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Figure 1: (a) Illustration of cognitive experts identified across domains. (b) Reinforcing only the top
two experts (in red color) can improve reasoning accuracy without additional training.

Abstract

Mixture-of-Experts (MoE) architectures within Large Reasoning Models (LRMs)
have achieved impressive reasoning capabilities by selectively activating experts to
facilitate structured cognitive processes [1, 2]. Despite notable advances, existing
reasoning models often suffer from cognitive inefficiencies like overthinking [3]
and underthinking [4]. To address these limitations, we introduce a novel inference-
time steering methodology called Reinforcing Cognitive Experts (RICE), designed
to improve reasoning depth and efficiency without additional training or complex
heuristics. Leveraging normalized Pointwise Mutual Information (nPMI), we sys-
tematically identify specialized experts, termed cognitive experts that orchestrate
meta-level reasoning operations characterized by tokens like “<think>”. Empiri-
cal evaluations with leading MoE-based LRMs (DeepSeek-R1 and Qwen3-235B)
on rigorous quantitative and scientific reasoning benchmarks (AIME and GPQA Di-
amond) demonstrate noticeable and consistent improvements in reasoning accuracy,
cognitive efficiency, and cross-domain generalization. Crucially, our lightweight
approach substantially outperforms prevalent reasoning-steering techniques, such
as prompt design and decoding constraints, while preserving the model’s general
instruction-following skills. These results highlight reinforcing cognitive experts as
a promising, practical, and interpretable direction to enhance cognitive efficiency
within advanced reasoning models.
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1 Introduction

Models capable of extended reasoning, often referred to as Large Reasoning Models (LRMs) like
OpenAI’s o1 [5] and DeepSeek-R1 [1], have significantly advanced machine intelligence, largely
by scaling test-time computation [6, 7]. Despite their impressive capabilities, these LRMs remain
susceptible to inefficiencies [8–15]. Prior work has sought to address these issues through approaches
such as preference optimization [3], decoding penalties [4], and various other techniques. In this
work, we tackle these problems from a novel perspective: potential expert specialization in Mixture-
of-Experts (MoE) architecture.

Due to the computational resource efficiency brought about by its sparsity, the MoE architecture
has been increasingly adopted by state-of-the-art (SOTA) models, such as DeepSeek-R1 [1] and
Qwen3 [2]. This sparse, specialized activation paradigm bears a conceptual resemblance to functional
specialization in the human brain, where targeted interventions can modulate cognitive functions
and behaviors [16–19]. Inspired by this principle, we systematically investigate whether undesirable
reasoning behaviors in MoE-based LRMs correlate with the activation patterns of specific experts,
and critically, if strategic manipulation of these experts can ameliorate such issues.

We introduce an approach to identify and modulate key experts integral to the reasoning process.
By analyzing the co-occurrence of explicit linguistic markers of thought (e.g., “<think>” and
“</think>”) with individual expert activations, we pinpoint a subset of experts highly correlated
with the model’s cognitive deliberations. We designate these critical components as cognitive
experts. Through extensive experimentation with SOTA MoE-reasoning models DeepSeek-R1 [1]
and Qwen3-235B [2] on challenging math and scientific reasoning benchmarks, we demonstrate
that selectively amplifying as few as two cognitive experts can enhance both reasoning depth and
efficiency. Notably, our approach achieves marked accuracy improvements while reducing token
usage in critical reasoning tasks, outperforming existing steering methods such as prompting and
decoding constraints [4].

Moreover, we showcase impressive generalization and robustness of cognitive expert modulation, ob-
serving consistent improvements in unseen and more complex reasoning scenarios while maintaining
or even enhancing general instruction-following capabilities. Our findings provide strong evidence
that modulating selective experts responsible for meta-level reasoning is effective, efficient, and
broadly applicable across domains, paving the way for lightweight and interpretable model steering
in increasingly sophisticated MoE-based reasoning models.

Our main contributions are:

1. We propose a normalized Pointwise Mutual Information (nPMI) method for identifying
cognitive experts within LRMs that are highly correlated with reasoning behavior, requiring
only a single forward propagation and no additional training.

2. We introduce a lightweight inference-time steering strategy, named “reinforcing cognitive
experts”, that effectively enhances reasoning depth and accuracy without requiring any
additional training or supervision signals.

3. Through comprehensive experiments on two prevalent MoE reasoning models and rigorous
benchmarks, we empirically validate the efficacy, generalizability, and robustness of cogni-
tive expert modulation, demonstrating significant improvements in cognitive efficiency and
problem-solving accuracy.

2 Identifying Cognitive Experts

In this section, we leverage normalized Pointwise Mutual Information (nPMI) [20] to quantify the
correlation between model thinking and each expert in a Mixture of Experts (MoE) reasoning model.
We hypothesize that there are some “cognitive experts” selected by nPMI metric, which orchestrate
meta-level reasoning for complex tasks.

2.1 Expert Specialization in MoE Models

In large reasoning models, deep thinking is manifested through key tokens, such as “<think>” to
initiate reasoning, “</think>” to terminate it, and tokens like “recheck” to guide introspection. In
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the MoE framework, these tokens are generated during forward propagation through various model
components, including the MoE routing mechanism that assigns them to specialized experts, with
weights determining each expert’s contribution.

