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Abstract
Phylogenetic inference, grounded in molecular
evolution models, is essential for understand-
ing evolutionary relationships in biological data.
While variational Bayesian methods offer scal-
able models for biological analysis, reliable infer-
ence for latent tree topology and branch lengths
remains challenging due to the vast possibilities
for topological candidates. In response, we intro-
duce GeoPhy, a novel approach that employs a
fully differentiable formulation of phylogenetic
inference, representing topological distributions
in continuous geometric spaces without limiting
topological candidates. In experiments using real
benchmark datasets, GeoPhy significantly outper-
formed other approximate Bayesian methods that
considered whole topologies. 1

1. Introduction
Phylogenetic inference, the reconstruction of tree-structured
evolutionary relationships between biological units, such as
genes, cells, individuals, and species ranging from viruses to
macro-organisms, is a fundamental problem in biology. As
the phylogenetic relationships are often indirectly inferred
from molecular observations, including DNA, RNA and
protein sequences, Bayesian inference has been an essential
tool to quantify the uncertainty of phylogeny. However, due
to the complex nature of the phylogenetic tree object, which
involve both a discrete topology and dependent continuous
variables for branch lengths, the default approach for the
phylogenetic inference has typically been an Markov-chain
Monte Carlo (MCMC) method (Ronquist et al., 2012), en-
hanced with domain-specific techniques such as a mixed
strategy for efficient exploration of tree topologies.
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As an alternative approach to the conventional MCMCs,
Zhang & Matsen IV (2019) proposed a variational Bayesian
approach termed VBPI, which has subsequently been im-
proved in the expressive powers of topology-dependent
branch length distributions (Zhang, 2020; 2023). Although
these methods have presented accurate joint posterior distri-
butions of topology and branch lengths for real datasets, they
required reasonable preselection of candidate tree topologies
to avoid a combinatorial explosion in the number of weight
parameters beforehand. There have also been proposed vari-
ational approaches (Moretti et al., 2021; Koptagel et al.,
2022) on top of the combinatorial sequential Monte-Carlo
method (CSMC; Wang et al. (2015)), where topologies and
their weights were iteratively updated without the need for
the preselection steps. However, the fidelity of the joint
posterior distributions was still largely behind MCMC and
VBPI as reported in Koptagel et al. (2022).

In this work, we propose a simple yet effective scheme
for parameterizing a binary tree topological distribution
with a transformation of continuous distributions. We fur-
ther formulate a novel differentiable variational Bayesian
approach named GeoPhy to optimize a variational distribu-
tion of the tree topology and branch lengths to approach
the posterior distribution, without preselection of candidate
topologies. In our experiments using real biological datasets,
we demonstrate that GeoPhy significantly outperforms other
approaches, all without topological restrictions, in terms of
the fidelity of the marginal log-likelihood (MLL) estimates
to gold-standard provided with long-run MCMCs.

2. Background
2.1. Phylogenetic models

Let τ represent an unrooted binary tree topology with N
leaf nodes (tips), and let Bτ denote a set of evolutionary
distances defined on each of the branches of τ . A phylo-
genetic tree (τ,Bτ ) represents an evolutionary relationship
between N species, which is inferred from molecular data,
such as DNA, RNA or protein sequences obtained for the
species. Let Y = {Yij ∈ Ω}1≤i≤N,1≤j≤M be a set of
aligned sequences with length M from the species, where
Yij denote a character (base) of the i-th sequence at j-th
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site, and is contained in a set of possible bases Ω. For DNA
sequences, Ω represents a set of 4-bit vectors, where each
bit represents ’A’, ’T’, ’G’, or ’C’. A likelihood model of
the sequences P (Y |τ,Bτ ) is determined based on evolu-
tionary assumptions. In this study, we follow a common
practice for method evaluations (Zhang & Matsen IV, 2019;
Zhang, 2023) as follows: Y is assumed to be generated
from a Markov process along the branches of τ in a site-
independent manner; The base mutations are assumed to
follow the Jukes-Cantor model (Jukes et al., 1969). The log-
likelihood lnP (Y |τ,Bτ ) can be calculated using Felsen-
stein’s pruning algorithm (Felsenstein, 1973), which is also
known as the sum-product algorithm, and differentiable with
respect to Bτ .

2.2. Variational Bayesian phylogenetic inference

The variational inference problem for phylogenetic trees,
which seeks to approximate the posterior probability
P (τ,Bτ |Y ), is formulated as follows:

min
Q

DKL (Q(τ)Q(Bτ |τ)∥P (τ,Bτ |Y )) , (1)

where DKL, Q(τ) and Q(Bτ |τ) denote the Kullback-
Leibler divergence, a variational tree topology distribu-
tion, and a variational branch length distribution, respec-
tively. The first variational Bayesian phylogenetic infer-
ence method (VBPI) was proposed by Zhang & Matsen
IV (2019), which has been successively improved for the
expressiveness of Q(Bτ |τ) (Zhang, 2020; 2023). For the
expression of variational topology mass function Q(τ), they
all rely on a subsplit Bayesian network (SBN) (Zhang &
Matsen IV, 2018), which represents tree topology mass func-
tion Q(τ) as a product of conditional probabilities of splits
(i.e., bipartition of the tip nodes) given their parent splits.
However, SBN necessitates a preselection of the likely set
of tree topologies, which hinders an end-to-end optimiza-
tion strategy of the distribution over all the topologies and
branch lengths.

3. Proposed methods
3.1. Geometric representations of tree topology

ensembles

Considering the typically infeasible task of parameterizing
the probability mass function of unrooted tree topologies
T , which requires (2N − 5)!!− 1 degrees of freedom, we
propose an alternative approach. We suggest constructing
the mass functionQ(τ) through a transformation of a certain
probability density Q(z) over a continuous domain Z , as
follows:

Q(τ) := EQ(z)[I[τ = τ(z)]], (2)

where τ : Z → T denotes a deterministic link function
that maps N coordinates to the corresponding tree topology

τ(z)

Bτ ∼ Q(Bτ |τ)z ∼ Q(z1, …, z4)
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Figure 1. The proposed scheme for constructing a variational dis-
tribution Q(τ,Bτ ) of a tree topology and branch lengths by using
a distribution Q(z) defined on the continuous space. Left: The
marginal distributions of four tip nodes Q(z1), . . . , Q(z4). Mid-
dle: Coordinates of the tip nodes z = {z1, . . . , z4} sampled from
the distribution Q(z), and a tree topology τ(z) determined from
z. Right: A set of branch lengths Bτ (red figures) of the tree τ is
sampled from a topology dependent distribution Q(Bτ |τ).

(Fig. 1). Note that we have overloaded τ to represent both a
variable and function for notational simplicity. An example
of the representation space Z is a product of Euclidean
spaces RN×d or hyperbolic spaces HN×d (Appendix A),
where d denotes the dimension of each tip’s representation
coordinate. For the link function, we can use τ(z) = TNJ ◦
D(z), where D : Z → RN×N denotes a function that
takes N coordinates and provides a distance matrix between
those based on a geometric measure such as the Euclidean
or hyperbolic distance. TNJ : RN×N → T denotes a map
that takes this distance matrix and generates an unrooted
binary tree topology of their phylogeny, determined using
the Neighbor-Joining (NJ) algorithm (Saitou & Nei, 1987).
While the NJ algorithm offers a rooted binary tree topology
accompanied by estimated branch lengths, we only use the
topology information and remove the root node from it to
obtain the unrooted tree topology τ ∈ T .

