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ABSTRACT

In spite of their huge success, transformer models remain difficult to scale in
depth. In this work, we provide formulae that govern the moments of the for-
ward and backward signal through all transformer components, and develop a
unified signal propagation theory for transformers. Our framework can be used
to understand and mitigate vanishing/exploding gradients, rank collapse, and in-
stability associated with high attention scores. We also propose DeepScaleLM,
an initialization and scaling scheme that conserves unit output/gradient moments
throughout the model, enabling the training of very deep models with 100s of lay-
ers. We find that transformer models could be much deeper – our deep models
improve 1.0 points in perplexity, and 2.2 points in downstream tasks compared
to shallow models across multiple model sizes, without any extra parameters, and
even outperform larger shallow models using only half the number of parameters.

1 INTRODUCTION

Transformer models have become extremely popular across different domains of machine learning.
However, deep transformers are plagued with issues of gradient explosion/vanishing (Shleifer et al.,
2021; Takase et al., 2022), and of rank collapse (Shi et al., 2022; Zhou et al., 2021; Noci et al., 2022)
that adversely affect training stability. Several remedies have been proposed to alleviate these issues,
such as changing the location of layernorm to stabilize model training (Xiong et al., 2020), adding
extra layernorms after attention (Dehghani et al., 2023), initializing weights as zero (Bachlechner
et al., 2020), and changing the scaling of residuals (Wang et al., 2022a; Zhang et al., 2019).

Theoretical analysis of deep transformers, via signal propagation, kernel methods, etc. has led to an
improved understanding of these issues. However, these works have inherent simplistic assumptions
such as IID inputs, uncorrelated outputs, assuming no effect of attention query/key initialization,
simplified treatment of effects of non-linearity, etc (Xu et al., 2019; Davis et al., 2021; Dong et al.,
2023). We observed that each one of these assumptions breaks down in a model with real world
data, adversely affecting model stability.

Furthermore, these modifications may lead to unintended degradation caused by side effects. For
example, changing the position of the Layernorm in Pre-LN can lead to gradient mismatch (Shleifer
et al., 2021). Moreover, the optimal initialization/scaling can vary based on data/model character-
istics (Zhang et al., 2023; Marion et al., 2022). Detailed discussion of related works is provided in
Appendix B. These issues highlight the need for a holistic theoretical framework that can fully ex-
plain signal propagation through transformer models with real data, and enable comparative analysis
along the stability-performance trade-off curve.

In this paper, we first derive the first and second-order moments (mean and variance) of the out-
puts and gradients of each of the components of the transformer model – Embeddings, FFN, Re-
LU/GeLU, LayerNorm, Dropout, Softmax, Single-Head Attention, and provide complete closed-
form expressions for the same. Combining these expressions enables us to derive the equations that
describe the forward and backward signal flow through the transformer Attention and FFN blocks,
and through the entire transformer model for both Pre-LN and Post-LN variants. We validate our
theory by empirically verifying the derived equations.

Our theoretical framework can be used to understand multiple training instability issues with very
deep transformer – specifically, it demonstrates the vanishing/exploding gradient of deep transform-
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ers, rank collapse, and instability caused by high QK values of attention. It can pinpoint the root
cause behind these issues, and suggests simple fixes to alleviate them.

Montúfar et al. (2014); Raghu et al. (2017) show that the complexity of Deep Neural Nets increases
polynomially with width and exponentially with depth. However, deep transformers are often unsta-
ble due to the above mentioned issues Smith et al. (2022); Chowdhery et al. (2022). Our theory fur-
ther enables us to propose DeepScaleLM, a novel initialization scheme that augments residual/output
scaling, and ensures the moments of outputs and gradients to remain fully conserved throughout the
model at initialization. The theory also allows practitioners to tune the model stability based on their
requirements, at the possible expense of model performance.

DSLM enables us to break the depth barrier and train both Pre-LN and Post-LN models with 100s of
layers. We find that transformer models could be much deeper – our 192-layer model outperforms a
standard 12-layer model without extra parameters or compute. Similarly, 96 and 384-layer models
outperform the 24-layer BERT-large model. Deep DSLM-models are able to beat models with twice
the number of parameters. These improvements persist after fine-tuning for downstream tasks.

Our contributions are as follows –

1. We derive and verify the moments for signal propagation through the transformer compo-
nents, blocks, and the entire model. To the best our knowledge, this is the first work to
provide closed-forms for many of these components, for the blocks, and the entire model.

2. We leverage our formulae to tackle vanishing/exploding gradients and outputs, rank col-
lapse, and instability caused by high QK values all under one framework.

3. We propose DeepScaleLM, an initialization and scaling scheme that conserves unit out-
put/gradient throughout the model at initialization, and bounds gradients during training.

4. Our experiments suggest that transformer models could be much deeper (100s of layers)
for improved performance with the same number of parameters and compute.

2 MOMENTS OF TRANSFORMER MODELS

Table 1: Signal propagation for forward (σ2
xout

) and backward (σ2
gin

) passes through components of
a transformer. The expressions here are illustrative simplification of full closed form formulae in
Appendices C and E.
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Moments of Transformer Components Following an analysis similar to that of Xavier/Glorot
initialization (Glorot & Bengio, 2010), we derive closed-form expressions for the mean and variance
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of the output and of the backpropagated gradient for all the components of the transformer model
in Table 1 – Embeddings, Linear, ReLU (GeLU in supplementary), LayerNorm, Dropout, Softmax
and Single-Head Attention(SHA).

Here µxin , σ2
xin

, µxout , σ
2
xout

are the mean and variance of the input/outputs respectively. σ2
gout

, σ2
gin

are
the variance of the gradient back-propagated to and from the component, respectively. rl, rd are the
correlations across sequence length and hidden dimension, respectively. p is the dropout probability,
L sequence length, din, dout input/output dimensions of Linear layer, σ2

w, σ2
wembd

variances of the
weights of the Linear layer and the Embeddings table respectively.

Except for SHA, all other derivations of transformer components are fully exact, assuming only
normal distribution of inputs, weights and gradients. For LayerNorm and softmax, we assume that
the hidden dimension / sequence length are large. Detailed proofs are provided in Appendix C,
and all assumptions are also summarized in Appendix L.2. These formulae were also numerically
verified by simulations (Section 4.1), and the verification shows that our expectations are tight.

Moments of Transformer Blocks Combining the expressions reported in Table 1, we derive
closed-form expressions for the moment transformation during the forward and backward pass of
the transformer Attention and FFN blocks. The Attention block refers to the Q,K, V projection,
followed by Multi-Head Attention, and Output-Projection Layer. The FFN block refers to the Lin-
ear layer, followed by non-linearity (ReLU), and output Linear layer. Table 2 provides our derived
equations for these, where σ2

v , σ2
o , σ2

w1
, σ2

w2
are the variances for V weights, Output-Projection

weights, and weights of FFN block Linear layers, and d is model the hidden size.

These results show that considering correlation rl, dropout p and effects of non-linearity are crucial
for correctly modelling signal propagation through Transformer blocks. rlxin

originates from repeated
tokens in the input, segment embeddings, and transformer layers. The correlation in embeddings is
estimated theoretically by assuming that input tokens follow Zipf (1999) distribution. The equations
in Table 2 are simplified from their complete closed form, which can be found in Appendix D.

Table 2: Moment Propagation through the blocks of a transformer layer. Exact closed forms and
proofs for these equations are in Appendices D and E.
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Moments of Entire Transformer Model By repeatedly applying the expressions in Table 2 for
each layer, we calculate the propagation of moments of outputs and gradients through the entire
transformer model. We do this for both Pre-LN style transformers, in which the skip connection
bypasses the LayerNorm, and for Post-LN style transformers, in which the Layernorm is applied
before the skip-connection. The method is fully detailed in Appendix H.1 for Pre-LN and in Ap-
pendix H.2 for Post-LN. Our derived moments have remarkably low error even after 192 layers,
for both the forward output and backward gradient, as can be seen from Figures 1, 2 and 3 for a
192-layer 256-d model at initialization, initialized with Xavier initialization. These formulae were
also verified by simulations, as detailed in Section 4.1.

3 APPLICATIONS

3.1 EXPLAINING VARIANCE EXPLOSION IN VANILLA TRANSFORMER

Our approach theoretically proves the gradient vanishing/explosion with increasing number of lay-
ers, for both Pre-LN and Post-LN transformers, as listed in Table 3.
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Figure 1: Pre-LN: Forward variance increases
linearly with number of layers N .
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Figure 2: Pre-LN: Backward gradient variance
increases hyperbolically with N .
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Figure 3: Post-LN: Backward gradient vari-
ances vanish exponentially with N (log-scale).
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Figure 4: DeepScaleLM: The variances remain
conserved for both backward and forwards.

Exploding Output and Gradient in Pre-LN As we prove in Appendix H.1, with increasing depth
N , the forward output increases linearly for Pre-LN transformer since each layer’s output is directly
added to the skip connection, as can be seen in Figure 1. For the backward pass, the gradient
increases hyperbolically with increasing N , as shown in as can be seen in Figure 2. Intuitively,
this is because the gradient increases in every layer when a block’s gradient is added to the skip
connection, and the fractional increase in gradient is inversely proportional to the forward variance
(which increases by N ) because of LayerNorm.

Vanishing/Exploding Gradient in Post-LN While layernorm solves the explosion in the for-
ward pass of networks with residual connections (De & Smith, 2020), it has the opposite impact on
the gradient. As proved in Appendix H.2, the moment for the gradient in a Post-LN transformer
grows/decays exponentially with the number of layers ( Figure 3).

Intuitively, the gradient is first transformed within the layer and then at the LayerNorm placed before
the layer. The multiplicative factor is applied repeatedly, and causes gradient to vanish or explode
exponentially, as was also observed in Schoenholz et al. (2017). This exponential decay/explosion
also explains why Post-LN models are more challenging to train than Pre-LN for deeper networks
(Wang et al., 2022a; Shleifer et al., 2021; Takase et al., 2022).

Table 3: Comparison of maximum theoretical forwards pass and backward pass growth in variance
for the entire transformer model across methods. (See Appendix H for proofs)

Method Post-LN Pre-LN
Forward Backward Sensitivity Forward Backward Sensitivity

Vanilla (Xavier/Fixed init) 1 O(c±N ) O(N) O(N) O(N) O(log(N))

DeepScaleLM (Ours) 1 O(1) O(1) 1 O(1) O(1)

DSInit 1 O(1) O(N−1) O(1) O(1) O(N−1)

DeepNet 1 O(1) O(N−0.5) - - -

4



Under review as a conference paper at ICLR 2024

3.2 DEEPSCALELM: ENABLING DEEP TRANSFORMERS WITH 100S OF LAYERS

We propose a new initialization and re-scaling scheme, DeepScaleLM (DSLM), that aims to alleviate
the explosion issues discussed above.

Residual/Skip-Connection Scaling Let σ2
skip, σ2

block, σ2
model be the variances of the skip connec-

tion, the block, and the output of the final layer of the model, respectively. Let σ2
skip = σ2

block,
and we scale them by scalars λ and β respectively. Then, as has been proven in numerous works
(Appendix B.3), if λ2+β2 = 1, this scaling will maintain the variance after addition of the residual.

Initialization However while ensuring σ2
skip = σ2

block (and equal to the variance of model input)
has been done for ResNets (Appendix B.1), it is difficult to achieve theoretically for transformers. By
leveraging the equations in Table 2, our theory provides us the tools to achieve this. We modify the
initialization of the components of the transformer FFN and Attention blocks such that the variance
of their output is 1, as further detailed in Appendix M –

1. We set the variance of embedding weights as σ2
e = 1−p

numembd
, where numembd is the number

of embeddings types. As embeddings are followed by a dropout, this ensures the input
variance to the model is 1.

2. We set σ2
w2

= σ2
w1

= 1
d ∗
√

1−p
2 , to make the output of the FFN block 1.

3. We iteratively calculate layer-by-layer rlxin
, rlxout

using expressions from Table 2, and calcu-
late the initial variance of the attention block weights to make the output variance 1.

This initialization of transformer blocks, combined with the scaling of the skip connection and
residual, and correct initialization of the embeddings, results σ2

model = 1, irrespective of the number
of layer N . This initialization also preserves the backward gradient, as proved for Pre-LN and Post-
LN, in Appendices H.3 and H.4. Empirically, we show the backward gradient being preserved for
both Pre-LN and Post-LN even across 192 layers at the start of training (Figure 4).

Choice of Scaling Parameters While any choice of β will work at initialization, higher values of
β, for example β2 = 0.5 causes gradients to vanish (Figure 10, Table 4). This is because covariance
between residual and skip connection increases the forward variance, which causes normalization to
decrease backward gradient (De & Smith, 2020).

Similar to other prior works (Appendix B.3), we use β2 = k
N in all our experiments, where k is

some small constant. This enables us to bound the fall in gradient (Appendix H.3) for Pre-LN. For
Post-LN, β2 ≤ k

N2 is theoretically required to bound the gradient (Appendix H.6). In practice,
with β2 = 2

N , even with 768 layers, we empirically observed the final output variance from the
model does not exceed 30, and all our models converge. We hence use β2 = k

N (Figure 11),
but a practitioner may choose β2 = k

Nα , with α > 1 if more stability is required at the expense
of performance/“sensitivity” (Refer to Section 4.4 and comparison to prior works in Section 4.3).
While the above analysis assumes positive covariance (which we always observed experimentally),
negative covariance follows a similar reasoning, and will cause gradient explosion instead.

Simpler Initialization Another avenue to handle the covariance between residual and skip con-
nection could be to set λ2 + β2 < 1. We therefore also consider a simpler initialization
method(Appendix M), in which we modify the initialization of attention value and output matri-
ces to be the same as those of FFN block. This decreases the "effective" β of the attention block, but
as the attention block has 2x fewer params than FFN, this change in weightage seems reasonable.
As we show in Appendices H.5 and H.6 while variances are no longer unit at initialization, they are
still bounded. This change does not impact performance significantly, as we show in Table 10.

With the above initialization and skip/residual scaling, our DSLM method enables us to train models
with 768 transformer layers for both Pre-LN and Post-LN. As our experiments will show, we find
that for the same number of parameters and compute, deeper-narrower models with our method
outperform standard-sized models during both pre-training and finetuning.
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3.3 EXPLAINING IMPACT OF LARGE QK VALUES

In Dehghani et al. (2023), the authors observed large QK values destabilized the training, and solved
this empirically by adding a layernorm after attention scores. Prior work on signal propagation in
transformers, either ignored the effect of QK initialization (Wang et al., 2022a) or suggest that the
backpropagated gradients have a linear relation to QK variance (Noci et al., 2022). Critically, note
from our derivations of softmax(Appendix C.7), the backwards gradients from Q/K are exponen-
tially related to their variance. This exponential dependence points out the critical significance of
correct initialization of Q/K. For e.g., by initializing them to only 2x the xavier values (keep all
other initializations the same), backwards gradients exploded 10000x through a 192 layer model.
Our theory explains these empirical observations of the detrimental impact of large QK values, and
suggests simple initialization strategy to fix this problem, achieving the same variance on QK with-
out the overhead of LayerNorm.

3.4 EXPLAINING AND MITIGATING RANK COLLAPSE

Similar to our work, Noci et al. (2022) also analyze moment propagation through the transformer,
and observed the rank collapse of the token’s representations at initialization after just a few layers,
i.e., all the token representations became the same (rlx ≈ 1 after just 12 layers) at initialization. This
has also been reported in Shi et al. (2022); Zhou et al. (2021); Wang et al. (2022b); He et al. (2023);
Bachlechner et al. (2020); Zhai et al. (2023), and suggested modifications such as adding a skip
connection on attention scores, initializing Q/other weights to 0, or normalizing all FFN weights.
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Our theory suggests a very simple solution – Dropout. As our closed form expressions suggest,
both FFN block (because of ReLU) and dropout reduce the correlation(Figure 5). With dropout, our
method shows that such a rank collapse will not occur, and rlx will quickly reach a stable value < 1
(Appendix G), and we verify this empirically in Figure 6.

Alternatively, scaling the block output by β = 1√
N

, or equivalently initializing the weights very
small in Post-LN will also prevent rank collapse, even without Dropout. For Pre-LN, λ = 1 slows
down increase in rl compared to λ2 = 1− 1

N (but the same slowdown can be achieved by decreasing
β). While similar to Noci et al. (2022), we highlight some issues in Noci et al. (2022) in Appendix G.
For DSLM, applying our block equations iteratively shows that rlx < 1 − 1

e2 after N layers. This
highlights the criticality of correct initialization, dropout and scaling for deep transformer models,
as well as the explainability power of our theoretical framework proposed in the paper.

4 RESULTS

4.1 NUMERICAL VALIDATION OF THEORETICAL RESULTS

We verify the theoretical formulas of transformer components and blocks by running simulations
with real and synthetic data, as detailed in Appendix F, over a large range. These simulation results
are all fully reproducible using our code released as supplementary material. Even at 99 percentile,
no error (other than SHA gradient variance) is larger than 10%, verifying our assumptions.
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We also verify our formulae for the entire transformer model, as shown in Figures 1, 2, 3 and 4.
Our formulae predict the observed gradient and forward/backward norms with remarkable accuracy.
We further vary the model depths [1 − 768], and model dimensions [128 − 6096], and the reported
formulae are within 10% error, even across 768 layers of the transformer model.

4.2 VALIDITY OF THEORETICAL PREDICTIONS EVEN AFTER TRAINING

Interestingly, our theoretical estimates hold approximately even after the models have been trained
for a large number of steps. The model stays in the regime it is initialized with (as has also been
shown in Li & Liang (2018); Lee et al. (2019); Jesus et al. (2021); Arora et al. (2019a;b)), high-
lighting the importance of correct initialization. Further, we analyze forward explosion in a 48-layer
PreLN model (after 100k training steps) and gradient explosion in a 64-layer PreLN model (after
150k training steps) and use our theory to predict the moments. Our linear estimation for the for-
ward growth and hyperbolic estimation for the gradient explosion match closely with the observed
moments as shown in Appendix in Figures 8 and 9.

4.3 DEEPSCALELM: PERPLEXITY IMPROVEMENTS FOR VERY DEEP MODELS

Implementation Details We test our method on the Masked Language Modelling task with the
BERT Devlin et al. (2019) model. We use Pile-CC dataset Gao et al. (2021) to train our model,
and report LM test-set perplexities on the same. We use k = 2 for β, and we use all original
hyper-parameters of BERT, except for learning rate (LR). We find that higher LR is needed for
our deeper-narrower models (similar to Yang et al. (2021)). Hence, we search for LR for all the
models. The training steps were decided based on Chinchilla (Hoffmann et al., 2022). Table 21
provides all hyper-parameter details. When using DSLM, model output was down-scaled by

√
d

before LM-head.

We train different language models with the same number of parameters and compute – while in-
creasing the depth (N ), we reduce the hidden dimension d keeping number of parameters (Nd2)
constant. When changing from 12-layer 1024-d model to 192-layer 256-d model, compute negligi-
bly increases by only 6.6% when keeping Nd2 constant (Table 20).

Table 4: Performance (perplexity) of models
with same compute and different shapes. Deep
Thin models provide large improvements.

Model (N,d) Pre-LN Post-LN DSLM
165M Params

12, 1024 21.7 14.2 15.6
48, 512 18.0 14.8 13.1
192, 256 19.8 17.1 12.9
768, 128 26.9 diverge 18.4

330M Params
24, 1024 19.4 13.2 14.0
96, 512 24.0 diverge 12.2
384, 256 18.5 diverge 12.3

Table 5: Comparison with prior deep methods.

Layers DSInit DeepNorm DSLM
96 diverge 13.4 12.2
192 15.9 14.4 12.9

Table 6: DSLM with deep Pre-LN.

Model (N,d) Baseline DSLM
384, 256 18.5 17.2
768, 128 26.9 25.9

Perplexity Improvements after Pre-Training In Table 4, we provide the results for two different
model sizes, 165M and 330M, with DSLM applied to Post-LN. Post-LN is known to outperform
Pre-LN Wang et al. (2022a) (observe Row-1 and Row-4). However, since deeper Post-LN models
diverge, most current large LMs (such as GPT3 Brown et al. (2020)) are Pre-LN. Using our method,
even a 768 layer Post-LN model (with 2300 Linear and 768 attention layers) converges.

Figure 7 shows that DSLM stabilizes the training of Post-LN models while significantly improving
the performance compared to Pre-LN models. Our method is comparable to the baseline for shallow
models but starts to outperform as the model gets deeper. Our 192-layer model outperforms the
vanilla 12-layer, and our 96 layer outperforms the vanilla 24-layer model. The 165M 192-layer
model outperforms the vanilla 24-layer 330M model with 2× params and compute.

7



Under review as a conference paper at ICLR 2024

Perplexity Improvements after Pre-training for Pre-LN models We also applied DSLM to the
deep Pre-LN models reported in Table 4 for both model sizes. Table 7 and Table 6 show that DSLM
significantly improves the performance of the Pre-LN model across a range of model depths.

Comparison with Prior Methods for Deep Transformers DSInit and DeepNet stabilize the
model training at the expense of reduced “sensitivity” (Section 4.4) by using smaller effective val-
ues of β2, at O(N−2) and O(N−1.5) respectively. This is also verified by our experiments. Table 6
shows that DSLM outperforms DSInit Zhang et al. (2019) and DeepNet Wang et al. (2022a) across
different model depths. Interesting, 96-layer model diverges with DSInit, inspite of DSInit using
a smaller β asymptotically – this is because the constants hidden in O(N−2) are much larger for
DSInit. Our method, by analysing signal propagation, has constants exactly 1.

Table 7: Comparison while increasing depth.

N d Baseline DSLM
Post-LN

192 256 17.1 12.9
384 256 diverge 12.3
48 512 14.8 13.1
96 512 diverge 12.2

Pre-LN
12 512 29.4 26.0
96 512 24.0 20.2
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Figure 7: Visualizing performance vs. Depth
for 165M models.

Effect of Increasing Model Size Table 7 compares the performance of our approach with the
baseline as we vary the model depth (N ) while keeping the hidden dimension (d) constant. The
baseline either fails to converge, as observed for Post-LN, or leads to performance degradation,
as seen for Pre-LN. By stabilizing the training, DSLM allows training larger models with better
performance, for both Pre-LN and Post-LN.

Downstream Finetuning Results We finetune the baseline and DSLM models on the public
RACE-M and RACE-H (Lai et al., 2017) datasets. The improvements observed during pre-training
(Table 4) are similarly translated into downstream task performance. Table 8 demonstrates the ef-
fectiveness of DSLM compared to both Pre-LN and Post-LN baselines.

Table 8: Downstream fine-tuning accuracy on the Middle/High school datasets of RACE benchmark.

Model Size Overall RACE-Middle RACE-High
Pre Post DSLM Pre Post DSLM Pre Post DSLM

165M 51.7 56.9 59.1 57.7 63.0 65.6 49.2 54.3 56.3
330M 53.5 56.5 59.7 58.9 63.6 66.2 51.2 53.6 57.0

4.4 ANALYSIS OF DEEPSCALELM

Compute Appendix J provides detailed theoretical and wall-clock compute overheads for making
models deeper. We observe that up to 200 layers, the theoretical compute is within 6 − 7% of
the original shallow model, and wall-clock times also have small overheads less than 15%. While
our 192-layer 256-d model requires 6% extra compute than the 24-layer 165M parameter model, it
manages to outperform the 24-layer 330M model, that has 62.5% extra compute, at equal wall-clock
time and at equal number of tokens.

Ablation of Residual Scaling Table 9 provides the results corresponding to the different compo-
nents of our proposed DSLM scheme for training 96-layer 512-d model Post-LN model. The model
fails to converge without the proposed residual scaling. β may also be set as learnable (similar to

8
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BatchNorm Ioffe & Szegedy (2015)), after initializing it with β2 = 2
N . We find that this does not

significantly impact performance, and β remains within [0.2− 5]× of its initialized values.