Formally, let us consider an MoE framework [21] with N experts, denoted {E1, . . . , Ei, . . . , EN},
at each layer. For each input token x, a gating function selects a subset S ⊂ {E1, . . . , EO} of O
experts (O ≤ N ), where |S| = O, and assigns weights wi (with

∑
i∈S wi = 1) to each selected

expert Ei ∈ S. The output hx for token x is computed as:

hx =
∑
i∈S

wi · Ei(x), where |S| = O, (1)

where Ei(x) represents the output of expert Ei, and wi is the weight of the i-th selected expert.
Prior work on MoE models shows that expert routing is often token-dependent [22], but recent
study [23, 24] indicates that DeepSeek-R1’s advanced reasoning enables its expert routing to focus
on semantic specialization, surpassing token-dependent methods. We hypothesize that experts
with consistently high co-occurrence scores with thinking tokens serve as key “cognitive experts”
responsible for meta-level reasoning.

Measuring Correlation of Specialized Experts and Thinking Tokens To examine whether a
given expert consistently governs the model’s reasoning process, we measure the co-occurrence
between its activation and specific reasoning-related marker tokens, such as “<think>,” “</think>”,
and others. Formally, let x represent a token and y denote expert Ei. We measure their association
using pointwise mutual information (PMI). The PMI of x and y is defined as

PMI(x, y) = log2
p(x, y)

p(x) p(y)
= log2

p(y|x)
p(y)

, (2)

where p(x, y) is the joint probability that x and y both occur, while p(x) and p(y) are their individual
(marginal) probabilities, and p(y|x) is the conditional probability that y occurs given x.

For interpretability, we normalize PMI to the range [−1,+1], yielding

nPMI(x, y) =
PMI(x, y)

− log2 p(x, y)
. (3)

Thus, nPMI(x, y) ≈ −1 indicates that events x and y never co-occur, nPMI(x, y) = 0 implies
independence, and nPMI(x, y) ≈ +1 indicates they appear almost exclusively together (complete
co-occurrence).

Let M be the number of instances in a dataset, and let T be the total number of tokens generated
over all instances in the test set. We denote by kn the number of times the expert Ei is activated
specifically when the thinking token (e.g. “<think>”) appears, and by Kn the total number of
times Ei is activated across all tokens (including both thinking and non-thinking tokens). Since the
reasoning model generally generates one thinking start and end token for each instance, then we can
achieve the following functions when x denotes “<think>” or “</think>”:

p(y = Ei|x) =
kn
M

, p(y = Ei) =
Kn

T
, p(x, y = Ei|x) =

kn
T

. (4)

nPMI(x, y = Ei) =
log2(

kn

M ) + log2(
T
Kn

)

log2(
T
kn

)
. (5)

Intuitively, if an expert Ei is activated almost exclusively during “<think>” and rarely (or never)
at other tokens, kn ≈ Kn ≈ M , nPMI(x = <think>, y = Ei) ≈ log2 1+log2(

T
M )

log2(
T
M )

≈ +1,
indicating that this expert is effectively tied to the thinking marker. In other words, the expert’s entire
usage focuses on activating the thinking token. Such specialists are prime candidates for “cognitive
experts”, given their consistently high co-occurrence with the thinking marker tokens.

2.2 Identify Cognitive Experts

We observe that some experts exhibit high nPMI scores with both “<think>” and “</think>”,
indicating a bimodal association. This suggests their broad involvement in the reasoning process
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rather than specialization in its initiation. To prioritize experts specialized in initiating (rather than
terminating) reasoning, we adopt the following selection strategy:

We define a set of thinking tokens Π = {<think>, </think>, Alternatively}. The normalized
Pointwise Mutual Information (nPMI) score for expert Ei is formulated as:

nPMIEi
=

∑
x∈Π

cx · nPMI(x, y = Ei), (6)

where x is a thinking token in set Π , cx denotes the coefficient associated with the token x, assigned
as c<think> = 1, c</think> = −1, and cAlternatively = −1.

Then, we select the top-l experts based on their nPMI scores to form the cognitive expert set P . The
weight adjustment for expert Ei is governed by the following condition:

wi =

{
wi · β if Ei ∈ S and Ei ∈ P,

wi otherwise,
(7)

where P = {Ej | nPMIEj is among the top l scores} denotes the set of cognitive experts, S is the
subset selected by the gating function in Eq. 1, and β is the steering multiplier. In other words,
once these experts are identified, we can reinforce reasoning in the MoE model by controlling their
contribution through the hyperparameter β.

3 Experiments

Research Questions In this study, we investigate the following research questions:

RQ1: Are there “cognitive experts” specialized in thinking? If so, do these experts differ across
domains?

RQ2: Can the identified cognitive experts effectively enhance cognitive effort within MoE models?
RQ3: Do “cognitive experts” differ across various domains (e.g., math, physics, chemistry, and

biology)?
RQ4: Does reinforcing specific cognitive experts negatively impact the general problem-solving

capabilities of MoE models?

3.1 Experimental Setup

MoE-based Reasoning Models Currently available open-source MoE architectures tailored for
large reasoning models tasks include DeepSeek-R1 [1] and Qwen3-235B [2]. DeepSeek-R1 selects 8
experts from a total of 256 at each layer, whereas Qwen3-235B selects 8 experts from a total of 128.
We primarily use the DeepSeek-R1 (671B) model for our experiments, supplemented by additional
evaluations on the Qwen3-235B model to examine the generalizability of cognitive experts. Note that
we provide more experimental details in §B.

Benchmarks We evaluate our approach on two challenging benchmarks designed specifically to
test the reasoning abilities necessary for solving scientific problems across diverse domains:

• AIME [25]: a dataset from the American Invitational math Examination, which assesses advanced
mathematical problem-solving skills. We use two recent test sets, AIME2024 and AIME2025,
each comprising 30 problems.

