replaced 856

with a MoE layer, which comprises N identical 857

and independent experts {Ei}Ni=1, along with a 858

router R(·) for assigning experts, where each ex- 859

pert generally corresponds to an FFN layer, and 860

in the scenario of parameter-efficient fine-tuning 861

(PEFT), the expert may also be LoRA matrices. 862

Formally, for the hidden states h of the attention 863

layer, the output o of the MoE layer is represented 864

as o =
∑N

i=1R(h)Ei(h). Here, Ei(h) is the out- 865

put of the i-th expert, R(h) denotes the score for 866

all experts, where experts with the highest scores 867

are usually selected to calculate the final output. 868
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Upcycling. Upcycling seeks to avoid training869

MoE models from scratch by transforming an ex-870

isting dense model into MoE, followed by a post-871

training stage to integrate all the parameters into an872

organic whole. It starts with dense models, form-873

ing experts by expanding the FFN layer or creating874

new LoRA branches, and then adding routers to875

control the dispatch of input tokens. In this process,876

the remaining embedding layers, attention blocks,877

normalization modules, and output layers are di-878

rectly transferred from the initial dense model to879

the ultimate MoE model, and the router is randomly880

initialized and optimized in the post-training stage.881

A.3 Related Work882

Mixture of Experts. Mixture of Experts883

(MoE) (Jacobs et al., 1991) modifies the FFN layers884

or inserts additional branches to construct experts885

and activates them sparsely, thereby significantly886

enlarging the model capacity without noticeably887

increasing computational costs. The exploration of888

MoE has increasingly captured attention in recent889

years. Vanilla upcycling (Komatsuzaki et al., 2023)890

copies FFN layers, followed by post-training, have891

achieved a more convenient MoE training strategy.892

LoRAMoE (Dou et al., 2024), MoELoRA (Luo893

et al., 2024), MixLoRA (Li et al., 2024b) and894

MoLE (Wu et al., 2024b) develop an MoE model895

by incorporating several LoRA branches as experts,896

utilizing sparse activation or linear weighting for897

model construction. PESC (Wu et al., 2024a) in-898

troduces adapter-based structures after the FFN899

layers, exploring a parameter-efficient MoE model900

that diverges from the LoRA paradigm. MoEx-901

tend (Zhong et al., 2024) adapt to new tasks by902

expanding the MoE layer during the training pro-903

cess, mitigating catastrophic forgetting. MoE Jet-904

pack (Zhu et al., 2024b) introduces checkpoint re-905

cycling, which leverages checkpoints to enhance906

the flexibility and diversity of expert initialization.907

In contrast, Branch-Train-MiX (Sukhbaatar et al.,908

2024) and Self-MoE (Kang et al., 2024) explore909

a Specialized Upcycling method by introducing910

specialized experts. Despite superior performance,911

they still require considerable domain data to ac-912

quire specialized experts. In this paper, we inte-913

grate the advantages of the work above and utilize914

intermediate checkpoints for expert preparation, in-915

novatively propose an expert expansion strategy916

and an stage of pre-optimizing routing vectors to917

enhance flexibility, scalability and data efficiency.918

Model Merging. Model merging has emerged919

as a prominent research direction in recent years, 920

focusing on consolidating multiple task-specific 921

models into a unified model with diverse capabil- 922

ities (Wortsman et al., 2022; Ilharco et al., 2023). 923

Model merging usually considers the combina- 924

tion of model parameters without accessing the 925

original training data. Average Merging (Worts- 926

man et al., 2022) is one typical model merging ap- 927

proach, which utilizes averaged parameters to con- 928

struct the merged model. Task Arithmetic (Zhang 929

et al., 2023) employs a pre-defined scaling term 930

to distinguish the importance of various models. 931

Fisher Merging (Matena and Raffel, 2022) per- 932

forms automatic weighted merging of parameters, 933

where the Fisher information matrix calculates the 934

weights. TIES-Merging (Yadav et al., 2023) tackles 935

the task conflicts in (Zhang et al., 2023) by trim- 936

ming low-magnitude parameters, resolving sign 937

disagreements, and disjointly merging parameters 938

with consistent signs. DARE (Yu et al., 2024) first 939

sparsifies delta parameters of several SFT homol- 940

ogous models and then merges them into a single 941

model. We innovatively integrate the model merg- 942

ing concept into the MoE model, leveraging genetic 943

algorithms and DARE to expand and evolve new 944

experts. This approach enhances the scalability of 945

our framework. 946

A.4 Implementation Details. 947

We utilize Llama 2 7B and Sheared Llama 2.7B 948

to train LoRA-based and FFN-based models. We 949

adopt a constant learning rate of 2e-4 and 2e-5 for 950

LoRA-based and FFN-based settings, respectively. 951

All models are trained for 4 epochs in total. For 952

UpIT, we first train the dense model for 2 epochs 953

and prepare specialized expert models using in- 954

termediate checkpoints saved between epochs 1 955

and 2. In router initialization, we randomly se- 956

lect 1% of the training data and train for 4 epochs 957

to pre-optimize routing vectors. In model upcy- 958

cling, UpIT does not introduce additional train- 959

ing by training the upcycling MoE models for 2 960

epochs. Therefore, the total training duration also 961

amounts to 4 epochs, including 2 epochs for expert 962

preparation and 2 for post-training. All experi- 963

ments are conducted using a global batch size of 964

128 and a context length of 2048, running on 8 965

NVIDIA A800 GPUs. For evaluation, we use var- 966

ious benchmarks to validate comprehensively our 967

method. Please refer to Appendix A.6 for detailed 968

evaluation benchmarks and metrics. 969
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Algorithm 2: Genetic Algorithm-Based Ex-
pert Expansion

Input: Existing m expert models
E = {E1, · · · ,Em}, target number of
experts n.

