
Journal of Data-centric Machine Learning Research (2025) Submitted 9/24; Revised 12/24; Published 1/25

Constructing Confidence Intervals for “the” Generalization
Error – a Comprehensive Benchmark Study

Hannah Schulz-Kümpel1,2,∗ hannah.kuempel@stat.uni-muenchen.de

Sebastian Fischer1,2,∗ sebastian.fischer@stat.uni-muenchen.de

Roman Hornung3,2 hornung@ibe.med.uni-muenchen.de

Anne-Laure Boulesteix2,3 boulesteix@ibe.med.uni-munechen.de

Thomas Nagler1,2 t.nagler@lmu.de

Bernd Bischl1,2 bernd.bischl@stat.uni-muenchen.de

1Department of Statistics, LMU Munich
2Munich Center for Machine Learning (MCML)
3Institute for Medical Information Processing, Biometry and Epidemiology, Faculty of Medicine,
LMU Munich

Reviewed on OpenReview: https: // openreview. net/ forum? id= x7kCj9OU2c

Editor: Yue Zhao

Abstract
When assessing the quality of prediction models in machine learning, confidence intervals
(CIs) for the generalization error, which measures predictive performance, are a crucial tool.
Luckily, there exist many methods for computing such CIs and new promising approaches
are continuously being proposed. Typically, these methods combine various resampling
procedures, most popular among them cross-validation and bootstrapping, with different
variance estimation techniques. Unfortunately, however, there is currently no consensus on
when any of these combinations may be most reliably employed and how they generally
compare. In this work, we conduct a large-scale study comparing CIs for the generalization
error, the first one of such size, where we empirically evaluate 13 different CI methods on a
total of 19 tabular regression and classification problems, using seven different inducers and
a total of eight loss functions. We give an overview of the methodological foundations and
inherent challenges of constructing CIs for the generalization error and provide a concise
review of all 13 methods in a unified framework. Finally, the CI methods are evaluated in
terms of their relative coverage frequency, width, and runtime. Based on these findings, we
can identify a subset of methods that we would recommend. We also publish the datasets
as a benchmarking suite on OpenML and our code on GitHub to serve as a basis for further
studies.
Keywords: Confidence Intervals, Resampling, Benchmark, Statistical Inference, Machine
Learning, Tabular Data, Uncertainty Quantification

∗. These authors contributed equally to this work.

©2025 Hannah Schulz-Kümpel and Sebastian Fischer.

https://openreview.net/forum?id=x7kCj9OU2c

Schulz-Kümpel, Fischer, et al.

1 Introduction

After fitting a supervised learning model on available data, one, if not the natural next
question is: “How accurately will the model predict outcomes for new, previously unob-
served data points?” One of the most common quantities used to answer this question is
an estimate of the expected loss of the model prediction on a new data point following the
same distribution as the training data, which is referred to as the generalization or pre-
diction error. While it is usually assumed that the available data was sampled from some
common distribution, this distribution is almost always unknown. A natural estimate of
this prediction error would be to evaluate the model under consideration on a dedicated
test set – and to simply estimate the error by averaging, where we rely on the “law of large
numbers”. Unfortunately, all data will ultimately be used to construct the final model, so
no such dedicated data is typically available, but violating the “untouched test set” principle
usually leads to optimistically biased estimates of performance in machine learning (ML).
This is where resampling methods become essential. Techniques like cross-validation and
bootstrapping provide frameworks that make it possible to infer the generalization error by
repeatedly splitting the data, fitting a model on training data, predicting on unused test
data, and evaluating these predictions before averaging the results.

As with any point estimate, however, a resampling-based estimate cannot be appropri-
ately interpreted if presented without any information about its precision, often in the form
of confidence intervals (CI). As we will explain in more detail later, the variability of point
estimates for the generalization error (GE) can be especially high, so a CI around it can
provide extremely meaningful information. The different sources of uncertainty influencing
this variability are described in detail in Section 3.3.

Although the need for reliable CIs for the GE is evident, accurately deriving such intervals
presents significant challenges that arise from the resampling setting. On a theoretical level,
the issue of deriving asymptotic guarantees across resampling procedures (Bayle et al. (2020);
Austern and Zhou (2020), e.g., provide results for K-fold CV) has not yet been solved. In
fact, even for very specific settings, asymptotic results regarding the theoretical validity of
variance estimators for the generalization error are sparse in the literature. Meanwhile, on
a computational level, the cost of repeatedly refitting and evaluating a model, especially on
large data sets, can quickly become a burden.

Our Contribution In this work, we give a detailed and unified overview of 13 different
existing model-agnostic methods for deriving CIs for the generalization error and compare
their performance by conducting a comprehensive benchmark study across 71 different su-
pervised learning algorithms applied to 19 different data generating processes (DGPs). Out
of these, 18 DGPs were specifically created for this benchmark study. In particular, we focus
on the coverage frequency and width of the CIs, as well as their computational cost and
stability across models and data types. As a result, we are able to identify a subset of well-
performing methods with recommendations on when to use them. Furthermore, we provide
an in-depth discussion of the theoretical foundations of and key challenges associated with
constructing CIs for the GE.

1. 3 are applied to only the top-performing methods of the earlier evaluation stage as the alternative would
have been beyond our computational budget.

2

Constructing CIs for “the” Generalization Error

Why a benchmark study?

Given the vast array of resampling techniques and possible approaches to variance estima-
tion, it is not surprising that new proposals for methods to derive CIs for the generalization
error are continuously being added to the already considerable amount of options available
in the literature.

Unfortunately, deriving formal guarantees for resampling-based variance estimators is
quite complex. Currently, few theoretical results exist that can serve as tools to analyze
the asymptotic behavior of CIs across resampling settings. As a result, thorough empirical
investigation of these methods is paramount (Herrmann et al., 2024). A large benchmark
study allows us to identify trends and investigate aspects that are difficult to analyze formally
but nonetheless very relevant. Our empirical investigation provides several key contributions
to the field, which we outline below:

1. A comprehensive, neutral comparison of various resampling techniques and vari-
ance estimation methods used to construct CIs for the GE. Given that we are merely taking
stock of the available methodology without proposing a new method, we are able to approach
the comparison in an entirely neutral manner (Boulesteix et al., 2013).

2. A foundation for evaluating future methods for computing CIs for the GE. By
transparently reporting the comparison metrics and making all data and code available, we
aim to enable researchers to compare their new proposals to the existing methods across
many settings with relative ease.

3. A hypothesis-generating empirical study. Finally, our study serves as a hypothesis-
generating empirical investigation. By repeatedly running experiments with different loss
functions and over different targets of interest (such as the K-fold Test Error defined by
Bayle et al. (2020)) and highlighting unexpected behaviors of methods on certain data sets
and/or inducers we encourage further exploration and deeper understanding of the complex
dynamics involved in resampling-based inference about the generalization error.

Related work

The concept of resampling-based performance estimation has long been an established one
(Stone, 1974; Geisser, 1975; Breiman et al., 1984; Efron, 1983). In fact, resampling forms the
basis of most methods for estimating predictive performance, with the only common alter-
native (Bates et al., 2024; Borra and Di Ciaccio, 2010) being covariance penalty approaches
(Hastie et al., 2009; Rosset and Tibshirani, 2020), which are usually intended for parametric
models and generalize the classical Mallows Cp estimate (Mallows, 1973) for OLS settings.

The present work focuses on resampling-based inference for the generalization (or predic-
tion) error. In this context, cross-validation (CV) is generally considered the most popular
option, and the bootstrap the most common alternative (Bates et al., 2024; Borra and Di
Ciaccio, 2010). Here, as well as for other resampling procedures such as subsampling (Shao
and Wu, 1989), model-agnostic point estimates are easily defined as they usually involve
straightforward averaging of resamples. However, constructing corresponding CIs requires
additional steps to analyze the variability and distribution of these estimates. For the case
of CV, one central finding has been that there exists no universal unbiased estimator of
the variance of K-fold CV (Bengio and Grandvalet, 2003). Even though CV is the most

3

Schulz-Kümpel, Fischer, et al.

studied method due to its widespread use, only a few general asymptotic results about the
distribution of model-agnostic point estimates are available, most recently by Bayle et al.
(2020) and Austern and Zhou (2020), and before that by Dudoit and van der Laan (2005),
albeit without providing a specific standard error estimate. A few more works, such as
LeDell et al. (2015), have focused specifically on CIs for area under the curve (AUC) in
combination with CV. However, AUC is an aggregated metric exclusive to classification,
as opposed to the more general setting of decomposable, point-wise losses, which may be
applied to both classification and regression. Given that our focus is on evaluating perfor-
mance across various settings, we have excluded AUC from our analysis. Similarly, we did
not consider the time-series-forecasting specific methodology proposed by Xu et al. (2023),
as we focus on independently and identically distributed (i.i.d.) sampled data settings. For
bootstrap methods, the findings regarding the variability and distribution of model-agnostic
performance estimates are even sparser (Efron, 1983; Efron and Tibshirani, 1997).

For the comparison of this work, we chose methods from the most commonly cited works
proposing model-agnostic methods for computing CIs around the GE (Nadeau and Bengio,
2003; Bates et al., 2024; Bayle et al., 2020; Austern and Zhou, 2020; Dietterich, 1998; Efron
and Tibshirani, 1997; Jiang et al., 2008), as well as a recent addition from the context of
medicine (Noma et al., 2021), which allowed us to add two more bootstrap-based methods
to the comparison. See Section 6 for a summary of these methods.

While fewer papers regarding CIs for the GE, especially their empirical evaluation, exist,
there have been quite a few studies on point estimation for the GE. Notable examples of
such studies include Kohavi et al. (1995), Molinaro et al. (2005), and Kim (2009), with
one central consensus being that (repeated) 10-fold CV generally results in reliable point
estimates.

To our knowledge, no study comparing CIs for the GE is as comprehensive as the current
work. Although there are fewer studies focused on this topic, three notable works have
examined different aspects of generalization error CIs. The first of these studies, Nadeau
and Bengio (2003), provides a comparison of 7 different methods, especially focusing on
the bias of variance estimators and the statistical significance of the derived results. Their
empirical examination covers less ground than the present work, consisting of one real-world
and two simulated data settings to which two learners each are applied. Furthermore, several
new methods for deriving CIs for the GE have been proposed since its publication. More
recently, Bayle et al. (2020) formally proved that their proposed variance estimator(s) yield
practical, asymptotically exact CIs for the K-fold Test Error and compared their method
with “the most popular alternative methods from the literature”. While the proposed method
performs very well, both in their experiment and ours, the comparison focused exclusively
on K-fold Test Error, a quantity that is only closely related to the GE (as we will explain in
this work) and which the other methods were not originally intended to cover. Additionally,
they excluded bootstrap-based methods from their comparison and considered only two
different data sets. Thirdly, Bates et al. (2024) proposed a nested CV-based approach. In
addition, they provide an excellent overview of the problem and theoretical results in the
setting of OLS regression. However, their empirical comparison is restricted to linear models.
Additionally, the inference methods and data sets considered are fewer than in this work.

4

Constructing CIs for “the” Generalization Error

Commitment to FAIR research data

In conducting this study, we are committed to making the research data as FAIR (findable,
accessible, interoperable, and reusable, see Wilkinson et al. (2016)) as possible. To this end,
we share the benchmark datasets on OpenML (Vanschoren et al., 2013)2 and all code on
GitHub (Fischer and Schulz-Kümpel, 2024)3. Additionally, we provide a guide on how to
extend this experiment to include new methods for deriving CIs for the GE that may be
proposed in the future. To allow for further analysis of our results, we share them on zenodo4.
Finally, we integrate the well-performing CIs into the mlr3 machine learning framework by
Lang et al. (2019), via the R package mlr3inferr5.