• GPQA Diamond [26]: a comprehensive dataset of 198 expert-crafted multiple-choice questions
in biology, chemistry, and physics, designed to test advanced scientific reasoning skills.

3.2 Cognitive Experts

To address RQ1, we first identify cognitive experts within two MoE reasoning models – DeepSeek-
R1 [1] and Qwen3-235B [2] – across four scientific domains. Taking math as an illustrative example,
we first use DeepSeek-R1 to generate answers on the AIME2024 dataset, simultaneously recording
the expert selections at each token position during forward propagation. Next, we employ the nPMI
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Table 1: Identified cognitive experts of DeepSeek-R1. Each entry (layer ID, expert ID) denotes the
DeepSeek-R1 model layer ID and expert ID. “All” combines data from all domains.

Domain Identified Experts Ranked by nPMI Score
1st 2nd 3rd 4th 5th

Math (39, 182) (29, 126) (14, 114) (27, 45) (16, 129)
Physics (29, 126) (39, 182) (36, 53) (39, 46) (24, 159)

Chemistry (7, 197) (39, 182) (22, 37) (29, 106) (29, 126)
Biology (42, 194) (22, 37) (37, 241) (43, 61) (39, 188)

All (39, 182) (29, 126) (29, 106) (4, 214) (50, 120)

Table 2: Identified cognitive experts of Qwen3-235B. Each entry (layer ID, expert ID) denotes the
Qwen3-235B model layer ID and expert ID. “All” combines data from all domains.

Domain Identified Experts
Top-1 Top-2 Top-3 Top-4 Top-5

Math (70, 47) (23, 115) (19, 47) (75, 46) (22, 88)
Physics (2, 28) (74, 65) (4, 44) (25, 103) (7, 36)

Chemistry (32, 58) (26, 30) (68, 35) (37, 57) (25, 103)
Biology (2, 28) (26, 30) (67, 15) (82, 29) (25, 103)

All (25, 103) (26, 30) (82, 29) (67, 15) (37, 57)

metric defined in Eq. 6 to identify the top five experts that exhibit the strongest statistical association
with reasoning-related marker tokens (e.g., “<think>”). These experts are thus identified as the key
cognitive experts specialized for mathematical reasoning. Analogously, we apply this procedure to
the biology, chemistry, and physics questions in the GPQA Diamond dataset to identify cognitive
experts in these respective domains. In the case of Qwen3-235B, we follow a similar procedure
but generate domain-specific responses with the Qwen3-235B model itself. This ensures consistent
identification signals that correspond directly to the model under examination.
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Figure 2: The nPMI distribution of top 10 expert
of Deepseek-R1 across four domains.

We demonstrate the nPMI distribution of the top
10 experts of Deepseek-R1 across four domains
(Math, Physics, Chemistry, and Biology) in Fig
2. Across the four domains, the top five experts
exhibit nPMI values that are mostly above 0.5.
Besides, the top 5 experts also indicate a sharply
peaked distribution toward the other experts.
In particular, the group of top five “thinking-
specialized” experts shows significantly higher
nPMI scores than the remaining experts, sug-
gesting that domain reasoning is largely concen-
trated within a few highly specialized compo-
nents. This pattern supports our hypothesis that
a small number of experts are highly special-
ized for cognitive functions. Subsequently, we
delve into the effectiveness of the top 5 experts
in Table 3.

Cognitive Experts Across Domains Cognitive experts identified within DeepSeek-R1 are summa-
rized in Table 1. An analogous summary for Qwen3-235B is provided and discussed in Table 2. From
Table 1, we observe that the top two cognitive experts in the math, physics, and the aggregated “All”
domains are remarkably consistent: (39, 182) and (29, 126). This strongly suggests these experts
play critical and reliable roles in reasoning tasks requiring increased cognitive effort, particularly in
quantitative and logic-intensive domains. The significant overlap observed between math and physics
further implies a shared underlying cognitive strategy—likely focusing on symbolic manipulation
and structured logical inference—which the model employs consistently across these domains. Addi-
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Table 3: Effect of Deepseek-R1 on AIME24 with reinforced cognitive experts, evaluated across
different multipliers and varying numbers of Math-domain cognitive experts. “Random” denotes two
randomly chosen experts. The row with Multiplier 1 denotes the performance of vanilla DeepSeek-R1.

Multiplier Top1 Top2 Top3 Top4 Top5 Random
1 73.3
2 70.0 70.0 76.7 73.3 73.3 70.0
4 76.7 83.3 73.3 66.7 76.7 73.3
8 76.7 73.3 83.3 73.3 73.3 70.0

16 80.0 80.0 1.7 76.7 73.3 73.3
32 70.0 83.3 73.3 73.3 73.3 76.7
64 80.0 83.3 60.0 53.3 50.0 66.7

128 70.0 83.3 43.3 26.7 13.3 63.3
256 73.3 60.0 10.0 6.7 0.0 73.3
512 63.3 46.7 6.7 3.3 0.0 63.3

tionally, the repeated appearance of certain experts in multiple domains supports our hypothesis: a
subset of experts encodes generalized reasoning capabilities applicable across diverse scientific fields.
Therefore, these cross-domain patterns indicate that DeepSeek-R1 may encode robust domain-general
cognitive mechanisms, with some experts serving as reusable computational building blocks suitable
for abstract reasoning and logical problem-solving tasks. Note that even within the same domain,
there are distinctions. For instance, when comparing the top-5 cognitive experts for AIME24, MATH,
and GSM8K, we find both shared and dataset-specific experts. Therefore, we hypothesize that the
shared experts are responsible for general mathematical abilities, while the unique experts handle
dataset-specific skills.