1 for i = 1 to n−m do
2 for j = 1 to len(E) do
3 for k = j + 1 to len(E) do
4 Find two expert models Ej∗ , Ek∗ with

the smallest similarity.

5 Setting weights α and β randomly, s.t.,
α+ β = 1.

6 Merge new expert model via
Em+i = DARE(αEj∗ , βEk∗) and put Em+i

into E .

Output: Expanded expert models
E = {E1, · · · ,Em, · · · ,En}.

Algorithm 3: Expert-Specific Data Selec-
tion for Router Initialization

Input: Training dataset D, Expert models
E = {E1, · · · ,En}, and data capacity for
each expert C.

1 Initialize n empty expert-specific data buckets
{D1

s , . . . ,Dn
s }.

2 Construct seed dataset Ds by randomly selecting 1%
of the data in D.

3 foreach data di in Ds do
4 Calculate the perplexity list Pi = [p1i , · · · , pni ]

of each expert on di.
5 Sort Pi in order (with small perplexity at the

beginning), denoted as P ′
i .

6 foreach pji in P ′
i do

7 Get the expert index j.
8 if len(Dj

e) < C then
9 Append data di to bucket Dj

e.
10 Break.

Output: Expert-specific data buckets {D1
s , . . . ,Dn

s }.

A.5 Detailed Description of Baselines970

For LoRA-based settings, we compare several971

baselines with our proposed UpIT. (1) LoRA (Hu972

et al., 2021): It adds low-rank matrix branches973

for parameter-efficient fine-tuning. (2) Self-974

MoE (Kang et al., 2024): It employs specialized ex-975

perts to build MoE model, and only train the routers976

during the post-training stage. We solely reuse the977

training strategy of Self-MoE, and only train the978

routers after upcycling with intermediate check-979

points. (3) PESC (Wu et al., 2024a): It adds several980

adapter structures after the FFN block as experts.981

(4) LoRAMoEPT (Dou et al., 2024): It employs982

the same structure as UpIT which insert several983

LoRA branches as experts, and (5) LoRAMoESFT:984

It copies the final-step checkpoint to form MoE985

blocks. 986

Similarly, for FFN-based settings, we compare 987

UpIT with (1) SFT, It is the standard fine-tuning 988

solution. (2) Self-MoE (Kang et al., 2024), It 989

is similar with the LoRA-based method. (3) 990

UpcyclePT (Komatsuzaki et al., 2023): It is the 991

vanilla upcycling approach for transforming a 992

dense pre-trained model to the MoE model. (4) 993

UpcycleSFT. It copies the final-step checkpoint to 994

form MoE blocks. 995

A.6 Evaluation Metrics. 996

To validate the effectiveness of our method, we em- 997

ploy comprehensive evaluation benchmarks, which 998

contain various abilities. (1) Factual Knowledge: 999

To assess the LLMs’ factual knowledge, we em- 1000

ploy the Massive Multitask Language Understand- 1001

ing (MMLU) (Hendrycks et al., 2021), ARC-e and 1002

ARC-c (Clark et al., 2018) datasets. MMLU com- 1003

prises questions across 57 subjects from elemen- 1004

tary to professional difficulty levels. ARC-e and 1005

ARC-c contain questions for science exams from 1006

grade 3 to grade 9. We report the 0-shot accu- 1007

racy based on answer perplexity for MMLU and 1008

ARC. (2) Reasoning: We utilize the test split of 1009

the Grade School Math (GSM8K) (Cobbe et al., 1010

2021), HellaSwag (HellaS.) (Zellers et al., 2019) 1011

and Big-Bench-Hard (BBH) (Suzgun et al., 2022) 1012

benchmarks to evaluate reasoning abilities. We re- 1013

port the 8-shot accuracy for GSM8K and the 3-shot 1014

accuracy for HellaSwag. (3) Coding: To probe the 1015

LLMs’ ability to generate functionally correct pro- 1016

grams from docstrings, we utilize HumanEval (Hu- 1017

manE.) (Chen et al., 2021) and report the pass@1 1018

performance. (4) World Knowledge: We adopt 1019

Natural Question (NQ) (Kwiatkowski et al., 2019) 1020

and TriviaQA (Joshi et al., 2017) to evaluate the 1021

commonsense question-answering ability. All of 1022

the above evaluations are performed using open- 1023

compass (Contributors, 2023) framework, and to 1024

expedite evaluation, we enable batch-padding with 1025

a batch size of 32. 1026

A.7 Further Experiments 1027

A.7.1 Ablation Study of Existing Experts 1028

As shown in Table 3, we explore the impact of the 1029

number of different existing experts (m in Algo- 1030

rithm 2) on the performance. We find that as the 1031

number of existing experts increases, the perfor- 1032

mance of the model continues to improve. 1033
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HumanE. GSM8K HellaS. BBH MMLU NQ TriviaQA ARC-c ARC-e Avg.