2 Setting and notation

Throughout this work, we consider as data a sequence of observations D =
(
x(i), y(i)

)n
i=1
∈

(X × Y)n for feature space X and label space Y, where each
(
x(i), y(i)

)
is an independent

draw from a distribution P , i.e. D is a realization of a random matrix D ∼
⊗n

i=1 P =̂P
n.

For a space of possible model-predictions Ỹ, which can e.g. be a probability vector (Rp) or
a score (R), let the function f̂I,D : X −→ Ỹ denote the prediction function that is generated
by applying an algorithm, or inducer, I to data D. Denoting by D(n) the set of all possible
realizations D of D, i.e. D(n) := {D(ω)|ω ∈ Ω, D ∼ Pn

xy}; we can formally define, for a
given n ∈ N, any inducer as a function

I : D(n) −→ {f : X → Ỹ}, D 7−→ f̂I,D .

Note that I symbolizes the application of any algorithm on data to generate a prediction
function, which may even include computational model selection or hyperparameter tun-
ing. Hereafter, we generally forgo indexing the prediction function f̂I,D by I when making
statements that are not limited to specific choices of inducers to ease notation. To quantify
the discrepancy between a prediction and actual observation, we, furthermore, require a
loss function L : Y × Ỹ −→ R. Section 5 discusses the choice of loss functions in detail,
but the most common include the squared error for continuous outcomes and 0− 1 loss for
classification. Finally, let (x∗,y∗) ∼ P denote a random variable representing a fresh test
sample, independent of all observations in D.

We are now interested in point estimates and CIs for one of the following quantities

RP (f̂D) := E[L(y∗, f̂D(x∗))|D = D] (1)

or
E
[
RP (f̂D)

]
:= E

[
E[L(y∗, f̂D(x∗))|D]

]
, (2)

which we refer to as risk and expected risk, respectively. We use the term generalization
error as an umbrella term for both RP (f̂D) and E

[
RP (f̂D)

]
. Remark 1 provides the distinct

interpretations of these quantities.

2. https://www.openml.org/search?type=study&study_type=task&id=441
3. https://github.com/slds-lmu/paper_2023_ci_for_ge
4. https://zenodo.org/records/13744382
5. https://github.com/mlr-org/mlr3inferr

5

https://www.openml.org/search?type=study&study_type=task&id=441
https://github.com/slds-lmu/paper_2023_ci_for_ge
https://zenodo.org/records/13744382
https://github.com/mlr-org/mlr3inferr

Schulz-Kümpel, Fischer, et al.

For reasons that will be closely examined in Section 3, inference for the GE is, in prin-
ciple, based on resampling from D. Therefore, Table 1 gives the reader an overview of all
resampling methods considered in this work. In every one of these cases, the purpose is
to generate observations of losses on which to base inference. Specifically, any resampling
method produces B pairs of index vectors Jtrain,b and Jtest,b of length ntrain,b and ntest,b,
respectively, with b = 1, . . . , B. Correspondingly, we denote the subsequences of observa-
tions containing the observations of D with indices contained in Jtrain,b and Jtest,b by Dtrain,b
and Dtest,b, respectively. Then, inference data for the GE is generated by applying a given
inducer I on each Dtrain,b and computing the losses L(y(i), f̂Dtrain,b(x

(i))) =: eb[i], ∀i that
are entries of Jtest,b, with respect to the resulting prediction function f̂Dtrain,b , resulting in∑B

b=1 ntest,b observations of loss. We will denote the average loss on a test set Dtest,b by
RDtest,b(f̂Dtrain,b) := n−1

test,b

∑
(x,y)∈Dtest,b

L(y, f̂Dtrain,b(x)).

Note Given any deterministic inducer I, RP (f̂D) is a function of P and specific data D,
while E

[
RP (f̂D)

]
is a function of P and the data size |D|. Hereafter, we either trust the

reader to infer the size of the indexing data from context or add an index, such as f̂Dn.

3 Essential conceptual considerations

In this section, we properly define our targets of inference and discuss the inherent complex-
ities of resampling, their sources of uncertainty, and the aspect of theoretical validity of CIs
for the GE.

3.1 The two targets of inference

Equations (1) and (2) introduced two separate quantities that represent the most common
definitions of targets of inference referred to as GE (or equivalent terms) in the literature.
Given that there exists more than one such definition, and the fact that it is not uncommon
for CI for the GE methods to be proposed without formally specifying the intended target
of interest, even within the works we based our comparison study on, let us examine the
purpose of each quantity before discussing their estimation in Section 3.2.

Risk and expected risk answer two distinct types of questions, as detailed in the following
remark.

Remark 1 (Interpretation of risk and expected risk)

(i) The risk, RP (f̂D), measures the error a specific model trained on specific data D will
make on average when predicting for data from the same distribution.

(ii) The expected risk, E
[
RP (f̂D)

]
, measures the error of models that have been trained

using inducer I on data of size n. Thus, it measures the quality of the general inducer
on arbitrary data of size n from distribution P rather than the quality of a single model.

The above interpretations may also directly be related to the “taxonomy of statistical ques-
tions in machine learning” as defined in Fig. 1 by Dietterich (1998). In the setting of that
work, RP (f̂D) “predicts classifier accuracy”, while E

[
RP (f̂D)

]
“predicts algorithm accuracy”.

6

Constructing CIs for “the” Generalization Error

Arguably, the estimation of the predictive performance of a given model is what com-
monly interests applied data scientists in scenarios where such models should be deployed
for direct use. Target (ii) has its rationale, too, in scenarios where the same algorithm is
applied repeatedly, e.g., in scientific studies of algorithm performance or, as a more technical
scenario, in learning curve analysis. So, in agreement with Bates et al. (2024), we argue
that both risk and expected risk are estimands of real practical importance, though each for
different contexts.

What is usually a subtle point of confusion, is that the risk (i) is actually harder to
estimate via direct procedures (which would directly condition on and make use of the
model of interest); and procedures that are in practice used to statistically estimate (i)
might actually be considered – at first glance – as “natural” estimators of the expected
risk (ii), e.g. resampling-based techniques. In many cases, the difference between the two
quantities is in fact negligible for constructing confidence intervals. Similar to Nagler et al.
(2024, Section B.1), one may show that the difference is negligible when the learner’s risk
admits a convergence rate faster than 1/

√
n. Examples are learners with fixed VC-dimension

and square loss; further examples are given in, e.g., van Erven et al. (2015). For truly
nonparametric learners (e.g., random forests) with many features, such fast rates are usually
not achieved and the difference between risk and expected risk can be substantial.

3.2 The role of resampling in estimating the generalization error

In an ideal scenario, we would hypothetically know the distribution P from which obser-
vations in D are drawn. Here, one could simply generate new observations as desired to
estimate risk and expected risk with equally high accuracy. Unfortunately, P is usually
unknown. Let us focus on the estimation of the risk (i) for a moment. Practically, it would
also be extremely convenient to estimate the GE on the given data set, so to use the in-
sample or training error, where we would condition on the model of interest and simply
use the given data for multiple purposes (modeling and GE estimation). However, it has
long been established that the in-sample error alone is an inadequate measure of predictive
performance on new observations, particularly for more complex, i.e. non-linear and non-
parametric, models. These are prone to overfitting, which in turn leads to overly optimistic
in-sample error estimates that do not reflect true predictive performance.

Another option would be to estimate the risk on a separate, dedicated i.i.d. test data set.
In this case, the estimation of RP (f̂D) would again directly condition on the given model
f̂D and the estimation of RP (f̂D) would be unbiased. Then, a reliable Wald-type CI could
be obtained, backed up by a trivial application of the central limit theorem. In practice,
however, there is usually only D available to both fit a model and perform inference on the
GE as practitioners will rarely wish to completely exclude data that may contain valuable
information when constructing the final model.

Given these challenges, resampling procedures provide a solution by repeatedly creat-
ing splits into training and test sets on which I can be evaluated, thereby generating, as
mentioned in Section 2, observed losses on unseen observations. Still, this approach creates
dependencies between observed losses, especially through repeated use of the same observa-
tions for both testing and training. As a result, the observations of losses have a dependence
structure specific to the resampling procedure through which they were created. For an

7

Schulz-Kümpel, Fischer, et al.

analysis of the dependence structure in K-fold CV, for example, see Bengio and Grandvalet
(2003).

It is often stated that resampling-based point estimates for the GE will usually be more
appropriate for the expected risk than for the risk, see Bates et al. (2024); Yousef (2022)6.
Since the resampling-based estimates are usually the result of averaging over losses after
repeatedly refitting the same algorithm on large subsets of the given data, this argument is
intuitive. However, it is not always entirely true. Take, for example, Holdout-resampling,
where the observed data D is split into Dtrain and Dtest only once. Here, one is not averaging
over losses with respect to more than one model, but is effectively only able to condition on
Dtrain instead of D in Equation (1), or data D of size |Dtrain| in Equation (2). The issue
of an inducer I being applied to data smaller than n (once or several times) affects the
results of many resampling procedures, including K-fold CV. The result is a pessimistic bias
affecting both point estimates and CIs due to the models used during inference being fit on
data smaller than D or D one is conditioning on in Equations (1) and (2). It is also evident
in our benchmark study, see, e.g. Figure 3.

Indeed, the inference setting for the GE resulting from resampling is so complex that
precisely determining the “correct” target of inference — whether it is the risk, expected risk,
or another quantity — for any given procedure requires rigorous formal investigation. Sec-
tion 3.4 provides an overview of the relatively few formal results that have been established
in this regard so far.

Remark 2 (Complexities inherent in resampling-based inference about the
(expected) risk)

(i) Any usage of resampling creates dependence structures in the inference data, with the
exact structure depending on the resampling method.

(ii) While the term generalization error covers (at least) two distinct targets of inference,
the known, necessarily resampling-based, inference methods usually are not explicitly
designed to specifically estimate either the risk RP (f̂D) or the expected risk E

[
RP (f̂D)

]
;

but rather the overarching concept of generalization error as defined, for example, by
Molinaro et al. (2005).

When the intention behind performing inference is merely to obtain point estimates for the
GE, argument (i) from Remark 2 may be seen as negligible as, due to the properties of
the expected value, the dependence structures of the “loss-observations” obtained through
resampling do not affect the common point estimates for E

[
RP (f̂D)

]
, as the mean of depen-

dent unbiased estimates will still be unbiased. Regarding argument (ii) from Remark 2, one
could at least argue that since E

[
RP (f̂D)

]
is the expectation of the quantity that RP (f̂D)

is a realization of, any point estimate of the former may serve as a valid, if less accurate,
point estimate of the latter.

Once the goal is to construct CIs around any point estimate for the GE in addition
to point estimation, the implications of the points made by Remark 2 become much more
complex. Sections 3.3 and 3.4 will shed more light on said complexities.

6. Note that Theorem 2 of Bates et al. (2024) applies specifically to the setting of high dimensional linear
regression.

8

Constructing CIs for “the” Generalization Error

Note Although not all methods in this work are explicitly designed to estimate either RP (f̂D)
or E

[
RP (f̂D)

]
, we can still empirically observe and analyze the coverage of each CI separately

for each quantity.

3.3 Sources of uncertainty

Generally, most of the uncertainty about the GE may be attributed to the sampling uncer-
tainty contained in the given data D. More precisely, we can split the uncertainty present
into validation uncertainty and training uncertainty by writing

1

B

B∑
b=1

RDtest,b(f̂Dtrain,b)− E
[
RP (f̂Dtrain,b)

]
=

1

B

B∑
b=1

RDtest,b(f̂Dtrain,b) − RP (f̂Dtrain,b)︸ ︷︷ ︸
(I)

+
1

B

B∑
b=1

RP (f̂Dtrain,b) − E
[
RP (f̂Dtrain,b)

]
︸ ︷︷ ︸

(II)

where the former (I) reflects the uncertainty that is due to the randomness in the finite
test set, while the latter (II) quantifies the uncertainty stemming from the stochasticity of
the training data. Which of the two factors contributes most to the total variation often
depends on the inducer. For stable methods such as linear regression, (I) usually dominates.