3.3 Effectiveness of Cognitive Experts

Reinforcing Cognitive Experts To answer RQ 2, we reinforce the identified top 5 cognitive
experts from the Math (AIME24) and evaluate their performance under different reinforcement
configurations on the same benchmark AIME24 (Table 3). The optimal hyperparameters – the
number of cognitive experts l and the steering multiplier β—are selected based on this evaluation
and used in all subsequent experiments. We then assess the generalization ability of these reinforced
experts on the unseen, more challenging tasks from AIME25 (Table 4).

From Table 3, we observe that reinforcing two top-ranked cognitive experts significantly enhances
the model’s reasoning ability. Notably, using two experts with a steering multiplier of 4, 32, 64, or
128 achieves the highest accuracy of 83.3%. In contrast, applying an excessively large multiplier (e.g.,
512) causes a dramatic drop in accuracy, often to near zero. This failure mode is characterized by the
model repetitively generating meaningless tokens, suggesting that overly aggressive reinforcement
disrupts the model’s generation dynamics. Overall, moderate reinforcement of well-identified
cognitive experts leads to consistent improvements, whereas over-reinforcement or random expert
selection results in performance degradation. However, reinforcing two randomly selected experts
across a wide multiplier range (2 to 512) yields minimal performance variation. Therefore, we use
two experts with a steering multiplier 64 for all subsequent experiments 3.

We directly apply the cognitive experts identified from AIME24 to solve unseen and more challenging
reasoning problems in AIME25. As shown in Table 4, these cognitive cognitive experts generalize
well to the AIME25 test set. For DeepSeek-R1, the accuracy improves from 63.3% to 73.3% when
guided by the identified cognitive experts. Similarly, for Qwen3-235B, accuracy increases from
66.7% to 73.3%. Additional pass@k performance using the model’s officially recommended top-p
sampling strategy (provided in §C.4) further supports this observation. The above phenomenon
demonstrates the transferability and robustness of the expert selection across tasks with higher
cognitive demands.

3This setup is designed to test the raw generalization of the math-derived setting. However, different domains
may require different intensities of cognitive steering. We discuss this in detail in §C.1.
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Table 4: Performance of our approach on the AIME24 and generalization on the unseen AIME25.

Benchmark Method Accuracy Thoughts #Tokens

AIME24 DeepSeek-R1 73.3 12.0 9,219
+RICE {(39,182), (29,126)} 83.3 10.2 8,317

AIME25 DeepSeek-R1 63.3 17.0 10,875
+RICE {(39,182), (29,126)} 73.3 15.2 11,441

AIME24 Qwen3-235B 86.7 20.1 10,956
+RICE {(70,47), (23,115)} 86.7 16.2 10,722

AIME25 Qwen3-235B 66.7 19.7 15,013
+RICE {(70,47), (23,115)} 73.3 16.8 13,935

Table 5: Effect of cognitive experts of Deepseek-R1 across different domains.

Domain Math Physics Chemistry Biology Average
R1 73.3 91.9 49.5 79.0 73.4

Math 83.3 89.5 50.4 79.0 75.6
Physics 83.3 89.5 50.4 79.0 75.6
Chemistry 80.0 95.4 52.7 68.4 74.1
Biology 73.3 93.0 47.3 73.9 71.9
All 83.3 89.5 50.4 79.0 75.6

Crucially, the observed accuracy improvements do not necessarily entail increased computational
cost in terms of token usage, supporting our hypothesis that our method encourages deeper thinking
rather than just longer outputs. Our cognitive expert strategy, despite improving average accuracy of
Deepseek-R1 on AIME24, uses more efficient reasoning thought 4 (10.2 vs 12.0) and tokens (8,317 vs
9,219) on average compared to the baseline. This efficiency phenomenon is also observed in Qwen3-
2-35B, where the substantial accuracy gain (+6.6%) is accompanied by a notable reduction in thought
(16.8 vs 19.7) and token count (13,935 vs 15,013). This suggests that reinforcing cognitive experts
helps the model to reason more effectively, focusing computational effort more productively within
the reasoning process without generating excessive verbosity. The reasoning effectiveness can be
clearly observed in Table 8, where our RICE demonstrates deeper and more consistent reasoning,
leading directly to the correct answer. In contrast, vanilla DeepSeek-R1 exhibits more frequent shifts
in reasoning and fails to commit to its initially correct deductions.

3.4 Performance of Cognitive Experts across Domains

To address RQ3, we evaluate the transferability of domain-specific cognitive experts by applying
expert sets identified from one domain to others. As the top-2 experts selected from Math, Physics,
and the All domains are identical, their results are the same across domains. As shown in Table 5, we
have several observations:

Cognitive experts generalize well across domains. Our evaluation, summarized in Table 5, clearly
illustrates the efficacy of the identified cognitive experts in enhancing the DeepSeek-R1 model’s
reasoning capability across multiple domains. Leveraging cognitive experts identified from aggregated
data (“All” domains) shows marked overall improvement, raising the average accuracy from 73.4%
to 75.6%. Notably, substantial improvement is observed in the math tasks (from 73.3% to 83.3%).
Moderate accuracy gains are also seen in Chemistry (from 49.5% to 50.4%) and minor degradation
observed in Physics (from 91.9% to 89.5%), indicating broad applicability and effectiveness of these
general reasoning modulators across diverse problem sets. Biology tasks show stable performance,
unaffected by general expert modulation.