UpIT(4E,A2) 34.21 47.20 63.92 38.79 49.15 24.07 46.38 63.72 81.93 49.93
UpIT(8E,A2) 35.37 49.51 66.00 40.27 50.31 24.52 55.27 65.08 83.60 52.21
UpIT(12E,A2) 37.51 50.33 66.18 39.90 50.48 25.09 55.61 65.77 83.91 52.75
UpIT(16E,A2) 40.62 48.82 65.58 40.60 51.59 25.24 57.00 67.12 83.25 53.31

Table 3: Results of ablation study on existing experts.

HumanE. GSM8K HellaS. BBH MMLU NQ TriviaQA ARC-c ARC-e Avg.

UpIT(8E,A2) 35.37 49.51 66.00 40.27 50.31 24.52 55.27 65.08 83.60 52.21
UpIT(10E,A2) 36.32 48.76 66.08 39.82 50.43 24.77 54.85 66.10 83.91 52.34
UpIT(12E,A2) 37.82 49.03 65.67 40.03 50.75 25.13 55.93 66.38 84.10 52.76
UpIT(14E,A2) 39.40 48.41 66.39 39.38 50.91 25.48 56.38 67.04 84.10 53.05
UpIT(16E,A2) 40.62 48.37 66.62 39.43 50.70 25.62 56.61 67.46 84.66 53.34

Table 4: Results of ablation study on target experts.

A.7.2 Ablation Study of Target Experts1034

As shown in Table 4, we explore the impact of1035

the number of different target experts (n in Algo-1036

rithm 2) on the performance. We find that as the1037

number of expanded experts increases, the perfor-1038

mance of the model also continues to grow. In1039

particular, when the number of experts is 12 and1040

16, that is, the number of checkpoints is 8 and the1041

number of expanded experts is 4 and 8 respectively,1042

compared with directly using 12 and 16 check-1043

points for expert initialization, the performance of1044

the former is slightly better than that of the latter.1045

This further proves the effectiveness of our expert1046

expansion method.1047

A.7.3 Exploration of Catastrophic Forgetting1048

We conduct experiments by incorporating the pre-1049

trained model as an expert to explore the forgetting1050

issue in training MoE models. Specifically, we1051

conduct experiments under two configurations, one1052

without an expert expansion stage and the other1053

with an expert expansion stage. As shown in Ta-1054

ble 5, Compared to Llama 2-7B, the fine-tuned1055

models exhibit a performance decline on the Trivi-1056

aQA benchmark. By incorporating the pre-trained1057

model into the UpIT pipeline (note that only inter-1058

mediate checkpoints are used in our paper), there1059

is a considerable recovery in performance on Triv-1060

iaQA. However, the performance of other bench-1061

marks are declined, especially on HumanEval and1062

GSM8K, as the pre-trained model is not satis-1063

factory on these tasks. It raises the issue of the1064

trade-off between downstream performance and1065

pre-trained knowledge, and we believe is a topic1066

worthy of in-depth exploration in future endeavors.1067

A.7.4 Checkpoints Discrepancy on Other 1068

Dataset 1069

In order to explore that this discrepancy existing 1070

among the intermediate checkpoints is not only 1071

present in our training data, we conduct experi- 1072

ments using the Alpaca (Taori et al., 2023) dataset, 1073

as shown in Table 6. We find that during the train- 1074

ing process with the Alpaca dataset, the check- 1075

points at different steps show the same conclusion, 1076

that is, different checkpoints are proficient in dif- 1077

ferent domains. 1078

A.7.5 Compared to Specialized Upcycling 1079

We compare the performance of the UpIT method 1080

and the Specialized Upcycling method. Specifi- 1081

cally, we divide our data into four parts, including 1082

100K from MetaMathQA, 100K from Magicoder, 1083

and two parts of 150K from SlimORCA, to train 1084

four domain-specific experts separately, followed 1085

by upcycling and post-training. As shown in Ta- 1086

ble 7, it can be observed that UpIT does not have 1087

a significant performance gap compared to spe- 1088

cialized upcycling, but specialized upcycling relies 1089

on meticulously constructed domain-specific data 1090

and a more complex training process, which lim- 1091

its its application. In contrast, UpIT can directly 1092

learn from mixed data and reinforce discrepancies 1093

among experts. 1094

A.8 Detail Results of Scaling the Training 1095

Dataset 1096

Table 8 and 9 presents the detailed results of LoRA- 1097

based and FFN-based models under 50K, 100K, 1098

200K and 500K training samples which correspond 1099

to Figure 3. The detailed results further substan- 1100
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HumanE. GSM8K HellaS. BBH MMLU NQ TriviaQA ARC-c ARC-e Avg.

