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ABSTRACT

In the field of few-shot learning, the scarcity of labeled data significantly hinders
progress. This paper introduces an innovative regularization algorithm designed
to enhance generalization performance in classification tasks by leveraging syn-
thetically labeled data. The approach utilizes a single encoder and multiple de-
coders, trained on both an original dataset with ground truth labels and synthetic
datasets with artificial labels. Our empirical studies demonstrate that this method
effectively improves neural network generalization, both independently and when
integrated with other regularizers. This versatility underscores the potential of
synthetic labeling in overcoming data limitations in few-shot learning scenarios.

1 INTRODUCTION AND RELATED WORK
Learning under few data samples is known as Few-shot learning. There are various well-known
approaches to learning with small (labeled) datasets. Data augmentation Shorten & Khoshgoftaar
(2019) algorithms augment the training dataset, which contains data samples labeled accurately.
In particular, they either manually filter, transpose, flip, rotate, erase, crop or color-shift the input
image or use some deep learning approaches to transform the input image into a related domain.
However, the ground-truth labeling is rarely augmented or tuned in such augmentation methodolo-
gies. In transfer learning Gupta et al. (2020) and meta-learning Hochreiter et al. (2001), one could
train a network with several datasets generated from different distributions, which can also be seen
as an augmentation of the dataset. Meanwhile, the weakly supervised learning Zhou (2018) and
semi-supervised learning Zhu (2005) algorithms are used to handle the unlabeled or corrupt-labeled
datasets. However, all the algorithms mentioned above are based on a dataset with ground-truth
labeling. More related works are provided in Appendix A.

Unlike most previous papers on few-shot learning that worked with a true label dataset or a dataset
with shifted distribution, we focus on approaches to learn models leveraging both the original
dataset, containing ground truth labels, and synthetic datasets, containing synthetically created la-
bels. When utilizing a dataset with synthetic labels as a regularizer, the network will be able to learn
the patterns and features shared by the ground-truth labeled dataset and synthetically labeled dataset.

2 PROPOSED APPROACH
As shown in Figure 1, the proposed approach trains based on the true and synthetic labels (TTSL)
involves three blocks: an encoder (blue) that encodes the input image to a representation, a true
decoder (red) which predicts the ground-truth labels, and a synthetic decoder (pink) that predicts
the synthetic labels.

Figure 1: TTSL Algorithm Model

The encoder and the decoders are parameterized by WE ,
W t

D, and W s
D, respectively. During the training phase, all

blocks will be optimized jointly. In particular, the param-
eters of the encoder and both true and synthetic decoders
are optimized in order to minimize the convex combina-
tion of empirical risks with respect to true and synthetic
labels. During the testing phase, only the encoder and the
true decoder are required, ensuring that there is no addi-
tional computational overhead in this stage.
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The input data are represented by a random variable X ∈ X , where X denotes the input space.
The true and synthetic labels are modeled by random variables Y t, Y s ∈ Y , with Y being the output
space. The true label predicted by the true decoder is denoted as Ŷ t, and the synthetic label predicted
by the synthetic decoder as Ŷ s. We define the true input-output pair as Z = (X,Y t) ∈ Z = X ×Y .
The training set St = {Zt

i = (Xi, Y
t
i )}ni=1 consists of true input-output data points sampled i.i.d.

from Z according to distribution µ. The synthetic dataset Ss = {Zs
i = (Xi, Y

s
i )}mi=1 shares inputs

with the true dataset but has randomly generated labels Y s
i ∈ Y that differ from Y t

i , generated
according to a separate distribution µs. In the experiments presented in the following section, µs is
a uniform distribution.

The encoder and decoders are optimized to minimize the combination of the loss on each decoder
defined as follows (where (L(·) represents cross-entropy loss):

{WE ,W
t
D,W s

D} = argmin
WE ,W t

D,W s
D

1

n

1

m

n∑
i=1

m∑
j=1

(1− β)L(Ŷ t
i ;Y

t
i ) + βL(Ŷ s

j ;Y
s
j ). (1)

3 EXPERIMENTS AND DISCUSSION

We employed a subset of the Fashion-MNIST dataset Xiao et al. (2017) to test our proposed method.
For this purpose, we randomly chose 1,000 images from the training set, which were then trained us-
ing a MLP-based neural network. Detailed procedures and configurations of our training methodol-
ogy are comprehensively outlined in the appendix of our paper. Additionally, the appendix presents
results from our experiments on the CIFAR-10 dataset, trained using the VGG-16 network, further
demonstrating the versatility of our approach.