Additionally, there are two sources of uncertainty that generally do not enter into the
kinds of CIs for the GE considered in this work.

One potential source of uncertainty that is often excluded from the proposed formal
inference setting is that of the specific resampling split in any method from Table 1. More
precisely, we refer to the fact that the B pairs of index vectors Jtrain,b and Jtest,b produced
by any resampling setting may themselves be seen as a realization of a random variable with
corresponding event space given by all possible pairs of B index vectors. While this inherent
randomness of splitting given data into training and test sets is rarely discussed in literature
on CIs for the GE, its effect should become increasingly negligible as the number of splits
increases. Given the large overall amount of different experiments in our study, we opted
not to repeat each based on different random splits. For an investigation of the replicability
of some of the resampling procedures from Table 1, see Bouckaert and Frank (2004).

A more relevant potential source of uncertainty that is still explicitly excluded from the
mathematical formalization in this and any discussed works’ inference setting is that of the
inducer I. Of course, the only randomness of the result when fitting, for example, a simple
OLS regression is contained in the data D, which is modeled as a realization of the random
variable D ∼

⊗n
i=1 P . While one will always obtain the same result when fitting an OLS

regression on the same data, the same does not hold for more complicated procedures. These
procedures may be inherently stochastic (because they are based on stochastic optimizers
such as stochastic gradient descent or bagging-like ensembles, for instance) or may contain
stochastic elements for internal tuning. See, e.g., Bouthillier et al. (2021) for more on
sources of uncertainty in learning pipelines. Although existing methodology for inference
about the GE does not formally model I as random, it is covered by our empirical study;

9

Schulz-Kümpel, Fischer, et al.

simply because inducers with random elements, like random forest are repeatedly applied
to estimate coverage in a specific setting.

3.4 Theoretical validity

Even though definitions of the GE as either RP (f̂D) or E
[
RP (f̂D)

]
are plenty throughout

the literature, proposed CIs are almost never proven to be asymptotically exact, meaning
that the probability of the CI covering the GE approaches 1 − α as n approaches infinity,
for either quantity.

Instead, the proposed CIs are usually constructed by heuristic adjustments of naive
procedures. In fact, the only two works proving theoretical validity for practically applicable
methods7 that we could find concerned solely those point estimates for the GE that are based
on either standard single-split (Holdout) orK-fold CV. Specifically, Austern and Zhou (2020)
provide proofs of formal validity for four different CIs, two each for a Holdout and K-fold
CV point estimate, respectively. For each point estimate, one CI is proven to asymptotically
cover E

[
RP (f̂D)

]
for a data size smaller than n and one for an (average over) conditional

expectation(s), i.e. a random target quantity. Meanwhile, Bayle et al. (2020) prove formal
validity for two CI-versions intended to cover the same K-fold CV-based random target of
inference, which they name Test Error, as in Austern and Zhou (2020), albeit under much
weaker conditions.

Remark 3 (Formal target quantities for the generalization error) Given that in-
ference about the GE is based on resampling and refitting, the current state of research in
this field only allows for proving asymptotical exactness for RP (f̂Dl

) and E
[
RP (f̂Dl

)
]
, for

l < n, when utilizing certain resampling methods. Furthermore, while the target quantity
intended to be covered by CIs is typically assumed to be unknown, but fixed, proving formal
validity may often be easier for a random target quantity in the complex inference setting for
the GE detailed in Remark 2 and Section 3.3.

Hereafter, we will refer to (expected) risk for a data size smaller than n as well as any
random target quantity resembling risk and expected risk as proxy quantities (PQs). One
example of the latter is the Test Error proposed by Bayle et al. (2020).

Since random target quantities have repeatedly been defined in the context of deriving
CIs for the GE, the following will provide a definition of coverage intervals as a generalization
of CIs to specifically allow for both a fixed and a random target quantity.

Notation Hereafter, let
(
Dn

)
n∈N denote the sequence of random variables Dn ∼

⊗n
i=1 P ,

n ∈ N, of which data of n observations drawn from the distribution P ∈ P dim(X×Y), denoted
by Dn, would be a realization; with P d the set of all probability measures on (Rd,B(Rd)).

Definition 1 (Asymptotically exact coverage intervals) Let
(
Θ0,n

)
n∈N denote a se-

quence of functions Θ0,n :
n
×
i=1

(X × Y) × P dim(X×Y) → R. Additionally, for any α ∈

(0, 1), consider the two sequences of functions
(
L
(α)
n :

n
×
i=1

(X × Y) → R
)
n∈N and

(
U

(α)
n :

7. Fuchs et al. (2020) do provide a proof of theoretical validity for a CI for the GE, which is, however, not
computationally practical by their own admission.

10

Constructing CIs for “the” Generalization Error

n
×
i=1

(X × Y) → R
)
n∈N. For a fixed but unknown P ∈ P dim(X×Y), we refer to an in-

terval
[
Lα(Dn), Uα(Dn)

]
as an asymptotically exact (1 − α) · 100% coverage interval for

Θ0,n(Dn, P), if the following holds

lim
n−→∞

P(L(α)
n

(
Dn) ≤ Θ0,n(Dn, P) ≤ U (α)

n (Dn)) = 1− α . (3)

Note that, when Θ0,n from the above definition is a constant function ∀n ∈ N, as would

be the case for a fixed “true” quantity of interest θ0 ∈ R and Θ0,n :
n
×
i=1

(X×Y)×P dim(X×Y) →
R, x 7→ θ0 ∀n ∈ N, the asymptotically exact (1−α)·100% coverage interval from Definition 1
coincides with the classical definition of a (1− α) · 100% CI.

We would like to emphasize that we in no way take the position that any proposed CI
for the GE should inherently be seen as less valid solely on the basis that it has not been
proven to be asymptotically exact for either RP (f̂D) or E

[
RP (f̂D)

]
. Additionally, given

the inherent complexity of the current inference setting resulting from conditioning on D,
one may argue that finding a proof of asymptotical exactness is not worth the potentially
considerable effort, as the theoretical result might be of negligible importance in many real-
world applications, especially for small data D. Be that as it may, we do take the position
that any fair comparison of methods for obtaining generalization error CIs should include
consideration of which specific quantity any one method may reasonably be assumed to be
asymptotically exact for. Accordingly, we identified those methods from the literature for
which a proof of asymptotical exactness exists and estimated the coverage frequency for
the corresponding proxy quantity in addition to RP (f̂D) and E

[
RP (f̂D)

]
in our benchmark

study.

4 Summary of existing methods

This section gives an overview of those methods for deriving coverage intervals for the GE
from the literature compared in this work. We summarize the resampling procedures these
estimators are based on in Table 1.

Notation While B continues to denote the number of pairs of training and test index vec-
tors within a resampling procedure, the index b for Jtrain,b, Jtest,b, ntrain,b, ntest,b, Dtrain,b,
and Dtest,b is being replaced with one or more indices from r, k, l when talking about spe-
cific resampling procedures without b having been redefined accordingly. We have opted for
this slight abuse of notation for cases of hierarchical resampling methods in the interest of
readability. For some resamplings such as Holdout, CV, Bootstrap, or Subsampling we have
b = k and K = B. Accordingly, er,k[i] will denote the loss of the ith observation on the
model trained on Dtrain,r,k and analogously for more indices.

Next, Table 2 gives a concise summary of the considered CI methods, with the last two
columns indicating whether a proof of the CI’s asymptotical exactness has been provided in
the literature and the work containing the method definition we refer to, respectively.

Notation Hereafter, we denote by zα the α-quantile of the standard normal distribution,
by tm,α the α-quantile of the t-distribution with m degrees of freedom, and by q̂α(ψn) the
empirical α-quantile of some sequence ψn.

11

Schulz-Kümpel, Fischer, et al.

Table 1: Summary of considered resampling methods which form the basis for the inference
methods shown in Table 2.

Method B Description∗ Additional Notation∗∗ Reference

Holdout 1 The data is partitioned only once into Dtrain and
Dtest.

|Dtrain| = n1, and |Dtest| = n2 = n− n1. Also denote ptrain = n1/n and
ptest = n2/n

(James et al.,
2021, chap.

5.1.1.)

Subsampling K Repeat the Holdout resampling K times. For k = 1, . . . ,K we denote the train and test splits of the kth holdout
resampling with Dtrain,k and Dtest,k respectively. Also, n1 and n2 are

defined as for the Holdout method.

Shao and Wu
(1989), as

delete-d jackknife

Paired
Subsampling

2RK Split the data D R times into two subsequences of
size n

2 with disjoint sets of indices. Conduct
Subsampling with K iterations on each of these

subsets.

For r = 1, . . . , R let Dr,1 and Dr,2 be the two subsequences of size n
2 .

For k = 1, . . . ,K we denote with Dtrain,r,1,k and Dtest,r,1,k the train and
test data of the kth iteration of subsampling conducted on Dr,1 and

with Dtrain,r,2,k and Dtest,r,2,k the same for Dr,2

Nadeau and
Bengio (2003)

Cross-Validation
(CV)

K D is partitioned into K subsequences of size n
K ,

where in each iteration we test on each subsequence
once, and train on the union of the others, resulting

in n observations of loss, one per sample in D.

For k = 1, . . . ,K, we denote the kth fold by Dtest,k, thereby
Dtrain,k = D[−Jtest,k].

(James et al.,
2021, chap.

5.1.3.)

Leave-One-Out
CV (LOOCV)

n Conduct CV with K = n. See CV (James et al.,
2021, chap.

5.1.2.)

Repeated CV RK Repeat the CV procedure R times. For r = 1, . . . , R, k = 1, . . . ,K we denote with Dtrain,r,k and Dtest,r,k
the kth train and test set of the rth repetition of CV.

Nested CV RK2 One repetition of Nested CV consists of conducting
an (outer) K-fold CV on the whole data D, followed
by (inner) K − 1-fold CVs on each train set of the
outer CV. This can be repeated one or more (R)

times.

For r = 1, . . . , R and k = 1, . . . ,K and l = 1, . . . ,K − 1, we denote with
Dtrain,r,k and Dtest,r,k the kth training and test data of the rth

repetition of the outer CV. The lth training and test set of the inner
CV for the kth fold of the rth outer CV are written as Dtrain,r,k,l and

Dtest,r,k,l respectively.

Bates et al.
(2024)

Replace-One CV
(ROCV)

(n/2 +
1)K

Split D in two subsequences D1 and D2 of size n/2
with disjoint sets of indices. Conduct a K-fold CV on
D1, as well as on n

2 subsequences that arise from
replacing the lth observation of D1 with the lth

observation from D2, where l = 1, . . . , n/2.

For k = 1, . . . ,K we denote with Dtrain,l,k and Dtest,l,k the kth train
and test data of the CV that replaces the lth element of D1 with that
of D2. Furthermore, we denote with Dtrain,k and Dtest,k the kth train

and test data of the CV on D1.

Austern and
Zhou (2020)

Replace-One
Repeated CV
(RORCV)

(n/2 +
1)RK

Like Replace-One CV, but use R-times repeated
K-fold CV instead of K-fold CV.

For r = 1, . . . , R, k = 1, . . . ,K we denote with Dtrain,r,k,l and Dtest,r,k,l
the kth train and test data of the rth repetition of CV that replaces
the lth element of D1 with that of D2. Furthermore, we denote with
Dtrain,r,k and Dtest,r,k the kth train and test data of the rth repetition

of CV on D1.

Bootstrap K K datasets of size n are sampled from D with
replacement. The left-out observations are used as

test data.

For k = 1, . . . ,K, we denote the kth training data as Dtrain,k and the
kth test data as Dtest,k = D[−Jtrain,k].