Llama 2-7B 14.63 13.95 26.58 34.73 39.84 10.06 62.06 37.29 50.26 32.16
UpIT(8E,A2) 35.37 49.51 66.00 40.27 50.31 24.52 55.27 65.08 83.60 52.21
UpIT(8E,A2) w/ pre-trained 34.15 49.33 65.36 40.78 50.96 23.75 58.73 64.71 82.26 52.23
UpIT(16E,A2) 40.62 48.37 66.62 39.43 50.70 25.62 56.61 67.46 84.66 53.34
UpIT(16E,A2) w/ pre-trained 40.13 47.67 66.76 38.20 51.32 25.47 58.11 66.49 83.82 53.11

Table 5: Results of incorporating pre-trained models as experts.

Steps HumanE. GSM8K HellaS. BBH MMLU NQ TriviaQA ARC-c ARC-e

300 0.00 7.28 34.01 29.68 33.60 21.80 51.60 36.61 58.02
600 12.80 5.61 25.30 31.38 35.79 21.41 51.54 42.71 66.14
900 3.66 6.29 28.15 35.53 39.83 19.14 45.26 50.51 70.02
1200 14.02 7.20 40.19 32.39 33.97 20.06 50.13 24.41 35.98
1500 12.80 9.63 31.29 35.45 38.67 18.25 47.07 39.32 56.97
1800 13.41 8.87 35.85 34.51 39.90 17.40 47.40 35.93 48.85
2100 16.46 8.34 36.92 34.71 38.51 17.31 47.60 37.97 49.21
2400 14.63 8.26 35.87 34.85 39.16 17.04 47.54 37.29 52.03

Table 6: Results of different checkpoints on Alapca dataset.

tiate our findings, demonstrating that UpIT ex-1101

hibits higher data utilization efficiency. It achieves1102

stronger performance with less data, showcasing1103

the data-efficient nature of UpIT.1104

A.9 Detail Results of Scaling the Experts1105

Table 10 shows the detailed results of different num-1106

bers of experts and different activated parameters1107

which correspond to Figure 4. The detailed results1108

indicate that UpIT consistently maintains the de-1109

sired growth trend during the scaling of experts1110

and activated parameters, whereas the baselines1111

exhibit an unstable performance growth trend dur-1112

ing scaling, making it difficult to reliably predict1113

performance expectations.1114

A.10 Detailed Results of Upper Bound1115

Table 11 and 12 show the detailed results of perfor-1116

mance upper bound during continuous training for1117

LoRA-based and FFN-based models, respectively.1118

The detailed results demonstrate that UpIT main-1119

tains a consistent trend of gradual performance1120

improvement during ongoing training, while SFT1121

(LoRA) and UpcyclePT (LoRAMoE) exhibit per-1122

formance instability throughout this process. Fur-1123

thermore, compared to UpIT(2), UpIT(4) benefits1124

from a broader selection range of expert models1125

during expert preparation, resulting in greater di-1126

versity among the expert models and thus a faster1127

rate of performance growth.1128

A.11 Detail Results of Further Analysis 1129

A.11.1 Detail Results of Different Strategies 1130

during Expert Preparation 1131

Table 13 shows the detailed results of different 1132

checkpoint selection approaches during expert 1133

preparation. We find that utilizing the latter half of 1134

the checkpoints as expert models yields stronger 1135

performance, particularly in mathematical reason- 1136

ing and code generation capabilities. We believe 1137

this is due to the continuous improvement of math- 1138

ematical reasoning and code generation as the vol- 1139

ume of data or training increases. This observation 1140

aligns with the conclusions in (Li et al., 2024a), 1141

which indicate that selecting the latter half of the 1142

checkpoints can enhance mathematical reasoning 1143

and code generation abilities. 1144

A.11.2 Detail Results of Different Strategies 1145

during Expert Expansion 1146

Table 14 shows the detailed results of different ex- 1147

pert expanding strategies during expert expansion. 1148

We are pleasantly surprised to find that our genetic 1149

algorithm-based method demonstrates highly com- 1150

petitive performance compared to using all expert 1151

models, indicating that the merged expert models 1152

indeed possess sufficient diversity. In contrast, the 1153

approach of randomly selecting expert models to 1154

construct new experts results in a decline in perfor- 1155

mance, which can be attributed to the insufficient 1156

diversity among the randomly chosen expert mod- 1157

els. 1158
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HumanE. GSM8K HellaS. BBH MMLU NQ TriviaQA ARC-c ARC-e Avg.

Specialized(4E,A2) 34.82 46.93 63.81 39.06 48.37 23.94 47.02 62.88 83.05 49.99
UpIT(4E,A2) 34.21 47.20 63.92 38.79 49.15 24.07 46.38 63.72 81.93 49.93

Table 7: Comparison between specialized upcycling and UpIT.

HumanE. GSM8K HellaS. BBH MMLU NQ TriviaQA ARC-c ARC-e Avg.