Vanilla Noisy∇ WD dropout DA Mixup LS

test loss 0.600±0.0015 0.596±0.0036 0.597±0.0013 0.605±0.0063 0.647±0.0052 0.834±0.0039 0.603±0.0029
GE 0.593±0.0008 0.565±0.0009 0.397±0.0008 0.591±0.0013 0.446±0.0013 0.503±0.0010 0.580±0.0008

+TTSL test loss 0.588±0.0026 - 0.585±0.0020 0.601±0.0060 0.645±0.0030 0.811±0.0025 0.580±0.0040
+TTSL GE 0.504±0.0010 - 0.260±0.0010 0.397±0.0010 0.150±0.0009 0.457±0.0003 0.509±0.0010

test acc. 0.786±0.0011 0.800±0.0020 0.799±0.0014 0.811±0.0043 0.797±0.0044 0.786±0.0039 0.810±0.0020
GE 0.210±0.0004 0.180±0.0010 0.164±0.0010 0.189±0.0011 0.149±0.0008 0.210±0.0005 0.190±0.0011

+TTSL test acc. 0.812±0.0023 - 0.801±0.0021 0.820±0.0031 0.800±0.0035 0.796±0.0021 0.811±0.0020
+TTSL GE 0.173±0.0006 - 0.110±0.0011 0.120±0.0022 0.091±0.0010 0.178±0.0003 0.189±0.0009

Table 1: MLP on subset of Fashion-MNIST
Table 3 demonstrates that our proposed algorithm not only get lower test loss and smaller gener-
alization error (GE) in both test scenarios but also integrates effectively with other regularizers,
including adding Gaussian noise to gradient (Noisy∇), weight decay (WD), dropout, data augmen-
tation (DA), Mixup Carratino et al. (2020), and label-smoothing (LS) Szegedy et al. (2016). The
hyper-parameters for each regularizer were selected through a grid-search process.
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Figure 2: MLP trained on subset of Fashion-
MNIST with various β.
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Figure 3: MLP trained on subset of Fashion-
MNIST with various training dataset size.

Our ablation study shown in Figure 2 and Figure 3, which varied both β and the training dataset size,
revealed that the proposed method surpasses vanilla training (when β = 0), especially in contexts
with smaller training datasets. Additional ablation studies are presented in the Appendix C to further
confirm the effectiveness of the proposed algorithm.

4 CONCLUSION
We introduced a method that employs synthetic labels and a branched neural network as a regular-
ization strategy to enhance the generalization performance of neural networks in data-constrained
regimes. Our experiments demonstrate the method’s adaptability and compatibility with established
regularization techniques, such as weight decay and dropout, highlighting its potential for real-world
applications.
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A RELATED WORKS

Data Augmentation: When we do not have access to sufficient data, data augmentation is a com-
mon practice. There are different data augmentation techniques, depending on the data domain. For
example, for imagery data, image rotation, clipping, and other techniques can be applied to create
an augmented dataset (Shorten & Khoshgoftaar, 2019; Perez & Wang, 2017). Random erasing is
also an effective method for image data augmentation (Zhong et al., 2020). For text classification
tasks, multiple techniques, including synonym replacement, random insertion, random swap, and
random deletion can also be used for data augmentation (Wei & Zou, 2019). Generative adversarial
networks can also be applied to generate new data samples from the same domain to help to augment
the dataset (Frid-Adar et al., 2018; Tanaka & Aranha, 2019). As listed above, the data augmentation
techniques usually only transform the input data, leaving the original labeling untouched. However,
our algorithm proposes to use fake labels for training.

Meta and Transfer Learning: Some works (Bendre et al., 2020; Wang et al., 2020) use transfer
learning or meta-learning techniques to solve few-shot learning problems. The core idea of transfer
learning and meta-learning in solving the problem of insufficient data is borrowing the knowledge
learned from one or multiple other similar dataset sources. For example, Model-Agnostic Meta
Learning (Finn et al., 2017) uses a gradient-based approach to learn from multiple tasks. Task-
Agnostic Meta learning (Jamal & Qi, 2019) uses an entropy-based approach to few-shot learning.
However, these approaches require multiple well-labeled datasets akin (i.e. with a similar data-
generating distribution) to the target dataset, which is not always available. Our approach only uses
the available dataset.