Ablation of Initialization Table 10 provides ablation results for our proposed initialization. All
experiments in Table 10 were conducted for the Pre-LN model with our proposed scaling (λ, β),
since the Post-LN model diverged with Xavier initialization. Xavier initialization performs signifi-
cantly worse for very deep models. BERT default initialization with σ = 0.02 also performs worse.
Finally, DSLM simpler initialization performs comparably to DSLM.

Table 9: Ablation of various DeepScaleLM
components, for a Post-LN model.

Model Perf
Vanilla Xavier diverge
Xavier + β2 = 0.5 diverge
DSLM-Init diverge
DSLM-Init + β2 = 0.5 diverge
DSLM-Init + β2 = 2

N 12.2

Table 10: Ablation of the initializations.

Model Model Size (N,d) Perf
Xavier 165M (192,256) 38.2
Fixed σ = 0.02 165M (192,256) 31.6
DSLM 165M (192,256) 20.8
DSLM (simple) 165M (192,256) 20.7
Fixed σ = 0.02 330M (96,512) 20.5
DSLM 330M (96,512) 20.2

Discussion of Relative Strength Existing works have tried to use different values of β to stabilize
model training (Appendix B.3). In general, for a β of the form β2 = k

Nα , we can choose from a
wide range of values for the constant k and exponent α. Intuitively, as k decreases/α increases, the
contribution of each layer is reduced, and the observed issues, such as forward growth and gradient
explosion/vanishing, are mitigated. However, reducing each layer’s weight makes the model more
linear, and can affect performance.

Davis et al. (2021) defines “sensitivity” as the variance of relative change in output for small pertur-
bations in parameters, averaged across all parameters. If σ2

skip = 1, sensitivity can be shown to be
mean across layers of N ∗ (1/σ2

block) = N ∗ β2. Mean is not robust to outliers, and hence we sug-
gest median may provide a more robust measure. For e.g., for vanilla pre-LN, Davis et al. (2021)’s
definition gives sensitivity as O(log(N)), whereas using median provides a more robust measure as
O(1). But only the first N/10 layers have O(log(N)) sensitivity, and the last 9N/10 layers have
O(1) sensitivity. We will use median in the discussion below.

In Appendix K, we show that the fall in gradient for both pre-LN and post-LN for β2 = k/Nα is
O(ekN

1−α

). The sensitivity is hence kN1−α. As we decrease k/increase α, the gradient fall/growth
is reduced by O(ekN

1−α

), and the training becomes more stable. However, the sensitivity reduces
by O(kN1−α).

For DSLM, we chose α = 1, that is the sweet spot on the stability-expressivity curve where both
the gradient fall bound and sensitivity expressions become independent of model depth. For DS-
Init, α = 2, and for DeepNet effectively has α = 1.5. Although the gradient also becomes stable
using α = 1.5 or 2, the model expressivity reduces with depth, as shown in Table 3. We conjecture
that such models might not be able to extract better results when going deeper, as we indeed verify
empirically in the comparison with prior works paragraph in Section 4.3. However, depending on the
training landscape for a particular problem, a practitioner might need to increase α (and/or decrease
k) to stabilize model training and ensure convergence.

5 CONCLUSION

We theoretically derive closed forms for the growth of variances for forward and backward pass
through individual transformer components as well as the entire transformer model. These formulae
enable us to identify and solve the key reasons for vanishing/exploding gradients and rank collapse
in very deep transformers. Via scaling and correct initialization, we also enable training very deep
transformers up to 768 layers. Our experiments suggest that deeper transformers should be explored
- using our method, models with 100s of layers outperform standard models at the same number of
parameters and compute.

9
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REPRODUCIBILITY STATEMENT

We release the code for our numerical verification results in the supplementary. Pseudo-code of our
proposed DSLM method is provided in Appendix M, and DSLM-simple method can be very easily
applied to existing codebases.

Details of implementation are provided in Section 4.3. All hyper-parameters including optimizer,
warm-up steps and LR values in Appendix N. Nvidia’s Megatron LM (https://github.com/
NVIDIA/Megatron-LM), at commit 1a26b2910d6b64d8ce6bdebe807739d4ea67f3d7 was used
for verification and plots of gradients. Note that while this codebase only supports fixed initializa-
tion, modifications to use Xavier instead were minor.
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B RELATED WORKS

B.1 INITIALIZATION

Several works, such as (Glorot & Bengio, 2010; He et al., 2015; Brock et al., 2021) improved the
initialization of ResNets/ReLU networks, but crucially these works do not consider the impact of
correlation in the input, which is large in Transformer models. Schoenholz et al. (2017) initializes
weights for networks with bounded activations so that correlation reaches 1 asymptotically.

Some works, such as Mishkin & Matas (2016), sequentially profile each layer empirically by running
forward passes through the model, and scaling the weights and/or output to achieve unit variance.,
and Liu et al. (2020a;b) applied the same method for Transformers. Blake et al. (2023) also tries to
achieve unit variance, but does not consider correlation in input or across tokens, and ignores the
non-zero mean of ReLU, resulting in incorrect scale. Bachlechner et al. (2020) shows unit variance
leads to faster convergence at the start of the training.

We demonstrate that this profiling is unnecessary, and can instead be done theoretically in Deep-
ScaleLM. Furthermore, where output or gradient increases in some prior works with more layers
(eg. for ADMIN (Liu et al., 2020a), grad and output increase by O(log(N))), our method allows
maintaining both unit output and equal gradient across all layers at initialization, and bounded during
training.
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B.2 SIGNAL PROPAGATION

Signal propagation has long been studied for ResNets, such as De & Smith (2020); Brock et al.
(2021); He et al. (2015); Schoenholz et al. (2017); Anonymous (2022); Labatie et al. (2022); Marion
et al. (2022); Klambauer et al. (2017); Balduzzi et al. (2018). Some of these works also compute
variances with respect to joint distributions of weights and inputs, resulting in estimates that do not
correspond to any single instantiation of the network, as also pointed out by Martens et al. (2021).
In our work, we take expectations over inputs for a single instantiation of the network.

For transformers, signal propagation was studied in Xu et al. (2019); Dong et al. (2023); Davis
et al. (2021); Noci et al. (2022). Our work also considers previously neglected effects of dropout,
input correlation between tokens, non-linearity, QK initialization, and provides closed forms with
verifiable correctness of this signal propagation. Ours is the first work to theoretically constrain the
output and gradient to almost exactly unit without any profiling passes, showing the validity of our
formulae and of our assumptions. See the section Section 3.4 for more discussion on Noci et al.
(2022) specifically.

He et al. (2023) extends neural kernel methods of DKS (Martens et al., 2021) to Transformers to
model network behaviour, assuming the MLP to be linear in its effect on attention. Q/C maps in
kernel methods are similar to signal propagation, as expected moments are equivalent to q and m
values of kernels (Martens et al., 2021). Our method relaxes these assumptions, and we show that
considering the impact of ReLU/GeLU on correlation is critical to correctly modelling attention.

We also account for cases with non-IID inputs that may occur due to segment/position embeddings
or due to non-uniform token distributions in real data (that are distributed approximately per Zipf’s
law Zipf (1999)) – and find that this strongly affects output variance of the attention block.

B.3 MOMENT CONTROL & RESIDUAL SCALING

Bounded gradients, or normalizing per-layer gradients, have been shown to results in better/faster
convergence (Shen et al., 2020; Yu et al., 2018; You et al., 2017; 2020). Woks such as Takase et al.
(2022); Shleifer et al. (2021); Hayou et al. (2019) also achieved improved training by empirically
mitigating the gradient explosion.

Scaling with λ2 + β2 = 1 to control moments have often been used for ResNets (Balduzzi et al.,
2018; Szegedy et al., 2016; Hanin & Rolnick, 2018; Arpit et al., 2019; Zhang et al., 2022; Hoedt
et al., 2022). Szegedy et al. (2016) proposed to use any small β, Balduzzi et al. (2018) proposed to
set β2 = 0.5, Bachlechner et al. (2020) sets β = 0 and learnable. De & Smith (2020) showed that
λ2 = 0.5 is not sufficient to solve vanishing gradients.

β2 = k
N was used to control growth of moments in Arpit et al. (2019); Brock et al. (2021); Marion

et al. (2022); Zhang et al. (2023); He et al. (2023); Noci et al. (2022)) . β2 = k
n , where n is the

current layer, was used in De & Smith (2020); Liu et al. (2020a;b); Davis et al. (2021); Blake et al.
(2023), but this results in logarithmic bounds instead of constant for forward propagation if λ = 1
is used, and vanishing gradient for backward propagation otherwise.

Values of β2 < k
N , such as (effectively) 1

N2 for DSInit (Zhang et al., 2019) or 1
N1.5 for Deep-

Net (Wang et al., 2022a) decrease sensitivity of the model, and may result in the model becoming
“too linear”. DeepNet shows performance improvements by making the model deeper, but keeping
the hidden dimension constant. Our setting is much more strict - we keep the number of param-
eters (and hence compute) constant, and our method still show performance improves on making
the model deeper. For example, DeepNet‘s 200 layer model is 3.2B params, whereas ours is 330M
params.

Sometimes, these β values are used in conjunction with λ = 1, such as in Liu et al. (2020a;b),
but as shown in He et al. (2023), fully normalized residual connections with λ2 + β2 = 1 often
perform better than those with λ = 1. We also observed lower performance with λ = 1 in our initial
experiments, and hence we fully normalize the residual connections.

Our contribution goes beyond providing an optimal scaling scheme. Using the theoretical frame-
work and closed-form expressions for moment propagation through both Pre-LN and Post-LN de-
veloped in this work, practitioners can make informed choices about using any of the scaling factors
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above based on the stability-performance tradeoffs, such as using a lower β for scenarios with high
correlation, or using higher β with uncorrelated inputs.

B.4 OTHER NETWORK MODIFICATIONS FOR DEEP NETWORKS

Shi et al. (2022); Zhou et al. (2021); Wang et al. (2022b); Dong et al. (2023) showed that attention
causes rank collapse in deeper models, and Chen et al. (2020); Zhao et al. (2023) showed the same
for graphs. Takase et al. (2022) added some extra skip connections from the input of the model,
Nguyen & Salazar (2019) modified layernorm slightly, Zhai et al. (2023) normalized all linear lay-
ers by their spectral norm, and Shleifer et al. (2021) added extra layer norms. The methods in
these works are orthogonal to our approach, and our equations can be easily extended to cover the
architectural modifications suggested in these.

C MOMENT PROPAGATION THROUGH TRANSFORMER COMPONENTS

We provide detailed proofs of the closed-form expression for each of the transformer component –
Linear layer, Dropout, ReLU, GeLU, LayerNorm, and Softmax.

For any component, input is represented as xin and xout is the output. The gradient flowing in into
the component from the output side is represented as gout and the backpropagated gradient towards
the input is gin. We switch from vector to matrix notation (Xin, Xout) whenever needed. We assume
that the input is distributed normally N (0, σxin

). Further, input is not assumed to be IID and it
can have covariance both along the sequence length and hidden dimension. Additional assumptions
needed to derive the proofs for softmax and attention can be found in the respective proofs. We
derive the forward and backward variants for a specific initialization of weights that corresponds to
exactly one network instance - all expectations are taken over inputs for a given instantiation of the
network.

C.1 EMBEDDINGS

We do not assume the input embeddings to be IID. Repetition of same token introduces correlation
across the sequence length. We assume that the input tokens have been sampled from a multinomial
distribution. The words / token ids are distributed almost according to zipf’s law. Assuming we ini-
tialize all the embeddings with variance σ2

wembd
, the relevant statistics for word embeddings output

xoutwe are as follows

µxoutwe
= 0

σ2
xoutwe

= σ2
wembd

Covl(xoutwe
) =

∑ Ni ∗ (Ni − 1)

L ∗ (L− 1)
∗ σ2

wembd

rl(xoutwe) =
∑ Ni ∗ (Ni − 1)

L ∗ (L− 1)

Covd(xoutwe
) = 0

Assume ith word occurs Ni times, it contributes Ni∗(Ni−1)
L∗(L−1)) to the covariance along sequence length.

Similarly, we can calculate the correlation for segment-type embeddings output xoutse . Zipf’s law
states that the probability for each token is inversely proportional to its rank. For the word with rank
i, pi = c

i , where c = 1∑
i

1
i

. For a sentence of length L, the token with probability pi is expected to
occur pi.L times. Hence, for a given vocabulary size |V |, we can calculate the correlation as follows

rl(xoutwe) =
∑ Ni ∗ (Ni − 1)

L ∗ (L− 1)
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=

|V |∑
i

piL ∗ (piL− 1)

L ∗ (L− 1)

=

∑
i p

2
i ∗ L− 1

L− 1

≈
Lπ2

6.log(|V |)2 − 1

L− 1

≈ π2

6.log(|V |)2

Similarly, the segment type embeddings have two possible values denoting the sentence order. If
first sentence has length x, we can consider this as a special case of the analysis performed above
with two possible tokens, where N1 = x and N2 = L − x. Assuming x is distributed uniformly
between 0 to L, L− x also has the same distribution. Hence,

rl(xoutse , N1, N2) =
N2

1 +N2
2 − L

L ∗ (L− 1)

Taking expectation, we get

rl(xoutse) =
2
3 ∗ L2 − L

L ∗ (L− 1)

≈ 2

3

The correlation from position embeddings is 0. Since the variance is same for all embedding types,
the final correlation is the average of the three. Hence

rl(xout) =
1

3
(rl(xoutwe

) + rl(xoutse))

=
π2

18 ∗ log(|V |)2
+

2

9

For our case, |V | = 32000 and sequence length L = 256, the theoretically prediction correlation
rlxin

= 0.247 which is within 10% of the empirically observed correlation (0.221).

Hence, the final moments for the embedding output are

µxout = 0

σ2
xout

= 3 ∗ σ2
wembd

Covlxout
= (

π2

18 ∗ log(|V |)2
+

2

9
)σ2

xout

Covdxout
= 0

C.2 LINEAR

For linear layer with din dimensional input xin, and dout dimensional output xout, we can define the
forward pass mathematically as,

xout = xinW

=⇒ xoutj =

din∑
i=1

xiniWi,j
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Similarly, we define the backward pass as,

gin = goutW
T

=⇒ ginj =

dout∑
i=1

goutiWj,i

For expectation of output we have,

E[xoutj ] = E[
din∑
i=1

xiniWi,j ] =

din∑
i=1

E[xiniWi,j ]

=

din∑
i=1

E[xini ]E[Wi,j ] = µxinµw

(As weights and input are independent of each other)

µxout = 0 ( ∀j)

To get variance of the output of forward pass we have,

Var(xoutj ) = Var(

din∑
i=1

xiniWi,j)

As the weights are initialized independently each term in summation is independent of each other

=

din∑
i=1

(Var(xiniWi,j))

=

din∑
i=1

((σ2
xin

+ µ2
xin
)(σ2

w + µ2
w)− µ2

xin
µ2
w)

(As weights and input are independent of each other)

=

din∑
i=1

(σ2
xin

+ µ2
xin
)σ2

w

Var(xoutj ) = din(σ
2
xin

+ µ2
xin
)σ2

w ( ∀j)

σ2
xout

= din(σ
2
xin

+ µ2
xin
)σ2

w

If we have two inputs xin and yin such that for all i we have Corr(xini , yini) = rlxin
, and xout = xinW

and yout = yinW. Then for any j we have

Corr(xoutj , youtj ) =
E[xoutjyoutj ]− E[xoutj ]E[youtj ]√

Var(xoutj )Var(youtj )

=
E[xoutjyoutj ]√

σ2
xout

σ2
xout

=
E[
∑din

i=1 xiniWi,j

∑din

k=1 yinkWk,j ]

σ2
xout

=
E[
∑din

i=1 xiniyiniW
2
i,j +

∑din

k=1,k ̸=i

∑din
i=1 xiniyinkWi,jWk,j ]

σ2
xout

In second summation all terms are independent of each other and as the expectation of weights is 0
we have

Corr(xoutj , youtj ) =
E[
∑din

i=1 xiniyiniW
2
i,j ]

σ2
xout
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=

∑din
i=1 E[xiniyiniW

2
i,j ]

σ2
xout

(Independence of weight initialization)

=

∑din
i=1 E[xiniyini ]E[W 2

i,j ]

σ2
xout

=

∑din
i=1(r

l
xin
σ2
xin

+ µ2
xin
)σ2

w

σ2
xout

(Definition of correlation)

=
din(r

l
xin
σ2
xin

+ µ2
xin
)σ2

w

din(σ2
xin

+ µ2
xin
)σ2

w

Corr(xoutj , youtj ) =
rlxin

σ2
xin

+ µ2
xin

σ2
xin

+ µ2
xin

rlxout
=

rlxin
σ2
xin

+ µ2
xin

σ2
xin

+ µ2
xin

As the backward pass has similar structure, assuming µgout = 0 we can use the same analysis to get,

µgin = 0

σ2
gin

= doutσ
2
gout

σ2
w

C.3 DROPOUT

We can define Dropout mathematically as,

xout = Dropout(xin)

=⇒ xouti =

{
xini

(1−p) with probability 1− p

0 else

To calculate expectation of dropout,

E[xouti ] = 0 ∗ p+ (1− p) ∗ E[ xini

(1− p)
]

µxout = µxin

For variance,

Var(xouti) = E[x2
outi ]− E[xouti ]

2

= 0 ∗ p+ (1− p) ∗ E[
x2

ini

(1− p)2
]− µ2

xin

=
E[x2

ini ]

(1− p)
− µ2

x

=
σ2
xin

+ µ2
xin

(1− p)
− µ2

xin

σ2
xout

=
σ2
xin

+ pµ2
xin

(1− p)

If we have two inputs xin and yin such that for all i we have Corr(xini , yini) = rlxin
, and xout =

Dropout(xin) and yout = Dropout(yin). Then for any j we have

Corr(xoutj , youtj ) =
E[xoutjyoutj ]− E[xoutj ]E[youtj ]√

Var(xoutj )Var(youtj )

=
E[xoutjyoutj ]− µxoutµxout√

σ2
xout

σ2
xout
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=
p2 ∗ 0 + 2 ∗ p ∗ (1− p) ∗ 0 + (1− p)2 ∗ E[ xinj yinj

(1−p)∗(1−p) ]− µ2
xout

σ2
xout

=
E[xinjyinj ]− µ2

xout

σ2
xout

Corr(xoutj , youtj ) =
(rlxin

σ2
xin
)(1− p)

σ2
xin

+ pµ2
xin

= rlxout

We can define the backward pass of Dropout as,

gini =

{
gouti
(1−p) if xi isn’t dropped out (which has probability (1− p))
0 else

Again we can see that backward has similar definition to that of forward pass. Assuming µgxout
= 0

and using similar analysis we get,

µgin = 0

σ2
gin

=
σ2
gout

(1− p)

C.4 RELU

We can define ReLU mathematically as,

xout = ReLU(xin)

=⇒ xouti =

{
xini if xini > 0

0 else

For getting expectation of output of ReLU for normally distributed input we have,

E[xouti ] =

∫ ∞

−∞

ReLU(xini) exp (
−x2

ini
2σ2

xin
)

√
2πσxin

dxini

=

∫ 0

−∞

0 ∗ exp (−x2
ini

2σ2
xin

)
√
2πσxin

dxini +

∫ ∞

0

xini exp (
−x2

ini
2σ2

xin
)

√
2πσxin

dxini

=

∫ ∞

0

xini exp (
−x2

ini
2σ2

xin
)

√
2πσxin

dxini

Substituting t =
x2

ini

2σ2
xin

we have dt =
xinidxini

σ2
xin

we get,

E[xouti ] =

∫ ∞

0

σxin exp (−t)dt√
2π

=
σxin√
2π

[− exp (−t)]∞0 =
σxin√
2π

Hence, the mean of output

µxout =
σxin√
2π

(1)

Variance of output can be calculated by,

Var(xouti) = E[xouti
2]− E[xouti ]

2
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=

∫ ∞

−∞

(ReLU(xini))
2 exp (

−x2
ini

2σ2
xin

)
√
2πσxin

dxini −
σ2
xin

2π

=

∫ 0

−∞

0 ∗ exp (−x2
ini

2σ2
xin

)
√
2πσxin

dxini +

∫ ∞

0

x2
ini exp (

−x2
ini

2σ2
xin

)
√
2πσxin

dxini −
σ2
xin

2π

=

∫ ∞

0

x2
ini exp (

−x2
ini

2σ2
xin

)
√
2πσxin

dxini −
σ2
xin

2π

Let I =

∫ ∞

0

x2
ini exp (

−x2
ini

2σ2
xin

)
√
2πσxin

dxini , then substituting t = −xini we have,

I =

∫ −∞

0

−t2 exp ( −t2

2σ2
xin

)
√
2πσxin

dt

=

∫ 0

−∞

t2 exp ( −t2

2σ2
xin

)
√
2πσxin

dt

=⇒ I + I =

∫ 0

−∞

t2 exp ( −t2

2σ2
xin

)
√
2πσxin

dt+

∫ ∞

0

x2
ini exp (

−x2
ini

2σ2
xin

)
√
2πσxin

dxini

2I =

∫ ∞

−∞

x2
ini exp (

−x2
ini

2σ2
xin

)
√
2πσxin

dxini = σ2
xin

=⇒ Var(xouti) =
σ2
xin

2
−

σ2
xin

2π
=

σ2
xin

2
(1− 1

π
)

σ2
xout

=
σ2
xin

2
(1− 1

π
)

Now for two inputs xin and yin such that for all i we have Corr(xini , yini) = rlxin
, and xout =

ReLU(xin) and yout = ReLU(yin). Then for any j we have,

Corr(xoutj , youtj ) =
E[xoutjyoutj ]− E[xoutj ]E[youtj ]√

Var(xoutj )Var(youtj )

E[xoutjyoutj ] =

∫ ∞

0

∫ ∞

0

xinjyinj

2πσ2
xin

√
1− (rlxin

)2
exp (

−(x2
inj + y2inj − 2rlxin

xinjyinj )

2σ2
xin
(1− (rlxin

)2)
)dxinjdyinj

=

∫ ∞

0

∫ ∞

0

xinjyinj

2πσ2
xin

√
1− (rlxin

)2
exp (

−(xinj − rlxin
yinj )

2

2σ2
xin
(1− (rlxin

)2)
) exp (

−y2inj
2σ2

xin

)dxinjdyinj

Substituting t = xinj − rlxin
yinj , and assuming yinj is constant for the inner integral,dxinj = dt

E[xoutjyoutj ] =

=

∫ ∞

0

yinj exp (
−y2

inj
2σ2

xin
)

√
2πσxin

∫ ∞

−rlxin
yinj

t+ rlxin
yinj

√
2πσxin

√
1− (rlxin

)2
exp (

−t2

2σ2
xin
(1− (rlxin

)2)
)dtdyinj

=

∫ ∞

0

yinj√
2πσxin

exp (
−y2inj
2σ2

xin

)

∫ ∞

−rlxin
yinj

t
√
2πσxin

√
1− (rlxin

)2
exp (

−t2

2σ2
xin
(1− (rlxin

)2)
)dtdyinj

+

∫ ∞

0

yinj√
2πσx

exp (
−y2inj
2σ2

xin

)

∫ ∞

−rlxin
yinj

rlxin
yinj

√
2πσxin

√
1− (rlxin

)2
exp (

−t2

2σ2
xin
(1− (rlxin

)2)
)dtdyinj
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Let us first define I1 and I2 as:

I1 =

∫ ∞

0

yinj√
2πσxin

exp (
−y2inj
2σ2

xin

)

∫ ∞

−rlxin
yinj

t
√
2πσxin

√
1− (rlxin

)2
exp (

−t2

2σ2
xin
(1− (rlxin

)2)
)dtdyinj

I2 =

∫ ∞

0

yinj√
2πσx

exp (
−y2inj
2σ2

xin

)

∫ ∞

−rlxin
yinj

rlxin
yinj

√
2πσxin

√
1− (rlxin

)2
exp (

−t2

2σ2
xin
(1− (rlxin

)2)
)dtdyinj

I1 =

∫ ∞

0

yinj√
2πσxin

exp (
−y2inj
2σ2

xin

)