Results of 50K training samples
LoRA 18.29 37.00 51.84 39.71 48.61 15.46 56.27 55.93 76.90 44.45
LoRAMoEPT(8E,A2) 17.07 34.87 52.21 37.33 47.24 22.66 53.64 54.24 75.13 43.82
LoRAMoEPT(16E,A2) 21.34 35.48 46.01 38.39 47.97 23.38 52.69 56.95 74.60 44.09
UpIT(8E,A2) 18.90 33.74 58.19 39.95 47.26 27.04 60.42 58.64 80.07 47.13
UpIT(16E,A2) 18.63 35.67 60.11 39.87 47.35 26.59 61.37 59.96 80.76 47.81

Results of 100K training samples
LoRA 21.95 40.94 60.50 37.32 50.97 14.88 55.41 62.37 77.95 46.92
LoRAMoEPT(8E,A2) 18.90 36.54 57.06 37.84 48.93 22.99 54.05 60.00 78.31 46.07
LoRAMoEPT(16E,A2) 20.12 39.73 58.31 36.50 47.49 23.10 53.62 62.03 77.60 46.50
UpIT(8E,A2) 18.90 39.58 60.01 38.17 51.18 25.79 58.76 64.41 80.07 48.54
UpIT(16E,A2) 20.12 40.41 61.50 39.73 50.43 26.59 59.35 63.73 80.78 49.18

Results of 200K training samples
LoRA 20.73 46.32 58.86 38.64 48.79 16.07 53.93 61.69 78.84 47.10
LoRAMoEPT(8E,A2) 26.22 42.23 58.36 37.63 47.07 20.97 51.79 60.75 77.45 46.94
LoRAMoEPT(16E,A2) 30.49 40.03 60.59 36.67 48.42 21.52 50.80 62.03 76.37 47.44
UpIT(8E,A2) 20.12 43.97 65.16 40.46 51.18 25.54 58.54 66.10 79.89 50.11
UpIT(16E,A2) 22.82 44.96 64.89 40.64 51.02 25.69 60.26 65.97 83.25 51.06

Results of 500K training samples
LoRA 22.56 45.72 65.36 37.14 49.33 14.99 50.15 61.36 81.13 47.53
LoRAMoEPT(8E,A2) 34.15 47.61 60.89 37.40 46.61 17.62 46.33 60.68 74.60 47.32
LoRAMoEPT(16E,A2) 40.24 46.55 65.89 36.39 48.53 19.36 46.19 61.69 76.01 48.98
UpIT(8E,A2) 35.37 49.51 66.00 40.27 50.31 24.52 55.27 65.08 83.60 52.21
UpIT(16E,A2) 40.62 48.37 66.62 39.43 50.70 25.62 56.61 67.46 84.66 53.34

Table 8: Detailed results of LoRA-based models under four data sizes, where(xE,Ay) indicates that y out of x
experts are activated. LoRA-based UpIT(16E,A2)is expanded from LoRA-based UpIT(8E,A2). Bold text and
underlined text denote the best and second-best results in each group.

A.11.3 Detail Results of Different Strategies1159

during Router Initialization1160

Table 15 shows the detailed results of different1161

expert-specific data selection approaches. We find1162

that our proposed PPL-based data selection method1163

achieves the best performance. Interestingly, the1164

method of randomly selecting expert-specific data1165

has a detrimental effect. We believe that randomly1166

selected data leads to a reduction in the diversity of1167

the experts, resulting in poorer performance.1168
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HumanE. GSM8K HellaS. BBH MMLU NQ TriviaQA ARC-c ARC-e Avg.

Results of 50K training samples
SFT 9.76 12.28 34.43 28.43 29.57 16.01 40.13 40.00 51.50 29.12
UpcyclePT(4E,A2) 9.15 15.95 29.90 29.20 31.75 14.46 32.57 38.64 50.79 28.05
UpcyclePT(8E,A2) 7.93 13.87 38.34 29.23 33.60 14.40 35.68 41.36 55.73 30.02
UpIT(4E,A2) 8.54 14.78 33.05 28.39 35.72 14.54 37.68 44.41 64.02 31.24
UpIT(8E,A2) 9.62 17.39 39.29 29.20 36.12 14.35 37.93 44.41 63.20 32.39

Results of 100K training samples
SFT 6.71 13.27 35.87 28.55 30.95 15.68 40.75 41.49 54.32 29.73
UpcyclePT(4E,A2) 14.02 20.17 42.48 29.44 36.12 14.07 33.41 45.08 58.91 32.63
UpcyclePT(8E,A2) 12.20 21.08 47.75 28.90 38.53 14.07 35.28 48.81 63.14 34.42
UpIT(4E,A2) 14.76 18.57 44.54 27.99 37.82 15.43 37.93 44.07 62.26 33.71
UpIT(8E,A2) 14.63 21.92 47.04 29.25 39.84 14.49 36.86 46.78 60.85 34.63

Results of 200K training samples
SFT 9.15 16.15 44.90 29.03 34.73 16.04 40.59 44.07 60.67 32.81
UpcyclePT(4E,A2) 19.51 24.26 50.84 29.08 37.95 13.82 34.72 46.44 59.79 35.16
UpcyclePT(8E,A2) 18.29 22.90 47.47 30.08 37.82 13.91 35.23 50.51 67.72 35.99
UpIT(4E,A2) 20.63 25.55 50.92 29.08 38.72 15.37 35.84 49.49 61.20 36.31
UpIT(8E,A2) 21.34 28.73 47.47 29.08 39.84 15.43 36.19 50.51 66.49 37.23