3.2. Derivation of variational lower bound

Given a distribution of tip coordinates Q(z) and an induced
tree topology distribution Q(τ) according to equation (2),
the variational lower bound (1) is evaluated as follows:

L[Q] = EQ(z)Q(Bτ |τ(z))

[
ln
P (Y,Bτ |τ(z))P (τ(z))
Q(Bτ |τ(z))Q(τ(z))

]
.

(3)

Thanks to the deterministic mapping τ(z), we can obtain
an unbiased estimator of L[Q] by sampling from Q(z) with-
out summing over the combinatorial many topologies T .
However, even when the density Q(z) is computable, the
evaluation of lnQ(τ) remains still infeasible with small
samples according to the definition (2). We resolve this
issue by introducing the second lower bound with respect to
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a conditional variational distribution R(z|τ) as follows:

L[Q,R] =

EQ(z)Q(Bτ |τ(z))

[
ln
P (Y,Bτ |τ(z))P (τ(z))R(z|τ(z))

Q(Bτ |τ(z))Q(z)

]
.

(4)

Proposition 3.1. The relation lnP (Y ) ≥ L[Q] ≥ L[Q,R]
holds, where the first and second equality holds when
Q(τ,Bτ ) = P (τ,Bτ |Y ) and R(z|τ) = Q(z|τ), respec-
tively.

The proof is provided in Appendix C. Similar to Burda
et al. (2016), we can also derive a tractable importance-
weighted lower-bound of the model evidence (IW-ELBO),
which is used for estimating the marginal log-likelihood
(MLL), lnP (Y ), or an alternative lower-bound objective
for maximization. For the MLL estimates, we use 1000
Monte Carlo samples, similar to (Zhang & Matsen IV, 2019;
Zhang, 2023). The details and derivations are described in
Appendix C.

3.3. Differentiable phylogenetic inference with GeoPhy

Here, we introduce the parameterized variational dis-
tributions, Qθ(z), Qϕ(Bτ |τ), Rψ(z|τ), to facilitate the
gradient-based maximization of the variational objective
L[Qθ,ϕ, Rψ]. We term this framework GeoPhy, since it al-
lows us to optimize the distribution over entire phylogenetic
trees within continuous geometric spaces.

Gradient estimators and variance reduction An unbi-
ased estimator of the gradient ∇θL is derived as follows:

ĝθ = ∇θ lnQθ(z) · f(z,Bτ )−∇θ lnQθ(hθ(ϵz)) (5)

where we denote ϵ
(k)
z ∼ pz z

(k) = hθ(ϵ
(k)
z ), ϵ

(k)
B ∼

pB , B
(k)
τ = hϕ(ϵ

(k)
B , τ(z(k))), and

f(z,Bτ ) := ln
P (Y,Bτ |τ(z))
Qϕ(Bτ |τ(z))

+ lnP (τ(z))Rψ(z|τ(z)).

Note that we explicitly distinguish z and hθ(ϵz) to indicate
the target of differentiation with respect to θ. Unlike the
gradient terms associated with ϕ and ψ, the optimization of
L suffers from the high variance of the gradient ĝθ, which
arises from the term being proportional to the score function
∇θQθ(z). To address this high gradient variance issue, we
have explored several control variates. These are based on a
leave-one-out (LOO) baseline estimation that uses multiple
Monte-Carlo samples (Kool et al., 2019; Richter et al., 2020)
and surrogate functions (Grathwohl et al., 2018), as detailed
in Appendix C.

Variational distributions To investigate the basic effec-
tiveness of GeoPhy algorithm, we employ simple construc-
tions for the variational distributionsQθ(z), Qϕ(Bτ |τ), and
Rψ(z|τ). We use an independent distribution for each tip
node coordinate, i.e. Qθ(z) =

∏N
i=1Qθi(zi), where we use

a d-dimensional normal or wrapped normal distribution (Ap-
pendix A) for the coordinates of each tip node zi. For the
conditional distribution of branch lengths given tree topol-
ogy, Qϕ(Bτ |τ), we use the diagonal lognormal distribution
whose location and scale parameters are parameterized as
functions of the unique features defined for each topology τ
(Appendix B), as proposed in Zhang (2023). For the model
of Rψ(z|τ), we also employ an independent distribution:
Rψ(z|τ) =

∏N
i=1Rψi(zi|τ), where, we use the same type

of distribution as Qθi(zi), independent of τ .

4. Related work
Differentiability for discrete optimization Discrete op-
timization problems often suffer from the lack of informa-
tive gradients of the objective functions. To address this
issue, continuous relaxation for discrete optimization has
been actively studied, such as a widely-used reparameteriza-
tion trick with the Gumbel-softmax distribution (Jang et al.,
2016; Maddison et al., 2016). Beyond categorical variables,
recent approaches have further advanced the continuous
relaxation techniques to more complex discrete objects, in-
cluding spanning trees (Struminsky et al., 2021). However,
it is still nontrivial to extend such techniques to the case
with binary tree topologies. As outlined in equation (2), we
have introduced a distribution over binary tree topologies T
derived from continuous distributions Q(z). This method
facilitates a gradient-based optimization further aided by
variance reduction techniques.

Gradient-based algorithms for tree optimization For
the hierarchical clustering (HC), which reconstructs a tree
relationship based on the distance measures between sam-
ples, gradient-based algorithms (Monath et al., 2019; Chami
et al., 2020; Chien et al., 2022) have been proposed based
on Dasgupta’s cost function (Dasgupta, 2016). In particular,
Chami et al. (2020) proposed to decode tree topology from
hyperbolic coordinates while the optimization is performed
for a relaxed cost function, which is differentiable with re-
spect to the coordinates. However, these approaches are
not readily applicable to more general problems, including
phylogenetic inference, as their formulations depend on the
specific form of the cost functions.

Phylogenetic analysis in hyperbolic space The approach
of embedding phylogenetic trees into hyperbolic spaces
has been explored for visualization and an interpretation of
novel samples with existing phylogeny (Matsumoto et al.,
2021; Jiang et al., 2022). For the inference task, a maximum-
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Figure 2. Superimposed probability densities of topological dis-
tributions

∑N
i=1 Q(zi) up to 100,000, 200,000, and 500,000 steps

(MC samples) from the left. For Q(z), we employed a wrapped
normal distribution with a two-dimensional full covariance ma-
trix. The experiments used the DS3 dataset (N = 36). The
majority-rule consensus phylogenetic tree obtained with MrBayes
and each step of GeoPhy are shown in blue and red lines, respec-
tively. The center area is magnified by transforming the radius r
of the Poincaré coordinates into tanh 2.1r.

likelihood approach was proposed in (Wilson, 2021), which
however assumed a simplified likelihood function of pair-
wise distances. A recent study (Macaulay et al., 2023) pro-
posed an MCMC-based algorithm for sampling (τ,Bτ ),
which were linked from coordinates z using the NJ algo-
rithm (Saitou & Nei, 1987). However, there remained the
issue of an unevaluated Jacobian determinant, which posed
a challenge in evaluating inference objectives. Given that
we only use topology τ as described in equation (2), the
variational lower bound for the inference can be unbiasedly
evaluated through sampling, as shown in Proposition 3.1.

5. Experiments
We applied GeoPhy for an approximate posterior inference
of phylogenetic models given biological sequence data of
species. We trained for GeoPhy until one million Monte-
Carlo tree samples were consumed for the gradient estima-
tion of the lower bound objectives. This number equals
the number of likelihood evaluations (NLEs) and is used
for a standardized comparison of experimental runs (Wang
et al., 2015; Zhang & Matsen IV, 2019). More details of the
experimental setup are found in Appendix D.