∫ ∞

−rlxin
yinj

t
√
2πσxin

√
1− (rlxin

)2
exp (

−t2

2σ2
xin
(1− (rlxin

)2)
)dtdyinj

Substituting p =
t2

2σ2
xin
(1− (rlxin

)2)
we have dp =

tdt

σ2
xin
(1− (rlxin

)2)

I1 =

∫ ∞

0

yinj√
2πσxin

exp (
−y2inj
2σ2

xin

)

∫ ∞

(rlxin
yinj

)2

2σ2
xin

(1−(rlxin
)2)

σxin

√
(1− (rlxin

)2)
√
2π

exp (−p)dpdyinj

=

∫ ∞

0

yinj√
2πσxin

exp (
−y2inj
2σ2

xin

)
σxin

√
(1− (rlxin

)2)
√
2π

exp (
−(rlxin

yinj )
2

2σ2
xin
(1− (rlxin

)2)
)dyinj

=

∫ ∞

0

yinj

√
(1− (rlxin

)2)

2π
exp (

−y2inj
2σ2

xin
(1− (rlxin

)2)
)dyinj

Substituting m =
y2inj

2σ2
xin
(1− (rlxin

)2)
, dm =

yinjdyinj

σ2
xin
(1− (rlxin

)2)
,

I1 =

∫ ∞

0

√
(1− (rlxin

)2)

2π
(1− (rlxin

)2)σ2
xin

exp (−m)dm

=
(1− (rlxin

)2)
3
2σ2

xin

2π

I2 =

∫ ∞

0

yinj√
2πσxin

exp (
−y2inj
2σ2

xin

)

∫ ∞

−rlxin
yinj

rlxin
yinj

√
2πσxin

√
1− (rlxin

)2
exp (

−t2

2σ2
xin
(1− (rlxin

)2)
)dtdyinj

=

∫ ∞

0

rlxin
y2inj√

2πσxin

exp (
−y2inj
2σ2

xin

)

∫ ∞

−rlxin
yinj

1
√
2πσxin

√
1− (rlxin

)2
exp (

−t2

2σ2
xin
(1− (rlxin

)2)
)dtdyinj

Substituting p = −t, where Φ is CDF of Standard Normal Distribution

I2 =

∫ ∞

0

rlxin
y2inj√

2πσxin

exp (
−y2inj
2σ2

xin

)

∫ −∞

rlxin
yinj

−1
√
2πσxin

√
1− (rlxin

)2
exp (

−p2

2σ2
xin
(1− (rlxin

)2)
)dpdyinj

=

∫ ∞

0

rlxin
y2inj√

2πσxin

exp (
−y2inj
2σ2

xin

)

∫ rlxin
yinj

−∞

1
√
2πσxin

√
1− (rlxin

)2
exp (

−p2

2σ2
xin
(1− (rlxin

)2)
)dpdyinj

=

∫ ∞

0

rlxin
y2inj√

2πσxin

exp (
−y2inj
2σ2

xin

)Φ(
rlxin

yinj

σxin

√
1− (rlxin

)2
)dyinj

=

∫ ∞

0

rlxin
y2inj√

2πσxin

exp (
−y2inj
2σ2

xin

)[
1

2
(1 + erf(

rlxin
yinj

σxin

√
2(1− (rlxin

)2)
))]dyinj

24



Under review as a conference paper at ICLR 2024

=
rlxin

2

∫ ∞

0

y2inj√
2πσxin

exp (
−y2inj
2σ2

xin

)dyinj+

rlxin

2
√
2πσxin

∫ ∞

0

y2inj exp (
−y2inj
2σ2

xin

)erf(
rlxin

yinj

σxin

√
2(1− (rlxin

)2)
)dyinj

Let us define I2,1 and I2,2 as

I2,1 =
rlxin

2

∫ ∞

0

y2inj√
2πσxin

exp (
−y2inj
2σ2

xin

)dyinj

I2,2 =
rlxin

2
√
2πσxin

∫ ∞

0

y2inj exp (
−y2inj
2σ2

xin

)erf(
rlxin

yinj

σxin

√
2(1− (rlxin

)2)
)dyinj

I2,1 =
rlxin

2

∫ ∞

0

y2inj√
2πσxin

exp (
−y2inj
2σ2

xin

)dyinj

I2,1 =
rlxin

σ2
xin

4
(Same integral as in variance calculation)

From Ng & Geller (1969) we have
∫ ∞

0

x2 exp (−b2x2)erf(ax)dx =

√
π

4b3
−

tan−1( ba )

2
√
πb3

+

a

2
√
πb2(a2 + b2)

.

Hence, putting a =
rlxin

σxin

√
2(1− (rlxin

)2)
and b =

1

σxin

√
2

we get,

I2,2 =
rlxin

2
√
2πσxin

[
2
√
2σ3

xin

4
−

tan−1(

√
(1−(rlxin

)2)

rlxin
)2
√
2σ3

xin

2
√
π

+

√
2rlxin

σ3
xin

√
(1− (rlxin

)2)
√
π

]

=
rlxin

σ2
xin

4
−

rlxin
cos−1 (rlxin

)σ2
xin

2π
+

(rlxin
)2
√

(1− (rlxin
)2)σ2

xin

2π
E[xoutjyoutj ] = I1 + I2,1 + I2,2

=
(1− (rlxin

)2)
3
2σ2

xin

2π
+ 2 ∗

rlxin
σ2
xin

4
−

rlxin
cos−1 (rlxin

)σ2
xin

2π
+

(rlxin
)2
√

(1− (rlxin
)2)σ2

xin

2π

=
rlxin

σ2
xin

2
−

rlxin
cos−1 (rlxin

)σ2
x

2π
+

√
(1− (rlxin

)
2
)σ2

xin

2π

Corr(xoutj , youtj ) =
E[xoutjyoutj ]− E[xoutj ]E[youtj ]√

Var(xoutj )Var(youtj )

=

rlxin
σ2
xin

2
−

rlxin
cos−1 (rlxin

)σ2
xin

2π
+

√
(1− (rlxin

)2)σ2
x

2π
−

σ2
xin

2π
σ2
xin

2
(1− 1

π
)

rlxout
=

πrlxin
2 + rlxin

sin−1 (rlxin
) +

√
(1− (rlxin

)2)− 1

π − 1

Backward pass on ReLU can be defined as,

gini =

{
gouti if xini > 0 (which has probability 1

2 )
0 else
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Assuming µgout = 0,

E[gini ] =
1

2
∗ 0 + 1

2
∗ E[gouti ]

µgin = 0

Var(gini) = E[g2ini ]− E[gini ]
2 = E[g2ini ]

=
1

2
∗ 0 + 1

2
∗ E[g2out]

σ2
gin

=
σ2
gout

2

If for two inputs xin and yin for all i we have Corr(goutxi
, goutyi ) = rlgout

, and ginxi
, ginyi be the

gradient after passing through ReLU layer. Then we have,

E[ginxi
ginyi ] = P(xini > 0, yini > 0)E[goutxi

goutyi ]

= P(xini > 0, yini > 0)rlgout
σ2
gout

P(xini > 0, yini > 0) =

=

∫ ∞

0

∫ ∞

0

xiniyini

2πσ2
xin

√
1− (rlxin

)2
exp (

−(x2
ini + y2ini − 2rlxin

xiniyini)

2σ2
xin
(1− (rlxin

)2)
)dxinidyini

=

∫ ∞

0

∫ ∞

0

xiniyini

2πσ2
xin

√
1− (rlxin

)2
exp (

−(xini − rlxin
yini)

2

2σ2
xin
(1− (rlxin

)2)
) exp (

−y2ini
2σ2

xin

)dxinidyini

Substituting t = xini − rlxin
yini , and assuming yini is constant for the inner integral,dxini = dt

P(xini > 0, yini > 0) =∫ ∞

0

1√
2πσxin

exp (
−y2ini
2σ2

xin

)

∫ ∞

−rlxin
yini

1
√
2πσxin

√
1− (rlxin

)2
exp (

−t2

2σ2
xin
(1− (rlxin

)2)
)dtdyini

Substituting p = −t, where Φ is CDF of Standard Normal Distribution

P(xini > 0, yini > 0) =

=

∫ ∞

0

1√
2πσxin

exp (
−y2ini
2σ2

xin

)

∫ −∞

rlxin
yini

−1
√
2πσxin

√
1− (rlxin

)2
exp (

−p2

2σ2
xin
(1− (rlxin

)2)
)dpdyini

=

∫ ∞

0

1√
2πσxin

exp (
−y2ini
2σ2

xin

)

∫ rlxin
yini

−∞

1
√
2πσxin

√
1− (rlxin

)2
exp (

−p2

2σ2
xin
(1− (rlxin

)2)
)dpdyini

=

∫ ∞

0

1√
2πσxin

exp (
−y2ini
2σ2

xin

)Φ(
rlxin

yini

σxin

√
1− (rlxin

)2
)dyini

=

∫ ∞

0

1√
2πσxin

exp (
−y2ini
2σ2

xin

)[
1

2
(1 + erf(

rlxin
yini

σxin

√
2(1− (rlxin

)2)
))]dyini

=
1

2

∫ ∞

0

1√
2πσxin

exp (
−y2ini
2σ2

xin

)dyini +
1

2
√
2πσxin

∫ ∞

0

exp (
−y2ini
2σ2

xin

)erf(
rlxin

yini

σxin

√
2(1− (rlxin

)2)
)dyini
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=
1

4
+

1

2
√
2πσxin

∫ ∞

0

exp (
−y2ini
2σ2

xin

)erf(
rlxin

yini

σxin

√
2(1− (rlxin

)2)
)dyini

From Ng & Geller (1969) we have
∫ ∞

0

exp (−b2x2)erf(ax)dx =

√
π

2b
− 1

b
√
π
tan−1(

b

a
)

Putting a =
rlxin

σxin

√
2(1− (rlxin

)2)
and b =

1

σxin

√
2

we get,

P(xini > 0, yini > 0) =
1

4
+

1

2
√
2πσxin

[

√
πσxin

√
2

2
− σxin

√
2√

π
tan−1(

√
(1− (rlxin

)2)

rlxin

)]

=
1

4
+

1

2π
[
π

2
− cos−1 (rlxin

)]

=
1

4
+

sin−1 (rlxin
)

2π

=⇒ E[ginxi
ginyi ] = (

1

4
+

sin−1 (rlxin
)

2π
)rlgout

σ2
gout

Corr(ginxi
, ginyi ) =

( 14 +
sin−1 (rlxin

)

2π )rlgout
σ2
gout

σ2
gout
2

rlgout
= (

1

2
+

sin−1 (rlxin
)

π
)rlgout

C.5 GELU

Forward pass through GeLU is defined as,

xout = GeLU(xin)

=⇒ xouti = xiniΦ(xini)

where Φ(x) is CDF of Standard Normal Distribution at x

=
xini

2

(
1 + erf(

xini√
2
)

)
To get the mean of output of GeLU, we have

E[xouti ] =

∫ ∞

−∞

xouti√
2πσxin

exp (
−x2

ini

2σ2
xin

)dxini

=

∫ ∞

−∞

xini(1 + erf(
xini√

2
))

2
√
2πσxin

exp (
−x2

ini

2σ2
xin

)dxini

=

∫ ∞

−∞

xini

2
√
2πσxin

exp (
−x2

ini

2σ2
xin

)dxini +

∫ ∞

−∞

xinierf(
xini√

2
)

2
√
2πσxin

exp (
−x2

ini

2σ2
xin

)dxini

=

∫ ∞

−∞

xinierf(
xini√

2
)

2
√
2πσxin

exp (
−x2

ini

2σ2
xin

)dxini (Integral of odd function)

=
1

2
√
2πσxin

∫ ∞

−∞
xinierf(

xini√
2
) exp (

−x2
ini

2σ2
xin

)dxini

From 2.6.1.4 of Lipovetsky (2020),
∫ ∞

−∞
zerf(az) exp (−a1z

2)dz =
a

a1
√
a2 + a1
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Substituting, a =
1√
2
, a1 =

1

2σ2
xin

, we have

E[xouti ] =
1

2
√
2πσxin

1√
2

1
2σ2

xin

√
1
2 + 1

2σ2
xin

=
1

2
√
2πσxin

2σ3
xin√

σ2
xin

+ 1

µxout =
σ2
xin√

2π(σ2
xin

+ 1)

For calculating variance of output,

E[x2
outi ] =

∫ ∞

−∞

x2
outi√

2πσxin

exp (
−x2

ini

2σ2
xin

)dxini

=

∫ ∞

−∞

x2
ini(1 + erf(

xini√
2
))2

4
√
2πσxin

exp (
−x2

ini

2σ2
xin

)dxini

=

∫ ∞

−∞

x2
ini

4
√
2πσxin

exp (
−x2

ini

2σ2
xin

)dxini

+

∫ ∞

−∞

x2
inierf(

xini√
2
)

2
√
2πσxin

exp (
−x2

ini

2σ2
xin

)dxini +

∫ ∞

−∞

x2
inierf

2(
xini√

2
)

4
√
2πσxin

exp (
−x2

ini

2σ2
xin

)dxini

=
σ2
xin

4
+

∫ ∞

−∞

x2
inierf

2(
xini√

2
)

4
√
2πσxin

exp (
−x2

ini

2σ2
xin

)dxini

(Definition of variance, and integral of odd function)

=
σ2
xin

4
+

1

4
√
2πσxin

∫ ∞

−∞
x2

inierf
2(
xini√
2
) exp (

−x2
ini

2σ2
xin

)dxini

From 2.7.3.3 of Lipovetsky (2020)∫ ∞

−∞
z2 exp (−az2)erf(a1z)erf(a2z) =

1√
π
(

1

a
√
a
tan−1 (

a1a2√
a2 + aa21 + aa22

) +
a1a2(2a+ a21 + a22)

a
√
a+ a21 + a22(a

2 + aa21 + aa22 + a21a
2
2)
)

Substituting a = 1
2σ2

xin
, a1 = a2 = 1√

2

∫ ∞

−∞
x2

inierf
2(
xini√
2
) exp (

−x2
ini

2σ2
xin

)dxini

=
1√
π
(2
√
2σ3

xin
tan−1 (

1
2√

1
4σ4

xin
+ 1

2σ2
xin

) +

1
2 (

1
σ2
xin

+ 1)

1
2σ2

xin

√
1

2σ2
xin

+ 1( 1
4σ4

xin
+ 1

2σ2
xin

+ 1
4 )

)

=
1√
π
(2
√
2σ3

xin
tan−1 (

σ2
xin√

(σ2
xin

+ 1)2 − σ4
xin

) +
4
√
2σ5

xin
(σ2

xin
+ 1)√

2σ2
xin

+ 1(σ4
xin

+ 2σ2
xin

+ 1)
)

=
1√
π
(2
√
2σ3

xin
sin−1 (

σ2
xin

σ2
xin

+ 1
) +

4
√
2σ5

xin√
2σ2

xin
+ 1(σ2

xin
+ 1)

)

=
2
√
2σ3

xin√
π

(sin−1 (
σ2
xin

σ2
xin

+ 1
) +

2σ2
xin√

2σ2
xin

+ 1(σ2
xin

+ 1)
))
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E[x2
outi ] =

σ2
xin

4
+

1

4
√
2πσxin

∫ ∞

−∞
x2

inierf
2(
xini√
2
) exp (

−x2
ini

2σ2
xin

)dxini

=
σ2
xin

4
+

1

4
√
2πσxin

2
√
2σ3

xin√
π

(sin−1 (
σ2
xin

σ2
xin

+ 1
) +

2σ2
xin√

2σ2
xin

+ 1(σ2
xin

+ 1)
))

E[x2
outi ] =

σ2
xin

4
+

σ2
xin

2π
(sin−1 (

σ2
xin

σ2
xin

+ 1
) +

2σ2
xin√

2σ2
xin

+ 1(σ2
xin

+ 1)
))

Var(xouti) = E[x2
outi ]− (E[xouti ])

2

σ2
xout

=
σ2
xin

2π
(
π

2
−

σ2
xin

1 + σ2
xin

+ sin−1(
σ2
xin

1 + σ2
xin

) +
2σ2

xin

(1 + σ2
xin

)
√
1 + 2σ2

xin

)

Now if we have two inputs xin and yin such that for all values of i, we have Corr(xini , yini) = rlxin
,

then we can calculate the covariance Cov(xoutj , youtj ) for any j as,

Cov(xoutj , youtj ) = E[xoutjyoutj ]− E[xoutj ]E[youtj ]

E[xoutjyoutj ]

=

∫∫ ∞

−∞

xoutjyoutj

2πσ2
xin

√
(1− (rlxin

)2)
exp (

−x2
inj + 2rlxin

xinjyinj − y2inj
2σ2

xin
(1− (rlxin

)2)
)dxinjdyinj = I

=

∫∫ ∞

−∞

xinj (1 + erf(
xinj√

2
))yinj (1 + erf(

yinj√
2
))

8πσ2
xin

√
(1− (rlxin

)2)
exp (

−x2
inj + 2rlxin

xinjyinj − y2inj
2σ2

xin
(1− (rlxin

)2)
)dxinjdyinj

=

∫ ∞

−∞

yinj (1 + erf(
yinj√

2
))

8πσ2
xin

√
(1− (rlxin

)2)
exp (

−y2inj
2σ2

xin
(1− (rlxin

)2)
)IXdyinj

Where IX =

∫ ∞

−∞
xinj (1 + erf(

xinj√
2
)) exp (

−x2
inj + 2rlxin

xinjyinj

2σ2
xin
(1− (rlxin

)2)
)dxinj

IX =

∫ ∞

−∞
xinj (1 + erf(

xinj√
2
)) exp (

−x2
inj + 2rlxin

xinjyinj

2σ2
xin
(1− (rlxin

)2)
)dxinj

=

∫ ∞

−∞
xinj exp (

−x2
inj + 2rlxin

xinjyinj

2σ2
xin
(1− (rlxin

)2)
)dxinj+∫ ∞

−∞
xinjerf(

xinj√
2
) exp (

−x2
inj + 2rlxin

xinjyinj

2σ2
xin
(1− (rlxin

)2)
)dxinj

Let, IX,1 =

∫ ∞

−∞
xinj exp (

−x2
inj + 2rlxin

xinjyinj

2σ2
xin
(1− (rlxin

)2)
)dxinj

IX,2 =

∫ ∞

−∞
xinjerf(

xinj√
2
) exp (

−x2
inj + 2rlxin

xinjyinj

2σ2
xin
(1− (rlxin

)2)
)dxinj

IX,1 =

∫ ∞

−∞
xinj exp (

−x2
inj + 2rlxin

xinjyinj

2σ2
xin
(1− (rlxin

)2)
)dxinj

=

∫ ∞

−∞
xinj exp (

−x2
inj + 2rlxin

xinjyinj

2σ2
xin
(1− (rlxin

)2)
) exp (

−(rlxin
)2y2inj

2σ2
xin
(1− (rlxin

)2)
) exp (

(rlxin
)2y2inj

2σ2
xin
(1− (rlxin

)2)
)dxinj

= exp (
(rlxin

)2y2inj
2σ2

xin
(1− (rlxin

)2)
)

∫ ∞

−∞
xinj exp (

−(xinj − rlxin
yinj )

2

2σ2
xin
(1− (rlxin

)2)
)dxinj

29



Under review as a conference paper at ICLR 2024

=

∫ ∞

−∞

xinj
√
2πσxin

√
(1− (rlxin

)2)
exp (

−(xinj − rlxin
yinj )

2

2σ2
xin
(1− (rlxin

)2)
)dxinj

= rlxin
yinj

√
2πσxin

√
(1− (rlxin

)2) exp (
(rlxin

)2y2inj
2σ2

xin
(1− (rlxin

)2)
)

IX,2 =

∫ ∞

−∞
xinjerf(

xinj√
2
) exp (

−x2
inj + 2rlxin

xinjyinj

2σ2
xin
(1− (rlxin

)2)
)dxinj

From 2.7.2.4 of Lipovetsky (2020),∫ ∞

−∞
zerf(a1z) exp (−az2 + bz)dz =

=

√
πb

2a
√
a
exp (

b2

4a
)erf(

a1b

2
√
a2 + aa21

) +
a1

a
√

a+ a21
exp (

b2

4a+ 4a21
)

Substituting a1 = 1√
2
, a = 1

2σ2
xin

(1−(rlxin
)2)

, b =
rlxin

yinj

σ2
xin

(1−(rlxin
)2)

, we get

IX,2 =

√
π

rlxin
yinj

σ2
xin

(1−(rlxin
)2)

2 1

2
√
2σ3

xin
(1−(rlxin

)2)
3
2

exp (

(rlxin
)2y2

inj

σ4
xin

(1−(rlxin
)2)2

4 1
2σ2

xin
(1−(rlxin

)2)

)erf(

rlxin
yinj√

2σ2
xin

(1−(rlxin
)2)

2
√

1
4σ4

xin
(1−(rlxin

)2)2
+ 1

4σ2
xin

(1−(rlxin
)2)

)

+

1√
2

1
2σ2

xin
(1−(rlxin

)2)

√
1

2σ2
xin

(1−(rlxin
)2)

+ 1
2

exp (

(rlxin
)2y2

inj

σ4
xin

(1−(rlxin
)2)2

4 1
2σ2

xin
(1−(rlxin

)2)
+ 4

2

)

= rlxin
yinj

√
2πσxin

√
(1− (rlxin

)2) exp (
(rlxin

)2y2inj
2σ2

xin
(1− (rlxin

)2)
)erf(

rlxin
yinj√

2(σ2
xin
(1− (rlxin

)2) + 1)
)

+
2σ3

xin
(1− (rlxin

)2)
3
2√

σ2
xin
(1− (rlxin

)2) + 1
exp (

(rlxin
)2y2inj

2(σ2
xin
(1− (rlxin

)2) + 1)σ2
xin
(1− (rlxin

)2)
)

Let us define IX,2,1 and IX,2,2 as:

IX,2,1 = rlxin
yinj

√
2πσxin

√
(1− (rlxin

)2) exp (
(rlxin

)2y2inj
2σ2

xin
(1− (rlxin

)2)
)erf(

rlxin
yinj√

2(σ2
xin
(1− (rlxin

)2) + 1)
)

IX,2,2 =
2σ3

xin
(1− (rlxin

)2)
3
2√

σ2
xin
(1− (rlxin

)2) + 1
exp (

(rlxin
)2y2inj

2(σ2
xin
(1− (rlxin

)2) + 1)σ2
xin
(1− (rlxin

)2)
)

I =

∫ ∞

−∞

yinj (1 + erf(
yinj√

2
))

8πσ2
xin

√
(1− (rlxin

)2)
exp (

−y2inj
2σ2

xin
(1− (rlxin

)2)
)IXdyinj

=

∫ ∞

−∞

yinj (1 + erf(
yinj√

2
))

8πσ2
xin

√
(1− (rlxin

)2)
exp (

−y2inj
2σ2

xin
(1− (rlxin

)2)
)(IX,1 + IX,2,1 + IX,2,2)dyinj

I1 =

∫ ∞

−∞

yinj (1 + erf(
yinj√

2
))

8πσ2
xin

√
(1− (rlxin

)2)
exp (

−y2inj
2σ2

xin
(1− (rlxin

)2)
)IX,1dyinj

I2 =

∫ ∞

−∞

yinj (1 + erf(
yinj√

2
))

8πσ2
xin

√
(1− (rlxin

)2)
exp (

−y2inj
2σ2

xin
(1− (rlxin

)2)
)IX,2,1dyinj
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I3 =

∫ ∞

−∞

yinj (1 + erf(
yinj√

2
))

8πσ2
xin

√
(1− (rlxin

)2)
exp (

−y2inj
2σ2

xin
(1− (rlxin

)2)
)IX,2,2dyinj

We have I = I1 + I2 + I3

I1 =

∫ ∞

−∞

yinj (1 + erf(
yinj√

2
))