Results of 500K training samples
SFT 26.22 29.19 38.01 26.46 33.93 8.42 18.61 42.37 58.55 31.31
UpcyclePT(4E,A2) 31.71 35.10 43.40 30.23 37.93 13.74 34.72 45.08 58.73 36.74
UpcyclePT(8E,A2) 26.22 30.62 46.76 28.95 39.84 13.57 33.86 49.62 66.49 37.33
UpIT(4E,A2) 31.34 33.81 48.97 29.53 40.84 14.71 36.99 47.80 65.96 38.88
UpIT(8E,A2) 32.19 35.64 49.15 30.23 40.38 14.57 37.93 49.10 68.43 39.74

Table 9: Detailed results of FFN-based models under four data sizes, where(xE,Ay) indicates that y out of x experts
are activated. FFN-based UpIT(8E,A2)is expanded from FFN-based UpIT(4E,A2). Bold text and underlined text
denote the best and second-best results in each group.
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HumanE. GSM8K HellaS. BBH MMLU NQ TriviaQA ARC-c ARC-e Avg.

LoRA-based upcycling models
LoRAMoEPT(8E,A1) 29.27 41.32 48.71 34.35 38.17 16.68 41.11 55.25 72.49 41.93
LoRAMoEPT(8E,A2) 34.15 47.61 60.89 37.40 46.61 17.62 46.33 60.68 74.60 47.32
LoRAMoEPT(8E,A4) 39.63 48.82 63.88 37.26 49.25 20.39 50.10 65.42 80.42 50.57
LoRAMoEPT(8E,A6) 41.46 50.95 66.70 37.46 50.65 22.33 50.80 64.07 80.95 51.71
LoRAMoEPT(16E,A1) 27.44 36.09 43.58 33.05 39.58 15.57 36.79 51.96 65.61 38.85
LoRAMoEPT(16E,A2) 40.24 46.55 65.89 36.39 48.53 19.36 46.19 61.69 76.01 48.98
LoRAMoEPT(16E,A4) 42.68 49.96 58.65 37.59 48.64 19.39 50.94 65.08 79.19 50.24
LoRAMoEPT(16E,A6) 42.07 51.05 64.19 37.77 49.84 22.33 51.60 62.71 80.42 51.33

UpIT(8E,A1) 20.73 43.59 63.51 40.01 49.13 20.86 48.10 62.03 80.78 47.64
UpIT(8E,A2) 35.37 49.51 66.00 40.27 50.31 24.52 55.27 65.08 83.60 52.21
UpIT(8E,A4) 40.12 49.05 65.82 39.98 51.15 25.96 57.50 67.80 84.66 53.56
UpIT(8E,A6) 43.62 49.13 65.81 39.53 50.96 25.48 55.57 67.89 85.19 53.69
UpIT(16E,A1) 21.95 40.71 61.47 40.19 49.39 24.99 57.62 64.07 81.31 49.08
UpIT(16E,A2) 40.62 48.37 66.62 39.43 50.70 25.62 56.61 67.46 84.66 53.34
UpIT(16E,A4) 42.53 50.49 65.85 41.08 51.13 25.29 56.80 66.78 84.83 53.86
UpIT(16E,A6) 43.62 51.25 66.14 40.74 51.33 25.48 56.95 67.12 85.19 54.20

FFN-based upcycling models
UpcyclePT(4E,A1) 13.20 26.73 42.73 29.28 38.72 13.02 32.08 49.15 62.26 34.13
UpcyclePT(4E,A2) 31.71 35.10 43.40 30.23 37.93 13.74 34.72 45.08 58.73 36.74
UpcyclePT(4E,A4) 32.93 33.89 51.95 29.62 39.16 13.91 34.16 49.83 67.55 39.22
UpcyclePT(8E,A1) 11.68 23.28 41.68 28.11 37.93 13.49 30.73 48.92 61.39 33.02
UpcyclePT(8E,A2) 26.22 34.04 51.57 28.95 39.84 13.57 33.86 53.22 66.49 38.64
UpcyclePT(8E,A4) 25.61 34.27 50.59 30.12 40.63 13.68 34.98 53.22 67.02 38.90

UpIT(4E,A1) 19.51 28.73 46.81 29.56 37.69 14.40 34.56 48.81 66.31 36.26
UpIT(4E,A2) 31.34 33.81 48.97 29.53 40.84 14.71 36.99 47.80 65.96 38.88
UpIT(4E,A4) 33.43 37.62 48.02 29.25 40.76 15.28 40.19 47.46 69.19 40.13
UpIT(8E,A1) 20.12 30.40 42.76 29.44 37.98 13.99 35.71 50.17 66.31 36.32
UpIT(8E,A2) 32.19 35.64 49.15 30.23 40.38 14.57 37.93 49.10 68.43 39.74
UpIT(8E,A4) 34.56 36.73 50.27 29.17 40.76 14.79 37.49 51.26 68.25 40.36