(James et al.,
2021, chap. 5.2.)

Insample
Bootstrap

K Like Bootstrap, but use the same data for training
and for testing.

For k = 1, . . . ,K, we denote the kth training data as Dtrain,k = Dtest,k.

Bootstrap Case
CV

∑R
r=1

Kr

First, obtain R bootstrap samples of size n from D.
For each of these bootstrap samples, conduct

leave-one-case-out CV.

For r = 1, . . . , R, denote the bootstrap samples with Dr, let
ir,k, k = 1, . . . ,Kr be the indices of the unique observations in Dr and
mr,k be how often they appear in the bootstrap sample. With that we

can define Dtest,r,k = {(x(ir,k), y(ir,k))} and Dtrain,r,k = Dr[−ir,k].

Jiang et al.
(2008)

Two-stage
Bootstrap

R(K+1) Obtain R outer bootstrap samples of size n from D.
Then, obtain K inner bootstrap samples of size n

from each of the R outer bootstrap samples.

Let Dr, r = 1, . . . , R denote the outer R bootstrap samples. For
k = 1, . . . ,K, the kth inner bootstrap sample from the rth outer

bootstrap data is the training data Dtrain,r,k. The corresponding test
data is the out-of-bag data, i.e. Dtest,r,k = Dr[−Jtrain,r,k]. Further,

define Dtrain,r := Dr and Dtest,r := Dr for the in-sample resampling of
the rth outer repetition.

Noma et al.
(2021)

Insample 1 Use the whole data D as both training and test data. Let Dtrain = D and Dtest = D.

∗: Note that when n is split into m (e.g. 2 or K) subsequences, we will assume that n
m

is a natural number
for simplification.
∗∗: Here, we denote element i of vector v as v[i] and by {v} the tuple of entries in the vector v.
Furthermore, for some sequence ψ we write ψ[−index] to denote the subsequence of ψ with the elements
with indices equal to or contained in index removed in a slight abuse of notation.

4.1 Holdout

The standard single-split method uses Holdout resampling. The point and variance estima-
tors (see also Nadeau and Bengio (2003)) are:

P̂ (H)
n = RDtest(f̂Dtrain) =

1

ntest

∑
(x,y)∈Dtest

L(y, f̂Dtrain(x)) (H.1)

12

Constructing CIs for “the” Generalization Error

Table 2: Summary of considered inference methods.
Method name Resampling method∗∗ Cost∗∗∗ Theoretical

guarantee
Reference

Holdout (H)∗ Holdout 1 yes Nadeau and
Bengio (2003)

Replace-One CV
(ROCV)∗

(LOO)CV (P̂n),
ROCV (σ̂)

(n/2 + 2)K yes Austern and
Zhou (2020)

Repeated Replace-One
CV (HRCV)∗

Repeated CV (P̂n), RORCV
(σ̂)

(n/2 + 2)RK no

CV Wald (CVW)∗ (LOO)CV K yes Bayle et al.
(2020)

Corrected Resampled-T
(CRT)

Subsampling K no Nadeau and
Bengio (2003)

Conservative-Z (CZ) Subsampling (P̂n), Paired
Subsampling (σ̂)

(2R+ 1)K no Nadeau and
Bengio (2003)

5× 2 CV (5× 2) Repeated CV 10 no Dietterich (1998)

Nested CV Nested CV RK2 no Bates et al.
(2024)

Out-of-Bag (OOB) Bootstrap R no Efron and
Tibshirani (1997)

632+ Bootstrap (632+) Insample + Bootstrap R+ 1 no Efron and
Tibshirani (1997)

BCCV Percentile
(BCCVP)

BCCV (q̂), LOOCV (b̂) (0.632R+ 1)n no Jiang et al.
(2008)

Location-shifted
Bootstrap (LSB)

Insample Bootstrap (q̂),
Insample + Bootstrap (P̂n)

1 + 2K no Noma et al.
(2021)

Two-stage Bootstrap
(TSB)

Two-stage Bootstrap (q̂),
Insample + Bootstrap (P̂n)

(R+ 1)(K + 1) no Noma et al.
(2021)

∗ : This name was given by us.
∗∗ : When different resampling methods are listed in the Resampling Method column, we specify which is
used for the point estimate (P̂n), variance estimate (σ̂), bias estimate (b̂), or quantile estimate (q̂)
respectively. Otherwise, the listed resampling method(s) are used for all estimates.
∗ ∗ ∗ : As a simple proxy for the cost of an inference method we consider the expected total number of
resampling iterations, i.e. how often the algorithm needs to be fit to obtain the CI. This does not take into
account the size of train and test data, computational cost of the algorithm, or the cost of computing the
CI from the individual loss values. Note that sometimes, as is the case with the BCCV Percentile method,
the number of resampling iterations is stochastic - here, we have taken the expected number.

σ̂2H =
1

ntest − 1

∑
i∈Jtest

(
L(y(i), f̂Dtrain(x

(i)))−RDtest(f̂Dtrain)
)2

(H.2)

The corresponding CI is then given by[
P̂ (H)
n ± z1−α

2

σ̂H√
ntest

]
, (H.3)

13

Schulz-Kümpel, Fischer, et al.

4.2 Replace-One CV

Austern and Zhou (2020) provide a method for calculating an asymptotically exact coverage
interval for the expected risk on data of size n− n

K , E
[
RP (f̂D)n− n

K

]
, based on a combination

of K-fold and Replace-One CV (see Table 1).
Specifically, Austern and Zhou (2020) suggest combining the standard K-fold CV (or

LOOCV, with K = n) based point estimate

P̂ (ROCV)
n =

1

n

K∑
k=1

∑
i∈Jtest,k

ek[i] (ROCV.1)

with the following Replace-One CV-based variance estimate

σ̂2ROCV =
n

4

n/2∑
l=1

(
P̂n,D1 − P̂n,D1[−l],D2[l]

)2
, (ROCV.2)

where P̂n,D1 denotes the CV estimate on D1, while P̂n,D1[−l],D2[l] denotes the CV estimate
on D1 that replaces the lth observation of D1 with the lth observation of D2.

An asymptotically exact coverage interval for E
[
RP (f̂D)n− n

K

]
is then given by[

P̂ (ROCV)
n ± z1−α

2

σ̂ROCV√
n

]
. (ROCV.3)

Remark 4 While theoretical validity of Equation (ROCV.3) was only proven in combina-
tion with K-fold CV in Austern and Zhou (2020), the general approach of Section 4.2 is of
course easily transferable to point estimates based on other resampling procedures.

The definition given in this section is a corrected version of the original variance estimator
defined by Austern and Zhou (2020), which we also directly implemented for the comparison
of Section 5.4.

Remark 5 (Missing scaling constant in variance estimate of Austern and Zhou
(2020)) In the experiments conducted by Bates et al. (2024) the original CI suggested for
CV by Austern and Zhou (2020) proved to be wider than expected by a factor of about 1.4.
This is consistent with our argument in Appendix A that the standard error of Austern and
Zhou (2020) should be scaled by 1√

2
to be theoretically valid, which is also confirmed by the

experiment presented in Appendix A.1.

4.3 Repeated Replace-One CV

Repeated CV is a popular resampling method for calculating the following point estimate
for the GE

P̂ (HRCV)
n =

1

Rn

R∑
r=1

K∑
k=1

∑
i∈Jtest,r,k

er,k[i] . (HRCV.1)

14

Constructing CIs for “the” Generalization Error

However, we are not aware of methods for estimating CI borders for the GE based on
Repeated CV (see Table 1) having been suggested in the literature (except for the 5× 2 CV
method, see Section 4.7, which requires setting K = 2) . Instead, based on the reasoning
of Remark 4, we empirically examine the CI that results from applying the idea behind the
Replace-One CV-based variance estimate from Austern and Zhou (2020) to the Repeated
CV point estimate of Equation (HRCV.1).
Specifically, the resulting variance estimate is again given by σ̂2HRCV = n

4

∑n/2
l=1

(
P̂n,D1 −

P̂n,D1[−l],D2[l]

)2, but with P̂n,D1 now denoting the Repeated CV estimate on D1, while
P̂n,D1[−l],D2[l] denotes the Repeated CV estimate on D1 that replaces the lth observation
of D1 with the lth observation of D2.

This yields the following CI for a repeated CV approach to inference for the GE:[
P̂ (HRCV)
n ± z1−α

2

σ̂HRCV√
n

]
. (HRCV.2)

4.4 CV Wald

In the method proposed by Bayle et al. (2020), both point estimate and CI border estimates
are based on K-fold CV (or LOOCV, with K = n, see Table 1).
Then, for K denoting the number of folds, one point estimate and two asymptotically valid
variance estimates are defined as follows:

P̂ (CVW)
n =

1

n

K∑
k=1

∑
i∈Jtest,k

ek[i] (Same point estimate as in Equation (ROCV.1))

(CVW.2)

σ̂2out =
1

n

K∑
k=1

∑
i∈Jtest,k

(ek[i]− P̂n)
2 [Thm. 5] (CVW.3)

σ̂2in =
1

K

K∑
k=1

1

(n/K)− 1

∑
i∈Jtest,k

(
ek[i]−

(
(K/n)

∑
i∈Jtest,k

ek[i]
))2

[Thm. 4] (CVW.4)

In contrast to the all-pairs variance estimator σ̂2out, the within-fold estimator σ̂2in is not
applicable in combination with LOOCV resampling.

Note that their work does include a proof of asymptotical exactness, but with respect to
the random variable

1

n

K∑
k=1

∑
(x,y)∈Dtest,k

E[L(y, f̂I,Dtest,k(x))|Dtrain,k] , (CVW.4)

(see Bayle et al., 2020, Eq. 2.1), not RP (f̂D) or E
[
RP (f̂D)

]
.

Specifically, an asymptotically exact coverage interval for the Test Error from Equa-
tion (CVW.4) is then given by [

P̂ (CVW)
n ± z1−α

2

σ̂CVW√
n

]
, (CVW.5)

where σ̂CVW is allowed to be equal to either σ̂out or σ̂in.

15

Schulz-Kümpel, Fischer, et al.

4.5 Corrected Resampled-T

The Corrected Resampled-T method for calculating CIs for the GE is based on the Subsam-
pling procedure (see Table 1) and defined via the following point estimate and associated
variance estimate, respectively

P̂ (CRT)
n =

1

K

K∑
k=1

1

n2

∑
i∈Jtest,k

ek[i] (CRT.1)

σ̂(Dn)
2 =

1

K − 1

K∑
k=1

((1

n2

∑
i∈Jtest,k

ek[i]
)
− P̂n

)2
. (CRT.2)

Given that the corrected version of the Resampled-T method was shown to materially out-
perform the non-corrected version by Nadeau and Bengio (2003), we only include the former
in our empirical study. Here, (CRT.2) is multiplied by a heuristic correction factor, giving
the following estimate for the squared standard error

ŜE
2

CRT =
(1
K

+
n2

n− n2
)
· σ̂(Dn)

2 , (CRT.3)

which yields the following CI for the GE[
P̂ (CRT)
n ± tK−1,1−α

2
ŜECRT

]
. (CRT.4)

4.6 Conservative-Z

The Conservative-Z method, also defined in Nadeau and Bengio (2003), is based on the same,
Subsampling-based point estimate as the Corrected Resampled-T method of Section 4.5.
However, the variance estimate is based on paired subsampling, with the ratio parameter
that determines the size of the test set chosen such that the size n2 of the test data for both
resampling procedures is the same. Specifically, two estimates of the form

P̂n,r,t :=
1

K

K∑
k=1

1

n2

∑
i∈Jtest,r,t,k

er,t,k[i] (CZ.1)

are computed on data of size n/2. Then, for R denoting the number of paired subsampling
iterations, the estimate for the standard error is defined as

ŜE
2

CZ =
1

2R

R∑
r=1

(
P̂n,r,1 − P̂n,r,2

)2
, (CZ.2)

yielding the following CI for the GE[
P̂ (CRT)
n ± z1−α

2
ŜECZ

]
. (CZ.3)

Note that this method is referred to as conservative because the estimates P̂n,r,t used to
estimate the variance subsample datasets of size n/2 instead of n.