8πσ2
xin

√
(1− (rlxin

)2)
exp (

−y2inj
2σ2

xin
(1− (rlxin

)2)
)rlxin

yinj

√
2πσxin

√
(1− (rlxin

)2) exp (
(rlxin

)2y2inj
2σ2

xin
(1− (rlxin

)2)
)dyinj

=
rlxin

4

∫ ∞

−∞

y2inj (1 + erf(
yinj√

2
))

√
2πσ2

xin

exp (
−y2inj
2σ2

xin

)dyinj

=
rlxin

4

∫ ∞

−∞

y2inj√
2πσ2

xin

exp (
−y2inj
2σ2

xin

)dyinj +
rlxin

4

∫ ∞

−∞

y2injerf(
yinj√

2
)

√
2πσ2

xin

exp (
−y2inj
2σ2

xin

)dyinj

=
rlxin

σ2
xin

4
(Definition of variance, and integral of odd function)

I2 =

∫ ∞

−∞

yinj (1 + erf(
yinj√

2
))

8πσ2
xin

√
(1− (rlxin

)2)
exp (

−y2inj
2σ2

xin
(1− (rlxin

)2)
)rlxin

yinj

√
2πσxin

√
(1− (rlxin

)2) exp (
(rlxin

)2y2inj
2σ2

xin
(1− (rlxin

)2)
)erf(

rlxin
yinj√

2(σ2
xin
(1− (rlxin

)2) + 1)
)dyinj

=
rlxin

4
√
2πσxin

∫ ∞

−∞
y2inj (1 + erf(

yinj√
2
)) exp (

−y2inj
2σ2

xin

)erf(
rlxin

yinj√
2(σ2

xin
(1− (rlxin

)2) + 1)
)dyinj

=
rlxin

4
√
2πσxin

∫ ∞

−∞
y2inj exp (

−y2inj
2σ2

xin

)erf(
rlxin

yinj√
2(σ2

xin
(1− (rlxin

)2) + 1)
)dyinj

+
rlxin

4
√
2πσxin

∫ ∞

−∞
y2injerf(

yinj√
2
) exp (

−y2inj
2σ2

xin

)erf(
rlxin

yinj√
2(σ2

xin
(1− (rlxin

)2) + 1)
)dyinj

=
rlxin

4
√
2πσxin

∫ ∞

−∞
y2injerf(

yinj√
2
) exp (

−y2inj
2σ2

xin

)erf(
rlxin

yinj√
2(σ2

xin
(1− (rlxin

)2) + 1)
)dyinj

(Integral of Odd function)

From 2.7.3.3 of Lipovetsky (2020),∫ ∞

−∞
z2 exp (−az2)erf(a1z)erf(a2z) =

1√
π
(

1

a
√
a
tan−1 (

a1a2√
a2 + aa21 + aa22

) +
a1a2(2a+ a21 + a22)

a
√
a+ a21 + a22(a

2 + aa21 + aa22 + a21a
2
2)
)

Substituting a = 1
2σ2

xin
, a1 = 1√

2
, a2 =

rlxin√
2(σ2

xin
(1−(rlxin

)2)+1)

a1a2 =
rlxin

2
√
(σ2

xin
(1− (rlxin

)2) + 1)

a2 + aa21 + aa22 =
1

4σ4
xin

+
1

4σ2
xin

+
(rlxin

)2

4σ2
xin
(σ2

xin
(1− (rlxin

)2) + 1)
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=
σ2
xin
(1− (rlxin

)2) + 1 + σ4
xin
(1− (rlxin

)2) + σ2
xin

+ (rlxin
)2σ2

xin

4σ4
xin
(σ2

xin
(1− (rlxin

)2) + 1)

=
σ4
xin

+ 2σ2
xin

+ 1− (rlxin
)2σ4

xin

4σ4
xin
(σ2

xin
(1− (rlxin

)2) + 1)
=

(σ2
xin

+ 1)2 − (rlxin
σ2
xin
)2

4σ4
xin
(σ2

xin
(1− (rlxin

)2) + 1)

a+ a21 + a22 =
a2 + aa21 + aa22

a
=

(σ2
xin

+ 1)2 − (rlxin
σ2
xin
)2

4σ4
xin
(σ2

xin
(1− (rlxin

)2) + 1)
∗ 2σ2

xin

=
(σ2

xin
+ 1)2 − (rlxin

σ2
xin
)2

2σ2
xin
(σ2

xin
(1− (rlxin

)2) + 1)

a2 + aa21 + aa22 + a21a
2
2 =

(σ2
xin

+ 1)2 − (rlxin
σ2
xin
)2

4σ4
xin
(σ2

xin
(1− (rlxin

)2) + 1)
+

(rlxin
)2

4(σ2
xin
(1− (rlxin

)2) + 1)

=
(σ2

xin
+ 1)2 − (rlxin

σ2
xin
)2 + (rlxin

)2σ4
xin

4σ4
xin
(σ2

xin
(1− (rlxin

)2) + 1)
=

(σ2
xin

+ 1)2

4σ4
xin
(σ2

xin
(1− (rlxin

)2) + 1)

2a+ a21 + a22 =
1

2σ2
xin

+
(σ2

xin
+ 1)2 − (rlxin

σ2
xin
)2

2σ2
xin
(σ2

xin
(1− (rlxin

)2) + 1)

=
(σ2

xin
+ 1)2 − (rlxin

σ2
xin
)2 + σ2

xin
(1− (rlxin

)2) + 1

2σ2
xin
(σ2

xin
(1− (rlxin

)2) + 1)

=
(σ2

xin
+ 1)2 + σ2

xin
+ 1− (rlxin

σ2
xin
)2 − σ2

xin
(rlxin

)2

2σ2
xin
(σ2

xin
(1− (rlxin

)2) + 1)

=
(σ2

xin
+ 1)(σ2

xin
+ 2)− (rlxin

)2σ2
xin
(σ2

xin
+ 1)

2σ2
xin
(σ2

xin
(1− (rlxin

)2) + 1)

=
(σ2

xin
+ 1)(σ2

xin
(1− (rlxin

)2) + 2)

2σ2
xin
(σ2

xin
(1− (rlxin

)2) + 1)

I2 =
rlxin

4
√
2πσxin

(2
√
2σ3

xin
tan−1(

rlxin

2
√

(σ2
xin

(1−(rlxin
)2)+1)√

(σ2
xin

+1)2−(rlxin
σ2
xin

)2

4σ4
xin

(σ2
xin

(1−(rlxin
)2)+1)

))

+
rlxin

4
√
2πσxin

(

rlxin

2
√

(σ2
xin

(1−(rlxin
)2)+1)

(σ2
xin

+1)(σ2
xin

(1−(rlxin
)2)+2)

2σ2
xin

(σ2
xin

(1−(rlxin
)2)+1)

1
2σ2

xin

√
(σ2

xin
+1)2−(rlxin

σ2
xin

)2

2σ2
xin

(σ2
xin

(1−(rlxin
)2)+1)

(σ2
xin

+1)2

4σ4
xin

(σ2
xin

(1−(rlxin
)2)+1)

)

=
rlxin

4
√
2πσxin

(2
√
2σ3

xin
tan−1 (

rlxin
σ2
xin√

(σ2
xin

+ 1)2 − (rlxin
σ2
xin
)2
))

+
rlxin

4
√
2πσxin

(
2
√
2rlxin

σ5
xin
(σ2

xin
(1− (rlxin

)2) + 2)

(σ2
xin

+ 1)
√
(σ2

xin
+ 1)2 − (rlxin

σ2
xin
)2
)

I2 =
rlxin

σ2
xin

2π
(sin−1 (

rlxin
σ2
xin

σ2
xin

+ 1
) +

rlxin
σ2
xin
(σ2

xin
(1− (rlxin

)2) + 2)

(σ2
xin

+ 1)
√

(σ2
xin

+ 1)2 − (rlxin
σ2
xin
)2
)

I3 =

∫ ∞

−∞

yinj (1 + erf(
yinj√

2
))

8πσ2
xin

√
(1− (rlxin

)2)
exp (

−y2inj
2σ2

xin
(1− (rlxin

)2)
)

2σ3
xin
(1− (rlxin

)2)
3
2√

σ2
xin
(1− (rlxin

)2) + 1
exp (

(rlxin
)2y2inj

2(σ2
xin
(1− (rlxin

)2) + 1)σ2
xin
(1− (rlxin

)2)
)dyinj
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=

∫ ∞

−∞

σxin(1− (rlxin
)2)yinj (1 + erf(

yinj√
2
))

4π
√
σ2
xin
(1− (rlxin

)2) + 1
exp (

−y2inj (σ
2
xin
(1− (rlxin

)2) + 1− (rlxin
)2)

2(σ2
xin
(1− (rlxin

)2) + 1)σ2
xin
(1− (rlxin

)2)
)dyinj

=

∫ ∞

−∞

σxin(1− (rlxin
)2)yinj (1 + erf(

yinj√
2
))

4π
√
σ2
xin
(1− (rlxin

)2) + 1
exp (

−y2inj (σ
2
xin

+ 1)(1− (rlxin
)2)

2(σ2
xin
(1− (rlxin

)2) + 1)σ2
xin
(1− (rlxin

)2)
)dyinj

=
σxin(1− (rlxin

)2)

4π
√
σ2
xin
(1− (rlxin

)2) + 1

∫ ∞

−∞
yinj (1 + erf(

yinj√
2
)) exp (

−y2inj (σ
2
xin

+ 1)

2(σ2
xin
(1− (rlxin

)2) + 1)σ2
xin

)dyinj

=
σxin(1− (rlxin

)2)

4π
√
σ2
xin
(1− (rlxin

)2) + 1

∫ ∞

−∞
yinj exp (

−y2inj (σ
2
xin

+ 1)

2(σ2
xin
(1− (rlxin

)2) + 1)σ2
xin

)dyinj

+
σxin(1− (rlxin

)2)

4π
√
σ2
xin
(1− (rlxin

)2) + 1

∫ ∞

−∞
yinjerf(

yinj√
2
) exp (

−y2inj (σ
2
xin

+ 1)

2(σ2
xin
(1− (rlxin

)2) + 1)σ2
xin

)dyinj

=
σxin(1− (rlxin

)2)

4π
√
σ2
xin
(1− (rlxin

)2) + 1

∫ ∞

−∞
yinjerf(

yinj√
2
) exp (

−y2inj (σ
2
xin

+ 1)

2(σ2
xin
(1− (rlxin

)2) + 1)σ2
xin

)dyinj

(Integral of Odd function)

From 2.6.1.4 of Lipovetsky (2020),
∫ ∞

−∞
zerf(az) exp (−a1z

2)dz =
a

a1
√
a2 + a1

Substituting, a =
1√
2
, a1 =

(σ2
xin

+ 1)

2σ2
xin
(σ2

xin
(1− (rlxin

)2) + 1)
, we have

I3 =
σxin(1− (rlxin

)2)

4π
√
σ2
xin
(1− (rlxin

)2) + 1
(

1√
2

(σ2
xin

+1)

2σ2
xin

(σ2
xin

(1−(rlxin
)2)+1)

√
1
2 +

(σ2
xin

+1)

2σ2
xin

(σ2
xin

(1−(rlxin
)2)+1)

)

=
σxin(1− (rlxin

)2)

4π
√
σ2
xin
(1− (rlxin

)2) + 1

2σ3
xin
(σ2

xin
(1− (rlxin

)2) + 1)
3
2

(σ2
xin

+ 1)
√

σ4
xin
(1− (rlxin

)2) + σ2
xin

+ σ2
xin

+ 1

I3 =
σ4
xin
(σ2

xin
(1− (rlxin

)2) + 1)(1− (rlxin
)2)

2π(σ2
xin

+ 1)
√
(σ2

xin
+ 1)2 − (rlxin

σ2
xin
)2

Finally we have,

I = I1 + I2 + I3

=
rlxin

σ2
xin

4
+

rlxin
σ2
xin

2π
(sin−1 (

rlxin
σ2
xin

σ2
xin

+ 1
) +

rlxin
σ2
xin
(σ2

xin
(1− (rlxin

)2) + 2)

(σ2
xin

+ 1)
√

(σ2
xin

+ 1)2 − (rlxin
σ2
xin
)2
)

+
σ4
xin
(σ2

xin
(1− (rlxin

)2) + 1)(1− (rlxin
)2)

2π(σ2
xin

+ 1)
√
(σ2

xin
+ 1)2 − (rlxin

σ2
xin
)2

I =
rlxin

σ2
xin

4
+

rlxin
σ2
xin

2π
sin−1 (

rlxin
σ2
xin

σ2
xin

+ 1
) +

σ4
xin
(σ2

xin
(1− (rlxin

)2) + 1 + (rlxin
)2)

2π(σ2
xin

+ 1)
√
(σ2

xin
+ 1)2 − (rlxin

σ2
xin
)2

I =
σ2
xin

4

rlxin
+

2rlxin

π
sin−1 (

rlxin
σ2
xin

σ2
xin

+ 1
) +

2σ2
xin
(σ2

xin
(1− (rlxin

)2) + 1 + (rlxin
)2)

π(σ2
xin

+ 1)
√
(σ2

xin
+ 1)2 − (rlxin

σ2
xin
)2
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We have,

Cov(xoutj , youtj ) = I − E[xoutj ]E[youtj ]

Cov(xoutj , youtj ) = I −
σ4
xin

2π(σ2
xin

+ 1)

Cov(xoutj , youtj ) =
σ2
xin

4π
(πrlxin

+ 2rlxin
sin−1 (

rlxin
σ2
xin

σ2
xin

+ 1
)

+
2σ2

xin
(σ2

xin
(1− (rlxin

)2) + 1 + (rlxin
)2)

(σ2
xin

+ 1)
√

(σ2
xin

+ 1)2 − (rlxin
σ2
xin
)2

−
2σ2

xin

(σ2
xin

+ 1)
)

The backward pass through GeLU is defined as,

gini = (Φ(xini) +
xini√
2π

exp (
−x2

ini

2
))gouti

= (
1

2
(1 + erf(

xini√
2
)) +

xini√
2π

exp (
−x2

ini

2
))gouti

So the mean of gradient is obtained as following,

E[gini ] = E[(
1

2
(1 + erf(

xini√
2
)) +

xini√
2π

exp (
−x2

ini

2
))gouti ]

= E[(
1

2
(1 + erf(

xini√
2
)) +

xini√
2π

exp (
−x2

ini

2
))]E[gouti ] = 0

µgin = 0

Similarly for variance,

E[g2ini ] = E[(
1

2
(1 + erf(

xini√
2
)) +

xini√
2π

exp (
−x2

ini

2
))2g2outi ]

= E[(
1

2
(1 + erf(

xini√
2
)) +

xini√
2π

exp (
−x2

ini

2
))2]E[g2outi ]

= E[(
1

2
(1 + erf(

xini√
2
)) +

xini√
2π

exp (
−x2

ini

2
))2]σ2

gout

I = E[(
1

2
(1 + erf(

xini√
2
)) +

xini√
2π

exp (
−x2

ini

2
))2]

=

∫ ∞

−∞
(
1

2
(1 + erf(

xini√
2
)) +

xini√
2π

exp (
−x2

ini

2
))2

exp (
−x2

ini
2σ2

xin
)

√
2πσxin

dxini

I =

∫ ∞

−∞
(
1

4
+

erf2(
xini√

2
)

4
+

x2
ini exp (−x2

ini)

2π
+

erf(
xini√

2
)

2
+

xini exp (
−x2

ini
2 )

√
2π

+
xini exp (

−x2
ini

2 )erf(
xini√

2
)

√
2π

)
exp (

−x2
ini

2σ2
xin

)
√
2πσxin

dxini

I1 =

∫ ∞

−∞

1

4

exp (
−x2

ini
2σ2

xin
)

√
2πσxin

dxini

I1 =
1

4
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I2 =

∫ ∞

−∞

erf2(
xini√

2
)

4

exp (
−x2

ini
2σ2

xin
)

√
2πσxin

dxini

=
1

4
√
2πσxin

∫ ∞

−∞
erf2(

xini√
2
) exp (

−x2
ini

2σ2
xin

)dxini

From 2.7.1.3 of Lipovetsky (2020),∫ ∞

−∞
erf(a1z)erf(a2z) exp (−az2)dz =

2√
πa

tan−1 (
a1a2√

a2 + aa21 + aa22
)

Substituting a = 1
2σ2

xin
, a1 = a2 = 1√

2

I2 =
1

4
√
2πσxin

2√
π 1

2σ2
xin

tan−1 (
1
2√

1
4σ4

xin
+ 1

4σ2
xin

+ 1
4σ2

xin

)

=
1

2π
tan−1 (

σ2
xin√

2σ2
xin

+ 1
) =

1

2π
tan−1 (

σ2
xin√

(σ2
xin

+ 1)2 − σ4
xin

)

I2 =
1

2π
sin−1 (

σ2
xin

σ2
xin

+ 1
)

I3 =

∫ ∞

−∞

x2
ini exp (−x2

ini)

2π

exp (
−x2

ini
2σ2

xin
)

√
2πσxin

dxini

=
1

2πσxin

∫ ∞

−∞

x2
ini√
2π

exp (
−x2

ini(2σ
2
xin

+ 1)

2σ2
xin

)dxini

=
1

2πσxin

σxin√
(2σ2

xin
+ 1)

∫ ∞

−∞

x2
ini√

2π
σxin√

(2σ2
xin

+1)

exp (
−x2

ini(2σ
2
xin

+ 1)

2σ2
xin

)dxini

=
1

2πσxin

σxin√
(2σ2

xin
+ 1)

σ2
xin

(2σ2
xin

+ 1)
(Definition of variance)

I3 =
σ2
xin

2π(2σ2
xin

+ 1)
3
2

I4 =

∫ ∞

−∞

erf(
xini√

2
)

2

exp (
−x2

ini
2σ2

xin
)

√
2πσxin

dxini = 0 (Integral of odd function)

I5 =

∫ ∞

−∞

xini exp (
−x2

ini
2 )

√
2π

exp (
−x2

ini
2σ2

xin
)

√
2πσxin

dxini = 0 (Integral of odd function)

I6 =

∫ ∞

−∞

xini exp (
−x2

ini
2 )erf(

xini√
2
)

√
2π

exp (
−x2

ini
2σ2

xin
)

√
2πσxin

dxini

=
1

2πσxin

∫ ∞

−∞
xinierf(

xini√
2
) exp (

−x2
ini(σ

2
xin

+ 1)

2σ2
xin

)dxini

From 2.6.1.4 of Lipovetsky (2020),
∫∞
−∞ zerf(az) exp (−a1z

2)dz = a
a1

√
a2+a1

Substituting, a = 1√
2
, a1 =

(σ2
xin

+1)

2σ2
xin

, we have

I6 =
1

2πσxin

1√
2

(σ2
xin

+1)

2σ2
xin

√
1
2 +

(σ2
xin

+1)

2σ2
xin
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=
1

2πσxin

2σ3
xin

(σ2
xin

+ 1)
√
2σ2

xin
+ 1

I6 =
σ2
xin

π(σ2
xin

+ 1)
√
2σ2

xin
+ 1

I = I1 + I2 + I3 + I4 + I5 + I6

=
1

4
+

1

2π
sin−1 (

σ2
xin

σ2
xin

+ 1
) +

σ2
xin

2π(2σ2
xin

+ 1)
3
2

+
σ2
xin

π(σ2
xin

+ 1)
√

2σ2
xin

+ 1

=
1

4
+

1

2π
sin−1 (

σ2
xin

σ2
xin

+ 1
) +

σ2
xin
(4σ2

xin
+ 2 + σ2

xin
+ 1)

2π(σ2
xin

+ 1)(2σ2
xin

+ 1)
3
2

I =
1

4
+

1

2π
sin−1 (

σ2
xin

σ2
xin

+ 1
) +

σ2
xin
(5σ2

xin
+ 3)

2π(σ2
xin

+ 1)(2σ2
xin

+ 1)
3
2

So the variance of gradient of input of GeLU comes out to be

E[g2ini ] = Iσ2
gout

σ2
gin

=

[
1

4
+

1

2π
sin−1 (

σ2
xin

σ2
xin

+ 1
) +

σ2
xin
(5σ2

xin
+ 3)

2π(σ2
xin

+ 1)(2σ2
xin

+ 1)
3
2

]
σ2
gout

If for two inputs xin and yin for all i we have Corr(goutxi
, goutyi ) = rlgout

, and ginxi
, ginyi be the

gradient after passing through GeLU layer. Then we have,

E[ginxi
ginyi ] =

= E[(
1

2
(1 + erf(

xini√
2
)) +

xini√
2π

exp (
−x2

ini

2
))goutxi

(
1

2
(1 + erf(

yini√
2
)) +

yini√
2π

exp (
−y2ini
2

))goutyi ]

E[ginxi
ginyi ] = E[(

1

2
(1 + erf(

xini√
2
))+

xini√
2π

exp (
−x2

ini

2
))(

1

2
(1 + erf(

yini√
2
)) +

yini√
2π

exp (
−y2ini
2

))]E[goutxi
goutyi ]

= E[(
1

2
(1 + erf(

xini√
2
))+

xini√
2π

exp (
−x2

ini

2
))(

1

2
(1 + erf(

yini√
2
)) +

yini√
2π

exp (
−y2ini
2

))]rlgout
σ2
gout

I = E[(
1

2
(1 + erf(

xini√
2
))+

xini√
2π

exp (
−x2

ini

2
))(

1

2
(1 + erf(

yini√
2
)) +

yini√
2π

exp (
−y2ini
2

))]

=

∫ ∞

−∞
(
1

2
(1 + erf(

xini√
2
))+

xini√
2π

exp (
−x2

ini

2
))(

1

2
(1 + erf(

yini√
2
)) +

yini√
2π

exp (
−y2ini
2

))pxini ,yini
dxinidyini

Where pxini ,yini
=

1

2πσ2
xin

√
(1− (rlxin

)2)
exp (

−x2
ini + 2rlxin

xiniyini − y2ini
2σ2

xin
(1− (rlxin

)2)
)

I =

∫ ∞

−∞

( 12 (1 + erf(
yini√

2
)) +

yini√
2π

exp (
−y2

ini
2 ))

2πσ2
xin

√
(1− (rlxin

)2)
exp (

−y2ini
2σ2

xin
(1− (rlxin

)2)
)IXdyini
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Where,

IX =

∫ ∞

−∞
(
1

2
(1 + erf(

xini√
2
)) +

xini√
2π

exp (
−x2

ini

2
)) exp (

−x2
ini + 2rlxin

xiniyini

2σ2
xin
(1− (rlxin

)2)
)dxini

IX,1 =

∫ ∞

−∞

1

2
exp (

−x2
ini + 2rlxin

xiniyini

2σ2
xin
(1− (rlxin

)2)
)dxini

=
1

2

∫ ∞

−∞
exp (

−x2
ini + 2rlxin

xiniyini

2σ2
xin
(1− (rlxin

)2)
) exp (

−(rlxin
)2y2ini

2σ2
xin
(1− (rlxin

)2)
) exp (

(rlxin
)2y2ini

2σ2
xin
(1− (rlxin

)2)
)dxini

=
1

2
exp (

(rlxin
)2y2ini

2σ2
xin
(1− (rlxin

)2)
)

∫ ∞

−∞
exp (

−(xini − rlxin
yini)

2

2σ2
xin
(1− (rlxin

)2)
)dxini

=
1

2
exp (

(rlxin
)2y2ini

2σ2
xin
(1− (rlxin

)2)
)
√
2πσxin

√
(1− (rlxin

)2)

∫ ∞

−∞

exp (
−(xini−rlxin

yini )
2

2σ2
xin

(1−(rlxin
)2)

)

√
2πσxin

√
(1− (rlxin

)2)
dxini

IX,1 =

√
2πσxin

√
(1− (rlxin

)2)

2
exp (

(rlxin
)2y2ini

2σ2
xin
(1− (rlxin

)2)
)

IX,2 =

∫ ∞

−∞

erf(
xini√

2
)