Table 10: Detailed results of different numbers of experts and activated parameters, where(xE,Ay) indicates that y
out of x experts are activated. LoRA-based UpIT(16E,A2)is expanded from LoRA-based UpIT(8E,A2). Bold text
and underlined text denote the best and second-best results in each group.
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HumanE. GSM8K HellaS. BBH MMLU NQ TriviaQA ARC-c ARC-e Avg.

dense LLMs
LoRA(1) 15.85 40.26 50.54 40.40 49.12 12.60 60.50 64.07 82.19 46.17
LoRA(2) 22.56 43.90 58.03 39.25 45.61 13.30 59.15 63.73 81.31 47.43
LoRA(3) 17.68 46.10 58.79 38.88 47.97 14.68 57.84 64.07 81.66 47.52
LoRA(4) 22.56 45.72 65.36 37.14 49.33 14.99 50.15 61.36 81.13 47.53
LoRA(5) 21.62 47.71 63.29 38.88 48.15 13.30 53.64 61.36 82.01 47.77
LoRA(6) 23.17 47.61 64.89 40.46 47.49 15.07 50.80 60.68 74.60 47.20
LoRA(7) 26.22 45.11 50.84 38.80 48.03 15.43 54.72 64.07 82.19 47.27
LoRA(8) 25.73 47.96 65.30 37.26 47.35 14.07 46.19 61.36 82.01 47.47

LoRA-based upcycling models
LoRAMoEPT(1) 25.61 43.90 52.49 39.21 51.17 24.71 56.29 61.36 77.95 48.08
LoRAMoEPT(2) 31.71 48.60 55.33 38.69 47.92 22.83 51.18 62.03 76.37 48.30
LoRAMoEPT(3) 35.56 49.66 54.78 38.25 50.60 20.80 50.15 60.36 77.10 48.58
LoRAMoEPT(4) 34.15 47.61 60.89 37.40 46.61 17.62 46.33 60.68 74.60 47.32
LoRAMoEPT(5) 35.98 48.82 63.10 35.84 48.15 18.20 44.52 62.71 78.48 48.42
LoRAMoEPT(6) 35.98 46.47 63.20 37.60 47.40 16.26 42.45 62.03 76.37 47.53
LoRAMoEPT(7) 33.54 48.82 62.71 36.99 47.17 16.48 41.60 65.08 78.66 47.89
LoRAMoEPT(8) 37.80 46.47 63.71 37.29 47.88 15.96 38.84 65.08 76.37 47.71

LoRA-based UpIT with 2 epochs expert preparation
UpIT(2,1) 32.93 49.13 64.89 39.73 49.39 25.48 54.05 64.07 80.76 51.16
UpIT(2,2) 35.37 49.51 66.00 40.27 50.31 24.52 55.27 65.08 83.60 52.21
UpIT(2,3) 36.48 50.29 67.19 38.80 49.88 25.12 54.72 68.81 82.19 52.61
UpIT(2,4) 37.69 50.49 65.85 41.08 50.96 25.69 56.95 67.13 84.91 53.42
UpIT(2,5) 39.12 50.95 66.70 40.27 51.13 25.48 58.54 68.03 85.19 53.93
UpIT(2,6) 41.46 51.93 66.14 41.08 51.33 26.59 57.61 68.81 84.66 54.40

LoRA-based UpIT with 4 epochs expert preparation
UpIT(4,1) 34.39 48.22 70.10 39.43 51.45 25.58 53.62 63.43 78.48 51.63
UpIT(4,2) 37.82 48.98 70.24 39.04 51.52 25.72 54.72 64.56 80.32 52.55
UpIT(4,3) 38.62 49.58 70.63 39.32 51.10 25.37 57.29 66.79 83.42 53.57
UpIT(4,4) 40.12 50.82 70.98 40.27 51.93 26.19 57.37 67.74 84.69 54.46

Table 11: Detailed results of performance upper bound with LoRA-based upcycling. All models are under(8E,A2)
settings and(1) represents totally 1 training epoch. Bold text and underlined text denote the best and second-best
results in each group.
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HumanE. GSM8K HellaS. BBH MMLU NQ TriviaQA ARC-c ARC-e Avg.

dense LLMs
SFT(1) 17.07 24.94 30.10 28.29 29.77 8.01 20.48 40.68 46.56 27.32
SFT(2) 19.51 27.98 27.59 26.69 32.41 8.53 20.35 38.98 55.91 28.66
SFT(3) 20.73 31.77 40.28 26.23 34.54 9.22 20.81 42.03 58.73 31.59
SFT(4) 26.22 29.19 38.01 26.46 33.93 8.42 18.61 42.37 58.55 31.31
SFT(5) 24.39 25.32 39.29 27.28 32.99 8.53 21.15 43.39 53.44 30.64
SFT(6) 22.56 32.07 41.67 27.82 34.35 9.00 17.20 44.75 55.03 31.61
SFT(7) 21.34 30.10 37.60 27.14 33.25 8.59 19.55 42.71 58.73 31.00
SFT(8) 22.56 29.42 41.16 26.46 32.26 8.48 18.18 34.58 51.32 29.38