4We use the underthinking score from prior work [4] to quantify reasoning efficiency, with lower Thought
values indicating greater efficiency.
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Domain-specific expert sets provide targeted gains. Further analysis demonstrates the nuanced
implications of domain-specific cognitive experts. Chemistry-identified experts outperform general
experts significantly within their native Chemistry domain (49.5% to 52.7%) and notably enhance
Physics performance (91.9% to 95.4%), highlighting potential cross-domain synergies between
physics and chemistry reasoning processes. However, this specialization lowers the accuracy in
math (from 83.3% with general experts to 80.0%) and more substantially limits the Biology domain
performance (from 79.0% to 68.4%). Similarly, Biology-derived experts enhance task-specific results
(from 91.9% to 93.0% in Physics) but degrade average performance across other domains, indicating
further that specialized expert selections may negatively impact general cognitive reasoning by
reinforcing overly specialized activations.

No evidence of harmful side-effects on other domains. Our experimental findings clearly confirm
that cognitive experts, either chosen from aggregated cross-domain data or specific domains, constitute
effective cognitive modulators that enhance model reasoning accuracy and efficiency. General-purpose
expert adjustments deliver robust cross-domain improvements, demonstrating their fundamental
importance to reasoning processes regardless of subject matter. Meanwhile, domain-specialized
expert modulation illustrates substantial potential for targeted cognitive improvements, particularly
within closely related scientific domains. Together, these insights validate our proposed approach
as versatile, effective, and immediately deployable for enhancing efficiency, accuracy, and overall
reasoning proficiency of existing MoE-based large reasoning models.

3.5 Impact of Reinforced Cognitive Experts on General Capabilities

To address RQ4, we investigate whether reinforcing cognitive experts negatively impacts the model’s
general capabilities, such as instruction-following. To this end, we evaluate reinforced models on the
ArenaHard benchmark [27] to assess potential adverse impacts on general capabilities. The Arena-
Hard benchmark, designed to evaluate instruction-following capabilities, comprises 500 challenging
user queries spanning diverse scenarios. We randomly select 50 user queries as the test data and
employ GPT-4-Turbo to judge pairwise comparisons of outputs against the GPT-4-0613 baseline.

Table 6: Effect of reinforced cognitive
experts of Deepseek-R1 on ArenaHard.

Method Accuracy Token
Vanilla 91.0 2,919

Reinforce Experts from different domains
Math 92.0 2,933
Physics 92.0 2,933
Chemistry 94.0 3,332
Biology 93.0 3,072
All 92.0 2,933

Reinforcing cognitive experts maintains or slightly im-
proves general instruction-following capabilities. Our
experimental evaluation on the ArenaHard benchmark
demonstrates that reinforcing the identified cognitive ex-
perts does not adversely impact the model’s capability to
handle general, challenging instruction-following tasks.
As shown in Table 6, models modulated by cognitive ex-
perts derived from each domain consistently maintain or
marginally improve upon the baseline DeepSeek-R1 accu-
racy of 91%. Specifically, the domain-specific cognitive
experts from Chemistry and Biology show notable accu-
racy enhancements (from 91.0% to 94.0% in Chemistry;
from 91.0% to 93.0% in Biology), underscoring the po-
tential for positive transfer of reasoning-rich expert reinforcement to general-purpose capabilities.
Moreover, the general experts (“All” domain) also marginally improve performance (to 92.0%),
confirming that cognitive expert-control has a neutral-to-beneficial impact on general instruction-
following capabilities.

Modulation of cognitive experts results in moderately increased verbosity. An analysis of token
counts further reveals that cognitive expert modulation moderately increases model verbosity in
response generation, suggesting enhanced cognitive thoroughness. For example, Chemistry and
Biology models increase average token counts notably (from 2,919 to 3,332 tokens and from 2,919
to 3,072 tokens, respectively), highlighting that the activation of certain domain-specific cognitive
experts may favor more detailed deliberations. Nevertheless, the overall increase in verbosity is
moderate, indicating a desirable balance between detail-oriented reasoning and response conciseness.

Overall, reinforcing cognitive experts does not hinder but rather supports general capabilities.
These findings collectively confirm our approach as effective and safe for targeted, lightweight
interventions. Reinforcing cognitive experts significantly enhances model performance within their
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original domains and has either neutral or positive effects on general-purpose instruction-following
benchmarks. The moderate increase in verbosity indicates richer, more thoughtful reasoning, aligning
with the intended goal of encouraging deeper cognitive processing without sacrificing practicality.
This highlights the practicality and versatility of our approach in improving existing MoE model
reasoning efficacy and general cognitive capabilities through strategic expert modulation.

3.6 Comparison with Other Methods

We compare our cognitive experts against two prevalent inference-time methods for reasoning tasks:
prompt engineering and decoding constraints. Specifically, we analyze two prompt configurations:
placing the prompt before the <think> token (Promptbefore) and after <think> token (Promptafter),
with details outlined in Appendix B.1. For decoding constraints, we adopt a strategy similar to TIP
from Wang et al. [4], which curtail the generation of alternative solutions to foster coherent and
focused reasoning. In our work, we penalize the think mark tokens (</think>) rather than the
thought switching tokens (e.g., “alternatively”), and we name the method as TIPt.

Table 7: Comparison with other steering methods on
AIME24 and AIME25.