2
exp (

−x2
ini + 2rlxin

xiniyini

2σ2
xin
(1− (rlxin

)2)
)dxini

=
1

2

∫ ∞

−∞
erf(

xini√
2
) exp (

−x2
ini + 2rlxin

xiniyini

2σ2
xin
(1− (rlxin

)2)
)dxini

From 2.7.1.6 of Lipovetsky (2020),∫ ∞

−∞
erf(a1z) exp (−az2 + bz)dz =

√
π

a
exp (

b2

4a
)erf(

a1b

2
√
a2 + aa21

)

Substituting a1 = 1√
2
, a = 1

2σ2
xin

(1−(rlxin
)2)

, b =
rlxin

yini

σ2
xin

(1−(rlxin
)2)

IX,2 =
1

2

√
π
1

2σ2
xin

(1−(rlxin
)2)

exp (

(rlxin
)2y2

ini
σ4
xin

(1−(rlxin
)2)2

4 1
2σ2

xin
(1−(rlxin

)2)

)erf(

rlxin
yini√

2σ2
xin

(1−(rlxin
)2)

2
√

1
4σ4

xin
(1−(rlxin

)2)2
+ 1

4σ2
xin

(1−(rlxin
)2)

)

IX,2 =

√
2πσxin

√
(1− (rlxin

)2)

2
exp (

(rlxin
)2y2ini

2σ2
xin
(1− (rlxin

)2)
)erf(

rlxin
yini√

2(σ2
xin
(1− (rlxin

)2) + 1)
)

IX,3 =

∫ ∞

−∞

xini√
2π

exp (
−x2

ini

2
) exp (

−x2
ini + 2rlxin

xiniyini

2σ2
xin
(1− (rlxin

)2)
)dxini

=

∫ ∞

−∞

xini√
2π

exp (
−x2

ini(σ
2
xin
(1− (rlxin

)2) + 1) + 2rlxin
xiniyini

2σ2
xin
(1− (rlxin

)2)
)dxini

=

∫ ∞

−∞

xini√
2π

exp (
−x2

ini +
2rlxin

xiniyini

(σ2
xin

(1−(rlxin
)2)+1)

2σ2
xin

(1−(rlxin
)2)

(σ2
xin

(1−(rlxin
)2)+1)

)dxini

=

∫ ∞

−∞

xini√
2π

exp (
−x2

ini +
2rlxin

xiniyini

(σ2
xin

(1−(rlxin
)2)+1)

2σ2
xin

(1−(rlxin
)2)

(σ2
xin

(1−(rlxin
)2)+1)

) exp (

−(rlxin
)2y2

ini
(σ2

xin
(1−(rlxin

)2)+1)2

2σ2
xin

(1−(rlxin
)2)

(σ2
xin

(1−(rlxin
)2)+1)

)∗

exp (

(rlxin
)2y2

ini
(σ2

xin
(1−(rlxin

)2)+1)2

2σ2
xin

(1−(rlxin
)2)

(σ2
xin

(1−(rlxin
)2)+1)

)dxini
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= exp (
(rlxin

)2y2ini
2σ2

xin
(1− (rlxin

)2)(σ2
xin
(1− (rlxin

)2) + 1)
)∗

∫ ∞

−∞

xini√
2π

exp (
−(xini −

rlxin
yini

(σ2
xin

(1−(rlxin
)2)+1)

)2

2σ2
xin

(1−(rlxin
)2)

(σ2
xin

(1−(rlxin
)2)+1)

)dxini

= exp (
(rlxin

)2y2ini
2σ2

xin
(1− (rlxin

)2)(σ2
xin
(1− (rlxin

)2) + 1)
)

σxin

√
1− (rlxin

)2√
(σ2

xin
(1− (rlxin

)2) + 1)

∫ ∞

−∞

xini
√
2π

σxin

√
1−(rlxin

)2√
(σ2

xin
(1−(rlxin

)2)+1)

exp (
−(xini −

rlxin
yini

(σ2
xin

(1−(rlxin
)2)+1)

)2

2σ2
xin

(1−(rlxin
)2)

(σ2
xin

(1−(rlxin
)2)+1)

)dxini

= exp (
(rlxin

)2y2ini
2σ2

xin
(1− (rlxin

)2)(σ2
xin
(1− (rlxin

)2) + 1)
).

σxin

√
1− (rlxin

)2√
(σ2

xin
(1− (rlxin

)2) + 1)

rlxin
yini

(σ2
xin
(1− (rlxin

)2) + 1)

IX,3 =
rlxin

yiniσxin

√
1− (rlxin

)2

(σ2
xin
(1− (rlxin

)2) + 1)
3
2

exp (
(rlxin

)2y2ini
2σ2

xin
(1− (rlxin

)2)(σ2
xin
(1− (rlxin

)2) + 1)
)

I =∫ ∞

−∞

( 12 (1 + erf(
yini√

2
)) +

yini√
2π

exp (
−y2

ini
2 ))

2πσ2
xin

√
(1− (rlxin

)2)
exp (

−y2ini
2σ2

xin
(1− (rlxin

)2)
)(IX,1 + IX,2 + IX,3)dyini

I1 =

∫ ∞

−∞

( 12 (1 + erf(
yini√

2
)) +

yini√
2π

exp (
−y2

ini
2 ))

2πσ2
xin

√
(1− (rlxin

)2)
exp (

−y2ini
2σ2

xin
(1− (rlxin

)2)
)IX,1dyini

=

∫ ∞

−∞

( 12 (1 + erf(
yini√

2
)) +

yini√
2π

exp (
−y2

ini
2 ))

2πσ2
xin

√
(1− (rlxin

)2)
exp (

−y2ini
2σ2

xin
(1− (rlxin

)2)
)

√
2πσxin

√
(1− (rlxin

)2)

2
exp (

(rlxin
)2y2ini

2σ2
xin
(1− (rlxin

)2)
)dyini

=
1

2

∫ ∞

−∞

( 12 (1 + erf(
yini√

2
)) +

yini√
2π

exp (
−y2

ini
2 ))

√
2πσxin

exp (
−y2ini
2σ2

xin

)dyini

I1,1 =
1

4

∫ ∞

−∞

1√
2πσxin

exp (
−y2ini
2σ2

xin

)dyini =
1

4

I1,2 =
1

4

∫ ∞

−∞

erf(
yini√

2
)

√
2πσxin

exp (
−y2ini
2σ2

xin

)dyini = 0 (Integral of odd function)

I1,3 =
1

2

∫ ∞

−∞

yini exp (
−y2

ini
2 )

2πσxin

exp (
−y2ini
2σ2

xin

)dyini = 0 (Integral of odd function)
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I2 =

∫ ∞

−∞

( 12 (1 + erf(
yini√

2
)) +

yini√
2π

exp (
−y2

ini
2 ))

2πσ2
xin

√
(1− (rlxin

)2)
exp (

−y2ini
2σ2

xin
(1− (rlxin

)2)
)IX,2dyini

=

∫ ∞

−∞

( 12 (1 + erf(
yini√

2
)) +

yini√
2π

exp (
−y2

ini
2 ))

2πσ2
xin

√
(1− (rlxin

)2)
exp (

−y2ini
2σ2

xin
(1− (rlxin

)2)
)

√
2πσxin

√
(1− (rlxin

)2)

2
exp (

(rlxin
)2y2ini

2σ2
xin
(1− (rlxin

)2)
)erf(

rlxin
yini√

2(σ2
xin
(1− (rlxin

)2) + 1)
)dyini

=
1

2

∫ ∞

−∞

( 12 (1 + erf(
yini√

2
)) +

yini√
2π

exp (
−y2

ini
2 ))

√
2πσxin

exp (
−y2ini
2σ2

xin

).

erf(
rlxin

yini√
2(σ2

xin
(1− (rlxin

)2) + 1)
)dyini

I2,1 =
1

4

∫ ∞

−∞

1√
2πσxin

exp (
−y2ini
2σ2

xin

)erf(
rlxin

yini√
2(σ2

xin
(1− (rlxin

)2) + 1)
)dyini = 0

(Integral of odd function)

I2,2 =
1

4
√
2πσxin

∫ ∞

−∞
erf(

yini√
2
) exp (

−y2ini
2σ2

xin

)erf(
rlxin

yini√
2(σ2

xin
(1− (rlxin

)2) + 1)
)dyini

From 2.7.1.3 of Lipovetsky (2020),∫∞
−∞ erf(a1z)erf(a2z) exp (−az2)dz = 2√

πa
tan−1 ( a1a2√

a2+aa2
1+aa2

2

)

Substituting a = 1
2σ2

xin
, a1 = 1√

2
, a2 =

rlxin√
2(σ2

xin
(1−(rlxin

)2)+1)

I2,2 =
1

4
√
2πσxin

2√
π 1

2σ2
xin

tan−1 (

rlxin

2
√

(σ2
xin

(1−(rlxin
)2)+1)√

1
4σ4

xin
+ 1

4σ2
xin

+
(rlxin

)2

4σ2
xin

(σ2
xin

(1−(rlxin
)2)+1)

)

I2,2 =
1

2π
tan−1 (

rlxin
σ2
xin√

σ4
xin

+ 2σ2
xin

+ 1− (rlxin
)2σ4

xin

) =
1

2π
tan−1 (

rlxin
σ2
xin√

(σ2
xin

+ 1)2 − (rlxin
σ2
xin
)2
)

I2,2 =
1

2π
sin−1 (

rlxin
σ2
xin

σ2
xin

+ 1
)

I2,3 =
1

4πσxin

∫ ∞

−∞
yini exp (

−y2ini
2

) exp (
−y2ini
2σ2

xin

)erf(
rlxin

yini√
2(σ2

xin
(1− (rlxin

)2) + 1)
)dyini

=
1

4πσxin

∫ ∞

−∞
yini exp (

−y2ini(σ
2
xin

+ 1)

2σ2
xin

)erf(
rlxin

yini√
2(σ2

xin
(1− (rlxin

)2) + 1)
)dyini

From 2.6.1.4 of Lipovetsky (2020),
∫∞
−∞ zerf(az) exp (−a1z

2)dz = a
a1

√
a2+a1

Substituting, a =
rlxin√

2(σ2
xin

(1−(rlxin
)2)+1)

, a1 =
(σ2

xin
+1)

2σ2
xin

, we have

I2,3 =
1

4πσxin

rlxin√
2(σ2

xin
(1−(rlxin

)2)+1)

(σ2
xin

+1)

2σ2
xin

√
(rlxin

)2

2(σ2
xin

(1−(rlxin
)2)+1)

+
(σ2

xin
+1)

2σ2
xin
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=
rlxin

σ2
xin

2π(σ2
xin

+ 1)
√
σ4
xin

+ 2σ2
xin

+ 1− (rlxin
)2σ4

xin

I2,3 =
rlxin

σ2
xin

2π(σ2
xin

+ 1)
√
(σ2

xin
+ 1)2 − (rlxin

σ2
xin
)2

I3 =

∫ ∞

−∞

( 12 (1 + erf(
yini√

2
)) +

yini√
2π

exp (
−y2

ini
2 ))

2πσ2
xin

√
(1− (rlxin

)2)
exp (

−y2ini
2σ2

xin
(1− (rlxin

)2)
)IX,3dyini

=

∫ ∞

−∞

( 12 (1 + erf(
yini√

2
)) +

yini√
2π

exp (
−y2

ini
2 ))

2πσ2
xin

√
(1− (rlxin

)2)
exp (

−y2ini
2σ2

xin
(1− (rlxin

)2)
)

rlxin
yiniσxin

√
1− (rlxin

)2

(σ2
xin
(1− (rlxin

)2) + 1)
3
2

exp (
(rlxin

)2y2ini
2σ2

xin
(1− (rlxin

)2)(σ2
xin
(1− (rlxin

)2) + 1)
)dyini

=
rlxin

2πσxin(σ
2
xin
(1− (rlxin

)2) + 1)
3
2

∫ ∞

−∞
yini(

1

2
(1 + erf(

yini√
2
)) +

yini√
2π

exp (
−y2ini
2

))

exp (
−y2ini

2σ2
xin
(1− (rlxin

)2)
) exp (

(rlxin
)2y2ini

2σ2
xin
(1− (rlxin

)2)(σ2
xin
(1− (rlxin

)2) + 1)
)dyini

=
rlxin

2πσxin(σ
2
xin
(1− (rlxin

)2) + 1)
3
2

∫ ∞

−∞
yini(

1

2
(1 + erf(

yini√
2
)) +

yini√
2π

exp (
−y2ini
2

))

exp (
−y2ini(σ

2
xin
(1− (rlxin

)2) + 1− (rlxin
)2)

2(σ2
xin
(1− (rlxin

)2) + 1)σ2
xin
(1− (rlxin

)2)
)dyini

=
rlxin

2πσxin(σ
2
xin
(1− (rlxin

)2) + 1)
3
2

∫ ∞

−∞
yini(

1

2
(1 + erf(

yini√
2
)) +

yini√
2π

exp (
−y2ini
2

))

exp (
−y2ini(σ

2
xin

+ 1)

2σ2
xin
(σ2

xin
(1− (rlxin

)2) + 1)
)dyini

I3,1 =
rlxin

4πσxin(σ
2
xin
(1− (rlxin

)2) + 1)
3
2

∫ ∞

−∞
yini exp (

−y2ini(σ
2
xin

+ 1)

2σ2
xin
(σ2

xin
(1− (rlxin

)2) + 1)
)dyini = 0

(Integral of odd function)

I3,2 =
rlxin

4πσxin(σ
2
xin
(1− (rlxin

)2) + 1)
3
2

∫ ∞

−∞
yinierf(

yini√
2
) exp (

−y2ini(σ
2
xin

+ 1)

2σ2
xin
(σ2

xin
(1− (rlxin

)2) + 1)
)dyini

From 2.6.1.4 of Lipovetsky (2020),
∫∞
−∞ zerf(az) exp (−a1z

2)dz = a
a1

√
a2+a1

Substituting, a = 1√
2
, a1 =

(σ2
xin

+1)

2σ2
xin

(σ2
xin

(1−(rlxin
)2)+1)

, we have

I3,2 =
rlxin

4πσxin(σ
2
xin
(1− (rlxin

)2) + 1)
3
2

1√
2

(σ2
xin

+1)

2σ2
xin

(σ2
xin

(1−(rlxin
)2)+1)

√
1
2 +

(σ2
xin

+1)

2σ2
xin

(σ2
xin

(1−(rlxin
)2)+1)

=
rlxin

σ2
xin

2π(σ2
xin

+ 1)
√

σ4
xin

+ 2σ2
xin

+ 1− (rlxin
)2σ4

xin

I3,2 =
rlxin

σ2
xin

2π(σ2
xin

+ 1)
√

(σ2
xin

+ 1)2 − (rlxin
σ2
xin
)2

I3,3 =
rlxin

2πσxin(σ
2
xin
(1− (rlxin

)2) + 1)
3
2

.
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∫ ∞

−∞

y2ini√
2π

exp (
−y2ini
2

) exp (
−y2ini(σ

2
xin

+ 1)

2σ2
xin
(σ2

xin
(1− (rlxin

)2) + 1)
)dyini

=
rlxin

2πσxin(σ
2
xin
(1− (rlxin

)2) + 1)
3
2

.∫ ∞

−∞

y2ini√
2π

exp (
−y2ini(σ

4
xin

+ 2σ2
xin

+ 1− (rlxin
)2σ4

xin
)

2σ2
xin
(σ2

xin
(1− (rlxin

)2) + 1)
)dyini

=
rlxin

2πσxin(σ
2
xin
(1− (rlxin

)2) + 1)
3
2

∫ ∞

−∞

y2ini√
2π

exp (
−y2ini((σ

2
xin

+ 1)2 − (rlxin
σ2
xin
)2)

2σ2
xin
(σ2

xin
(1− (rlxin

)2) + 1)
)dyini

=
rlxin

2πσxin(σ
2
xin
(1− (rlxin

)2) + 1)
3
2

σxin

√
(σ2

xin
(1− (rlxin

)2) + 1)√
(σ2

xin
+ 1)2 − (rlxin

σ2
xin
)2∫ ∞

−∞

y2ini
√
2π

σxin

√
(σ2

xin
(1−(rlxin

)2)+1)√
(σ2

xin
+1)2−(rlxin

σ2
xin

)2

exp (
−y2ini((σ

2
xin

+ 1)2 − (rlxin
σ2
xin
)2)

2σ2
xin
(σ2

xin
(1− (rlxin

)2) + 1)
)dyini

=
rlxin

2πσxin(σ
2
xin
(1− (rlxin

)2) + 1)
3
2

σ3
xin
(σ2

xin
(1− (rlxin

)2) + 1)
3
2

((σ2
xin

+ 1)2 − (rlxin
σ2
xin
)2)

3
2

I3,3 =
rlxin

σ2
xin

2π((σ2
xin

+ 1)2 − (rlxin
σ2
xin
)2)

3
2

I = I1 + I2 + I3

= I1,1 + I1,2 + I1,3 + I2,1 + I2,2 + I2,3 + I3,1 + I3,2 + I3,3

I =
1

4
+

1

2π
sin−1 (

rlxin
σ2
xin

σ2
xin

+ 1
)+

2rlxin
σ2
xin

2π(σ2
xin

+ 1)
√
(σ2

xin
+ 1)2 − (rlxin

σ2
xin
)2

+
rlxin

σ2
xin

2π((σ2
xin

+ 1)2 − (rlxin
σ2
xin
)2)

3
2

I =
1

4
+

1

2π
sin−1 (

rlxin
σ2
xin

σ2
xin

+ 1
) +

rlxin
σ2
xin
((2σ2

xin
+ 3)(σ2

xin
+ 1)− 2(rlxin

σ2
xin
)2)

2π(σ2
xin

+ 1)((σ2
xin

+ 1)2 − (rlxin
σ2
xin
)2)

3
2

We defined Cov(ginxi
, ginyi ), as

Cov(ginxi
, ginyi ) = Irlgout

σ2
gout

Cov(ginxi
, ginyi ) =[

1

4
+

1

2π
sin−1 (

rlxin
σ2
xin

σ2
xin

+ 1
) +

rlxin
σ2
xin
((2σ2

xin
+ 3)(σ2

xin
+ 1)− 2(rlxin

σ2
xin
)2)

2π(σ2
xin

+ 1)((σ2
xin

+ 1)2 − (rlxin
σ2
xin
)2)

3
2

]
rlgout

σ2
gout

C.6 LAYERNORM

For an input xin the forward pass of LayerNorm is,

xout = LayerNorm(xin)

=⇒ xouti =
xini − x̄in

σ̂xin

Where

x̄in =

∑din
i=1 xini

din
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σ̂xin =

√∑din
i=1(xini − x̄in)2

din

To get expectation of output of LayerNorm,

E[xouti ] = E[
xini − x̄in

σ̂xin

]

din∑
i=1

E[xouti ] =

din∑
i=1

E[
xini − x̄in

σ̂xin

]

= E[
din∑
i=1

xini − x̄in

σ̂xin

]

= E[
∑din

i=1(xini − x̄in)

σ̂xin

]

din∑
i=1

E[xouti ] = 0

By symmetry for any i, j and i ̸= j we have E[xouti ] = E[xoutj ] = µxout

=⇒ dinµxout = 0

µxout = 0

Similarly we calculate variance of output by,

Var(xouti) = E[x2
outi ]− E[xouti ]

2 = E[x2
outi ]

E[x2
outi ] = E[

(xini − x̄in)
2

σ̂2
xin

]

din∑
i=1

E[x2
outi ] =

din∑
i=1

E[
(xini − x̄in)

2

σ̂2
xin

]

= E[
din∑
i=1

(xini − x̄in)
2

σ̂2
xin

]

= E[
∑din

i=1(xini − x̄in)
2

σ̂2
xin

]

din∑
i=1

E[x2
outi ] = din

By symmetry for any i, j and i ̸= j we have E[x2
outi ] = E[x2

outj ] = σ2
xout

=⇒ dinσ
2
xout

= din

σ2
xout

= 1

Now we have σ̂xin

a.s−→ σxin for large din. So for large values of din we can treat σ̂xin as a constant
which has value σxin . We use this approximation to get the following results. For two inputs xin and
yin such that for all i, Corr(xini , yini) = rlxin

. For all j we have,

Corr(xoutj , youtj ) =
E[xoutjyoutj ]− E[xoutj ]E[youtj ]√

Var(xoutj )Var(youtj )

=
E[xoutjyoutj ]− µxoutµxout√

σ2
xout

σ2
xout
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=
E[xoutjyoutj ]− 0

√
1

= E[xoutjyoutj ]

= E[
(xinj − x̄in)(yinj − ȳin)

σ̂xin σ̂yin

]

≈ E[
(xinj − x̄in)(yinj − ȳin)

σxinσxin

]

=
E[(xinj − x̄in)(yinj − ȳin)]

σ2
xin

=
E[(xinj −

∑din
k=1 xink
din

)(yinj −
∑din

l=1 yinl
din

)]

σ2
xin

=
E[xinjyinj − yinj

∑din
k=1 xink
din

− xinj

∑din
l=1 yinl
din

+
∑din

k=1 xink
din

∑din
l=1 yinl
din

]

σ2
xin

Elements belonging to different dimensions from xin and yin are independent of each other and
hence for i, j and i ̸= j we have E[xiniyinj ] = µ2

xin
.

=
E[xinjyinj ]− E[yinj

∑din
k=1 xink
din

]− E[xinj

∑din
l=1 yinl
din

] + E[
∑din

k=1 xink
din

∑din
l=1 yinl
din

]

σ2
xin

=
rlxin

σ2
xin

+ µ2
xin

− rlxin
σ2
xin

+dinµ
2
xin

din
− rlxin

σ2
xin

+dinµ
2
xin

din
+

rlxin
dinσ

2
xin

+d2
inµ

2
xin

d2
in

σ2
xin

=
rlxin

σ2
xin
(1− 1

din
)

σ2
xin

Corr(xoutj , youtj ) = rlxin
(1− 1

din
) ≈ rlxin

= rlxout

From Xu et al. (2019) (Eq. 17), the backward pass through LayerNorm is,

gin =
gout

σ̂xin

(Idin −
1T
din
1din + xT

outxout

din
)

≈ gout

σxin

(Idin −
1T
din
1din + xT

outxout

din
)

We have lim
din→∞

1T
din
1din + xT

outxout

din
= Odin,din where Odin,din is zero matrix with shape din × din

gin ≈ gout

σxin

(Idin)

=
gout

σxin

=⇒ gini =
gouti

σxin

If µgout = 0,
µgin = 0

σ2
gin

=
σ2
gout

σ2
xin
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C.7 SOFTMAX

Assumption: Other than assuming normally distributed inputs, we also assume that L is large L >>
1 to derive softmax variance.

The forward pass of Softmax can be defined as

xout = Softmax(xin)

xouti =
exini∑L
j=1 e

xinj

For calculating mean we can easily see that,

L∑
i=1

xouti = 1

Taking expectation both sides, we get

E[
L∑

i=1

xouti ] = 1

L∑
i=1

E[xouti ] = 1

By symmetry we can assume that for any i, j, i ̸= j, we have E[xouti ] = E[xoutj ]

LE[xouti ] = 1

µxout =
1

L

Let us define z =
∑

j e
yj where yj = xj − xi is normally distributed N (0, σj). Hence, each eyj is

log-normally distributed, and z is a sum of correlated log-normals. Following (Lo, 2013), this sum
of log-normals can be approximated as another log-normal random variable, LogN (µz, σz), where
µz and σz are as follows -

S+ = E[
∑
j

yj ] =
∑
j

e
σ2
j
2

σ2
z =

1

S2
+

∑
j,k

corrj,kσjσke
1
2 (σ

2
j+σ2

k)

µz = ln(S+)−
σ2
z

2

Since the difference of two normals xj and xi is also normal, from the M.G.F. of normal distribution,
we have σ2

j = 2σ2
xin
(1− rxin) if j ̸= i, and σ2

j = 0 if j = i.

Also, corrj,k = 0 if j = i or k = i, else corrj,k = 1
2 .