16

Constructing CIs for “the” Generalization Error

4.7 5× 2 CV

In the 5× 2 CV method proposed by Dietterich (1998), both point estimate and CI border
estimates are based on Repeated CV (see Table 1), with the parameters fixed at R = 5 and
K = 2, respectively. This results in the point estimate

P̂ (5× 2 CV)
n =

1

|Jtest,1,1|
∑

i∈Jtest,1,1

e1,1[i] , (5× 2 CV.1)

and estimate for the squared standard error

ŜE
2

5× 2 CV =
2

5

5∑
r=1

(
1

2 · |Jtest,r,1|
∑

i∈Jtest,r,1

er,1[i]−
1

2 · |Jtest,r,2|
∑

i∈Jtest,r,2

er,2[i]

)2

,

(5× 2 CV.2)
finally giving the following CI for the GE[

P̂ (5× 2 CV)
n ± t5,1−α

2
ŜE5× 2 CV

]
. (5× 2 CV.3)

Please note that the 5×2 method was originally proposed for the comparison of two models.
Since it has repeatedly been used for the evaluation of a single model since its first mention
in Dietterich (1998), however, we have included this method in our empirical study.

4.8 Nested CV

Bates et al. (2024) propose a Nested CV-based (see Table 1) method for deriving a CI for
the GE. Recall that Jtrain,r,k and Jtest,r,k denote the indices from the outer and Jtrain,r,k,l
and Jtest,r,k,l from the inner CV. Then, the point estimate is given by

P̂ (NCV)
n =

1

Rn(K − 1)

R∑
r=1

K∑
k=1

K−1∑
l=1

∑
i∈Jtest,r,k,l

er,k,l[i] . [Alg. 1] (NCV.1)

Furthermore, given

P̂
(out)
n,r,k =

1

|Jtest,r,k|
∑

i∈Jtest,r,k

er,k[i] (NCV.2)

P̂
(in)
n,r,k =

1

|Jtrain,r,k|

K−1∑
l=1

∑
i∈Jtest,r,k,l

er,k,l[i] (NCV.3)

σ̂2r,k =
1

|Jtest,r,k| − 1

∑
i∈Jtest,r,k

(
er,k[i]− P̂

(out)
n,r,k

)2 (NCV.4)

σ̂2in =
1

Rn(K − 1)− 1

R∑
r=1

K∑
k=1

K−1∑
l=1

∑
i∈Jtest,r,k,l

(
er,k,l[i]− P̂ (NCV)

n

)2 (NCV.5)

M̂SEK−1 =
1

RK

R∑
r=1

K∑
k=1

([
P̂

(in)
n,r,k − P̂

(out)
n,r,k

]2 − 1

|Jtest,r,k|
σ̂2r,k

)
(NCV.6)

17

Schulz-Kümpel, Fischer, et al.

the estimate for the standard error is given by

ŜENCV = max

(
σ̂in√
n
,min

(√
max

(
0,
(K − 1

K

)
M̂SEK−1

)
,
σ̂in
√
K√
n

))
. (NCV.7)

In order to construct their CI, Bates et al. (2024) furthermore propose the following bias
estimate, where P̂n,D again denotes the (Repeated) CV estimate on D

b̂NCV =
(
1 +

K − 2

K

)c(
P̂ (NCV)
n − P̂n,D

)
[Eq. 15] (NCV.8)

The value of c is equal to 1 in Bates et al., 2024, Eq. 15, but we found that the provided
implementation accompanying the article estimates the bias using c = 1.5 instead. For our
experiment, we implemented the Nested CV method using c = 1.

In practice, we obtain the CV estimate from the outer CVs of the Nested CV procedure

P̂n,D =
1

Rn

R∑
r=1

K∑
k=1

∑
i∈Jtest,r,k

er,k[i] . [Eq. 15]. (NCV.9)

Finally, the CI for the GE is given by[(
P̂ (NCV)
n − b̂NCV

)
± z1−α

2
ŜENCV

]
. (NCV.10)

Note that Bates et al. (2024) argue that Equation (NCV.10) gives a CI for RP (f̂D)(D),
although a formal proof of theoretical validity is not provided.

4.9 Out-of-Bag

The Out-of-Bag method is based on bootstrap resampling (see Table 1) and was proposed
by Efron and Tibshirani (1997). We slightly adapted this version to avoid invalid negatives
during the CI computation, as detailed below. First, we define

Iki =1{
(x(i),y(i))∈Dtest,k

} and Nk
i =

∑
(x,y)∈Dtest,k

1{
(x(i),y(i))=(x,y)

} (OOB.1)

Mi ={k ∈ {1, . . . ,K} :
(
x(i), y(i)

)
∈ Dtest,k} (OOB.2)

P̂n,i =
1

|Mi|
∑
k∈Mi

ek[i] , for i ∈V = {i ∈ {1, . . . , n} : |Mi| > 0} (OOB.3)

qki =
1

n

n∑
i=1

Iki ek[i] [Eq. 36] (OOB.4)

D̂i =

(
2 +

1

n− 1

) (∑B
b=1 q

b
i/
∑B

b=1 I
b
i

)
− P̂n

n
+

∑K
k=1(N

k
i −N i)q

k∑K
k=1 I

k
i

, for i ∈V [Eq. 40]

(OOB.5)

18

Constructing CIs for “the” Generalization Error

The Out-of-Bag point and standard error estimates are then given by

P̂ (OOB)
n =

1

|V |
∑
i∈V

P̂n,i , [adapted from Eq. 37] (OOB.6)

ŜE
2

OOB =
n

|V |
∑
i∈V

D̂2
i , [adapted from Eq. 35] (OOB.7)

respectively. The above definitions differ from the original in so far as that they are still
well-defined in those cases where an observation

(
x(i), y(i)

)
is never an element of Dtest,k,

for any k ∈ {1, . . . ,K}. Given that the omitted values are missing completely at random in
both the definitions of P̂n and ŜE

2
, we view the re-scaling to be justified. Additionally, we

do not use the adjusted standard error estimate from Efron and Tibshirani, 1997, Eq. 43,
which corrects for the internal bootstrap error. This decision was made because, for small
values of K, it occasionally resulted in negative standard error estimates, and for larger
values of K, we expect the impact to be negligible.

Lastly, the Out-of-Bag CI for the GE is given by[
P̂ (OOB)
n ± z1−α

2
ŜEOOB

]
. (OOB.8)

4.10 632+ Bootstrap

The 632+ Bootstrap method, also proposed by Efron and Tibshirani (1997), is based on
both the bootstrap and insample resampling (see Table 1) procedures.

In the following, let P̂n,in denote the in-sample error of a model trained on D. Writing
P̂n,oob and ŜEoob for the point and standard error estimate from the Out-of-Bag method,
respectively, and

ŵ = 0.632 ·

(
1− 0.368×

P̂n,oob − P̂n,in
1
n2

∑n
i=1

∑n
j=1 L(y(j), f̂D(x(i)))− P̂n,in

)−1

, (632+.1)

we can now define the corresponding estimates for the 632+ Bootstrap method:

P̂ (632+)
n = ŵ × P̂n,oob + (1− ŵ)× P̂n,in (632+.2)

ŜE632+ = ŜEoob ×
P̂n

P̂n,oob
. (632+.3)

This results in the following 632+ Bootstrap CI for the GE:[
P̂ (632+)
n ± z1−α

2
ŜE632+

]
. (632+.4)

4.11 Bootstrap Case CV Percentile

The Bootstrap Case CV Percentile interval proposed by Jiang et al. (2008) is a percentile-
based CI method that utilizes the Bootstrap Case CV resampling procedure (see Table 1).

19

Schulz-Kümpel, Fischer, et al.

This method can be applied with or without bias correction (BC), which in turn would be
based on LOOCV resampling.

Given the sequence (
P̂n,r =

1

n

Kr∑
k=1

mr,k · er,k[ir,k]
)R
r=1

, (BCCV.1)

Jiang et al. (2008) define the point estimate

P̂ (BCCV)
n =

1

R

R∑
r=1

P̂n,r (BCCV.2)

and additionally consider P̂n(
LOOCV) := 1

n

∑n
k=1

∑
i∈Jtest,k ek[i], the standard CV point es-

timate from Equation (ROCV.1) and Equation (CVW.2), with K = n.
Based on this, they propose the following one-sided CI[

0, q̂1−α

(
(P̂n,r)

R
r=1

)
− b̂BCCV

]
, (BCCV.3)

with the bias correction b̂BCCV chosen equal to either zero or

b̂BCCV = P̂ (BCCV)
n − P̂ (LOOCV)

n . (BCCV.4)

Note that the one-sided CI of Equation (BCCV.3) makes sense when one is only interested
in the upper boundary. As we generally used two-sided CIs in the empirical study, we
computed Bootstrap Case CV Percentile CIs of the following form[

q̂α/2

(
(P̂n,r)

R
r=1

)
− b̂BCCV , q̂1−α/2

(
(P̂n,r)

R
r=1

)
− b̂BCCV

]
. (BCCV.5)

4.12 Two-stage Bootstrap

Noma et al. (2021) propose the Two-stage Bootstrap that may, similarly to our reasoning
in Remark 4, be applied to point estimates resulting from different resampling procedures.
Because the authors report similar results for Harrell’s bootstrapping bias correction (Har-
rell Jr et al., 1996), 632, and the 632+ Bootstrap method (Efron and Tibshirani, 1997), we
chose to only include the latter in our study, see Equation (632+.2). Let P̂ (in)

n,r denote the
point estimate from a procedure such as 632+ applied to the inner bootstrap samples from
the rth repetition of the outer bootstrap. The two-stage Bootstrap CI for the GE is then
given by [

q̂α/2

(
(P̂ (in)

n,r)Rr=1

)
, q̂1−α/2

(
(P̂ (in)

n,r)Rr=1

)]
. (TSB.1)

The point estimate P̂ (TSB)
n is obtained by applying the point estimation procedure – in our

case 632+ Bootstrap – to the whole dataset.

20

Constructing CIs for “the” Generalization Error

4.13 Location-shifted Bootstrap

Like the Two-stage Bootstrap, the Location-shifted Bootstrap works for different point es-
timation procedures. For the same reasoning as in Section 4.12, we selected the 632+

Bootstrap method. Let P̂ (in)
n,k := 1

|Dtrain,k|
∑

i∈Dtrain,k
ek[i] denote the in-sample performance

of the kth bootstrap sample, computed based on the Insample Bootstrap procedure. Fur-
ther, let P̂ (LSB)

n denote the bias-corrected point estimate, which in our case was 632+, and
P̂

(in)
n the corresponding in-sample performance of a model trained on the whole data D.