To demonstrate the inference performance of GeoPhy, we
compared the marginal log-likelihood (MLL) estimates for
the eight real datasets (DS1-8) compiled in (Lakner et al.,
2008) against gold-standard values obtained in the study
(Zhang & Matsen IV, 2019) using MrBayes stepping-stone
(SS) algorithm (Ronquist et al., 2012; Xie et al., 2011).
Alongside the training steps, a majority consensus tree pro-
cured with GeoPhy progressively aligns with those obtained
via MCMC, as demonstrated in Fig. 2.

In Table 1, we compiled the MLL estimates for GeoPhy and
other approximate Bayesian inference approaches across
eight datasets. Specifically, we present GeoPhy results for

two Q(z) configurations: a wrapped normal distribution
WN with a full 4-dimensional covariance matrix and a
2-dimensional diagonal matrix, along with three control
variate choices. The consistently superior performance of
the larger model, WN (full,4), compared to WN (diag,2) is
evident across all datasets. Details of other settings, includ-
ing those of the normal distributions in Euclidean spaces,
are provided in Table 2. There, we noted a slight advan-
tage of wrapped normal distributions over their Euclidean
counterparts. While VBPI-GNN (Zhang, 2023) employs
a preselected set of tree topologies as its support set be-
fore execution, it is known to provide reasonable MLL es-
timates near the reference values. Other methods includ-
ing CSMC (Wang et al., 2015), VCSMC (Moretti et al.,
2021), ϕ-CSMC (Koptagel et al., 2022), and GeoPhy (our
approach), address the more challenging general problem
of model optimization by considering all candidate topolo-
gies without preselection. Among these methods, GeoPhy
consistently outperforms other CSMC-based methods, even
when a less performant WN (full,2) is used for Q(z). This
demonstrates the stability and efficiency of GeoPhy.

6. Conclusion
We developed a differential phylogenetic inference al-
gorithm named GeoPhy that performed an approximate
Bayesian inference without the preselection of candidate
topologies. In experiments conducted with real sequence
datasets, GeoPhy consistently outperformed other methods
that took whole topologies into consideration.
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A. Hyperbolic spaces and wrapped normal distributions
Hyperbolic spaces are known to be able to embed hierarchical data with less distortion in considerably fewer dimensions
than Euclidean spaces (Sala et al., 2018). The wrapped normal distribution, as proposed in (Nagano et al., 2019), is a
probability distribution defined on hyperbolic spaces, which is easy to sample from and evaluate its probability density at
arbitrary coordinates in the hyperbolic spaces. In the following, we provide a detailed summary of the calculation involved
in applying the wrapped normal distributions within the context of the Lorentz model of hyperbolic spaces.

The Lorentz model, denoted as Hd, represents the d-dimenstional hyperbolic space as a submanifold of a d+ 1 dimensional
Euclidean space. Given u, v ∈ Rd+1, we can define the pseudo-inner product and pseudo-norm as follows:

⟨u, v⟩L := −u0v0 +
d∑
j=1

ujvj , ∥u∥L :=
√

⟨u, u⟩L. (6)

The distance between hyperbolic coordinates ν, µ ∈ Hd is defined as follows:

d(ν, µ) := cosh−1(−⟨ν, µ⟩L), (7)

where cosh−1 denotes the inverse function of the hyperbolic cosine function. Consider hyperbolic coordinates ν, µ ∈ Hd
and tangent vectors u ∈ TµHd and v ∈ TνHd. An exponential map expµ(u) ∈ Hd, a logarithm map logµ(ν) ∈ TµHd, and
a parallel transport map PTν→µ(v) ∈ TµHd, can be calculated as follows:

expµ(u) = cosh(∥u∥L)µ+ sinh(∥u∥L)
u

∥u∥L
, (8)

logµ(ν) =
cosh−1(α)√
α2 − 1

(ν − αµ) , (9)

PTν→µ(v) = v +
⟨µ− αν, v⟩L

α+ 1
(ν + µ), (10)

where we denote α = −⟨ν, µ⟩L, and cosh−1 represents the inverse function of cosh.

Given location and scale parameters denoted as µ ∈ Hd and Σ ∈ Rd×d, respectively, the procedure for sampling from a
wrapped normal distribution z ∼ WN (µ,Σ) defined over Hd is given as follows:

z = expµ ◦PTµo→µ(u), u1:d ∼ N (0,Σ), (11)

where µo = (1, 0, . . . , 0)⊤ denotes the origin of the Hd. Note that we set u0 = 0, and u := u0:d ∈ TµoHd represents a
tangent vector at the origin TµoHd.

From the sampling definition in equation (11), the probability density function WN (z;µ,Σ) can be derived as follows:

logWN (z; µ,Σ) = logN (u; 0,Σ)− (d− 1) ln

(
sinh ∥u∥L
∥u∥L

)
, (12)

where u is defined as u = PTµ→µo ◦ logµ(z). For detailed derivation, we refer to Appendix A of (Nagano et al., 2019).

B. GNN-based parameterization for variational branch length distributions
In this work, we employ a variational branch length distribution Qϕ(Bτ |τ) parameterized with a graph neural network
(GNN) as described in (Zhang, 2023). In concrete, each of the branch lengths follows an independent lognormal distribution,
where its location and scale parameters are predicted with a GNN that takes the tree topology τ and the learnable topological
features (LTFs) of the topology τ , which are computed with a method described in (Zhang, 2023). Below, we summarize an
architecture that we use in this study.

Branch length parameterizations Let Vτ and Eτ respectively represent the sets of nodes and branch edges for a given
unrooted binary tree topology τ . The input to the GNN consists of node features represented by LTFs denoted as {h(0)v }v∈Vτ

.
These features undergo transformation L times as follows:

{h(L)v }v∈Vτ
= GNN({h(0)v }v∈Vτ

) = g(L) ◦ · · · ◦ g(1)({h(0)}v∈Vτ
), (13)
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where we set L = 2. The function g(ℓ) represents a GNN layer. For this function, we utilize edge convolutional layers,
which will be described in more detail in the following paragraph.

Next, the last node features h(L) are transformed to output parameters of edge length as follows:

h̃v = MLPV (h
(L)
v ), (∀v ∈ Vτ ) (14)

m̃(v,u) = MAX(h̃v, h̃u), (∀(v, u) ∈ Eτ ) (15)

µ(v,u), log σ(v,u) = MLPE(m̃(v,u)) (∀(v, u) ∈ Eτ ) (16)

where MLPN , MAX, and MLPE denotes a multi-layer perceptron for node features with two hidden layers, the element-
wise max operation, and a multi-layer perceptron with a hidden layer that outputs the location and scale parameter (µe, σe)
of the lognormal distributions for each edge e ∈ Eτ . For each of the hidden layers employed in MLPN and MLPE , we set
its width to 100 and apply the ELU activation function after the linear transformation of input values.

Edge convolutional layers In a previous study (Zhang, 2023), a GNN with edge convolutional layers, referred to as
EDGE, demonstrated strong performance when predicting the posterior tree distributions. In EDGE, the function g(ℓ)

transforms node features {h(ℓ)v }v∈Vτ
according to the following scheme:

{h(ℓ+1)
v }v∈Vτ = g(ℓ)({h(ℓ)v }v∈Vτ ), (17)

where g(ℓ) is comprised of the edge convolutional operation with the exponential linear unit (ELU) activation function.
Specifically, the transformation with the layer g(ℓ) is computed as follows:

e(ℓ)u→v = MLP(ℓ)
(
h(ℓ)v ∥h(ℓ)u − h(ℓ)v

)
, ∀u ∈ Nτ (v) (18)

h′(ℓ+1)
v = AGG(ℓ)

u∈Nτ (v)
e(ℓ)u→v, (19)

h(ℓ+1)
v = ELU

(
h′(ℓ+1)
v

)
, (20)

where Nτ (v) represents a set of neighboring nodes connected to node v in the tree topology τ , ∥ refers to the concatenation
operation of elements, MLP(ℓ) denotes a full connection layer and the exponential linear unit (ELU) activation unit, and
AGG(ℓ) represents an aggregation operation that takes the maximum value of neighboring edge features e(ℓ)u→v,∀u ∈ N(v)
for each element.