Method AIME24 AIME25 Avg.
DeepSeek-R1 73.3 63.3 68.3
Promptbefore 76.7 73.3 75.0
Promptafter 76.7 66.7 71.7
TIPt 80.0 73.3 76.7
RICE 83.3 73.3 78.7

Table 7 compares our cognitive expert mod-
ulation method against prompting (both be-
fore and after the <think> token) and de-
coding constraints (TIP) on the challenging
AIME benchmarks. Our approach achieves
the highest average improvement, boost-
ing DeepSeek-R1’s performance from a
baseline of 68.3% to 78.7%, surpassing
the best-performing baseline TIPt by 2.0%
in average accuracy. Notably, our method
achieves particularly pronounced gains on
AIME24 (83.3%) compared to Promptbefore
(76.7%) and TIPt (80.0%), indicating a superior ability to enhance cognitive effort and deep reasoning
through targeted modulation of expert routing weights. These results validate our hypothesis that
strategically steering cognitive experts significantly reinforces appropriate cognitive behavior and
enhances reasoning accuracy more effectively than generic prompting and decoding constraints.

Table 8: An example of our RICE corrects wrong reasoning (in red) generated by Deepseek-R1 into
correct reasoning (in green).

Problem Let ABCDEF be a convex equilateral hexagon in... and EF has side lengths 200, 240, and 300.
Find the side length of the hexagon.

DeepSeek-
R1

Okay, so I need to find the side length...the triangle formed by extending AB, CD, and EF
has sides 200, 240, and 300. Let me sketch this mentally...Alternatively, maybe we can
model the hexagon as being formed by three pairs of parallel sides...Alternatively, think of
the hexagon as a combination of three parallelograms...Alternatively, using the concept of
similar triangles...Alternatively, maybe each pair of opposite sides of the hexagon is parallel
to a different side of the triangle...I will posit that the answer is 80...Therefore, the answer
is 75/2...Let me verify this result...Thus, s = 1200 / 23. Wait, this contradicts our previous
result...I think the answer is 80...based on the thorough step-by-step analysis, 1200/23 is
the conclusion.

+RICE Okay, so I need to find the side length...Let me draw a rough sketch in my mind...So, the
triangle is such that each side is aligned with one of the extended sides of the hexagon...But
maybe using coordinate geometry could help here....Not sure, maybe this is getting too
complicated...Alternatively, maybe using ratios...Alternatively, after struggling through
all these approaches, perhaps the answer is related to the harmonic mean of the triangle’s
sides...Therefore, I think the answer is 80. But need to verify...Therefore, the side length of
the hexagon is 80 .

4 Related Work

Large Reasoning Models Large Reasoning Models (LRMs) significantly enhances the reasoning
capabilities of large language models (LLMs) [5, 28]. Prominent implementations include OpenAI’s
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o1 [5], QwQ [29], Qwen3 [2], DeepSeek-R1 [1], Claude 3.7 [30] and Kimi-1.5 [31] achieve human-
like reasoning by leveraging scaled test-time computation. In particular, the open-source DeepSeek-R1
utilizes a Mixture-of-Experts (MoE) architecture [32] with sparsely activated parameters, selectively
activating only 8 out of 256 experts per layer [21]. This MoE architecture has been widely adopted in
recent LLMs [33–36], achieving an optimal balance between computational efficiency and competitive
performance in complex reasoning tasks.

MoE Models Previous research on Mixture of Experts (MoE) models indicates that expert routing is
primarily token-dependent [22]. However, Olson et al. [23] demonstrate that DeepSeek-R1’s advanced
reasoning capabilities enable its routing mechanism to achieve greater semantic specialization and
structured cognitive processing, representing a substantial advancement over prior MoE models.
Subsequently, Hazra et al. [37] train sparse autoencoders (SAEs) on DeepSeek-R1, identifying
interpretable features such as backtracking, division, and rapid response patterns within the SAEs
space. However, training SAEs is computationally intensive, posing significant resource demands. We
employ the normalized Pointwise Mutual Information (nPMI) metric to evaluate expert specialization,
requiring only a single forward propagation.

Efficient Thinking Despite significant advancements, o1-like models continue to encounter sub-
stantial cognitive challenges, such as the overthinking [3, 38–40] and underthinking phenomenon
[4, 11, 41]. Subsequent efforts address these issues through rule-based stop, decoding constraints
[42, 4, 43–49], steering vectors [50–53], and parameters tuning [54, 3, 55–57]. There are also
some works specifically designed to improve reasoning capabilities in MoE architectures by re-
mixing experts through gradient-based optimization [58] or by expert pruning via sparse dictionary
learning [59]. However, the resource-intensive nature of expert re-mixing algorithms makes them im-
practical to scale to large models such as 600B-parameter systems, whereas our method is lightweight
and directly applicable to such large-scale settings. Generally, in contrast to the above strategies
that primarily rely on crafted rules, extensive labeled data, or computationally expensive parameter
training, our reinforcing cognitive experts approach achieves more efficient and deeper reasoning
with only a single forward pass, without requiring any supervision signals or additional training.

5 Conclusion and Future Work

In this work, we investigate cognitive experts in MoE-based language models and propose an efficient
nPMI-based method to identify those most relevant to reasoning. We show that steering these experts
enables control over the model’s reasoning with minimal computational overhead. Notably, these
experts exhibit strong transferability across scientific domains, suggesting a generalizable cognitive
function. Future directions include deeper investigations into the structural properties and broader
applicability of cognitive experts, as well as integration with other cognitive control strategies to
further enhance reasoning robustness. By uncovering this hidden layer of functional specialization
within MoE models, we may open new avenues for fine-grained control over neural reasoning
processes, more closely mirroring the modularity observed in biological cognitive systems.