The CI is then defined as[
q̂α/2

(
(P̂

(in)
n,k)Kk=1

)
− b̂LSB, q̂1−α/2

(
(P̂

(in)
n,k)Kk=1

)
− b̂LSB

]
, (LSB.1)

where the bias is estimated as

b̂LSB = P̂ (in)
n − P̂ (LSB)

n . (LSB.2)

5 Empirical examination

To systematically compare the methods from Section 4, each method was repeatedly applied
to a variety of problems. Specifically, we define a problem T as a tuple (DGP, nD, I,L),
where the goal is to estimate the GE, for loss function L and associated CI in the setting of
applying inducer I to data consisting of nD observations generated from the data generating
process DGP. Unless specified differently, we generated 500 replications (D, I,L), where D
denotes data consisting of nD observation from DGP, of each tuple T . These replications
were used to compute coverage frequencies of the CI methods with respect to the RP (f̂D),
E
[
RP (f̂D)

]
, and PQ if applicable. To obtain “ground truths” for RP (f̂D), E

[
RP (f̂D)

]
, and

PQ, we create validation data Dval for each DGP containing 100000 observations. Specif-
ically, just like the CIs, “true” risk values are computed for every replication (D, I,L) by
fitting the model on D and using Dval as separate, dedicated test data as mentioned in Sec-
tion 3.2. Then, the “true” value for the expected risk is calculated as the arithmetic mean
of the 500 risk values. The calculation of PQs depends on the CI method. For example, 500
PQ values are computed for the Holdout method, while averaging, as done for E

[
RP (f̂D)

]
,

is required to compute the Test Error, which is the PQ for the CV Wald method.
Figure 1 provides a summary of the main experiment. The computational setup, includ-

ing more details on the inducers, used software, hardware, and total runtime, is described
in Appendix D.

5.1 Choices of inducers, losses, and data sets

5.1.1 Inducers

We evaluated all CI methods on simple and penalized linear and logistic models as well as de-
cision trees and random forests. The CI methods that performed best here, see Section 5.4.2,
were then additionally evaluated for an XGBoost and neural network model, specifically a
multi-layer perceptron (MLP), as well as a tuned lasso regression on high-dimensional data
(see Appendix N). The reasons for this multi-stage approach were two-fold: Firstly, the XG-
Boost and MLP experiments would have been too computationally costly for all CI methods

21

Schulz-Kümpel, Fischer, et al.

Require: T = (DGP, nD, I,L), the problem; A, the CI-algorithm; a
random split generator J for the corresponding resampling method(s)

1: Dval ←− large dataset generated using DGP of T
2: for r = 1, 2, . . . , nrep do
3: D ←−data of size nD, generated using DGP of T
4: J ←− result of applying J
5: ĜEr, CI

(L)
r , CI

(U)
r ←− AD,I,L(J)

6: RP (f̂D)r,PQr ←− ED,I,L(Dval,J)
7: end for
8: E

[
RP (f̂D)

]
← mean

(
RP (f̂D)1, . . . ,RP (f̂D)nrep

)
9: PQ← {PQr}

nrep
r=1

10: return E
[
RP (f̂D)

]
, PQ, {(ĜEr, CI

(L)
r , CI

(U)
r ,RP (f̂D)r) | r =

1, . . . , nrep}

Figure 1: Pseudocode for the main experiment. Here, AD,I,L(J) denotes any CI method
from Section 4 being applied to the problem instance (D, I,L) given a specific
split J , which results in a point estimate ĜE and CI borders CI(L), CI(U).
ED,I,L(Dval,J) denotes the calculation of a risk value and (element of) a PQ, if
applicable.

and, secondly, we wanted to to pre-filter the CI methods in a more controlled experiment
with simpler inducers. Arguably, XGBoost and the MLP are more sensitive to their respec-
tive hyperparameters, which is why we integrated (more complex) tuning for these methods,
in turn leading to more stochastic results. In short: A CI method should “pass the test” of
proper 1− α coverage for the simpler inducers to be considered acceptable.

These two points also informed the specifications of the first four learners. While the
simple linear models have no further hyperparameters, for the tree and the random forest,
we used default settings, which is acceptable (Fernández-Delgado et al., 2014; Probst et al.,
2019), but for the random forest set the number of trees to 50 to reduce the computational
cost. For penalized (logistic) ridge regression, the λ parameter was tuned in advance for each
combination of DGP and sample size, using 10-fold CV.8 The same λ was then used across
all 500 repetitions to reduce runtime. Due to the already high computational cost (more
than 135.7 sequential CPU years) of the benchmark experiment, hyperparameter tuning via
traditional nested resampling was not feasible for all CI methods.9

Because the quality of the confidence intervals for more complex inducers such as neural
network or boosting algorithms, which both require hyperparameter tuning, is of great prac-

8. This is arguably not optimal, integrated tuning would have been preferable. We ask the reader to note:
a) We did tune methods like XGBoost and the MLP properly in the second stage. b) The computational
costs of proper tuning were only feasible in the reduced setup of the second stage with fewer CI methods.
We think this was an acceptable compromise.

9. Nested resampling here is different from the Nested CV method of Section 4.8, see Appendix D for more
details.

22

Constructing CIs for “the” Generalization Error

tical interest, we additionally evaluated a subset of well-performing inference methods using
a tabular MLP (Gorishniy et al., 2021) as well as the XGBoost algorithm (Chen, 2015). The
hyperparameters of both methods were tuned using 50 iterations of Bayesian optimization
(BO).

For more details on the inducers, as well as the specific implementations, see Appendix D.

5.1.2 Losses

As loss functions we used 0-1 loss, log loss, and Brier score for classification and squared
error, absolute error, standardized, winsorized, and percentual distances for regression. Here,
the standardized loss refers to a variant of the absolute error, which divides the absolute
distance by the standard deviation of the absolute error in the respective training data. The
percentual distance is also known as the mean absolute percentage error (MAPE). More
details on these choices are provided in Appendix C.

5.1.3 Data Sets

For DGPs to evaluate the CIs on, we used both real and simulated data. In choosing ways
to generate this data, we specifically wanted to avoid dependencies of observations between
replications of problem instances. Of course, this point is not an issue for simulated data,
and neither when dividing extremely large data into disjoint subsets, one may reasonably
argue. As we aim to apply the CI methods to datasets with up to nD = 10000 observations
across 500 replications and additionally required 100000 samples as external validation data
to reliably approximate the target(s) of inference, we needed datasets with at least 5.1
million observations. Because the methods have vastly different runtime requirements, we
categorized them into three categories: The most expensive inference methods were only
applied to datasets of the tiny category (100), the expensive methods were applied to small
(nD = 100, 500), and the remaining ones to all (nD = 100, 500, 1000, 5000, 10000). The
categories of the methods are given in table Table 4.

Unfortunately, freely available, large, and high-quality data sets without time dependen-
cies are very rare and we were only able to find the Higgs dataset, which was generated using
a physics simulation (Baldi et al., 2014). To sidestep the problem of resampling from smaller
real data sets, we simulated the remaining 18 datasets. For seven of those, we estimated
the density of real-world datasets from OpenML (Vanschoren et al., 2013) using the method
from Borisov et al. (2023), and then generated samples from the estimated distribution. The
main idea of the method is to treat each row of the table as a sequence of text, fine-tune a
large language model, and then use its generative capabilities to simulate new observations.
These seven datasets were primarily selected from the OpenML CC-18 and CTR-23, which
are two curated benchmarking suites for classification and regression (Bischl et al., 2021;
Fischer et al., 2023). For another three datasets, we estimated the covariance matrix of a
normal distribution from medical real-world datasets. Finally, we generated another eight
linear and highly non-linear datasets using existing simulators. This resulted in 9 regression
and 10 binary classification problems each, with the number of features ranging from 8 to
6400. For the highdim dataset – which was only used to evaluate well-performing inference
methods – different variants were used with 100 up to 6400 features. In summary, our aim

23

Schulz-Kümpel, Fischer, et al.

was to consider a wide range of different DGPs to avoid drawing conclusions that are limited
to very specific DGPs and to enable the formulation of more general guidelines. Table 3
gives an overview of the datasets that were used in the benchmark study. All but the Higgs
dataset, which has 11 million observations, and the highdim data, where we set nD = 500,
were generated to have 5.1 million rows. For the exact details on how the datasets were
simulated, see Appendix B.

Table 3: Summary of the benchmark datasets.
Name∗ Task No. Fea-

tures
Data ID∗∗ Majority

Class
Category

higgs classif 28 45570 physics-simulation

bates_classif_20 classif 20 45654 50.0% artificial

bates_classif_100 classif 100 45668 50.0% artificial

bates_regr_20 regr 20 45655 artificial

bates_regr_100 regr 100 45667 artificial

friedman1 regr 10 45666 artificial

chen_10_null regr 60 45670 artificial

chen_10 regr 60 45671 artificial

highdim classif 100-
6400

−∗∗∗ 50.0% artificial

colon classif 62 45665 50.0% cov-estimate

breast classif 77 45669 50.0% cov-estimate

prostate classif 102 45672 50.0% cov-estimate

adult classif 14 45689 (1590) 75.1% density-estimate

cover-type classif 10 45704 (44121) 50.0% density-estimate

electricity classif 8 45693 (151) 57.6% density-estimate

diamonds regr 9 45692 (44979) density-estimate

physiochemical_protein regr 9 45694 (44963) density-estimate

video_transcoding regr 18 45696 (44974) density-estimate

sgemm_gpu_kernel_performance regr 14 45695 (44961) density-estimate

∗ : For datasets from the density-estimate category, the name of the simulated dataset is the name of the
original dataset prefixed by simulated_.
∗∗ : This is the unique ID of the dataset on OpenML. For entries from the density-estimate category, the
number in parenthesis is the ID of the original dataset from which the benchmark dataset was derived.
∗ ∗ ∗ : Due to the size of these datasets, they are not shared on OpenML, but the code to reproduce them
is included in the GitHub repository.

5.2 Parameter settings for inference methods

In our empirical evaluation, we compared different configurations of the inference meth-
ods listed in Table 2. Table 4 lists the concrete parameter specifications for which they
were evaluated. Those were set according to the authors’ recommendations if available and
computationally feasible. One method for which this was impossible is Two-stage Boot-
strap, where the recommended 1000 or 2000 outer bootstrap replications would have led
to excessive computational cost. For the (Repeated) Replace-One CV for which no such

24

Constructing CIs for “the” Generalization Error

recommendation exists, we used generous parameter settings that were still computation-
ally viable. Note that not all of the configurations listed in Table 4 were part of the initial
experimental design. Some of the configurations were added after the initial result inspec-
tion in order to perform a more thorough analysis of the well-performing methods, which
we will present later. This allowed us to allocate more of our computation budget to more
promising methods. The configurations that were initially evaluated are those shown later
in Figure 2.

Table 4: Parameter settings for inference methods. When a parameter controls the num-
ber of independent repetitions, all parameterizations smaller than the given value
can also be obtained without recomputing the resample experiment. For those pa-
rameters, we give the maximum considered value but also show results for smaller
values. The Abbrevation column indicates how the methods are being referred to
in subsequent plots and tables.

Method nD Parameters Abbreviation

Holdout all ptrain = 0.9, 0.8, 0.7, 0.66, 0.6, 0.5 holdout_{p∗train}

Replace-One CV small K = 5 rocv_{K}

Repeated Replace-One
CV

small K = 5, max R = 5 rep_rocv_{R}_{K}

CV Wald all K = 5, 10, 25, 50, 75, 100, n
variance = all-pairs,within-fold

cv_{K}_allpairs,
cv_{K}_within

Corrected Resampled-T all max K = 100 and ptrain = 0.9, 0.8, 0.7 cort_{K}_{ptrain}∗

Conservative-Z small max K = 50, max R = 50, ptrain = 0.9 conz_{R}_{K}

all max K = 10, max R = 12, ptrain = 0.9

5 x 2 CV all 52cv

Nested CV small max R = 200, K = 5 ncv_{R}_{K}

all max R = 10, K = 5

Out-of-Bag all max K = 100 oob_{K}

Out-of-Bag small max K = 1000

632+ Bootstrap all max K = 100 632plus_{K}

632+ Bootstrap small max K = 1000

BCCV Percentile tiny max R = 100, with/without bias
correction

bccv_{R}_bias,
bccv_{R}

Location-shifted
Bootstrap

all max R = 100, max K = 10 lsb_{R}_{K}

Two-stage Bootstrap small max R = 200, max K = 10 tsb_{R}_{K}

∗ : The ratio ptrain will be given in percent.
∗∗ : When ptrain is omitted, it is set to 0.9.

25

Schulz-Kümpel, Fischer, et al.