C. Variational Lower Bounds and Gradient Estimators
C.1. Variational lower bound

In Proposition C.1 we will demonstrate that the following functional is a lower bound of the marginal log-likelihood
lnP (Y ):

L[Q,R] := EQ(z,Bτ ) [lnF
′(z,Bτ )] = EQ(z)

[
EQ(Bτ |z)[lnF (z,Bτ )]− lnQ(z)

]
(21)

≤ lnP (Y ), (22)

where F and F ′ are respectively defined as follows:

F (z,Bτ ) :=
P (Y,Bτ |τ(z))
Q(Bτ |τ(z))

P (τ(z))R(z|τ(z)), F ′(z,Bτ ) :=
F (z,Bτ )

Q(z)
. (23)

Proposition C.1 (Restatement of Proposition 3.1). The relation lnP (Y ) ≥ L[Q] ≥ L[Q,R] holds, where the first and
second equality holds when Q(τ,Bτ ) = P (τ,Bτ |Y ) and R(z|τ) = Q(z|τ), respectively.

Proof. The first variational lower bound of the marginal log-likelihood is given as follows:

lnP (Y ) ≥ lnP (Y )−DKL [Q(τ,Bτ )∥P (τ,Bτ |Y )] = EQ(τ,Bτ )

[
ln
P (Y, τ,Bτ )

Q(τ,Bτ )

]
:= L[Q], (24)

9



A differentiable approach to Bayesian phylogenetic inference without topological preselections

where the equality condition of the first inequality holds when Q(τ,Bτ ) = P (τ,Bτ |Y ). Since we have defined Q(τ) in
equation (2), we can further transform the lower bound as L[Q]

L[Q] = EQ(z)

[∑
τ∈T

I[τ = τ(z)]EQ(Bτ |τ)

[
ln
P (Y,Bτ |τ)
Q(Bτ |τ)

+ ln
P (τ)

Q(τ)

]]
, (25)

from which equation (3) immediately follows. Hence the inequality lnP (Y ) ≥ L[Q] and its equality condition Q(τ,Bτ ) =
P (τ,Bτ |Y ) have been proven.

Next, the entropy term −EQ(z)[lnQ(τ(z))] = −EQ(τ)[lnQ(τ)] in equation (3) can be transformed to derive further lower
bound as follows:

−EQ(τ) [lnQ(τ)] ≥ −EQ(τ) [lnQ(τ) +DKL (Q(z|τ)∥R(z|τ))]

= −EQ(τ)Q(z|τ)

[
ln
Q(τ)Q(z|τ)
R(τ |z)

]
= −EQ(z)

[
ln

Q(z)

R(z|τ(z))

]
,

where the last equality is derived by using the relation EQ(τ)Q(z|τ)[·] = EQ(z)[
∑
τ I[τ = τ(z)]·] and Q(τ)Q(z|τ) =

Q(z)I[τ = τ(z)]. The equality condition of the first inequality holds when R(z|τ) = Q(z|τ). Hence, the inequality
L[Q] ≥ L[Q,R] and the equality condition is proven.

C.2. Gradient estimators for variational lower bound

The gradient of L[Qθ,ϕ, Rψ] with respect to θ is given by

∇θL = ∇θ EQθ(z)

[
EQϕ(Bτ |z)[lnF (z,Bτ )]− lnQθ(z)

]
(26)

= EQθ(z)

[
(∇θ lnQθ(z))

(
EQϕ(Bτ |τ(z))

[
ln
P (Y,Bτ |τ(z))
Qϕ(Bτ |τ(z))

]
+ lnP (τ(z))Rψ(z|τ(z))

)]
+∇θH[Qθ(z)], (27)

where H denotes the differential entropy. We assume that Qϕ(Bτ |τ) is reparameterizable as in (Zhang, 2023): namely,
Bτ can be sampled through Bτ = hϕ(ϵB , τ), where ϵB ∼ pB(ϵB), where pB(ϵ) and hϕ denote a parameter-free base
distribution and a differentiable function with ϕ, respectively. Consequently, the gradient of L with respect to ϕ is evaluated
as follows:

∇ϕL = ∇ϕ EQθ(z) EQϕ(Bτ |z)[lnF (z,Bτ )] (28)

= EQθ(z) EpB(ϵB)

[
∇ϕ ln

P (Y,Bτ = hϕ(ϵB , τ)|τ(z))
Qϕ(Bτ = hϕ(ϵB , τ)|τ(z))

]
. (29)

Lastly, the gradient of L with respect to ψ can be evaluated with a tractable density model Rψ(z|τ) as follows:

∇ψL = ∇ψ EQθ(z) EQϕ(Bτ |z)[lnF (z,Bτ )] = EQθ(z) [∇ψ lnRψ(z|τ(z))] . (30)

Given samples ϵz ∼ pz and ϵB ∼ pB , we can compute z = hθ(ϵz), τ(z), and Bτ = hϕ(ϵB , τ(z)). Then, the below
equations are estimators of gradients ∇θL, ∇ϕL, and ∇ψL, respectively:

ĝθ = ∇θ lnQθ(z) · lnF (z,Bτ )−∇θ lnQθ(hθ(ϵz)), (31)

ĝϕ = ∇ϕ lnF (z, hϕ(ϵB , τ(z))) = ∇ϕ ln
P (Y, hϕ(ϵB , τ(z))|τ(z))
Qϕ(hϕ(ϵB , τ(z))|τ(z))

, (32)

ĝψ = ∇ψ lnF (z, hϕ(ϵB , τ(z))) = ∇ψ lnRψ(z|τ(z)). (33)

The gradients can be computed through the auto-gradient of the following target:

L̂′ = lnQθ(z) · detach[f(z,Bτ )] + f(z, hϕ(ϵB , τ(z)))− lnQθ(hθ(ϵz)), (34)

where we denote f(z,Bτ ) = lnF (z,Bτ ), and detach[·] refers to an operation that blocks backpropagation through its
argument. For clarity in terms of differentiability with respect to the parameters, we distinguish between expressions (z, Bτ )
and (hθ(ϵz), hϕ(ϵB , τ(z))).
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C.3. Multi-sample gradient estimators

Given a K set of Monte-Carlo (MC) samples from Qθ,ϕ(z,Bτ ), i.e. {ϵ(k)Z , z(k) = hθ(ϵ
(k)
Z )}Kk=1 and {ϵ(k)B , B

(k)
τ =

hϕ(ϵ
(k)
B , τ(z(k)))}Kk=1, we can simply estimate ∇Lθ[Qθ,ϕ, Rψ] as follows:

ĝ
(K)
θ =

1

K

K∑
k=1

(
∇θ lnQθ(z

(k)) · f(z(k), B(k)
τ )−∇θ lnQθ(hθ(ϵ

(k)
z ))

)
. (35)

As a simple extension of equation (34), the gradients are obtained through an auto-gradient computation of the following
target:

L̂′(K)
=

1

K

K∑
k=1

(
lnQθ(z

(k)) · detach[f(z(k), B(k)
τ )] + f(z(k), hϕ(ϵ

(k)
B , τ(z(k))))− lnQθ(hθ(ϵ

(k)
z ))