Semi and Weakly Supervised Learning: Semi-supervised and weakly supervised learning can
also be related to our work because they use a dataset that is partly labeled or cheaply labeled.
In particular, Semi-supervised learning (Zhu & Goldberg, 2009; Zhou & Belkin, 2014) leverages
unlabeled data by using some techniques, e.g., entropy minimization (Grandvalet et al., 2005) and
Pseudo-labeling (Lee et al., 2013). On the other hand, Zhou (2018); Hendrycks et al. (2018) deal
with weakly-supervised learning, whose labels are cheaply labeled or contain considerable noise.
However, in our setup, our (typically small) dataset is fully well-labeled, and we use a fake labeling
process to achieve better performance.

B TRAINING DETAILS

B.1 TRAINING MLP WITH FASHION-MNIST DATASET

In the training of the MLP model on the Fashion-MNIST dataset, we employed a specific network
architecture, which is demonstrated in Figure 4. The training dataset comprised 1,000 randomly
selected samples. We used the Adam optimizer with a learning rate of 0.0001, running for 200
epochs.

B.2 TRAINING VGG-16 WITH CIFAR-10 DATASET

For the VGG-16 network trained on the CIFAR-10 dataset (which will be used in the next section),
we similarly used a subset of 1,000 randomly chosen images from the training dataset. The network
was optimized using the Adam optimizer, with a learning rate initially set to 0.001 for a total of 150
epochs. The architecture of the VGG-16 are shown in the Figure 5. In particular, there are various
locations where the synthetic decoder can be branched, which will be explored in the ablation study
presented in the following section.

C MORE ABLATION STUDY

C.1 VGG-16 BRANCHED AT VARIOUS LOCATIONS

We evaluated the impact of branching the synthetic decoders at different layers within the VGG-
16 network on performance. The outcomes are detailed in Table 2. The results indicate that our
proposed method enhances classification accuracy regardless of the layer at which the true branch
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Figure 4: Architecture of the MLP trained for Fashion-MNIST classification task.
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Figure 5: Architecture of the VGG-16 trained for CIFAR-10 classification task.

is implemented. However, the extent of improvement varies depending on the specific configuration
of the setup.

C.1.1 MULTIPLE SYNTHETIC DECODERS

Given that synthetic labels are assigned randomly, it is feasible to deploy multiple synthetic decoders
at the same layer. As illustrated in Figure 6, our experiment with an MLP trained on MNIST classifi-
cation demonstrates that a model with two synthetic branches yields the best performance. However,
it is noteworthy that all configurations surpass the baseline vanilla setup in terms of performance.
It should be noted, though, that employing a synthetic decoder introduces higher performance vari-
ance, which is sensitive to the initialization.
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Table 2: CIFAR-10 classification results: The three major columns are the TTSL algorithm com-
pared with vanilla dataset, the TTSL algorithm combined with weight decay regularization and
dropout. The first row of each major column is the results of regularization alone (or no regular-
ization), without applying the TTSL algorithm. The other rows are the results of choosing different
location to branch out from the main VGG network as shown in 5

TTSL TTSL + WD TTSL + dropout

acc GE acc GE acc GE

Vanilla 0.3450 0.6550 WD 0.3494 0.6496 dropout 0.3636 0.6234
Branch-1 0.3932 0.6068 Branch-1 0.3788 0.5972 Branch-1 0.3700 0.6260
Branch-2 0.3658 0.6342 Branch-2 0.3534 0.6236 Branch-2 0.3772 0.6038
Branch-3 0.3882 0.6118 Branch-3 0.3650 0.6100 Branch-3 0.3810 0.5900
Branch-4 0.3990 0.6010 Branch-4 0.3606 0.6114 Branch-4 0.3850 0.6110
Branch-5 0.3514 0.6255 Branch-5 0.3696 0.5704 Branch-5 0.3894 0.6106
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Figure 6: Fashion-MNIST test loss with multiple synthetic decoders. We duplicate the synthetic
decoders multiple times to create extra synthetic labeling. The synthetic decoders are all branched
from the same layer as illustrated in 4. When we do not have any synthetic branches (Branch ×0),
the experiment is equivalent to vanilla training. The marker is the averaged value over 20 repeated
experiments and the error bars represent the standard deviation.
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