FFN-based upcycling models
UpcyclePT(1) 18.29 31.54 42.58 29.42 35.54 14.71 35.18 49.49 65.96 35.86
UpcyclePT(2) 20.73 37.23 51.79 28.29 40.33 14.24 34.12 47.80 64.02 37.62
UpcyclePT(3) 26.22 34.80 45.66 30.12 38.52 14.79 34.59 49.49 66.31 37.83
UpcyclePT(4) 31.71 35.10 43.40 30.23 37.93 13.74 34.72 45.08 58.73 36.74
UpcyclePT(5) 28.05 35.03 48.59 30.22 37.08 13.91 34.57 50.85 65.26 38.17
UpcyclePT(6) 28.05 35.41 43.40 29.93 39.27 13.93 33.07 50.51 61.39 37.22
UpcyclePT(7) 29.27 35.03 46.26 30.30 38.18 14.24 33.04 49.49 62.26 37.56
UpcyclePT(8) 30.62 35.71 44.19 30.71 35.99 10.75 33.02 47.80 62.43 36.80

FFN-based UpIT with 2 epochs expert preparation
UpIT(2,1) 17.07 29.11 45.77 31.03 36.07 15.24 38.34 43.05 68.43 36.01
UpIT(2,2) 31.34 33.81 48.97 29.53 40.84 14.71 36.99 47.80 65.96 38.88
UpIT(2,3) 33.78 35.03 51.43 29.75 41.22 14.88 35.09 55.59 64.02 40.09
UpIT(2,4) 35.69 37.62 51.06 28.06 40.88 14.16 34.39 56.08 67.90 40.65
UpIT(2,5) 36.75 38.61 50.59 28.62 38.52 15.24 37.12 55.59 68.96 41.11
UpIT(2,6) 39.12 37.62 51.95 30.12 39.60 15.96 36.18 55.59 66.67 41.42

FFN-based UpIT with 4 epochs expert preparation
UpIT(4,1) 17.07 27.37 43.90 29.84 38.92 15.40 38.30 50.17 64.55 36.17
UpIT(4,2) 30.62 31.08 48.74 30.62 39.69 13.71 37.38 49.83 70.90 39.17
UpIT(4,3) 34.69 37.23 51.73 30.84 39.64 13.38 35.18 53.22 70.19 40.68
UpIT(4,4) 38.92 40.26 50.56 30.05 39.81 14.79 36.18 53.61 69.49 41.52

Table 12: Detailed results of performance upper bound with FFN-based upcycling. All models are under(4E,A2)
settings and(1) represents totally 1 training epoch. Bold text and underlined text denote the best and second-best
results in each group.

HumanE. GSM8K HellaS. BBH MMLU NQ Tri.QA ARC-c ARC-e Avg.

UpIT(Front.Half) 21.34 44.88 64.48 40.55 51.36 27.56 59.36 68.47 84.30 51.37
UpIT(Uniform) 27.44 43.90 65.39 40.73 50.93 25.90 58.31 68.14 84.66 51.71
UpIT(Back.Half) 35.37 49.51 66.00 40.27 50.31 24.52 55.27 65.08 83.60 52.21

Table 13: Detailed results of different checkpoint selection strategies during expert preparation. Front.Half
represents selecting the first half of checkpoints, Uniform represents uniformly selecting checkpoints and Back.Half
represents selecting the back half ones which is used in our paper. All models are LoRA-based models under
(8E,A2)

HumanE. GSM8K HellaS. BBH MMLU NQ Tri.QA ARC-c ARC-e Avg.

UpIT(w/o EE) 40.62 48.82 65.58 40.60 51.59 25.24 57.00 67.12 83.25 53.31
UpIT(Random) 38.72 44.71 66.14 40.27 50.96 25.48 54.72 67.13 83.60 52.41
UpIT(Genetic) 40.62 48.37 66.62 39.43 50.70 25.62 56.61 67.46 84.66 53.34

Table 14: Detailed results of different expanding strategies during expert expansion. w/o EE represents directly
using checkpoints for expert preparation without expert expansion. Random represents randomly selecting two
experts to merge a new one during expert expansion and Genetic represents the selection approach shown in
Algorithm 3. All models are LoRA-based models under (16E,A2)
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HumanE. GSM8K HellaS. BBH MMLU NQ Tri.QA ARC-c ARC-e Avg.

UpIT(w/o Init) 32.32 49.81 66.86 39.15 48.88 21.08 49.67 62.71 79.19 49.96
UpIT(Random) 28.05 46.70 64.27 38.67 49.63 21.11 48.67 64.41 82.19 49.30
UpIT(Skilled) 35.37 49.51 66.00 40.27 50.31 24.52 55.27 65.08 83.60 52.21

Table 15: Detailed results of different data selection strategies during router initialization. w/o Init represents
training models without our proposed router initialization. Random represents randomly construct the expert-specific
data and Skilled represents our PPL-based data selection method as shown in Algorithm 3. All models are
LoRA-based models under (8E,A2).
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