We can substitute these values in the above equations, to get

S+ = (L− 1)eσ
2
xin

(1−rxin ) + 1

σ2
z = σ2

xin
(1− rxin)

L

L− 1
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µz = ln(S+)−
σ2
z

2

Since z is log-normal, xout = 1
z is also log-normal with LogN (−µz, σz). The variance of log-

normal distribution can be obtained from standard formulae for log-normal distribution as (eσ
2
z −

1)eσ
2
z−2µz .

Substituting the values of µz and σz from above, we get

σ2
xout

=
(eσ

2
z − 1)e2∗σ

2
z

S2
+

=
(eσ

2
xin

(1−rxin )
L

L−1 − 1)e2σ
2
xin

(1−rxin )
L

L−1

((L− 1)eσ
2
xin

(1−rxin ) + 1)2

For large L, we can ignore the 1 in the denominator -

σ2
xout

=
(eσ

2
xin

(1−rxin )
L

L−1 − 1)

(L− 1)2

If L >> 1 and σ2
xin

is small, we get the more simplified formula as -

σ2
xout

≈ (e(1−rdxin
)σ2

xin − 1)

L2
(Assuming L >> 1)

Using the mean and variances, we can calculate the scale of softmax output as follows-

E[x2
out] = σ2

xout
+ µ2

xout

=
(e(1−rdxin

)σ2
xin )

L2

The Jacobian of Softmax can be calculated as ((Kim et al., 2021)):

Ji,j =

{
xouti(1− xouti) if i = j

−xoutixoutj else

For large values of L this approximately becomes

J ≈ diag(xout)

gin = goutJ

gini ≈ goutixouti

E[gini ] ≈ E[goutixouti ]

= E[gouti ]E[xouti ] = 0 = µgin

E[g2ini ] ≈ E[g2outix
2
outi ]

= E[g2outi ]E[x
2
outi ]

σ2
gin

= σ2
gout

(e(1−rdxin
)σ2

xin )

L2
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C.8 SCALED DOT-PRODUCT ATTENTION

Assumption: We assume the numerator and denominator of the scaled dot product attention to be
independent. These approximations hold true if the denominator has a low variance. The resulting
formulae are fairly accurate, as shown in the numerical verification section.

The forward pass of Scaled Dot-Product Attention is

Xout = Dropout(SoftMax(
QKT

√
dk

))V

Where,

Q = XinWQ

K = XinWK

V = XinWV

Xout = Dropout(SoftMax(
XinWQWK

TXT
in√

dk
))XinWV

Let,

O = Dropout(SoftMax(
XinWQWK

TXT
in√

dk
))Xin

W =
XinWQWK

T

√
dk

O = Dropout(SoftMax(WXT
in ))Xin

Using results from Linear Layer we have σ2
w = dinσ

2
xin
σ2
qσ

2
k = dinσ

2
xin
σ2
qk

Oi,j =

L∑
k=1

Dropout(SoftMax(WXT
in ))i,kXink,j

=

L∑
k=1

Dropout(
exp ((WXT

in )i,k)
L∑

m=1

exp ((WXT
in )i,m)

)Xink,j

=

L∑
k=1

Dropout(exp ((WXT
in )i,k))

L∑
m=1

exp ((WXT
in )i,m)

Xink,j

=

L∑
k=1

Dropout(exp ((WXT
in )i,k))Xink,j

L∑
m=1

exp ((WXT
in )i,m)

=

L∑
k=1

Dropout(exp (

din∑
l=1

Wi,lXink,l
))Xink,j

L∑
m=1

exp (

din∑
n=1

Wi,nXinm,n
)

=

L∑
k=1

Dropout(exp (

din∑
l=1

Wi,lXink,l
)Xink,j

)

L∑
m=1

exp (

din∑
n=1

Wi,nXinm,n)
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Let,

Num(Oi,j) =

L∑
k=1

Dropout(exp (

din∑
l=1

Wi,lXink,l
)Xink,j

)

Den(Oi,j) =

L∑
m=1

exp (

din∑
n=1

Wi,nXinm,n
)

To get the expectation and variance of Oi,j we make the following assumptions, that we found to
be reasonably accurate for large sequence lengths. This approximation is reasonable as long as the
mean of the denominator elements are much larger than their variance, and the correlation is small
between numerator and denominator, which is true for Large sequence lengths L:

E[Oi,j ] ≈
E[Num(Oi,j)]

E[Den(Oi,j)]

E[O2
i,j ] ≈

E[(Num(Oi,j))
2]

E[(Den(Oi,j))2]

Then to get expectation we have,

E[Num(Oi,j)] = E[
L∑

k=1

Dropout(exp (

din∑
l=1

Wi,lXink,l
)Xink,j

)]

=

L∑
k=1

E[Dropout(exp (

din∑
l=1

Wi,lXink,l
)Xink,j

)]

=

L∑
k=1

E[exp (
din∑
l=1

Wi,lXink,l
)Xink,j

]

(Dropout doesn’t change expectation)

E[exp (
din∑
l=1

Wi,lXink,l
)Xink,j

] = E[(exp (Wi,jXink,j
)Xink,j

)

din∏
l=1,l ̸=j

exp (Wi,lXink,l
)]

As weights are initialized independently,

E[exp (
din∑
l=1

Wi,lXink,l
)Xink,j

] = E[exp (Wi,jXink,j
)Xink,j

]

din∏
l=1,l ̸=j

E[exp (Wi,lXink,l
)]

E[exp (Wi,jXink,j
)Xink,j

] =∫ ∞

−∞

Xink,j√
2πσxin

exp (
−X2

ink,j

2σ2
xin

)dXink,j

∫ ∞

−∞

exp (Wi,jXink,j
)

√
2πσw

exp (
−W 2

i,j

2σ2
w

)dWi,j

=

∫ ∞

−∞

Xink,j√
2πσxin

exp (
−X2

ink,j

2σ2
xin

) exp (
X2

ink,j
σ2
w

2
)dXink,j

(Using MGF of Normal Distribution)

E[exp (Wi,jXink,j
)Xink,j

] = 0 (Integral of an Odd function from −∞ to ∞)

E[exp (
din∑
l=1

Wi,lXink,l
)Xink,j

] = 0

E[Num(Oi,j)] = 0

E[Oi,j ] = 0 = µxout

Similarly for variance (Drop signifies Dropout),

E[(Num(Oi,j))
2] = E[(

L∑
k=1

Drop(exp (

din∑
l=1

Wi,lXink,l
)Xink,j

))2]
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= E[
L∑

k=1

(Drop(exp (

din∑
l=1

Wi,lXink,l
)Xink,j

))2]+

E[
L∑

k=1

L∑
m=1,m ̸=k

(Drop(exp (

din∑
l=1

Wi,lXink,l
)Xink,j

))(Drop(exp (

din∑
l=1

Wi,lXinm,l
)Xinm,j

))]

=

L∑
k=1

E[(Drop(exp (

din∑
l=1

Wi,lXink,l
)Xink,j

))2]+

L∑
k=1

L∑
m=1,m ̸=k

E[(Drop(exp (

din∑
l=1

Wi,lXink,l
)Xink,j

))(Drop(exp (

din∑
l=1

Wi,lXinm,l
)Xinm,j

))]

=

L∑
k=1

(1− p)E[
(exp (

∑din
l=1 Wi,lXink,l

)Xink,j
)2

(1− p)2
]+

L∑
k=1

L∑
m=1,m̸=k

(1− p)2E[
(exp (

∑din
l=1 Wi,lXink,l

)Xink,j
)(exp (

∑din
l=1 Wi,lXinm,l

)Xinm,j )

(1− p)2
]

=

L∑
k=1

1

(1− p)
E[(exp (

din∑
l=1

Wi,lXink,l
)Xink,j

)2]+

L∑
k=1

L∑
m=1,m̸=k

E[(exp (
din∑
l=1

Wi,lXink,l
)Xink,j

) exp (

din∑
l=1

Wi,lXinm,l
)Xinm,j

)]

=

L∑
k=1

1

(1− p)
E[exp (

din∑
l=1

2Wi,lXink,l
)X2

ink,j
]+

L∑
k=1

L∑
m=1,m̸=k

E[exp (
din∑
l=1

Wi,l(Xink,l
+Xinm,l

))Xink,j
Xinm,j

]

E[exp (
din∑
l=1

2Wi,lXink,l
)X2

ink,j
] = E[(exp (2Wi,jXink,j

)X2
ink,j

)

din∏
l=1,l ̸=j

exp (2Wi,lXink,l
)]

= E[exp (2Wi,jXink,j
)X2

ink,j
]

din∏
l=1,l ̸=j

E[exp (2Wi,lXink,l
)]

E[exp (2Wi,jXink,j
)X2

ink,j
] =∫ ∞

−∞

X2
ink,j√

2πσxin

exp (
−X2

ink,j

2σ2
xin

)dXink,j

∫ ∞

−∞

exp (2Wi,jXink,j
)

√
2πσw

exp (
−W 2

i,j

2σ2
w

)dWi,j

=

∫ ∞

−∞

X2
ink,j√

2πσxin

exp (
−X2

ink,j

2σ2
xin

) exp (2X2
ink,j

σ2
w)dXink,j

(Using MGF of Normal Distribution)

=

∫ ∞

−∞

X2
ink,j√

2πσxin

exp (
−X2

ink,j
(1− 4σ2

xin
σ2
w)

2σ2
xin

)dXink,j

=

∫ ∞

−∞

X2
ink,j

√
2π

σxin√
(1− 4σ2

xin
σ2
w)

√
(1− 4σ2

xin
σ2
w)

exp (
−X2

ink,j
(1− 4σ2

xin
σ2
w)

2σ2
xin

)dXink,j
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=
1√

(1− 4σ2
xin
σ2
w)

∫ ∞

−∞

X2
ink,j√

2π
σxin√

(1− 4σ2
xin
σ2
w)

exp (
−X2

ink,j
(1− 4σ2

xin
σ2
w)

2σ2
xin

)dXink,j

=
1√

(1− 4σ2
xin
σ2
w)

σ2
xin

(1− 4σ2
xin
σ2
w)

=
σ2
xin

(1− 4σ2
xin
σ2
w)

3
2

E[exp (2Wi,lXink,l
)] =∫ ∞

−∞

1√
2πσxin

exp (
−X2

ink,j

2σ2
xin

)dXink,j

∫ ∞

−∞

exp (2Wi,jXink,j
)

√
2πσw

exp (
−W 2

i,j

2σ2
w

)dWi,j

=

∫ ∞

−∞

1√
2πσxin

exp (
−X2

ink,j

2σ2
xin

) exp (2X2
ink,j

σ2
w)dXink,j

(Using MGF of Normal Distribution)

=

∫ ∞

−∞

1√
2πσxin

exp (
−X2

ink,j
(1− 4σ2

xin
σ2
w)

2σ2
xin

)dXink,j

=

∫ ∞

−∞

1
√
2π

σxin√
(1− 4σ2

xin
σ2
w)

√
(1− 4σ2

xin
σ2
w)

exp (
−X2

ink,j
(1− 4σ2

xin
σ2
w)

2σ2
xin

)dXink,j

=
1√

(1− 4σ2
xin
σ2
w)

∫ ∞

−∞

1
√
2π

σxin√
(1− 4σ2

xin
σ2
w)

exp (
−X2

ink,j
(1− 4σ2

xin
σ2
w)

2σ2
xin

)dXink,j

=
1√

(1− 4σ2
xin
σ2
w)

exp (

din∑
l=1

Wi,l(Xink,l
+Xinm,l

))Xink,j
Xinm,j

=(exp (Wi,j(Xink,j
+Xinm,j

))Xink,j
Xinm,j

)

din∏
l=1,l ̸=j

exp (Wi,l(Xink,l
+Xinm,l

))

E[exp (
din∑
l=1

Wi,l(Xink,l
+Xinm,l

))Xink,j
Xinm,j

] =E[exp (Wi,j(Xink,j
+Xinm,j

))Xink,j
Xinm,j

]

din∏
l=1,l ̸=j

E[exp (Wi,l(Xink,l
+Xinm,l

))]

Let Wi,j = w, Xink,j
= xk, Xinm,j = xm, and rlxin

= r. Then,

E[exp (w(xk + xm))xkxm] =∫∫ ∞

−∞

xkxm

2σ2
xin

√
1− r2

exp (
−(x2

k + x2
m − 2rxkxm)

2σ2
xin
(1− r2)

)dxkdxm.∫ ∞

−∞

exp (w(xk + xm))

2σ2
w

exp (
−w2

2σ2
w

)dw

=

∫∫ ∞

−∞

xkxm

2σ2
xin

√
1− r2

exp (
−(x2

k + x2
m − 2rxkxm)

2σ2
xin
(1− r2)

) exp (
σ2
w(xk + xm)2

2
)dxkdxm

(Using MGF of Normal Distribution)
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=

∫∫ ∞

−∞

xkxm

2σ2
xin

√
1− r2

exp (
−(x2

k(1− c) + x2
m(1− c)− 2(r + c)xkxm)

2σ2
xin
(1− r2)

)dxkdxm

(Let c = (1− r2)σ2
wσ

2
xin

)

Let r′ = r + c

1− c
, and σ′2(1− r′2) =

σ2
xin
(1− r2)

1− c

=

∫∫ ∞

−∞

xkxm

2σ2
xin

√
1− r2

exp (
−(x2

k + x2
m − 2r′xkxm)

2σ′2(1− r′2)
)dxkdxm

=
σ′2

√
1− r′2

σ2
xin

√
1− r2

∫∫ ∞

−∞

xkxm

2σ′2
√
1− r′2

exp (
−(x2

k + x2
m − 2r′xkxm)

2σ′2(1− r′2)
)dxkdxm

=
σ′2

√
1− r′2

σ2
xin

√
1− r2

r′σ′2

=
r′σ′4

√
1− r′2

σ2
xin

√
1− r2

=
r′σ4

xin
(1− r2)2

√
1− r′2

σ2
xin
(1− c)2(1− r′2)2

√
1− r2

=
(r + c)σ2

xin
(1− r2)

3
2

(1− c)3(1− r′2) 3
2

=(r + c)σ2
xin

(
(1− r2)

(1− c)2(1− r′2)

) 3
2

=(r + c)σ2
xin

(
(1− r2)

(1− c)2(1− ( r+c
1−c )

2)

) 3
2

=(r + c)σ2
xin

(
(1− r2)

(1− c)2 − (r + c)2

) 3
2

=(r + c)σ2
xin

(
(1− r)(1 + r)

(1 + r)(1− r − 2c)

) 3
2

=
(r + c)σ2

xin

(1− 2c
(1−r) )

3
2

=
(r + (1− r2)σ2

xin
σ2
w)σ

2
xin

(1− 2(1 + r)σ2
xin
σ2
w)

3
2

(c = (1− r2)σ2
wσ

2
xin

)

=
(rlxin

+ (1− (rlxin
)2)σ2

xin
σ2
w)σ

2
xin

(1− 2(1 + rlxin
)σ2

xin
σ2
w)

3
2

Let Wi,l = w, rlxin
= r, Xink,l

= xk, and Xinm,l
= xm

E[exp (Wi,l(Xink,l
+Xinm,l

))] =∫∫ ∞

−∞

1

2σ2
xin

√
1− r2

exp (
−(x2

k + x2
m − 2rxkxm)

2σ2
xin
(1− r2)

)dxkdxm.∫ ∞

−∞

exp (w(xk + xm))

2σ2
w

exp (
−w2

2σ2
w

)dw

=

∫∫ ∞

−∞

1

2σ2
xin

√
1− r2

exp (
−(x2

k + x2
m − 2rxkxm)

2σ2
xin
(1− r2)

) exp (
σ2
w(xk + xm)2

2
)dxkdxm

(Using MGF of Normal Distribution)

=

∫∫ ∞

−∞

1

2σ2
xin

√
1− r2

exp (
−(x2

k(1− c) + x2
m(1− c)− 2(r + c)xkxm)

2σ2
xin
(1− r2)

)dxkdxm

(Let c = (1− r2)σ2
wσ

2
xin

)
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Let r′ = r + c

1− c
, and σ′2(1− r′2) =

σ2
xin
(1− r2)

1− c

=

∫∫ ∞

−∞

1

2σ2
xin

√
1− r2

exp (
−(x2

k + x2
m − 2r′xkxm)

2σ′2(1− r′2)
)dxkdxm

=
σ′2

√
1− r′2

σ2
xin

√
1− r2

∫∫ ∞

−∞

1

2σ′2
√
1− r′2

exp (
−(x2

k + x2
m − 2r′xkxm)

2σ′2(1− r′2)
)dxkdxm

=
σ′2

√
1− r′2

σ2
xin

√
1− r2

=
σ2
xin
(1− r2)

√
1− r′2

σ2
xin
(1− c)(1− r′2)

√
1− r2

=

√
1− r2

(1− c)
√
1− r′2

=

√
1− r2

(1− c)2(1− r′2)

=

√
1− r2

(1− c)2(1− ( r+c
1−c )

2)

=

√
1− r2

(1− c)2 − (r + c)2

=

√
(1 + r)(1− r)

(1 + r)(1− r − 2c)

=
1√

(1− 2c
(1−r) )

=
1√

(1− 2(1 + r)σ2
xin
σ2
w)

(c = (1− r2)σ2
wσ

2
xin

)

=
1√

(1− 2(1 + rlxin
)σ2

xin
σ2
w)

Using these results we have,

E[(Num(Oi,j))
2] = L

σ2
xin

(1− p)(1− 4σ2
xin
σ2
w)

din
2 +1

+ L(L− 1)
(rlxin

+ (1− (rlxin
)2)σ2

xin
σ2
w)σ

2
xin

(1− 2(1 + rlxin
)σ2

xin
σ2
w)

din
2 +1

For denominator,

E[(Den(Oi,j))
2] = E[(

L∑
m=1

exp (

din∑
n=1

Wi,nXinm,n
))2]

= E[
L∑

m=1

exp (2

din∑
n=1

Wi,nXinm,n) +

L∑
m1=1

L∑
m2=1,m2 ̸=m1

exp (

din∑
n=1

Wi,n(Xinm1,n +Xinm2,n))]

= E[
L∑

m=1

exp (2

din∑
n=1

Wi,nXinm,n
)] + E[

L∑
m1=1

L∑
m2=1,m2 ̸=m1

exp (

din∑
n=1

Wi,n(Xinm1,n
+Xinm2,n

))]

=

L∑
m=1

E[exp (2
din∑
n=1

Wi,nXinm,n)] +

L∑
m1=1

L∑
m2=1,m2 ̸=m1

E[exp (
din∑
n=1

Wi,n(Xinm1,n +Xinm2,n))]
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E[exp (2
din∑
n=1

Wi,nXinm,n
)] = E[

din∏
n=1

exp (2Wi,nXinm,n
)]

=

din∏
n=1

E[exp (2Wi,nXinm,n)]

=

din∏
n=1

1√
(1− 4σ2

xin
σ2
w)

=
1

(1− 4σ2
xin
σ2
w)

din
2

E[exp (
din∑
n=1

Wi,n(Xinm1,n
+Xinm2,n

))] = E[
din∏
n=1

exp (Wi,n(Xinm1,n
+Xinm2,n

))]

=

din∏
n=1

E[exp (Wi,n(Xinm1,n +Xinm2,n))]

=

din∏
n=1

1√
(1− 2(1 + rlxin

)σ2
xin
σ2
w)

=
1

(1− 2(1 + rlxin
)σ2

xin
σ2
w)

din
2

So we have,

E[(Den(Oi,j))
2] =

L

(1− 4σ2
xin
σ2
w)

din
2

+
L(L− 1)

(1− 2(1 + rlxin
)σ2

xin
σ2
w)

din
2

From our assumption,

E[O2
i,j ] ≈

E[(Num(Oi,j))
2]

E[(Den(Oi,j))2]

=

L
σ2
xin

(1−p)(1−4σ2
xin

σ2
w)

din
2

+1
+ L(L− 1)

(rlxin
+(1−(rlxin

)2)σ2
xin

σ2
w)σ2

xin

(1−2(1+rlxin
)σ2

xin
σ2
w)

din
2

+1

L

(1−4σ2
xin

σ2
w)

din
2

+ L(L−1)

(1−2(1+rlxin
)σ2

xin
σ2
w)

din
2

=

σ2
xin

c
−din

2
1

(1−p)(1−4σ2
xin

σ2
w) + (L− 1)

(rlxin
+(1−(rlxin

)2)σ2
xin

σ2
w)σ2

xin
(1−2(1+rlxin

)σ2
xin

σ2
w)

c
−din

2
1 + (L− 1)

Where c1 =
1− 4dinσ

4
xin
σ2
qk

(1− 2(1 + rlxin
)dinσ4

xin
σ2
qk)

Var(Oi,j) =

σ2
xin

c
−din

2
1 + (L− 1)

 c
−din

2
1

(1− p)(1− 4dinσ4
xin
σ2
qk)

+ (L− 1)
(rlxin

+ (1− (rlxin
)2)dinσ

4
xin
σ2
qk)

(1− 2(1 + rlxin
)dinσ4

xin
σ2
qk)


Now for covariance we have,

Oi,jOm,j =
Num(Oi,j)Num(Om,j)

Den(Oi,j)Den(Om,j)

We again make the approximation that,

E[Oi,jOm,j ] ≈
E[Num(Oi,j)Num(Om,j)]

E[Den(Oi,j)Den(Om,j)]
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Num(Oi,j)Num(Om,j) =

(

L∑
k1=1

Drop(exp (

din∑
l=1

Wi,lXink1,l
)Xink1,j

))(

L∑
k2=1

Drop(exp (

din∑
l=1

Wm,lXink2,l
)Xink2,j

))

Num(Oi,j)Num(Om,j) =

L∑
k=1

Drop(exp (

din∑
l=1

Wi,lXink,l
)Xink,j

)Drop(exp (

din∑
l=1

Wm,lXink,l
)Xink,j

)+

L∑
k1=1

L∑
k2=1,k2 ̸=k1

Drop(exp (

din∑
l=1

Wi,lXink1,l
)Xink1,j

)Drop(exp (

din∑
l=1

Wm,lXink2,l
)Xink2,j

)

Thus we have,

E[Num(Oi,j)Num(Om,j)] =

E[
L∑

k=1

Drop(exp (

din∑
l=1

Wi,lXink,l
)Xink,j

)Drop(exp (

din∑
l=1

Wm,lXink,l
)Xink,j

)+

L∑
k1=1

L∑
k2=1,k2 ̸=k1

Drop(exp (

din∑
l=1

Wi,lXink1,l
)Xink1,j

)Drop(exp (

din∑
l=1

Wm,lXink2,l
)Xink2,j

)]

= E[
L∑

k=1

Drop(exp (

din∑
l=1
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Now it’s easy to see both these constants are always less than 1.

If they are significantly smaller than 1 (which happens if σqk is of considerable value) and din is also
sufficiently large, the approximations for variance and covariance become,
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The above situation corresponds to scenarios where one of the input to Softmax is extremely large
compared to the others, hence resulting in degenerate attention only attending to one token. This
can also be observed experimentally by setting σqk considerably large, such as by initializing them
to a few times larger than the standard Xavier initialization.