)
, (36)

C.4. Leave-one-out (LOO) control variates for variance reduction

For the term of K-sample gradient estimator ĝ(K)
θ proportional to the score function ∇θ lnQθ, a leave-one-out (LOO)

variance reduction is known to be effective (Kool et al., 2019; Richter et al., 2020), which is denoted as follows:

ĝ
(K)
LOO,θ =

1

K

K∑
k=1

[
∇θ lnQθ(z

(k)) ·
(
f(z(k), B(k)

τ )− fk(z
(\k), B(\k)

τ )
)
−∇θ lnQθ(hθ(ϵ

(k)
z ))

]
, (37)

where fk denotes:

fk(z
(\k), B(\k)

τ ) :=
1

K − 1

K∑
k′=1,k′ ̸=k

f(z(k
′), B(k′)

τ ). (38)

To employ the LOO gradient estimator for θ, the target of auto-gradient computation in equation (36) needs to be adjusted
as follows:

L̂′(K)

LOO =
1

K

K∑
k=1

(
lnQθ(z

(k)) · detach[f(z(k), B(k)
τ )− fk(z

(\k), B(\k)
τ )]

+f(z(k), hϕ(ϵ
(k)
B , τ(z(k))))− lnQθ(hθ(ϵ

(k)
z ))

)
, (39)

C.5. LAX estimators for adaptive variance reduction

The LAX estimator (Grathwohl et al., 2018) is a stochastic gradient estimator based on a surrogate function, which can
be adaptively learned to reduce the variance regarding the term ∇θ lnQθ(z). In our case, the LAX estimator is given as
follows:

ĝLAX,θ := ∇θ lnQθ(z) · (f(z,Bτ )− sχ(z)) +∇θsχ(hθ(ϵz)). (40)

As we assume Qθ(z) is differentiable with respect to z, we can also use a modified estimator as follows:

ĝLAX,θ := ∇θ lnQθ(z) · (f(z,Bτ )− sχ(z)) +∇θsχ(hθ(ϵz))−∇θ lnQθ(hθ(ϵz)). (41)

Since it is favorable to reduce the variance of ĝLAX,θ, we optimize χ to minimize the following objective as proposed in
(Grathwohl et al., 2018):

〈
VQθ(z)[ĝθ]

〉
:=

1

nθ

nθ∑
i=1

VQθ(z)[ĝθi ] =
1

nθ

nθ∑
i=1

(
EQθ(z)[ĝ

2
θi ]− EQθ(z)[ĝθi ]

2
)
, (42)
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where nθ denotes the dimension of θ. As the gradient in equation (40) is given as an unbiased estimator of ∇θL, which is
not dependent on χ, we can use the relation ∇χ EQθ(z)[ĝLAX,θi ] = 0. Therefore, the unbiased estimator of the gradient
∇χ

〈
VQθ(z)[ĝLAX,θ]

〉
is given as follows:

ĝχ =
1

nθ

nθ∑
i=1

∇χĝ
2
LAX,θi . (43)

As we require the gradient of ∇θL with respect to χ for the optimization, we use different objectives for auto-gradient
computation with respect to θ and the other parameters ϕ and ψ as follows:

L̂′
LAX,θ = lnQθ(z) · (detach[f(z,Bτ )]− sχ(z)) + sχ(hθ(ϵz))− lnQθ(hθ(ϵz)), (44)

L̂′
ϕ,ψ = f(z, hϕ(ϵB , τ(z))). (45)

C.6. LAX estimators with multiple MC-samples

For the cases with K MC-samples, we use LAX estimators by differentiating the following objectives:

L̂′(K)

LAX,θ =
1

K

K∑
k=1

(
lnQθ(z

(k)) ·
(
detach[f(z(k), B(k)

τ )]− sχ(z
(k))
)
+ sχ(hθ(ϵ

(k)
z ))− lnQθ(hθ(ϵ

(k)
z ))

)
, (46)

L̂′(K)

ϕ,ψ =
1

K

K∑
k=1

f(z(k), hϕ(ϵ
(k)
B , τ(z(k)))). (47)

When we combine LAX estimators with LOO control variates. the target for auto-gradient computation changes to the
following:

L̂′(K)

LOO+LAX,θ =
1

K

K∑
k=1

(
lnQθ(z

(k)) ·
(
detach[f(z(k), B(k)

τ )− fk(z
(\k), B(\k)

τ )]− sχ(z
(k))
)

+sχ(hθ(ϵ
(k)
z ))− lnQθ(hθ(ϵ

(k)
z ))

)
. (48)

We note that L̂′(K)

ϕ,ψ is not affected by the introduction of LOO control variates.

C.7. Derivation of importance-weighted evidence lower bound (IW-ELBO)

An importance-weighted evidence lower bound (IW-ELBO) (Burda et al., 2016), is a tighter lower bound of the log-likelihood
lnP (Y ) than ELBO. For our model, a conventional K-sample IW-ELBO is given as follows:

L(K)
IW [Q] := E

Q(z(1),B
(1)
τ )···Q(z(K),B

(K)
τ )

[
ln

1

K

K∑
k=1

P (Y,B
(k)
τ , τ(z(k)))

Q(B
(k)
τ , τ(z(k)))

]
. (49)

The fact that L(K)
IW [Q] is the lower bound of lnP (Y ) is directly followed from Theorem 1 in (Burda et al., 2016). However,

as our model cannot directly evaluate the mass function Q(τ), we must resort to considering the second lower bound, similar
to the case of K = 1 as depicted in Proposition 3.1. We define the K-sample tractable IW-ELBO as follows:

L(K)
IW [Q,R] := E

Q(z(1),B
(1)
τ )···Q(z(K),B

(K)
τ )

[
ln

1

K

K∑
k=1

F ′(z(k), B(k)
τ )

]
, (50)

where F ′ is defined in equation (23). We will prove in Theorem C.3 that L(K)
IW [Q,R] serves as a lower bound of the lnP (Y ).

Although this inequality holds when K = 1, as shown by lnP (Y ) ≥ L[Q] ≥ L[Q,R] in Proposition 3.1, the relationship is
less obvious when K > 1. Before delving into that, we prepare the following proposition.
Proposition C.2. Given Q(z, τ) as defined in equation 2 and an arbitrary conditional distribution R(z|τ), it follows that

ER(z|τ)[I[τ = τ(z)]] ≤ 1, (51)

where setting R(z|τ) = Q(z|τ) is a sufficient condition for the equality to hold.

12



A differentiable approach to Bayesian phylogenetic inference without topological preselections

Proof. The inequality immediately follows from the definition as follows:

ER(z|τ)[I[τ = τ(z)]] ≤ ER(z|τ)[1] = 1. (52)

Next, when we set R(z|τ) = Q(z|τ), the condition for equality is satisfied as follows:

EQ(z|τ)[I[τ = τ(z)]] =
EQ(z)[I[τ = τ(z)]2]

Q(τ)
=
Q(τ)

Q(τ)
= 1, (53)

where we have used the definition ofQ(τ) := EQ(z)[I[τ = τ(z)]] from equation (2) and the resulting relationQ(z|τ)Q(τ) =
I[τ = τ(z)]Q(z).

Theorem C.3. Given Q(z, τ) as defined in equation 2 and an arbitrary conditional distribution R(z|τ), for any natural
number K > 1, the following relation holds:

lnP (Y ) ≥ L(K)
IW [Q,R] ≥ L(K−1)

IW [Q,R]. (54)

Additionally, if F ′(z,Bτ ) is bounded and ∀τ,ER(z|τ)[I[τ = τ(z)]] = 1, then L(K)
IW [Q,R] approaches lnP (Y ) as K → ∞.