5.3 Evaluation measures for CI estimation

Ideally, all methods presented in Section 4 would, for significance level α, produce intervals
that cover the “true” value of the GE in 100(1− α)% of the nrep repetitions of every exper-
iment from Figure 1. When empirically comparing these methods, the first issue with this
is that we have already distinguished between two different versions of “the” generalization
error (RP (f̂D) and E

[
RP (f̂D)

]
) and explained how different methods may only formally be

expected to reliably cover what we refer to as proxy quantities, see Remark 3. Therefore, for
each method, we separately calculate the coverage frequency of both the risk and expected
risk, as well as the proxy quantities, if applicable.

Of course, methods that produce extremely wide intervals across models are as likely
to have a very high coverage frequency, but due to their imprecision will be less useful
in practice. Therefore, we additionally calculate the median CI width, standardized by
the standard deviation of each method’s point estimate, to rule out overly conservative
methods. We use this approach since a “perfectly” calibrated CI method based on normal
approximation should have a relative median width of approximately 4 (2 · 1.96, since we
chose α = 0.05). Based on this, we are confident that methods exhibiting a median relative
width larger than 8 may be dismissed for being overly conservative. For later comparison
of absolute CI widths we then restrict ourselves to the widths calculated for classification
tasks, given that the absolute widths for regression tasks may not be reasonably compared
across data sets with target variables of widely varying sample variance. However, we also
observed similar patterns when we looked closely at the results of the regression analysis.
The advantage of using the CI width instead of the over-coverage of an inference method to
assess whether it is too conservative is that the width is not bounded. The over-coverage,
however, can at most be α and hence cannot distinguish between two methods’ with strongly
differing widths when they both have a coverage of 100%. This is less of a problem when
evaluating whether inference methods are too liberal, as the coverage should never fall to 0%.
Further, this also does not pose a challenge when assessing inference methods that (mostly)
produce relative coverage frequencies within the interval (0, 1). Lastly, we also provide a
runtime estimation of the methods in Appendix M, since the expected number of resampling
iterations from Table 2 is a rather simplistic estimate of each method’s cost. Note that
we approximate the runtime of each inference method via the runtime of the underlying
resampling methods, as the cost of computing the CI from the resampled predictions is
negligible.

To summarize, we first and foremost compare all considered CI methods with regard to
relative coverage frequency (of different target quantities), CI width, and runtime.

5.4 Empirical results

In a first analysis, we granularly compared each problem T = (DGP, nD, I,L) across meth-
ods to spot tendencies and outliers. Specifically, we made this comparison for 30 (versions)
of the 13 CI methods from Table 4, applying some of them with different parameters. Re-
call that not all configurations listed in the table were included in this first stage, as we
later conducted more experiments for methods that performed well in the initial experi-
ments. The corresponding plots may be downloaded from zenodo10. Here, it immediately

10. https://zenodo.org/records/13744382

26

https://zenodo.org/records/13744382

Constructing CIs for “the” Generalization Error

became apparent that for certain DGPs, all methods performed very poorly, at least for
the standard losses, i.e. squared error for continuous outcomes and 0 − 1 loss for clas-
sification. The most extreme cases were the physiochemical_protein, chen_10_null, and
video_transcoding datasets. All three have metric target variables with extreme outliers, a
fat-tailed empirical distribution, and/or highly correlated features, with the latter especially
affecting estimation for linear models. These DGP properties can cause high instability in
the point estimates, making variance estimation in the low-sample regime challenging. In the
interest of a meaningful aggregated comparison of methods, we decided to omit three such
DGPs for the results in this section. Instead, they are separately analyzed in Appendix E.
Furthermore, the analysis in the main part of our paper is restricted to the standard losses.
Results for other losses are analyzed in Appendix G, which shows that the relative cover-
age frequencies on these three DGPs improve considerably when using a more robust loss
function such as the winsorized squared error.

In a total of 15 experiments, an inducer either failed to produce a model or an inference
method did not yield a CI. These cases are described in Appendix C.2.

Next, we were able to classify a notable subset of methods as either too liberal, based
on their average undercoverage (i.e. the difference between 1 − α and the actual observed
coverage), or as too conservative, based on their median (relative to each estimate’s standard
deviation) CI width across DGPs, inducers, and data sizes. Importantly, some methods were
so computationally expensive that we only applied them to data of sizes 100 and 500 (at
least initially) as is shown in Table 4.

In this first aggregated step, we required methods to have both an average undercoverage
of at most 0.1 and a median (relative) width of at most 8 to be considered for further analysis.
Figure 2 illustrates this comparison, with the methods considered further highlighted. Here,
it immediately becomes apparent that the average coverage of RP (f̂D) and E

[
RP (f̂D)

]
is

rather similar for each method, see Remark 8 for more. For the highlighted methods, a
direct visualization of the median CI width relative to cort_10 versus their coverage of the
expected risk may be found in Appendix F.

Note While the BCCV Percentile method by Jiang et al. (2008) did clear the width-cutoff,
we decided only to include this method for further analysis if it performed outstandingly well
on data of size 100 given its cost (more than 30.000 resampling iterations on data of size
500). Since this was not the case, we did not consider either BCCV Percentile version for
further analysis but separately analyzed this method in Appendix L.

Next, we visually examined the average coverage, as a function of data size nD and
aggregated over DGPs and inducers, for each of the highlighted methods from Figure 2.
The corresponding plots are given in Figure 3.

For the methods applied only to data of size 100 and 500, Nested CV and Conservative-Z
provided remarkably accurate coverage with only slightly conservative CI widths. Conse-
quently, we dismissed CV Wald only in combination with LOO, for further analysis, as it
performed noticeably worse on small data.

For all other methods that cleared the cutoffs from Figure 2 (upper rows of Figure 3),
5 × 2 CV performs noticeably worse than the others. For the random forest, the average
coverage starts at 0.9 for small data and drastically decreases for increasing data size; which
is attributable to the fact that its point estimate uses only half the data for training, see

27

Schulz-Kümpel, Fischer, et al.

Figure 2: Comparison of all (versions of) methods for computing CIs for the GE compared
in this work. The highlighted methods were considered for further analysis.

Remark 6(ii). For all other models, the average coverage only stabilizes around the desired
level of 0.95 for data sizes of 5000 or larger. We exclude 5× 2 CV from further analysis for
these reasons.

Remark 6 (The performance of Holdout-based CIs)

(i) At this point, we should briefly address the fact that the Holdout method using a 90-10
split seems to perform very well, especially considering the fact that Holdout resam-
pling is widely known to be inferior to other resampling procedures for performance
estimation, see James et al. (2021). The reason for this phenomenon is that, while
the Holdout, or single-split, point estimate is most definitely outperformed by those
based on K-fold CV etc., the corresponding Holdout CI is least impacted by the depen-
dence structures mentioned in Remark 2 and, therefore, very reliable. However, it also
provides significantly wider CIs than those resulting from the CV Wald or Corrected
Resampled-T methods. The difference in width will be made apparent in Figure 4, while

28

Constructing CIs for “the” Generalization Error

Figure 3: Average coverage for the (versions of) methods that were not dismissed based on
Figure 2, as a function of data size nD and aggregated over DGPs and inducers.
The upper rows contains those methods that were applied to all data sizes, and
the lowest row those that were only applied to data sizes 100 and 500.

Appendix K provides a comparison of the point estimates for the well-performing CI
methods.

(ii) The Holdout version using 2/3rds as training data ideally showcases the pessimistic
bias resulting from estimating the (expected) risk conditional on data of size 2n

3 (here
the PQ is the risk given the training set of size 2n

3 , see Remark 3). As the sample
size increases, this bias becomes dominant for models with a steeper learning curve
that continues to rise with rising n. In our case, these are decision trees and random
forests, in comparison to the more restricted linear models in our study. However, the
coverage of the proxy quantity, R

(
f̂D 2n

3

)
in this case, remains stable with increasing

sample size.

The effect described in point (ii) of Remark 6 evidently also applies to the CV Wald method
proposed by Bayle et al. (2020). While the coverage for the Test Error itself remains stable,
the coverage of (expected) risk decreases with increasing sample size for well-performing
models that achieve an improved fit as n rises. Notably, the same does not apply to the
Corrected Resampled-T method, which may be attributed to the heuristic correction factor,
see Section 4.5.

29

Schulz-Kümpel, Fischer, et al.

5.4.1 Calibration of different CI methods

At this point, we have established five methods - namely Corrected Resampled-T, CV Wald,
Holdout, as well as (thus far on small data) Conservative-Z and Nested CV - as producing
suitable CIs. Next, we varied different parameters, such as inner/outer repetitions and ratio,
for each of these methods to investigate their optimal calibrations. For a description of these
parameters, see Table 1. The results are visualized by Figure 4.

The Nested CV method, applied only to data of size 100 or 500, with K = 5 kept
constant, provided good average coverage and stable CI width even for relatively small
numbers of outer repetitions. Note that the method tends to produce slightly conservative
intervals. However, we observed a rather high sample variance of CI widths for less than 25
outer repetitions, see Appendix I.3 for a more detailed analysis.

The Conservative-Z method, also applied only to data of size 100 or 500, provided excel-
lent average coverage, which stabilized a little over 1−α with 10 or more outer repetitions.
Note the slight exception of the risk RP (f̂D) for linear or logistic regression; which may be
explained by the highly volatile performance of linear regression on small samples of some
DGPs included in the study. The median CI widths, while stable across outer repetitions,
were noticeably higher for only 5 inner repetitions, indicating that choosing a higher number
of inner repetitions may be worthwhile, at least on small data.

The Holdout method showed exactly what was to be expected based on the remarks of
Remark 6 - the best, and solid, coverage is achieved when choosing a 90-10 split, for which
the average undercoverage is around 4%. However, the median CI width for this calibration
is a little higher than for lower split ratios, and distinctly higher than that of the CV Wald
and Corrected Resampled-T method.

The CV Wald method provided consistently small CIs across different numbers of CV
folds and a generally good, but too liberal, average coverage. However, the average coverage
for decision trees noticeably decreased with an increase in the number of folds, with the
lowest coverage being exhibited for Leave-One-Out CV, see Figure 3.

Remark 7 (CV Wald and Decision Trees) Given that, for this benchmark study, we fit
all models using default specification across all DGPs, it is not implausible that the lack of
tuning resulted in decision trees more sensitive to the inclusion or exclusion of single data
points in a training set. Combining the formal assumptions from Bayle et al. (2020) and
the theoretical results of Arsov et al. (2019), the decrease in coverage with an increasing
number of folds (K) specifically for decision trees in our study is not necessarily unexpected.
Nevertheless, we believe that the distinctive behavior of the CV Wald method for decision
trees warrants further investigation in future research.

For the Corrected Resampled-T method, Figure 4 immediately visualizes that a Subsampling-
ratio of 0.9 is the only sensible choice, which is justifiable for the same reasons as outlined for
the Holdout method in Remark 6. While the average coverage is excellent across numbers
of repetitions for ratio 0.9, we would suggest using at least 25 repetitions, given that the
median CI width is noticeably larger for smaller choices.

At this point, we would like to note that while “25 repetitions” refers to the total number
of required repetitions for the Corrected Resampled-T method, the total number of repe-
titions is much higher for the mentioned specifications of Nested CV and Conservative-Z,

30

Constructing CIs for “the” Generalization Error

namely RK2 and (2R + 1)K, respectively (see the Cost column of Table 2). Meanwhile,
the total number of resamples equals K, i.e. often 5 or 10, for the CV Wald and 1 for the
Holdout method, making them significantly less costly to compute. However, as we have
demonstrated in the preceding analyses, the first three methods generally outperform the
latter two. Specifically, the Holdout method produces considerably wider CIs and CV Wald
fails when used in combination with a decision tree.

Figure 4: Average Coverage and median CI width (based only on classification tasks) for
different configurations of the best-performing methods.