To avoid this degenerate attention, we choose smaller values of σq, σk, resulting in values of c1 and
c2 almost equal to 1. In that scenario, the approximate value for variance and covariance are,
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To get the final variance and covariance we can use results of Linear layer to account for WV. If
we initialize σq and σk to be small, in initial phase of training the output of Softmax layer can be

treated as being a constant = 1T
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L . Using this assumption we have,
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D MOMENT PROPAGATION THROUGH TRANSFORMER BLOCKS

D.1 TRANSFORMER ATTENTION BLOCK

A forward pass through attention block consists of LayerNorm, followed by Scaled Dot-Product
Attention, followed by an output projection layer (a Linear Layer), and finally a Dropout. Using the
results from above we get,
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D.2 TRANSFORMER FFN BLOCK

A forward pass through the FFN block of a transfer has a LayerNorm, then a Linear layer from d
to 4d, which is then passed through a ReLU gate, the output of which is the projected back to d
dimension using another Linear layer, and eventually passed through a Dropout. Again using the
results from above we get,

µxout = 0 (Last Linear Layer makes it 0)

σ2
xout

= 1 ∗ dinσ
2
w1

∗ (π − 1

2π
+

1

2π
) ∗ 4dinσ

2
w2

∗ 1

(1− p)
∗ σ2

xin

=
2d2inσ

2
w1

σ2
w2

(1− p)
σ2
xin

Covlxout
= dinσ

2
w1

∗ (
rlxin

4
+

(1− (rlxin
)2)0.5

2π
+

rlxin
sin−1(rlxin

)

2π
− 1

2π
+

1

2π
) ∗ 4dinσ

2
w2

∗ σ2
xin

= 4d2inσ
2
w1

σ2
w2

σ2
xin
(
rlxin

4
+

(1− (rlxin
)2)0.5

2π
+

rlxin
sin−1(rlxin

)

2π
)
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rlxout
= 2 ∗ (1− p) ∗ (

rlxin

4
+

(1− (rlxin
)2)0.5

2π
+

rlxin
sin−1(rlxin

)

2π
)

≈ (1− p) ∗ (
rlxin

2
+

1

π
+ (

1

2
− 1

π
)rlxin

2
) (Fitting a 2-nd order polynomial)

σ2
gin

= σ2
gout

∗ 1

(1− p)
∗ dinσ

2
w2

∗ 1

2
∗ 4dinσ

2
w1

=
2d2inσ

2
w1

σ2
w2

σ2
gout

(1− p)

Covlgin
= Covlgout

∗ 1 ∗ dinσ
2
w2

∗ (1
4
+

sin−1(rlxin
)

2π
) ∗ 4dinσ

2
w1

= 4d2inσ
2
w1

σ2
w2

Covlgout
(
1

4
+

sin−1(rlxin
)

2π
)

E SUMMARY TABLE OF MOMENT PROPAGATION THROUGH TRANSFORMER
COMPONENTS

In Table 11, Table 12, Table 13, Table 14, Table 15 and Table 16, we summarize the signal propaga-
tion formulae for all the transformer components.

Table 11: Moment Propagation (mean) during forward pass through components of transformer
model.

Component µxout

Embeddings 0

FFN (d1.d2) 0

ReLU
σxin√
(2π)

GeLU
σ2
xin√

2π(σ2
xin

+ 1)

LayerNorm (d) 0

Dropout (p) µxin

Softmax 1
L

SHA Block (without V) 0

Attn Block 0

FFN Block 0
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Table 12: Moment Propagation (variance) during forward pass through components of transformer
model.

Component σ2
xout

Embeddings 0

FFN (d1.d2) d1σ
2
w(σ

2
xin

+ µ2
xin
)

ReLU
(π − 1)

(2π)
σ2
xin

GeLU
σ2
xin
2π (π2 − σ2

xin
1+σ2

xin
+ sin−1(

σ2
xin

1+σ2
xin

) +
2σ2

xin

(1+σ2
xin

)
√

1+2σ2
xin

)

Layer Norm (d) 1

Dropout (p)
σ2
xin

+ pµ2
xin

1− p

Softmax (e
σ2
xin

(1−rlxin
) L
L−1 −1)e

2σ2
xin

(1−rlxin
) L
L−1

((L−1)e
σ2
xin

(1−rlxin
)
+1)2

SHA (without V)
dinσ

2
xin

(1− p)(c
−din

2
1 + (L− 1))

(
c
−din

2
1

(1−p)(1−4dinσ2
qσ

2
k)

+ (L− 1)
(rlxin

+(1−(rlxin
)2)dinσ

2
qσ

2
k)

(1−2(1+rlxin
)dinσ2

qσ
2
k)

)

Attn Block (Approx)
d2inσ

2
oσ

2
vσ

2
xin

(1− p)(c
−din

2
1 + (L− 1))

(
c
−din

2
1

(1−p)(1−4dinσ2
qσ

2
k)

+ (L− 1)
(rlxin

+(1−(rlxin
)2)dinσ

2
qσ

2
k)

(1−2(1+rlxin
)dinσ2

qσ
2
k)

)

FFN Block
2d2inσ

2
w1

σ2
w2

σ2
xin

(1− p)

61



Under review as a conference paper at ICLR 2024

Table 13: Moment Propagation (variance) during backwards pass through components of trans-
former model.

Component σ2
gin

Embeddings -

FFN (d1.d2) d2σ
2
wσ

2
gout

ReLU
1

2
σ2
gout

GeLU
[
1
4 + 1

2π sin−1 (
σ2
xin

σ2
xin

+1 ) +
σ2
xin

(5σ2
xin

+3)

2π(σ2
xin

+1)(2σ2
xin

+1)
3
2

]
σ2
gout

LayerNorm (d)
σ2
gout

σ2
xin

Dropout (p)
1

1− p
σ2
gout

Softmax ( (e
σ2
xin

(1−rlxin
) L
L−1 −1)e

2σ2
xin

(1−rlxin
) L
L−1

((L−1)e
σ2
xin

(1−rlxin
)
+1)2

+ 1
L2 )σ

2
gout

SHA Block (without V)
dinσ

2
gout

L(1− p)2
(1 + (L− 1)rlgout

(1− p))

Attn Block (Approx)
d2inσ

2
gout

σ2
vσ

2
o

L(1− p)2
(1 + (L− 1)rlgout

(1− p))

FFN Block
2d2inσ

2
w1

σ2
w2

σ2
gout

(1− p)
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Table 14: Covariance (along sequence length) propagation through the components of transformer
model.

Component Covlxout

Embeddings
∑ Ni ∗ (Ni − 1)

L ∗ (L− 1))
∗ σ2

wembd

FFN (d1.d2) d1σ
2
w(Cov

l
xin

+ µ2
xin
)

ReLU (
1

4
+

sin−1 (rlxin
)

2π
)Covlxin

− (1−
√
(1− (rlxin

)2))
σ2
xin

2π

GeLU
σ2
xin
4π (πrlxin

+ 2rlxin
sin−1 (

rlxin
σ2
xin

σ2
xin

+1 ) +
2σ2

xin
(σ2

xin
(1−(rlxin

)2)+1+(rlxin
)2)

(σ2
xin

+1)
√

(σ2
xin

+1)2−(rlxin
σ2
xin

)2
− 2σ2

xin
(σ2

xin
+1) )

LayerNorm (d) (1− 1

d
)
Covlxin

σ2
xin

Dropout (p) Covlxin

SHA (without V)
dinσ

2
xin

c
−din

2
2 + (L− 1)

(
c
−din

2
2

(1−2dinσ2
qσ

2
k)

+ (L− 1)
rlxin

(1−(1−rlxin
)dinσ2

qσ
2
k)(1−(1+rlxin

)dinσ2
qσ

2
k)

)

Attn Block (Approx)
d2inσ

2
oσ

2
vσ

2
xin

c
−din

2
2 + (L− 1)

(
c
−din

2
2

(1−2dinσ2
qσ

2
k)

+ (L− 1)
rlxin

(1−(1−rlxin
)dinσ2

qσ
2
k)(1−(1+rlxin

)dinσ2
qσ

2
k)

)

FFN Block 4dinσ
2
w1

σ2
w2

σ2
xin
(
rlxin

4
+

√
(1− (rlxin

)2

2π
+

rlxin
sin−1(rlxin

)

2π
)

Table 15: Covariance (hidden dimension) propagation through the components of transformer
model.

Component Covdxout

Embeddings 0

FFN (d1.d2) 0

ReLU (
1

4
+

sin−1 (rdxin
)

2π
)Covdxin

− (1−
√
(1− (rdxin

)2))
σ2
xin

2π

GeLU

LayerNorm (d) − 1

d− 1

Dropout (p) Covdxin

SHA Block(without V ) 0

Attn Block 0

FFN Block 0
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Table 16: Gradient covariance (along sequence length) propagation through the components of trans-
former model.

Component Covlgin

Embeddings -

FFN (d1.d2) d2σ
2
wCov

l
gout

ReLU (
1

4
+

sin−1 (rlxin
)

2π
)Covlgout

GeLU
[
1
4 + 1

2π sin−1 (
rlxin

σ2
xin

σ2
xin

+1 ) +
rlxin

σ2
xin

((2σ2
xin

+3)(σ2
xin

+1)−2(rlxin
σ2
xin

)2)

2π(σ2
xin

+1)((σ2
xin

+1)2−(rlxin
σ2
xin

)2)
3
2

]
rlgout

σ2
gout

LayerNorm (d)
Covlgout

σ2
xin

Dropout (p) Covlgout

SHA Block (without V)
dinσ

2
gout

L
(1 + (L− 1)rlgout

)

Attn Block (Approx)
d2inσ

2
gout

σ2
vσ

2
o

L
(1 + (L− 1)rlgout

)

FFN Block 4d2inσ
2
w1

σ2
w2

Covlgout
(
1

4
+

sin−1(rlxin
)

2π
)

F NUMERICAL VERIFICATION

We perform numerical verification for the formulae reported in Table 11, Table 12, Table 13, Ta-
ble 14, Table 15 and Table 16. The parameter ranges have been provided in Table 18. For each
parameter, 3-5 values were sampled uniformly (or log uniformly) across the range for numerical
simulation. Table 17 provides the percentage error corresponding to the 50th, 90th and 99th per-
centile. These simulation results are all fully reproducible using our code released as supplementary
material. Even at 99 percentile, no error (other than SHA backwards) is larger than 10%, verifying
our assumptions.

Table 17: Percentage Errors [50th, 90th, 99th percentile] for the theoretical formulas corresponding
to forward and backward pass through components of the transformer model.

Component µxout σ2
xout

σ2
gin

Covlxout
Covlgin

FFN [0.0, 0.4, 1.3] [0.4, 1.4, 2.8] [0.2, 1.0, 2.2] [0.4, 1.4, 2.8] [0.2, 1.0, 2.2]

ReLU [0.3, 1.3, 2.3] [0.5, 1.9, 3.4] [0.6, 1.5, 2.6] [0.3, 1.6, 3.1] [0.2, 1.1, 2.3]

GeLU [0.1, 1.0, 2.4] [0.2, 0.6, 1.3] [0.2, 0.6, 1.1] [0.1, 0.5, 1.2] [0.1, 0.4, 0.9]

LayerNorm [0.0 , 0.0, 0.0] [0.0, 0.0, 0.0] [0.4, 1.5, 3.2] [0.1, 0.5, 1.0] [0.2, 0.9, 2.2]

Dropout [0.0, 0.1, 0.5] [0.1, 0.5, 1.5] [0.1, 0.7, 1.5] [0.0, 0.4, 1.3] [0.1, 0.5, 1.2]

Softmax [0.0 , 0.0, 0.0] [0.2, 0.9, 4.0] [0.1, 0.6, 4.5] - -

Single-Head Atten. [0.2, 1.0, 2.5] [1.4, 4.1, 7.9] [2.2, 13.3, 44.5] [1.3, 3.9, 7.5] [1.6, 4.5, 8.2]
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Table 18: Range of input variance/correlations used for theoretical formula verification reported in
Table 17 for the theoretical formulas corresponding to forward and backward pass through compo-
nents of the transformer model. The dropout probability range was [0, 1) for Dropout and Single-
Head Attention, and σ2

w for FFN was [10−2, 102]/din.

Component µxin σ2
xin

σ2
gout

Corrlxin
Corrlgout

din dout L

FFN [-10, 10] [0.1, 10] [0.1, 10] [0, 1.0) [0, 1.0) [101, 103] [101, 103] [102, 103]

ReLU [0] [0.1, 10] [0.1, 10] [0, 1.0) [0, 1.0) - - [102, 103]

GeLU [0] [0.1, 10] [0.1, 10] [0, 1.0) [0, 1.0) - - [102, 103]

LayerNorm [-10, 10] [0.1, 10] [0.1, 10] [0, 1.0) [0, 1.0) [102, 103] - [102, 103]

Dropout [-10, 10] [0.1, 10] [0.1, 10] [0, 1.0) [0, 1.0) [102, 103] - [102, 103]

Softmax [0] [10−4, 1] [0.1, 10] [0, 1.0) - - - [300, 104]

Single-Head Atten. [0] [1] [0.1, 10] [0, 1.0) [0, 1.0) [102, 103] [32, 64, 128, 256] [300, 104]

G RANK COLLAPSE AND CORRELATION ANALYSIS

In the previous sections, we derived the formulas that determine how the correlation will change
through the Attention and FFN blocks both for forward and backward pass. Both attention and FFN
blocks modify the correlation as shown in the Table 19.

Table 19: Approximate Correlation Propagation during forward and backward pass through the
blocks of a transformer layer.

Component σ2
xout

rlxout
σ2
gin

rlgin

Attention Block
d2σ2

oσ
2
vσ

2
xin

∗ rlxin

(1− p)
1− p

d2σ2
oσ

2
v ∗ σ2

gout

(1− p)
rlgout

1− p

FFN Block
2d2σ2

w1
σ2
w2

σ2
xin

(1− p)
(1− p)(

1

π
+

rlxin

2
+ (

1

2
− 1

π
)rlxin

2
) σ2

xout
∗ σ2

gout
(1− p)( 12 +

sin−1 (rlxin
)

π )rlgout

Simplifying the formulae in the table above, we rewrite the output variance for the attention block
as σ2

xattn
= C1 ∗ rlxin

∗ σ2
xin

, and the output of the FFN block is σ2
xffn

= C2 ∗ σ2
xin

, where C1 and C2

are defined as follows.

C1 =
d2σ2

oσ
2
v

(1− p)
, C2 =

2d2σ2
w1

σ2
w2

(1− p)
,

This also helps us to rewrite the backward pass as the σ2
gattn

= C1 ∗ rlgout
∗ σ2

gout
and σ2

gffn
= C2 ∗ σ2

gout
.

Specifically in case of Xavier initialization with 0.1 dropout, C1 = 2.2, C2 = 0.4.

Assuming a dropout of 0.1, the FFN block (with the ReLU) will reduce the correlation if it rises
above 0.64 (where rlxout

< rlxin
for FFN block). And the attention block will never output a correla-

tion higher than 0.9. Hence correlation will never reach 1, but rather a steady, stable value between
ReLU’s maximum correlation and that of the attention block. Dropout’s effect in preventing rank
collapse was also observed in Rong et al. (2019).

We can approximate the stable value of correlation after many layers based on the weightage average
of the correlation in the Attention output and FFN output. When the attention output is added to the
skip connection, the new correlation will be a weighted (by variance) average of the correlation
among the tokens of attention output and among the tokens in the skip connection. And the same
will happen after the FFN block.
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A weighted average of the correlations of FFN and attention blocks gives the stable asymptotic
correlation rlxmax

rlxmax
=

C1 ∗ (1− p) + C2 ∗ (1− p)(
1

π
+

rlxmax

2
+ (

1

2
− 1

π
)rlxmax

2
)

C1 + C2

Specifically for the case of xavier initialization, solving the above equation with C1 = 2.2, C2 = 0.4,
gives rlxmax

≈ 0.88.

Similarly, the correlation for backward gradient will also converge at a stable value rlgmax
, obtained

by solving the below equation -

rlgmax
=

C1 ∗ (1− p) + C2 ∗ (1− p)( 12 +
sin−1 (rlxmax )

π )rlgmax

C1 + C2

Specifically for the case of xavier initialization, this gives rlgmax
= 0.87. Note how rlgmax

≈ rlxmax
.

Discussion on Noci et al. (2022) Noci et al. (2022) focuses primarily on linear activation, we
theoretically analyze the change in output correlation caused by ReLU. We find that ReLU (or any
asymmetric non-linearity in general) critically affects correlation. As our closed form expressions
suggest, both FFN block (because of ReLU) and dropout reduce the correlation. While Noci et al.
(2022) mentions the use of dropout, as we show above and observe empirically in Figure 6, rank will
not collapse with dropout, and perhaps Noci et al. (2022) did not use dropout. Further, we observed
that Figure 10 of the supplementary of Noci et al. (2022) shows a correlation above 1, which is
impossible.

We replicated the experimental settings of Noci et al. (2022) without dropout, and observed that the
rank collapse occurs due to incorrect initialization. They use a rather non-standard version of xavier
initialization - instead of 2

fanin+fanout
, they use 1

fanout
. Hence, they initialize a much higher value

for V as fanin is much greater than fanout (“Number of heads” times greater), and this results in
variance of the output of the attention block C1 being much higher than FFN C2. As attention block
outputs a much higher correlation than the FFN block, increasing its output variance without using
dropout will result in rank collapse. This highlights the criticality of correct initialization, as well as
the explainability power of our theoretical framework proposed in the paper.

H MOMENT PROPAGATION THROUGH THE ENTIRE TRANSFORMER MODEL

H.1 VANILLA PRE-LN

We will use the approximations listed in Table 2 here.

H.1.1 FORWARD PASS

For forward pass, a Transformer Pre-LN has LayerNorm followed by the Attention block, residual
connection, LayerNorm, and then the FFN block. Let σ2

layer be the output variance after 1 such layer,
and σ2

model be the output variance after the entire model of N layers.

σ2
xattn

=
d2σ2

oσ
2
v ∗ rlxin

(1− p)

σ2
xffn

=
2d2σ2

w1
σ2
w2

(1− p)

σ2
xlayer

= σ2
xin

+ σ2
xattn

+ σ2
xffn
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= σ2
xin

+
d2σ2

oσ
2
v ∗ rlxin

(1− p)
+

2d2σ2
w1

σ2
w2

(1− p)

Let, C1 =
d2σ2

oσ
2
v

(1− p)
, C2 =

2d2σ2
w1

σ2
w2

(1− p)bu
,

Then, σ2
xlayer

= σ2
xin

+ C1 ∗ rlxin
+ C2

As we discuss in Section 3.4, the correlation rlxin
quickly reaches a stable constant maximum value

rlxmax
, which can be found using the calculations in Appendix G. Let rlxmin

> 0 be the minimum value
of this correlation, let C3 = C1 ∗ rlxmax

+ C2, and C4 = C1 ∗ rlxmin
+ C2. Then,

σ2
xin

+ C4 ≤ σ2
xlayer

≤ σ2
xxin

+ C3

Hence after N layers,

σ2
xin

+N ∗ C4 ≤ σ2
xmodel

≤ σ2
xin

+N ∗ C3

=⇒ σ2
xmodel

= Θ(N) (2)

This shows that output variance of Pre-LN will increase linearly with number of layers N .

In practice, because the correlation quickly reaches rlxmax
, the variance of the entire model σ2

xmodel
≈

σ2
xin

+N ∗ C3.

Discussion: This has the effect that transformer blocks near the output can affect the model output
much less, as the skip connection variance increases but block output variance is constant. We
conjecture that parameters in these are hence not being utilized to their full potential. Specifically in
case of Xavier initialization, C1 = 2.2, C2 = 0.4, rlxmax

= 0.85. For large d, σ2
xin

will be negligibly
small compared to σ2

xlayer
, so we have -

σ2
xmodel

≈ C3 ∗N ≈ (2.2 ∗ 0.85 + 0.4)N ≈ 2.2N

H.1.2 BACKWARD PASS

For the backward pass, a Transformer Pre-LN gradient will first backpropagate through the FFN
block, then gets rescaled by Layernorm, and added with the skip connection. It then backpropagates
through the Attention block, gets rescaled by Layernorm, and finally added with the skip connection.
Let σ2

g,n be the gradient variance backpropagating from the nth layer, and σ2
gmodel

be the gradient
variance after the entire model of N layers.

For the Attention block, let σ2
gattn,n−1 be the gradient backpropagating from the block. Then for long

sequence length L we have -

σ2
gattn,n−1 =

d2σ2
oσ

2
v ∗ σ2

gout,n

L(1− p)
(1 + (L− 1)rlgout,n)

≈
d2σ2

oσ
2
v ∗ rlgout,l

∗ σ2
gout,n

(1− p)

σ2
gattn,n−1 is then rescaled by the Layernorm to give σ2

gattn-layernorm,n−1. As Layernorm scales gradient by
the inverse of the input variance σ2

xin,n−1, which from the section above, we know is approximately
σ2
xin,n−1 = C3 ∗ (n− 1). Then
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σ2
gattn,n−1 = C1 ∗ rlgout,n ∗ σ2

gout,n

σ2
gattn-layernorm,n−1 =

C1 ∗ rlgout,n ∗ σ2
gout,n

σ2
xin,n−1

≈
C1 ∗ rlgout,n ∗ σ2

gout,n

C3 ∗ (n− 1)

Therefore, the final gradient σ2
gattn-layer,n−1 after addition with the skip connection is

σ2
gattn-layer,n−1 = (1 +

C1 ∗ rlgout,n

C3 ∗ (n− 1)
)σ2

gout,n

Similarly, we can get σ2
gffn-layer,n−1 for the ffn block. Then to get the gradient backpropagated through

the entire layer σ2
gout,n−1, we have,

σ2
gffn-layer,n−1 = (1 +

C2

C3 ∗ (n− 1)
)σ2

gout,n

σ2
gout,n−1 = (1 +

C1 ∗ rlgout,n

C3 ∗ (n− 1)
)(1 +

C2

C3 ∗ (n− 1)
)σ2

gout,n

σ2
gout,n−1 ≈ (1 +

C1 ∗ rlgout,n

C3 ∗ (n− 1)
+

C2

C3 ∗ (n− 1)
)σ2

gout,n

= (1 +
C1 ∗ rlgout,n + C2

C3 ∗ (n− 1)
)σ2

gout,n

= (1 +
C1 ∗ rlgout,n + C2

(C1 ∗ rlxin,n + C2) ∗ (n− 1)
)σ2

gout,n

Where, ignore higher order terms for large n. As we discuss in the main paper, the correlation
rlgout,n quickly reaches a stable constant maximum value rlgmax

, which is approximately equal to (but
slightly less than) rlxmax

. Hence, we can approximately replace the correlations with their maximum
values. Note that while rlgout,n and rlxin,n will have slightly different stable values, the term n−1 will
dominate in the following equations. Hence,

σ2
gout,n−1 = (1 +

C1 ∗ rlgout,n + C2

(C1 ∗ rlxin,n + C2) ∗ (n− 1)
)σ2

gout,n

≈ (1 +
C1 ∗ rlgmax

+ C2

(C1 ∗ rlxmax
+ C2) ∗ (n− 1)

)σ2
gout,n

≈ (1 +
Cgpre

n− 1
)σ2

gout,n

Since Cgpre > 0, we will witness an increase in gradient going backward. Applying the above
equation repeatedly until the final layer N , this recurrence can be approximately solved by treating
σ2
gout,n as a continuous function of n, taking logarithm of both sides, and integrating. This gives the

following solution for σ2
gout,n:

σ2
gout,n = σ2

gout,N ∗ (N
n
)
Cgpre
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If Cgpre ≈ 1, we get hyperbolic growth as shown below

σ2
gout,n = σ2

gout,N ∗ (N
n
)

This shows that gradient variance of Pre-LN will increase hyberbolically with number of layers N
while going backwards.

Discussion: This has the effect that much lower learning rate is required for the entire model,
because the gradients near the input layers are much higher, slowing down learning and making the
model unstable.

H.2 VANILLA POST-LN

H.2.1 FORWARD PASS

The forward pass of Post-LN is trivially always 1 at initialization, because the skip connection does
not cross the LayerNorm.