6 Limitations and Broader Impacts

The internal coordination mechanisms of long-range reasoning models are inherently complex, and
our nPMI-based approach may not fully capture all relevant interactions. Future work should explore
more sophisticated metrics for expert identification. Besides, our validation was constrained by the
current availability of open-source MoE architectures designed for long-range reasoning, limited
to DeepSeek-R1 [1] and Qwen3-235B [2]. Additional testing across more diverse architectures
is warranted. The ability to precisely control reasoning processes in large language models has
significant implications for both AI safety and efficiency. Our method’s minimal computational
overhead makes it particularly promising for real-world applications where resource constraints are
critical. The observed cross-domain transferability of cognitive experts suggests exciting possibilities
for developing more general and adaptable AI systems.
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should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: For each theoretical result, the paper provides the full set of assumptions and a
complete (and correct) proof.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experimental results reported in the paper can be fully reproduced.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use publicly available datasets, Code and Data are also provided in the
supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: This paper specifies all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper does not include experiments requiring this.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This paper provides sufficient information on the computer resources needed
to reproduce the experiments in §B.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper discusses both potential positive societal impacts and negative
societal impacts of the work performed.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is used only for writing, editing, or formatting purposes and does not
impact the core methodology in this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Renormalization

We investigate the DeepSeek Mixture-of-Experts (MoE) architecture, where each token selects 8 of
256 experts, with weights normalized to sum to 1. We examine steering specific expert weights under
two conditions: with and without renormalization. The effects of the steering coefficient (reinforce
factor) are presented in Table 9, with generalization performance analyzed in Table 10.

Table 9 evaluates the reinforce factor’s effect on two cognitive experts. Without renormalization,
accuracy peaks at 83.3% (factors 4, 32, 64, 128) but drops to 3.3% at 2048, with erratic token counts
(e.g., 16,836). With renormalization, accuracy remains stable (73.3%–83.3%) across most factors,
with token counts varying moderately (8,383–9,508), though it declines to 66.7% at factor 256.
Renormalization thus enhances robustness at higher steering coefficients.

We evaluate the generalization performance of cognitive experts, identified using normalized Point-
wise Mutual Information (nPMI) within Mixture-of-Experts (MoE)-based large reasoning models,
comparing three strategies: Vanilla R1, Renormalized, and Without Renormalized (wo/Renormalized).
Table 10 reports performance across AIME25, Physics, Chemistry, Biology, and their average for
experts selected from AIME24.

The wo/Renormalized strategy demonstrates superior generalization, achieving an average score
of 73.1, compared to 70.9 for Vanilla R1 and 68.8 for Renormalized. This 4.3-point improvement
over Renormalized is driven by notable gains in AIME25 (73.3 vs. 63.3) and Biology (79.0 vs.
68.4). In Physics, Vanilla R1 (91.9) outperforms wo/Renormalized (89.5, -2.4), while in Chemistry,
Renormalized (52.7) surpasses wo/Renormalized (50.4), indicating domain-specific trade-offs.

Non-renormalization avoids the computational overhead of normalization (e.g., softmax scaling of
expert weights), aligning with its reported efficiency. These results confirm that non-renormalization
enhances generalization in cognitive experts, offering a computationally lightweight approach to
optimizing reasoning in MoE architectures.

Table 9: Reinforce factor effects of two cognitive experts with/without renormalization

Reinforce Factor wo/Renormalization Renormalization
Acc Token Acc Token

1 (R1) 73.3 9,291 73.3 9,291
2 70.0 9,103 80.0 8,463
4 83.3 8,145 80.0 8,383
8 73.3 9,502 70.0 8,818

16 80.0 8,493 73.3 9,133
32 83.3 8,337 83.3 8,956
64 83.3 8,317 80.0 9,508

128 83.3 9,490 73.3 9,091
256 60.0 7,986 66.7 8,719
512 46.7 6,270 80.0 8,786

1024 23.3 4,378 73.3 8,564

Table 10: Generalization capacity of two cognitive experts selected from AIME24, with or without
renormalization.

Strategy AIME25 Physics Chemistry Biology Average
Vanilla R1 63.3 91.9 49.5 79.0 70.9
Renormalized 63.3 90.7 52.7 68.4 68.8
wo/Renormalized 73.3 89.5 50.4 79.0 73.1
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Table 11: Pass@k performance of our cognitive experts on Deepseek-R1 and Qwen3-235B-A22B.
For each problem, we generated 16 responses with a temperature of 0.6 and a top p value of 0.95.

Model Strategy Accuracy Tokens
Pass@1 Pass@8

AIME24

Deepseek-
R1

Vanilla 74.8 88.3 9,219
Our 76.0 89.2 8,317

AIME25
Vanilla 68.5 84.7 10,875

Our 67.7 86.3 11,441

AIME24

Qwen3-235B
-A22B

Vanilla 84.0 93.0 10,946
Our 85.0 91.6 10,706

AIME25
Vanilla 82.7 88.3 12,546

Our 82.1 89.7 12,373

B Experiment Setup

B.1 Baselines

We evaluate our cognitive experts in comparison with two widely used inference-time techniques for
reasoning tasks: prompt engineering. In particular, we consider two types of prompt placements in
our analysis — one positioned before the <think> token (Promptbefore) and the other placed after
it (Promptafter), defined as follows:

Prompt before <think>

<|begin_of_sentence|><|User|> <context>
You are an expert math-solving assistant who prioritizes clear, concise solutions. You solve
problems in a single thought process, ensuring accuracy and efficiency. You seek clarification
when needed and respect user preferences even if they are unconventional.
</context>

<solving_rules>
- Try to complete every idea you think of and don’t give up halfway
- Don’t skip steps
- Display solution process clearly
- Ask for clarification on ambiguity
</solving_rules>

<format_rules>
- Use equations and explanations for clarity
- Keep responses brief but complete
- Provide step-by-step reasoning if needed
</format_rules>

PROBLEM: {problem}

OUTPUT: Please think carefully and follow above rules to get the correct answer for
PROBLEM. Focus on clear, concise solutions while maintaining a helpful, accurate
style.<|Assistant|> <think> \n
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Table 12: Performance of domain-specific steering multipliers across scientific domains. The math
domain is evaluated using the AIME25 benchmark.