Proof. We first show that for any natural number K > M ,

L(K)
IW [Q,R] ≥ L(M)

IW [Q,R]. (55)

For simplicity, we denote Q(z(k), B
(k)
τ ) and F ′(z(k), B

(k)
τ ) as Qk and F ′

k, respectively, in the following discussion. Let
UKM represent a uniform distribution over a subset with M distinct indices chosen from the K indices {1, . . . ,K}. Similar
to the approach used in (Burda et al., 2016), we will utilize the following relationship:

1

K

K∑
k=1

F ′
k = E{i1,...,iM}∼UK

M

[
1

M

M∑
m=1

F ′
im

]
. (56)

Now, the inequality (55) is derived as follows:

EQ1···QK

[
ln

(
1

K

K∑
k=1

F ′
k

)]
= EQ1···QK

[
lnE{i1,...,im}∼UK

M

[(
1

M

M∑
m=1

F ′
im

)]]
(57)

≥ EQ1···QK

[
E{i1,...,im}∼UK

M

[
ln

(
1

M

M∑
m=1

F ′
im

)]]
(58)

= EQ1···QM

[
ln

(
1

M

M∑
m=1

F ′
m

)]
, (59)

where we have also used Jensen’s inequality.

Next, we show that lnP (Y ) ≥ L(K)
IW [Q,R]. We again use Jensen’s inequality as follows:

L(K)
IW [Q,R] = EQ1···QK

[
ln

1

K

K∑
k=1

F ′
k

]
(60)

≤ lnEQ1···QK

[
1

K

K∑
k=1

F ′
k

]
= lnEQ(z,Bτ ) [F

′(z,Bτ )] . (61)
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The last term is further transformed as follows:

lnEQ(z,Bτ ) [F
′(z,Bτ )] = lnEQ(z,Bτ )

[
P (Y,Bτ |τ(z))R(z|τ(z))

Q(Bτ |τ(z))Q(z)

]
(62)

= lnEQ(z,Bτ )

[
P (Y,Bτ |τ(z))R(z|τ(z))

Q(z,Bτ )

]
(63)

= lnEQ(z)

[
P (Y, τ(z))R(z|τ(z))

Q(z)

]
(64)

= ln
∑
τ ′∈T

EQ(z)

[
P (Y, τ ′)R(z|τ ′)

Q(z)
I[τ ′ = τ(z)]

]
(65)

= ln
∑
τ ′∈T

P (Y, τ ′)ER(z|τ ′) [I[τ ′ = τ(z)]] (66)

≤ ln
∑
τ ′∈T

P (Y, τ ′) = lnP (Y ), (67)

where, in the transition from the first to the second row, we employed the following relation:

Q(Bτ |τ(z)) =
∑
τ∈T

Q(Bτ |τ)I[τ = τ(z)] =
∑
τ∈T

Q(Bτ |τ)Q(τ |z) = Q(Bτ |z), (68)

and we have used Proposition C.2 for the last inequality.

Finally, we will show that the following convergence property assuming that F (z,Bτ ) is bounded:

L(K)
IW [Q,R] → ln

(∑
τ ′∈T

P (Y, τ ′)ER(z|τ ′) I[τ ′ = τ(z)]

)
(K → ∞). (69)

From the strong law of large numbers, it follows that 1
K

∑K
k=1 F

′
k converges to the following term almost surely as K → ∞:

EQ(zk,Bk) [F
′(zk, Bk)] =

∑
τ ′∈T

P (Y, τ ′)ER(z|τ ′) I[τ ′ = τ(z)], (70)

where we have employed the same transformations as used from equation (62) to (66). Observe that the r.h.s term of the
equation (69) equals to lnP (Y ) when ∀τ ′ ∈ T ,ER(z|τ ′)[I[τ ′ = τ(z)]] = 1, which completes the proof.

Estimation of marginal log-likelihood For the estimation of lnP (Y ), we employ L(K)[Q,R] with K = 1, 000 similar to
(Zhang, 2023). From Theorem C.3, IW-ELBO L(K)[Q,R] is at least a better lower bound of lnP (Y ) than ELBO L[Q,R],
and converges to lnP (Y ) when ∀τ,ER(z|τ)[I[τ = τ(z)]] = 1. According to Proposition C.2, this equality condition is
satisfied when we set R(z|τ) = Q(z|τ), which is approached by maximizing L[Q,R] with respect to R as indicated in
Proposition 3.1.

C.8. Gradient estimators for IW-ELBO

The gradient of IW-ELBO L(K)
IW [Qθ,ϕ, Rψ] with respect to θ is given by

∇θL(K)
IW = E

Qθ,ϕ(z(1),B
(1)
τ )···Qθ,ϕ(z(K),B

(K)
τ )

[
K∑
k=1

wk(z
(1:K), B(1:K))∇θ lnF

′(z(k), B(k)
τ )

]

+ E
Qθ,ϕ(z(1),B

(1)
τ )···Qθ,ϕ(z(K),B

(K)
τ )

[
K∑
k=1

∇θ lnQθ(z
(k)) · ℓ(z(1:K), B(1:K))

]
, (71)
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where we have defined

wk(z
(1:K), B(1:K)

τ ) :=
F ′(z(k), B

(k)
τ )∑K

k′=1 F
′(z(k′), B

(k′)
τ )

, (72)

ℓ(z(1:K), B(1:K)
τ ) := ln

(
1

K

K∑
k′=1

F ′(z(k
′), B(k′)

τ )

)
. (73)

Similarly, as F ′ is differentiable with respect to Bτ , and Bτ = hϕ(ϵB , τ) is differentiable with respect to ϕ, the gradient of
L(K)
IW with respect to ϕ can be evaluated as follows:

∇ϕL(K)
IW = EQθ(z(1))···Qθ(z(K)) EpB(ϵ

(1)
B )···pB(ϵ

(K)
B )

[
K∑
k=1

wk(z
(1:K), B(1:K)

τ )∇ϕ lnF
′(z(k), hϕ(ϵ

(k), τ))

]
. (74)

Since ∇θ lnF
′(z(k), B

(k)
τ ) = −∇θ lnQθ(z

(k)) from equation (23), an unbiased estimator of the gradient ∇θL(K) is given
as follows:

ĝ
(K)
IW,θ :=

K∑
k=1

∇θ lnQθ(z
(k)) ·

[
−wk(z(1:K), B(1:K)

τ ) + ℓ(z(1:K), B(1:K)
τ )

]
. (75)

The remaining gradient estimators are given as follows:

ĝ
(K)
IW,ϕ =

K∑
k=1

wk(z
(1:K), B(1:K)

τ )∇ϕ lnF (z
(k), hϕ(ϵ

(k), τ)), (76)

ĝ
(K)
IW,ϕ =

K∑
k=1

wk(z
(1:K), B(1:K)

τ )∇ψ lnF (z(k), hϕ(ϵ
(k), τ)). (77)

In total, the target for computing auto-gradient for these gradients is given as follows:

L̂′(K)
IW =

K∑
k=1

lnQθ(z
(k)) · detach

[
−wk(z(1:K), B(1:K)

τ ) + ℓ(z(1:K), B(1:K)
τ )

]
+

K∑
k=1

detach[wk(z
(1:K), B(1:K)

τ )] lnF (z(k), hϕ(ϵ
(k)
B , τ(z(k)))). (78)

D. Experimental Details
D.1. Models and training

As a prior distribution of P (τ) and P (Bτ |τ), we assumed a uniform distribution over all topologies, and an exponential
distribution Exp(10) independent for all branches, respectively, as commonly used in the literature (Zhang & Matsen
IV, 2019; Koptagel et al., 2022). For the neural network used in the parameterization of Qϕ(Bτ |τ), we employed edge
convolutional operation (EDGE), which was well-performed architecture in (Zhang, 2023). For the stochastic gradient
optimizations, we used the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.0001.