H.2.2 BACKWARD PASS

Following an analysis similar to that for Pre-LN, we get

σ2
gffn-layer,n−1 =

1 + C2

1 + C1 ∗ rlxout,n−1

σ2
gout,n

σ2
gattn-layer,n−1 =

1 + C1 ∗ rlgout,n

1 + C2
σ2
gout,n

σ2
gout,n−1 =

1 + C1 ∗ rlgout,n

1 + C2
∗ 1 + C2

1 + C1 ∗ rlxout,n−1

∗ σ2
gout,n

=
1 + C1 ∗ rlgout,n

1 + C1 ∗ rlxout,n−1

σ2
gout,n

Let C5,n =
1+C1∗rlgout,n

1+C1∗rlxout,n−1

. As we discuss in Appendix G, the correlations both quickly reach a

maximum stable value. But the rlgout,n’s maximum value rlgmax
is slightly different than rlxmax

. Let

C5 =
1+C1∗rlgmax
1+C1∗rlxmax

, then C5 can be either greater or smaller than 1. Hence, we get

σ2
gattn-layer,n−1 = C5,nσ

2
gout,n

=

N∏
i=n

C5,iσ
2
gout,N

≈ C
(N−n)
5 σ2

gout,N

σ2
gattn-layer,n−1 = C

(N−n)
5 σ2

gout,N (3)

This shows that gradient variance of Post-LN will decrease/increase exponentially with number of
layers N while going backwards. Even very slightly different value of C5 from 1, such as 0.96, will
cause a 2000x fall in gradient after 200 layers.

Discussion: This shows why Post-LN transformer is much more difficult to train for deeper models
than Pre-LN. While for Pre-LN the backwards gradient increases hyber-bolically to a maximum
of N , in Post-LN the gradient can increase or decrease exponentially, stopping the model from
converging.
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H.3 DEEPSCALELM PRE-LN

H.3.1 FORWARD PASS

In DeepScaleLM, the weight initialization are chosen specifically so that σ2
xattn

and σ2
xffn

are both
equal to 1 for all layers, by iteratively calculating rlxin

as detailed in Appendix M. Also, the embed-
dings are initialized so that σ2

xin
is also 1. Hence,

σ2
layer = λ2 ∗ σ2

skip + β2 ∗ σ2
block

= λ2 + β2 = 1

Hence the forward pass variance remains 1 throughout the model.

H.3.2 BACKWARD PASS

For the FFN-block, we have σ2
xin,n−1 = σ2

xout,n−1 = 1, as per equations in Table 2 of the main paper.

Similar to Vanilla-PreLN, we arrive at

σ2
gattn-layernorm,n−1 =

C1 ∗ rlgout,n ∗ σ2
gout,n

σ2
xin,n−1

Here, σ2
xin,n−1 = 1 as shown above, and since weights are initialized so that C1 ∗ rlxin

= 1. Let

C6,n =
rlgout,n

rlxout,n−1

, and C6 =
rlgmax
rlxmax

. As we show in the main paper, C6 ≈ 1. Similarly to previously,

we use the maximum values of these correlations instead to get -

σ2
gattn-layernorm,n−1 =

rlgout,n

rlxin,n−1

∗ σ2
gout,n

= C6,n ∗ σ2
gout,n

Therefore, assuming no covariance between block gradients and skip connection (which will be true
at initialization), the final gradient σ2

gattn-layer,n−1 after addition with the skip connection is

σ2
gattn-layer,n−1 = λ2σ2

gout,n + β2σ2
gattn-layernorm,n−1

= λ2σ2
gout,n + β2C6,nσ

2
gout,n

= (λ2 + β2C6,n) ∗ σ2
gout,n

= (1 +
C6,n − 1

N
) ∗ σ2

gout,n

Similarly for the FFN layer, σ2
gffn-layer,n−1 = σ2

gout,n, as σ2
xin,n−1 = σ2

xout,n−1 = 1.

Hence,

σ2
gout,n−1 = (1 +

C6,n − 1

N
) ∗ σ2

gout,n,

σ2
gout,1 =

N∏
i=1

(1 +
C6,n − 1

N
) ∗ σ2

gout,N ,

≈
N∏
i=1

(1 +
C6 − 1

N
) ∗ σ2

gout,N ,

≈ (1 +
C6 − 1

N
)
N−1

∗ σ2
gout,N ,

= eC6−1 ∗ σ2
gout,N
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≈ σ2
gout,N

, where we applied (1− k
N )N ≈ e−k, and C6 ≈ 1.

Discussion: Hence for DeepScaleLM, the backward variance of gradient remains constant
(bounded by a constant almost 1) across all layers.

H.4 DEEPSCALELM POST-LN

H.4.1 FORWARD PASS

Same as vanilla Post-LN, this will remain preserved at 1.

H.4.2 BACKWARD PASS

Following an analysis similar to that for Vanilla Post-LN, we get

σ2
gffn-layer,n−1 = σ2

gout,n

σ2
gattn-layer,n−1 = (λ2 ∗ 1 + β2 ∗ C1 ∗ rlgout,n)σ

2
gout,n

= (λ2 + β2 ∗
rlgout,n

rlxin,n

)σ2
gout,n

σ2
gout,n−1 = (λ2 + β2 ∗

rlgout,n

rlxin,n

)σ2
gout,n

Similar to Pre-LN, we use the maximum value of these correlations, and assume C6 = 1. We get

σ2
gout,n−1 = (λ2 + β2 ∗

rlgmax

rlxmax

)σ2
gout,n

= (λ2 + β2C6)σ
2
gout,n

≈ (λ2 + β2)σ2
gout,n

= σ2
gout,n

Hence for DeepScaleLM, the backward variance of gradient remains constant across all layers.

Discussion: Similar to DeepScale-LM Pre-LN, the assumption C6 = 1 is not required, and yields
the same constant bound if we do not assume it to be 1.

H.5 DEEPSCALELM (SIMPLIFIED) PRE-LN

H.5.1 FORWARD PASS

For simplified DeepScaleLM, the initialization for the FFN block does not change, so its output
remains 1 same as DeepScaleLM. For the Attention block, we changed its initialization to mimic that
of the FFN block. We will show that initially, simplified DeepScaleLM’s forward pass is bounded.

σ2
xffn

= 1 as DeepScaleLM, σ2
xattn

=
rlxin
2 . Therefore, the output variance after layer n will be

σ2
xattn-skip,n = λ2 ∗ σ2

xlayer,n−1
+ β2 ∗ σ2

xattn

= (1− 2

N
) ∗ σ2

xlayer,n−1
+

1

N
∗ rlxin

Similarly after the FFN block, the output skip will be -

σ2
xlayer,n = λ2 ∗ σ2

xattn-skip,n + β2 ∗ σ2
xffn
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= (1− 2

N
) ∗ ((1− 2

N
) ∗ σ2

xlayer,n−1
+

1

N
∗ rlxin

) +
2

N
∗ 1

= (1− 2

N
)2 ∗ σ2

xlayer,n−1
+ (1− 2

N
) ∗ 1

N
∗ rlxin

+
2

N

As correlation coefficient rlxin
≤ 1, we get,

σ2
xlayer,n ≤ (1− 2

N
)2 ∗ σ2

xlayer,n−1
+ (1− 2

N
) ∗ 1

N
∗ 1 + 2

N

= (1− 2

N
)2 ∗ σ2

xlayer,n−1
+

3

N
− 2

N2

≤ (1− 2

N
)2 ∗ σ2

xlayer,n−1
+

3

N

Applying the above recurrence equation N times, we get

σ2
xlayer,N ≤ (1− 2

N
)2N ∗ σ2

xlayer,0
+

3

N
∗

N∑
i=0

(1− 2

N
)2i

= (1− 2

N
)2N ∗ σ2

xlayer,0
+

3

N
∗
1− (1− 2

N )2N

1− (1− 2
N )2

Since λ2 + β2 = 1 and β2 is small for large N. We can rewrite the above equations completely in
terms of β as follows

σ2
xlayer,N = (1− β2)2N ∗ σ2

xlayer,0
+

3

2
β2 ∗ 1− (1− β2)2N

1− (1− β2)2
(4)

≈ (1− β2)2N ∗ σ2
xlayer,0

+
3

4
(1− (1− β2)2N ) (5)

For large N , we know (1− k
N )N ≈ e−k. So the above becomes -

σ2
xlayer,N ≈ e−4 ∗ σ2

xlayer,0
+

3

N
∗ 1− e−4

4
N − 4

N2

≤ e−4 ∗ σ2
xlayer,0

+
3

N
∗ 1− e−4

4
N

= e−4 ∗ 1 + 3

4
∗ (1− e−4)

=
3

4
+

1

4e4

This gives us an upper bound on the output variance after N layers. By setting rlxin
= 0 instead of 1

in the equation above, and proceeding similarly, we can also arrive at a lower bound of 1
2 + 1

2e4 .

1

2
+

1

2e4
≤ σ2

xlayer,N ≤ 3

4
+

1

4e4
(6)

Discussion Informally, this is because the attention block output variance will be between 0 and
0.5, and ffn block output always 1. Because of our λ, β scaling, the output will slowly converge to
be in between the two outputs.

Note that the above derivation assumes no correlation between the block output and the skip connec-
tion. As we mentioned in our main paper, we do observe correlation between the input and the out-
put. As such, theoretically, after every block, the variance σ2

xlayer,n
can increase by σ2

xblock
+
√
σ2
xlayer,n

.

This will cause the final output variance to increase by factors of 2 ∗
√
N . In practice however, we

observe the output variances to not grow too large.
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H.5.2 BACKWARD PASS

Similar to DeepScaleLM Pre-LN, we arrive at

σ2
gattn-layernorm,n−1 =

C1 ∗ rlgout,n ∗ σ2
gout,n

σ2
xin,n−1

≈ 0.5 ∗ C6

σ2
xin,n−1

∗ σ2
gout,n

σ2
gattn-layer,n−1 = λ2σ2

gout,n + β2σ2
gattn-layernorm,n−1

= (λ2 + β2 ∗ 0.5 ∗ C6

σ2
xin,n−1

) ∗ σ2
gout,n

= (1 +
2

N
∗ (0.5 ∗ C6

σ2
xin,n−1

− 1)) ∗ σ2
gout,n

Similarly, for the FFN layer, we get

σ2
gffn-layer,n−1 = (1 +

2

N
∗ ( 1

σ2
xin,n−1

− 1)) ∗ σ2
gout,n

Multiplying these, we get

σ2
gout,n−1 = (1 +

2

N
∗ (0.5 ∗ C6

σ2
xin,n−1

− 1)) ∗ (1 + 2

N
∗ ( 1

σ2
xin,n−1

− 1)) ∗ σ2
gout,n

≈ (1 +
2

N
∗ (0.5 ∗ C6

σ2
xin,n−1

+
1

σ2
xin,n−1

− 2)) ∗ σ2
gout,n

As 0.5 ≤ σ2
xin,n−1, we get −4 ≤ ( C6

σ2
xin,n−1

+ 2
σ2
xin,n−1

−4) ≤ 2C6+2. Hence, on applying the above

recurrence N times, we get

e−4 ∗ σ2
gout,N ≤ σ2

gout,n−1 ≤ e2C6+2 ∗ σ2
gout,N

Hence, we show that even for simplified DeepScaleLM Pre-LN, the maximum relative increase/fall
in gradient variance is bounded across layers.

Discussion: The above derivations will also be valid if there is correlation in the input. Correlation
will cause σ2

xin,n−1 to increase, effectively decreasing the backpropagated gradient through the block
to decrease (as Layernorm will scale by inverse of σ2

xin,n−1). However, even in that case, our gradient
will still be bounded by the above lower-bound.

Intuitively, as the gradient can flow freely through the skip connection, hence, σ2
gout,n−1 ≥ λ4∗σ2

gout,n,
which when applied N times, yields σ2

gout,1 ≥ e−4 ∗ σ2
gout,N

H.6 DEEPSCALELM (SIMPLIFIED) POST-LN

H.6.1 FORWARD PASS

The forward pass variance for Post-LN is trivially bounded.

H.6.2 BACKWARD PASS

Following an analysis similar to that for DeepScaleLM Post-LN, we get
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σ2
gout,n−1 =

λ2 + 0.5 ∗ β2 ∗ rlgout,n

λ2 + 0.5 ∗ β2 ∗ rlxin,n

σ2
gout,n

=
1 + 2

N (0.5rlgout,n − 1)

1 + 2
N (0.5rlxin,n − 1)

σ2
gout,n

Applying taylor expansion, we get,

σ2
gout,n−1 ≈ (1 +

2

N
((0.5rlgout,n − 1)− (0.5rlxin,n − 1)))σ2

gout,n

= (1 +
1

N
(rlgout,n − rlxin,n))σ

2
gout,n

The above equation can be rewritten in terms of β as follows

σ2
gout,n−1 = (1 +

β2

2
(rlgout,n − rlxin,n))σ

2
gout,n (7)

As −2 ≤ (rlgout,n − rlxin,n) ≤ 2, applying the above recurrence N times we get

e−2 ∗ σ2
gout,N ≤ σ2

gout,n−1 ≤ e2 ∗ σ2
gout,N

Discussion: The above derivations assume no correlation in the input, and hence is only correct at
initialization. However, if there is correlation between the block output and skip connection (rx), the
layernorm will cause σ2

gout,n−1 to be down-scaled by a factor of 1 + 2∗rx√
N

, where c is some constant,
as opposed to 1 + 2

N above. However, if there is also correlation in the gradients of the block and
skip connection (rg), the numerator in the equations above for σ2

gout,n−1 will also be increased, by a
factor of 1 + 2∗rg√

N
. Hence if the correlations among the gradients and among the output are similar,

the above bounds will remain. If β2 is set as 1
N2 , then even if input correlations exist, the backward

gradient will be bounded, following a similar derivation as above. However, we conjecture that this
decreases the ability of the transformer layers to modify the skip connection too strongly, decreasing
the “expressivity” of the model. This is similar to the approach of DSInit, which we show in our
main paper does indeed decrease model performance.

I MODEL MOMENT FIGURES

I.1 VALIDITY OF THEORETICAL PREDICTIONS AND EXPLODING GRADIENTS EVEN AFTER
TRAINING

When training a 64-layer Language Model, we observed repeated gradient explosions causing model
divergence. Also, our 64-layer model initially performed worse than a smaller 48-layer model. We
observed that (1) The norm of the model output was increasing going forwards (2) The backprop-
agated gradient was increasing going backward. These issues were more pronounced in the deeper
64-layer model compared to the 48-layer model. We applied our formulae to understand these in-
stabilities.

In Figure 9, we can see the observed growth in the output of a 48-layer PreLN model after 100k
training steps. The observed growth across 48 layers remains very close to our predicted values. We
observe a similar trend for the backward pass of our 64-layer PreLN model after it was trained for
150k steps. Figure 8 shows the observed gradient explosion hows the observed gradient explosion
vs. our hyperbolic growth estimation. Interestingly, our theoretical estimates hold approximately
even after the models have been trained for a large number of steps. The model stays in the regime
it is initialized with, highlighting the importance of correct initialization.

I.2 IMPORTANCE OF RESIDUAL SCALING

Any value for λ or β such that λ2 + β2 = 1 is sufficient to preserve the output (similar to Liu et al.
(2020b)) and gradients at initialization. However, we observe that for high β, as training progresses,
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Figure 8: Gradient explodes backward for
64-layer pre-LN, increasing hyperbolically
with number of layers N , after 150k train-
ing steps. Our theoretical models still hold -
the model never escapes the regime it is ini-
tialized in.
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Figure 9: Linear growth in the forward pass
for a 48-layer 1024-d PreLN model after
training for 100k steps. Our theoretical mod-
els still hold well.
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Figure 10: Gradient vanishes for Deep-
ScaleLM, decreasing exponentially with lay-
ers N , using fixed λ2 = 0.9 and β2 = 0.1,
after 50k training steps.
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Figure 11: Gradient does not vanish for
DeepScaleLM, using fixed λ2 = 1 − 1

N and
β2 = 1

N , after 50k training steps.

the gradient starts to vanish, as shown in Figure 10. This is because Cov(residual, block) is no
longer zero, which causes the forward output to grow across layer and the gradient to vanish.

On the contrary when we choose β2 = 1
N , gradient is conserved even after 50k steps of training as

shown in Figure 11.

J COMPUTE

J.1 THEORETICAL COMPUTE

Table 20 provides the exact compute for the models reported in Table 4. We follow the code provided
by Electra (Clark et al., 2020) to calculate the each model’s compute (FLOPs). We observe that up
to 200 layers, the extra compute is within 6− 7% of the original shallow model.
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Table 20: Model compute with increasing depth (keeping Nd2 constant).

Layers(N) d Compute (Flops) % Extra
165M

12 1024 1.06e20 -
48 512 1.03e20 -2.5%
192 256 1.12e20 6.3%
784 128 1.38e20 30.6%

330M
24 1024 1.92e20 -
96 512 1.96e20 2.3%
384 128 2.19e20 14.5%

J.2 WALL CLOCK TIMES

We also compared wall clock time overheads, and found them to not be too large. For example,
the 48-layer-512-d model has only 9.8% overhead in wall clock time compared to 12-layer-1024-d
model. Even when larger number of layers, such as 96-layer-512-d, the overhead is only 14.9%
compared to 24-layer-1024-d model. Profiling revealed majority of the overhead was due to extra
latency of added GPU kernel launches. Hence, approaches such as cudaGraphs (which batches
kernel launches together) or graph compilation techniques may decrease this overhead further.

This overhead will decrease the bigger the original model size, and becomes much smaller. For
example, for a 5B params model with 24-Layers-4096d (a reasonable shape in contemporary models,
for example, LLaMa 7B has 32L-4096D) has much less compute overhead - only 6.6% overhead at
96 layers, and 13.6% overhead at 192 layers.

Despite this wall-clock time overhead, due to large performance gains from increasing depth, the
165M params 192-L model from Table 4 outperforms the vanilla 330M bert-large 24-L model with
2x more params, even at equal wall times.

Furthermore, a large fraction of the perplexity improvements mentioned happen when increasing the
number of model layers by 4x - and as shown above, the wall clock time overhead is minimal. Mak-
ing standard models 4x more deep to 50 − 100 layers, will provide a large fraction of performance
gains without much overhead.

K DISCUSSION OF RELATIVE STRENGTH

In Equation 4, we discussed that the backward recurrence equation for PreLN can be written as

σ2
xlayer,N ≈ (1− β2)2N ∗ σ2

xlayer,0
+

3

4
(1− (1− β2)2N )

Replacing β2 = k
Nα and using (1 + k

Nα )
N = ekN

1−α

, we get

σ2
xlayer,N ≈ e2cN

1−α

∗ σ2
xlayer,0

+
3

4
(1− e2cN

1−α

)

= e2cN
1−α

∗ (σ2
xlayer,0

− 3

4
) +

3

4

Hence, the fall in gradient for β2 = k
Nα is O(ekN

1−α

).

Similarly for PostLN, we can use Equation 7

σ2
gout,n−1 = (1 +

β2

2
(rlgout,n − rlxin,n))σ

2
gout,n
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(1− β2) ∗ σ2
gout,N ≤ σ2

gout,n−1 ≤ (1 + β2) ∗ σ2
gout,N

Hence, for N layers, the gradient fall/growth is again O(e±kN1−α

).

L DISCUSSION OF APPROXIMATIONS AND ASSUMPTIONS

L.1 ILLUSTRATIVE APPROXIMATIONS OF FULL FORMULAE IN MAIN PAPER

Some values listed in Table 1 are approximations/illustrative simplifications of their full closed forms
in Appendix E and Appendix C. We discuss all of these below.

For ReLU forward correlation, we used a simple polynomial regression of the closed form formula.
This simple regression is a remarkably good fit, as shown in figure Figure 12.

For layernorm, we ignored the factor of 1 compared to d, or 1/d compared to 1, assuming large
enough hidden dimension d.

For SHA without V, we used the final simplified formulae for σ2
xout

and output correlation from
Appendix C.8. For the gradient, we further simplified the formulae in Appendix C.8, assuming
L ≈ L− 1.

In Table 2, we applied a similar approximation as above for ReLU, from the full formula in Ap-
pendix E for output correlation. This polynomial approximation is also a very good fit, as shown in
Figure 13.
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Figure 12: Approximation of the Relu for-
ward correlation formula
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Figure 13: Approximation of the FFN for-
ward correlation formula, without dropout.
Dropout will reduce the above correlation by
1− p.

L.2 ASSUMPTIONS AND APPROXIMATIONS IN DERIVATIONS

Except for attention and softmax all other derivations of transformer components - Embeddings,
FFN, ReLU/GeLU, Dropout, FFN Block are fully exact, assuming only normal distribution of in-
puts, weights and gradients. Furthermore for LayerNorm and softmax, we only add the assumption
that the sequence length/hidden dimension is large.

For simplification of these formulae when doing empirical analysis, we used additional assumptions.
For embeddings, we assumed Zipf’s law to calculate initial input correlation in tokens, as well as
assumed uniform distribution for segment lengths for next sentence prediction task of BERT. Note
that this assumption is not strictly required, and can also be empirically observed and given as input
to our method.

For LayerNorm, we assume the hidden dimension is large, d >> 1 (so that we can ignore factors
related to d − 1 or 1/d). For softmax, we assume sequence length L is large so that the sum of
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log-normals can be written as another log-normal. The single-head attention requires some more
assumptions as are listed in Appendix C.8.

M DEEPSCALELM PSEUDOCODE

## Define constants for scaling residual and output
λ2 = 1− 2

N
; β2 = 2

N
## Define constants for embedding and FFN block
σ2
e = 1−p

3
; σ2

f = 1
d
∗
√

1−p
2

## Scale skip connection and block output
def add_skip(x, f(x)):

return λ ∗ x + β ∗ f(x)

## Find layerwise input correlation upto N layers
def corr_input_layerwise(r, N):

rN = []
for i in range(N):

r = λ2 . r + β2(1− p)

r = λ2 . r + β2(1− p)(rlxin +
(1− (rlxin)

2)0.5

π
−

rlxincos
−1(rlxin)

π
)

rN.append(r)
return rN

## Define constants for attention block
σ2
l,o = 1

d
∗
√

1−p

r
l,n
xin

; σ2
qk = 1

d
; r = rlxin

where rl,nxin
= corr_input_layerwise(r, N)[n]

## Stable initialization of weights
def dslm_init(w, l):

if w is ['ffn']:
nn.init.normal_(w, gain = σf)

elif w is ['v_proj', 'out_proj']:
nn.init.normal_(w, gain = σl,o)

elif w is ['q_proj', 'k_proj']:
nn.init.normal_(w, gain = σqk)

elif w is ['embd']:
nn.init.normal_(w, gain = σe)

Figure 14: Pseudo-code for our proposed method DeepScaleLM: We scale the block output and
the skip connection before adding, and keep track of correlation across layers. We appropriately
initialize the weights. (N : num of layers, d: model hidden dimension, p: dropout probability, rlxin

is calculated based on expressions provided in subsection C.1.)

78



Under review as a conference paper at ICLR 2024

## Define constants of DeepScaleLM
λ2 = 1− 2

N
; β2 = 2

N

σ2
e = 1−p

3
; σ2

qk = 1
d

; σ2
f = 1

d
∗
√

1−p
2

## Scale skip connection and block output
def add_skip(x, f(x)):

return λ ∗ x + β ∗ f(x)

## Stable initialization of weights
def init(w):

if w is ['ffn', 'v_proj', 'out_proj']:
nn.init.normal_(w, gain = σf)

elif w is ['q_proj', 'k_proj']:
nn.init.normal_(w, gain = σqk)

elif w is ['embd']:
nn.init.normal_(w, gain = σe)

Figure 15: Pseudo-code for simplified version of our DeepScaleLM method.

N HYPER-PARAMETERS

We used Megatron-LM’s default BertWordPieceLowerCase tokenizer, with the original BERT
lower-cased vocab, and with trainable position embeddings. The same hyper-parameters (includ-
ing LR schedule, warmup) were used for all models, and LR search over the range below was
performed for all models. The final best models always had optimal LR within the range and not at
the boundary of the LR range for all of our experiments.

Table 21: Training Hyper-Parameters. We use all original hyper-parameters of BERT, except for
learning-rate(LR).

Parameters Values
Optimizer Adam
β2, β2 0.9, 0.999
Effective Batch Size 256
Drop-out (p) 0.1
Sequence Length 256
Train Iters 100,000
Num GPUs 8
Learning rate [1, 3, 5, 7, 10]*10−4

Schedule Linear
LR Decay Iterations 98%
Warmup steps 1%
Min LR 1 ∗ 10−5

Gradient clipping 1.0
Batch Size / GPU 2
Grad Accum Steps 16
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