Model Math Physics Chemistry Biology Average
DeepSeek-R1 63.3 91.9 49.5 79.0 70.9
DeepSeek-R1 + RICE 73.3 93.0 54.8 79.0 75.0
Qwen-235B 66.7 90.7 49.5 78.9 71.5
Qwen-235B + RICE 73.3 95.3 49.5 84.2 75.6

Prompt after <think>

<|begin_of_sentence|><|User|> <context>
You are an expert math-solving assistant who prioritizes clear, concise solutions. You solve
problems in a single thought process, ensuring accuracy and efficiency. You seek clarification
when needed and respect user preferences even if they are unconventional.
</context>

PROBLEM: {problem}

<think> \n

Please think carefully and follow these rules to find the correct answer for PROBLEM.

<solving_rules>
- Try to complete every idea you think of and don’t give up halfway
- Don’t skip steps
- Display solution process clearly
- Ask for clarification on ambiguity
</solving_rules>

<format_rules>
- Use equations and explanations for clarity
- Keep responses brief but complete
- Provide step-by-step reasoning if needed
</format_rules>

Focus on clear, concise solutions while maintaining a helpful and accurate style.

OUTPUT:

B.2 Experiments Compute Resources

We conduct our DeepSeek-R1 experiments on 16 H20 GPUs using vllm==0.7.0. It is worth noting
that for experiments on the Qwen3-235B-A22B model, we use vllm==0.8.5.post because the
recently released Qwen3-235B-A22B models are only compatible with vllm versions ≥ 0.8.5.

C Experiment Details and Results

C.1 Steering Multiplier

We use a simple, domain-specific steering multiplier (selected from a small set of 16, 32, 64), RICE
delivers consistent and significant improvements across all domains.
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Table 13: Performance comparison of Deepseek-R1 with and without RICE across different datasets.
Dataset Model Accuracy #Token

GSM8K Deepseek-R1 95.9 1028
Deepseek-R1 + RICE (Ours) 96.0 1001

MATH-500 Deepseek-R1 95.0 3282
Deepseek-R1 + RICE (Ours) 96.4 3204

HLE Deepseek-R1 4.0 9433
Deepseek-R1 + RICE (Ours) 6.0 9445

C.2 Effects on Other Datasets

We delve into the effect of these two experts identified by AIME24 on three additional diverse
benchmarks: GSM8K (grade-school math), MATH (competition math), and HLE (Humanity’s Last
Exam, covering social science, CS, etc.). Note that we randomly sampled 100 text instances as the
test set due to resource constraints. As shown in Table 13, RICE consistently improves Deepseek-R1
across all datasets, providing modest gains on high-performing tasks (GSM8K, MATH-500) and
larger relative improvements on more challenging tasks (HLE).

Moreover, we compare the differences with and without RICE. Specifically, we focus on the token
distribution during model decoding. We observe that tokens related to “think,” “best,” “good,” and
similar concepts are ranked higher (positioned closer to the top 1) during decoding after expert
reweighting.

C.3 Cognitive Experts of Qwen3-235B

As a case study in math, we employ Qwen3-235B to generate responses on the AIME2024 dataset,
while recording the expert assignments at each token during the forward pass. Subsequently, we apply
the nPMI measure defined in Eq. 6 to identify the top five experts that exhibit the highest statistical
dependence on reasoning-related indicators, such as the “<think>” token. These selected experts
are thus regarded as the core cognitive components specialized in mathematical reasoning. Due to
computational constraints, our quantitative analysis in Table 2 focuses specifically on math-domain
experts. This focused approach allows for deeper investigation of expert specialization patterns while
maintaining feasible resource requirements.

C.4 Pass@k Performance of Cognitive Experts

Table 11 presents the Pass@k performance of our cognitive expert modulation approach compared
to vanilla baselines across two model architectures. On DeepSeek-R1, our method demonstrates
consistent improvements in Pass@8 accuracy (+0.9% on AIME24 and +1.6% on AIME25) despite
showing marginal variations in Pass@1 performance. Notably, we observe a 9.8% reduction in
token consumption for AIME24 while maintaining superior accuracy, suggesting improved reasoning
efficiency. For Qwen3-235B-A22B, our approach achieves higher Pass@1 accuracy (+1.0% on
AIME24) while showing competitive Pass@8 performance (±1.4% across datasets), with consistent
reductions in computational cost (2.2% fewer tokens on AIME24 and 1.4% fewer on AIME25).
The observed trade-offs between Pass@1 and Pass@8 metrics suggest that our method enhances
reliable reasoning (as reflected in Pass@8) more than peak performance (Pass@1), particularly in the
more challenging AIME25 benchmark. These results substantiate our hypothesis that targeted expert
modulation can improve reasoning efficiency without compromising solution quality.
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