D.2. Initialization of coordinates

We initialized the mean parameters of the tip coordinate distribution Qθ(z) with the multi-dimensional scaling (MDS)
algorithm when Qθ was given as normal distributions. For Qθ comprised of wrapped normal distributions, we used the
hyperbolic MDS algorithm (hMDS) proposed in (Sala et al., 2018) for the initialization. For a distance matrix used for MDS
and hMDS, we used the Hamming distance between each pair of the input sequences Y as similar to (Macaulay et al., 2023).
For the scale parameters, we used 0.1 for all experiments. For Rψ(z), we used the same mean parameters as Qθ(z) and 1.0
for the scale parameters.
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D.3. Training process

For the training of GeoPhy, we continued the stochastic gradient descent process until a total of 1,000,000 Monte-Carlo
(MC) tree samples were consumed. Specifically, if K MC-samples were used per step, we performed up to 1,000,000 / K
steps. It is noteworthy that the number of MC samples equaled the number of likelihood evaluations (NLEs), which provided
us with a basis for comparing convergence speed between different runs.In all of our experiments, we used Adam optimizer
with an initial learning rate of 0.0001. The learning rate was then multiplied by 0.75 after every 200,000 steps. Similar to
approaches taken by Zhang & Matsen IV (2019), we incorporated an annealing procedure during the initial consumption of
100,000 MC samples. Specifically, we replaced the likelihood function in the lower bound with P (Y |Bτ , τ)β and linearly
increased the inverse temperature β from 0.001 to 1 throughout the iterations. Note that all the estimations of marginal
log-likelihood (MLL) were performed with β set to 1.

D.4. Variational branch length distribuions

For the variational branch length distribution Qϕ(Bτ |τ), we followed an architecture of (Zhang, 2023); namely, each branch
length independently followed a lognormal distribution which was parameterized with a graph neural network (GNN).
Details are described in Appendix B.

D.5. LAX estimators

As input features of a surrogate function sχ(z) used in the LAX estimators, we employed a flattened vector of coordinates
z ∈ RN×d when z resides in Euclidean space. In cases where the coordinates were z ∈ Hd, we first transformed z with a
logarithm map logµo z ∈ TµoHd, then omitted their constant value 0-th elements and subsequently flattened the result. We
implemented a simple multi-layer perceptron (MLP) network with a single hidden layer of width 10Nd and a subsequent
sigmoid linear unit (SiLU) activation function as the neural network to output sχ(z).

D.6. Replication of MLL estimates with MrBayes SS

Given the observed discrepancies in marginal log-likelihood (MLL) estimates obtained with the MrBayes stepping-stone
(SS) method between references (Zhang & Matsen IV, 2019) and (Koptagel et al., 2022), we replicated the MrBayes SS
runs using MrBayes version 3.2.7a. The script we used is provided below.

BEGIN MRBAYES;
set autoclose=yes nowarn=yes Seed=123 Swapseed=123;
lset nst=1;
prset statefreqpr=fixed(equal);
prset brlenspr=Unconstrained:exp(10.0);
ss ngen=10000000 nruns=10 nchains=4 printfreq=1000 samplefreq=100 \
savebrlens=yes filename=mrbayes_ss_out;
END;

We incorporated the results in the row named Replication in Table 2, where the values aligned more closely with those
found in (Zhang & Matsen IV, 2019). We deduced that the prior distribution used in (Koptagel et al., 2022) might have
been set differently as the current default values of brlenspr are Unconstrained : GammaDir(1.0, 0.100, 1.0, 1.0) 2, which
deviates from the model assumption used for the benchmarks. We observed that the line brlenspr was not included in the
code provided in Appendix F of (Koptagel et al., 2022). Having been able to replicate the results found in (Zhang & Matsen
IV, 2019), we opted to use their values as a reference in Table 1.

D.7. Visualization of tree topologies

We visualized the sum of the probability densities for tip node distribution
∑N
i=1Q(zi) in Fig. 2 by projecting a hyperbolic

coordinate zi ∈ Hd onto the Poincaré coordinates zik = zik/ (1 + zi0) (k = 1, . . . , d), then applying a transformation
zi 7→ z′i = tanh (a ∥zi∥2) · zi/ ∥zi∥2 with a = 2.1 to close up the central region. To display the density Q in the new
coordinates, the Jacobian term was also considered to evaluate the density Q(z′i).

2https://github.com/NBISweden/MrBayes/blob/develop/doc/manual/Manual_MrBayes_v3.2.pdf
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For the comparison of consensus tree topologies, we plotted the edges of the tree by connecting each of their end node
coordinate pairs with a geodesic line. The coordinate in Hd of the i-th tip node was determined as the location parameter
µi ∈ Hd of the wrapped normal distribution Q(zi) = WN (zi;µi,Σi). Let ξu ∈ Hd denotes the coordinate of an interior
node u, we defined ξu by using the Lorentzian centroid operation C (?) as follows:

ξu := C({cs}s∈Sτ (u), {νs}s∈Sτ (u)) =
ξ̃u√

−
〈
ξ̃u, ξ̃u

〉
L

, (79)

where ξ̃u :=
∑
s∈Sτ (u)

νscs denote an unnormalized sum of weighted coordinates, s ∈ Sτ (u) denote a subset of tip node
indices partitioned by the interior node u in the tree topology τ , cs := C({µi}i∈s, {1}i∈s) denote the Lorentzian centroid of
the tip nodes contained in the subset s, and νs = N − |s| denote the number of the tip nodes in the complement set of s
where |s| represents the number of tip nodes in the subset s. As an unrooted tree topology τ can be identified by the set of
tip node partitions introduced by the interior nodes of τ , the same unrooted tree topologies give the same set of interior
coordinates {ξu}u∈V according to equation (79).

E. Additional Results
E.1. Marginal log-likelihood estimates for eight datasets

We present more comprehensive results in Table 2, extending upon the data from Table 1. This table presents the marginal
log-likelihood (MLL) estimates obtained with various GeoPhy configurations and other conventional methods for the
datasets DS1-DS8 (Hedges et al., 1990; Garey et al., 1996; Yang & Yoder, 2003; Henk et al., 2003; Lakner et al., 2008;
Zhang & Blackwell, 2001; Yoder & Yang, 2004; Rossman et al., 2001). Once again, GeoPhy demonstrates its superior
performance, consistently outperforming CSMC-based approaches that do not require preselection of tree topologies across
the majority of configurations and datasets. This reaffirms the stability and excellence of our approach. Additionally, we
found that a Q(z) configuration using a 4-dimensional wrapped normal distribution with a full covariance matrix was the
most effective among the tested configurations.
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Table 2. Extended results of Table 1 comparing the marginal log-likelihood (MLL) estimates with different approaches in eight benchmark
datasets. The MLL values for MrBayes SS and VBPI-GNN were obtained from (Zhang, 2023), while CSMC, VCSMC, and ϕ-CSMSC
are referenced from (Koptagel et al., 2022). We also included replicated results for MrBayes SS. The MLL values for our approach
(GeoPhy) are presented for a variety of Q(z) configurations, encompassing distribution types (normal N or wrapped normal WN ),
embedding dimensions (2 or 4), and the covariance matrix (full or diagonal). Each result features various CVs: LAX with K = 1, LOO
with K = 3 denoted as LOO(3), and a combination of LOO and LAX, denoted as LOO(3)+. The figures highlighted in bold represent
the highest values obtained with GeoPhy and the three CSMC-based methods, all of which perform an approximate Bayesian inference
without the preselection of topologies. We have underlined MLL estimates where GeoPhy outperformed the other CSMC-based methods.

Dataset DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8
#Taxa (N ) 27 29 36 41 50 50 59 64
#Sites (M ) 1949 2520 1812 1137 378 1133 1824 1008

MrBayes SS −7108.42 −26367.57 −33735.44 −13330.06 −8214.51 −6724.07 −37332.76 −8649.88
(0.18) (0.48) (0.5) (0.54) (0.28) (0.86) (2.42) (1.75)

(Replication) −7107.81 −26366.45 −33732.79 −13328.40 −8209.17 −6721.54 −37331.85 −8646.18
(0.25) (0.40) (0.63) (0.48) (0.46) (0.77) (3.08) (1.19)

VBPI-GNN −7108.41 −26367.73 −33735.12 −13329.94 −8214.64 −6724.37 −37332.04 −8650.65
(0.14) (0.07) (0.09) (0.19) (0.38) (0.4) (0.26) (0.45)

CSMC −8306.76 −27884.37 −35381.01 −15019.21 −8940.62 −8029.51 − −11013.57
(166.27) (226.6) (218.18) (100.61) (46.44) (83.67) − (113.49)

VCSMC −9180.34 −28700.7 −37211.2 −17106.1 −9449.65 −9296.66 − −
(170.27) (4892.67) (397.97) (362.74) (2578.58) (2046.7) − −

ϕ-CSMC −7290.36 −30568.49 −33798.06 −13582.24 −8367.51 −7013.83 − −9209.18
(7.23) (31.34) (6.62) (35.08) (8.87) (16.99) − (18.03)

N (diag,2) −7126.79 −26440.54 −33814.98 −13356.21 −8251.99 −6747.15 −37526.41 −8727.93
(10.06) (28.78) (20.31) (9.48) (9.43) (15.21) (66.28) (43.33)

LOO(3) −7130.60 −26375.10 −33737.71 −13345.55 −8236.99 −6747.46 −37375.93 −8716.61
(10.66) (11.75) (2.32) (3.26) (6.29) (6.90) (28.86) (26.32)

LOO(3)+ −7128.36 −26369.93 −33735.91 −13346.03 −8236.13 −6751.97 −37430.82 −8691.38
(9.77) (0.25) (0.13) (4.54) (5.71) (11.24) (67.19) (10.70)

N (diag,4) −7123.95 −26382.91 −33762.45 −13341.62 −8241.07 −6735.78 −37396.04 −8679.48
(12.03) (16.89) (10.68) (3.64) (6.56) (5.25) (26.39) (27.55)

LOO(3) −7120.88 −26368.53 −33736.04 −13338.99 −8238.16 −6735.59 −37357.86 −8665.54
(13.15) (0.05) (0.09) (6.08) (0.52) (4.51) (10.76) (5.66)

LOO(3)+ −7119.81 −26368.49 −33735.92 −13339.79 −8236.69 −6736.74 −37353.08 −8665.99
(11.71) (0.10) (0.15) (4.55) (4.70) (3.55) (16.97) (7.53)

N (full,2) −7129.70 −26487.71 −33807.05 −13353.30 −8251.01 −6750.00 −37487.49 −8736.81
(6.14) (54.79) (22.97) (5.92) (10.34) (11.91) (50.43) (52.38)

LOO(3) −7132.35 −26391.00 −33736.98 −13347.17 −8237.75 −6752.46 −37462.07 −8684.38
(6.89) (11.88) (1.89) (7.77) (6.08) (8.64) (54.40) (7.98)

LOO(3)+ −7122.76 −26380.59 −33736.93 −13343.21 −8239.96 −6753.84 −37419.02 −8691.96
(10.81) (14.39) (2.10) (2.14) (4.84) (14.30) (35.94) (13.51)

N (full,4) −7120.03 −26378.55 −33753.20 −13342.27 −8237.33 −6734.51 −37373.32 −8662.53
(11.92) (11.05) (3.03) (2.71) (5.41) (1.95) (10.08) (4.58)

LOO(3) −7124.62 −26368.49 −33736.03 −13337.74 −8234.18 −6734.49 −37347.46 −8666.63
(12.33) (0.13) (0.16) (1.71) (6.11) (3.14) (11.93) (7.86)

LOO(3)+ −7123.37 −26368.51 −33735.99 −13337.06 −8241.25 −6734.63 −37352.30 −8666.39
(11.28) (0.09) (0.05) (1.45) (8.15) (2.18) (12.32) (7.54)

WN (diag,2) −7126.89 −26444.84 −33823.74 −13358.16 −8251.45 −6745.60 −37516.88 −8719.44
(10.06) (27.91) (15.62) (9.79) (9.72) (8.36) (69.88) (60.54)

LOO(3) −7130.67 −26380.41 −33737.75 −13346.94 −8239.36 −6741.63 −37382.28 −8690.41
(10.67) (14.40) (2.48) (4.25) (4.62) (3.23) (31.96) (15.92)

LOO(3)+ −7128.40 −26375.28 −33736.91 −13347.32 −8235.41 −6742.40 −37411.28 −8683.22
(9.78) (11.78) (1.91) (4.42) (5.70) (1.94) (56.74) (13.13)

WN (diag,4) −7122.10 −26381.84 −33759.19 −13342.81 −8243.92 −6733.38 −37369.36 −8666.85
(12.29) (17.18) (9.95) (3.45) (6.74) (0.79) (13.45) (10.63)

LOO(3) −7120.94 −26368.52 −33735.98 −13339.77 −8236.42 −6735.12 −37341.92 −8673.15
(13.11) (0.03) (0.08) (3.84) (3.63) (2.52) (9.15) (0.97)

LOO(3)+ −7125.78 −26368.51 −33736.00 −13342.38 −8235.03 −6736.20 −37345.80 −8666.68
(13.10) (0.10) (0.18) (6.35) (5.36) (1.91) (11.13) (5.78)

WN (full,2) −7124.63 −26458.50 −33804.63 −13358.16 −8251.09 −6748.78 −37484.98 −8717.27
(8.09) (32.42) (20.76) (1.20) (7.46) (7.38) (34.91) (28.49)

LOO(3) −7125.94 −26391.02 −33736.98 −13344.13 −8236.90 −6753.86 −37416.00 −8684.90
(13.07) (11.89) (1.96) (0.22) (5.13) (10.68) (3.12) (12.81)

LOO(3)+ −7115.19 −26385.21 −33736.97 −13343.95 −8239.55 −6747.61 −37431.76 −8683.54
(8.16) (13.77) (1.93) (1.76) (4.72) (6.87) (43.65) (3.57)

WN (full,4) −7111.55 −26379.48 −33757.79 −13342.71 −8240.87 −6735.14 −37377.86 −8663.51
(0.07) (11.60) (8.07) (1.61) (9.80) (2.64) (29.48) (6.85)

LOO(3) −7119.77 −26368.44 −33736.01 −13339.26 −8234.06 −6733.91 −37350.77 −8671.32
(11.80) (0.13) (0.03) (3.19) (7.53) (0.57) (11.74) (5.99)

LOO(3)+ −7116.09 −26368.54 −33735.85 −13337.42 −8233.89 −6735.90 −37358.96 −8660.48
(10.67) (0.12) (0.12) (1.32) (6.63) (1.13) (13.06) (0.78)
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