31

Schulz-Kümpel, Fischer, et al.

5.4.2 Best performing CI methods: Corrected Resampled-T, Conservative-Z,
and Nested CV

Based on our previous analysis, the Corrected Resampled-T method with 25 repetitions
performed best on large data. Given the excellent performance of the Conservative-Z and
Nested CV methods on small data, we decided to explore the option of drastically reducing
their iterations and, thereby, the overall computational cost, and apply these two methods
to large data as well. This is obviously relevant for realistic, modern experiments where
data is often larger and inducers (including tuning) are often computationally costly.

Additionally, as described in Section 5.1, we investigated the performance of these three
CI methods for XGBoost and an MLP as well as on high-dimensional data (where all three
performed very well, see Appendix N).

The results are visualized in Figure 5 and Figure N.1, respectively.

Note Specifically, we reduced the overall number of repetitions to 105 for the Conservative-Z
method by choosing R = 10 and K = 5; and to 75 for Nested CV by choosing R = 3 and
K = 5. Importantly, this does not necessarily imply that Conservative-Z is more expensive
than Nested CV because the train and test sets of the underlying resampling methods have
different sizes. In fact, the runtime for the random forest, which is shown in Appendix M,
is relatively similar for the two methods. Generally, Nested CV is slightly cheaper than
Conservative-Z for smaller datasets, while for large values the opposite is the case.

Figure 5 demonstrates that all three methods provide, apart from very few outliers, consis-
tent coverage of both expected risk and risk for the inducers considered in the first stage.
They also maintain stable coverage on high-dimensional data (see Appendix N). However,
Nested CV performs notably worse for the more complex, tuned inducers of the second
stage, particularly the MLP. This may likely be attributed to the fact that the estimate
was somewhat unstable at 3 outer repetitions. Specifically, we observed that the Nested
CV standard error estimates of ncv_3_5 were often the result of the correction defined by

Equation (NCV.7) instead of being calculated as
√

(K − 1)/K · M̂SEK−1. This was espe-
cially true for the MLP, where almost all standard error estimates were the result of said
correction.
Given that Nested CV with 3 outer repetitions is already about as computationally costly
as Conservative-Z with correspondingly reduced parameters and more costly than the Cor-
rected Resampled-T method with 25 repetitions, we did not further investigate whether a
slight increase in outer repetitions would have improved this phenomenon. However, this
might be of interest in future work.

Between Corrected Resampled-T and Conservative-Z, the latter exhibits marginally bet-
ter average coverage, although this advantage comes with a trade-off indicated by the
method’s name: its CIs are somewhat wider. Additionally, it should be noted that even
though we do not consider non-decomposable measures such as AUC or F1 score in the
current work, Conservative-Z and Corrected Resampled-T could theoretically be applied in
such a setting, while Nested CV could not.

32

Constructing CIs for “the” Generalization Error

Figure 5.a: Comparison of coverage for RP (f̂D) (top row) and E
[
RP (f̂D)

]
(bottom), averaged over

DGPs.

Figure 5.b: Comparison of median CI widths for Classification, averaged over DGPs.

Figure 5: Comparison of the three best performing CI for GE methods: Corrected
Resampled-T, Conservative-Z, and Nested CV. Due to computational cost, the
MLP was only fit on data of size 5000.

Overall, the choice between these methods should depend on the specific needs of a given
analysis, especially the balance between computational efficiency and the desired precision
of the CIs.

Remark 8 (Empirical coverage of risk and expected risk) Within our benchmark
study, all CI methods performed very similarly with regard to RP (f̂D) and E

[
RP (f̂D)

]
,

even though a slight difference between the respective coverages was noticeable at times. In
line with the argumentation of Section 3.1, an exemplary investigation, see Appendix K, of
the relationship between different point estimates and (expected) risk indicates that whether

33

Schulz-Kümpel, Fischer, et al.

RP (f̂D) or E
[
RP (f̂D)

]
is estimated more precisely in any given setting depends more on the

learner (and DGP) than the specific resampling-based method used.
Given our empirical results, we believe that the recommended methods may be reliably

applied to perform inference on both the risk and expected risk, although further investigation
into the differences between these two targets would certainly be valuable.

5.4.3 Additional analyses

In addition to the already presented analyses, Appendix I provides additional insights into
the influence of the parameters on the coverage, width, and stability of the best-performing
methods.

Furthermore, inference methods can sporadically produce extremely large CI widths
in the presence of outliers in data D, which is shown in Appendix H. This is primarily
an issue for regression problems. As for the previously mentioned problematic DGPs, see
Appendix E, we see that more robust loss functions can mitigate this issue.

Lastly, Appendix K provides an exemplary, granular comparison of point estimates from
the recommended CI methods, as well as cv_5 and ho_90, with the “true” RP (f̂D) and
E
[
RP (f̂D)

]
for two classification and two regression datasets.

6 Conclusion

In this work, we gave a comprehensive overview of the thirteen most common methods for
computing CIs for the GE along with the theoretical foundations underlying their construc-
tion. We then compared these methods in the largest benchmark study on this topic to date.

Based on our empirical results, we recommend the following methods:

• For small data (up to n = 100):

– Nested CV with at least 25 outer repetitions and K = 5, or

– Conservative-Z with 25 outer repetitions and at least K = 10

• For larger data:

– Corrected Resampled-T with a ratio of 0.9 and at least 25 repetitions, or

– Conservative-Z with 10 outer repetitions and K = 5 for slightly wider CIs with
very slightly more accurate coverage.

We also implemented these recommendations in the R package mlr3inferr11.

Limitations While our benchmark study was quite extensive, there were some things we
could not explicitly investigate. For the DGPs, this work is limited to observations where
the i.i.d. assumption is reasonable and we only investigated data of smaller to medium size
(up to n = 10.000). On the other hand, for larger data sizes under the i.i.d. assumption,
simple holdout CI estimation becomes increasingly plausible.

11. https://github.com/mlr-org/mlr3inferr

34

https://github.com/mlr-org/mlr3inferr

Constructing CIs for “the” Generalization Error

We only studied binary classification and regression and only included a very limited
analysis of hyperparameter tuning and its effects on CI estimation for the GE (see the
discussion in Section 5.1).

Future Work While our study could identify methods for the model-agnostic construc-
tion CIs for the GE that generally perform well, it also became apparent that all available
methods fail in some scenarios. A more in-depth analysis and theoretical understanding
of the limitations of the well-performing methods, especially, would certainly be beneficial.
Additionally, even the best-performing methods tend to perform worse for more stochastic
fitting procedures (where stochasticity was often a result of integrated tuning with a limited
budget, e.g. BO with only 50 iterations in our case). A further theoretical and empirical
analysis of that aspect could provide valuable insights to the ML community, where tuning
is especially important. This might also have implications for the construction of novel CI
methods, which, ideally, could better handle randomness in models or specifically target
nested, computational workflow when tuning is combined with model fitting. One currently
has to concede that the potential randomness of an inducer is not specifically considered in
the construction of any CI methods for the GE, see also Section 3.3. Also, more empirical
results for CIs in the context of tuning would be welcome.

Finally, we hope that this benchmark study has made a pivotal contribution towards
providing a well-founded framework for evaluating new methods for computing CIs for the
GE, which will undoubtedly be proposed in the future.

Broader Impact Statement

Importance of Empirical Evaluations CI methods and their respective implementa-
tions should not only be analyzed mathematically but also through proper empirical evalu-
ation. This is, because their performance is strongly influenced by the learning algorithm,
the data generating process, and their specific configuration, all of which are often neglected
in formal analysis. For this reason, extensive empirical investigations are a necessary step
to identify which methods work under which conditions. By providing a comprehensive
benchmark suite and conducting an extensive empirical investigation, we hope to emphasize
that such wide-reaching comparisons are an important aspect in this area of research and
should accompany theoretical progress, something that is already a standard in other areas
of machine learning.

Improved Decision Making CIs help quantify the uncertainty in risk estimates, thereby
offering a more nuanced understanding of a model’s capabilities. By conducting this neutral
comparison study and thereby identifying a selection of well-performing methods, we hope
that stakeholders can improve their data-driven decision making by taking the uncertainty
of risk estimates into account.

Generalizability Due to the exploratory nature of our research, we did not perform
confirmatory analyses. Furthermore, even though we considered hyperparameter tuning of
both deep neural networks and boosting algorithms, the investigation was limited in scope

35

Schulz-Kümpel, Fischer, et al.

due to its computational burden. A possible risk of this work is therefore that our results
might be generalized to such situations for which it is not justified based on our experiments.
We still hope that by narrowing down the set of applicable methods, we pave the way to
more focused comparison studies in the future that go beyond those limitations.

Acknowledgments and Disclosure of Funding

The authors of this work take full responsibility for its content. Hannah Schulz-Kümpel is
supported by the DAAD programme Konrad Zuse Schools of Excellence in Artificial Intelli-
gence, sponsored by the Federal Ministry of Education and Research, and was partially sup-
ported by DFG grants BO3139/7 and BO3139/9-1 to ALB. Sebastian Fischer is supported
by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 460135501
(NFDI project MaRDI). Roman Hornung is supported by DFG grant HO6422/1-3. With the
exception of T. Nagler, all authors were additionally supported by the Federal Statistical Of-
fice of Germany within the cooperation “Machine Learning in Official Statistics”. This work
has been carried out by making use of Wyoming’s Advanced Research Computing Center,
on its Beartooth Compute Environment (https://doi.org/10.15786/M2FY47). The au-
thors gratefully acknowledge the computational and data resources provided by Wyoming’s
Advanced Research Computing Center (https://www.uwyo.edu/arcc/). We would also
like to acknowledge the use of the Derecho system (https://doi.org/10.5065/qx9a-pg09)
supported by the NSF National Center for Atmospheric Research (NCAR) at the NSF
NCAR-Wyoming Supercomputing Center, sponsored by the National Science Foundation
and the State of Wyoming.

References

J. Ansel, E. Yang, H. He, N. Gimelshein, A. Jain, M. Voznesensky, B. Bao, P. Bell, D. Be-
rard, E. Burovski, G. Chauhan, A. Chourdia, W. Constable, A. Desmaison, Z. De-
Vito, E. Ellison, W. Feng, J. Gong, M. Gschwind, B. Hirsh, S. Huang, K. Kalam-
barkar, L. Kirsch, M. Lazos, M. Lezcano, Y. Liang, J. Liang, Y. Lu, C. Luk, B. Ma-
her, Y. Pan, C. Puhrsch, M. Reso, M. Saroufim, M. Y. Siraichi, H. Suk, M. Suo,
P. Tillet, E. Wang, X. Wang, W. Wen, S. Zhang, X. Zhao, K. Zhou, R. Zou, A. Math-
ews, G. Chanan, P. Wu, and S. Chintala. PyTorch 2: Faster Machine Learning Through
Dynamic Python Bytecode Transformation and Graph Compilation. In 29th ACM Inter-
national Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 2 (ASPLOS ’24). ACM, Apr. 2024. doi: 10.1145/3620665.3640366. URL
https://pytorch.org/assets/pytorch2-2.pdf.

N. Arsov, M. Pavlovski, and L. Kocarev. Stability of decision trees and logistic regression,
2019. URL https://arxiv.org/abs/1903.00816.

M. Austern and W. Zhou. Asymptotics of cross-validation. 2020. URL https://arxiv.
org/abs/2001.11111.

P. Baldi, P. Sadowski, and D. Whiteson. Searching for exotic particles in high-energy physics
with deep learning. Nature Communications, 5(1):4308, 2014.

36

https://doi.org/10.15786/M2FY47
https://www.uwyo.edu/arcc/
https://doi.org/10.5065/qx9a-pg09
https://pytorch.org/assets/pytorch2-2.pdf
https://arxiv.org/abs/1903.00816
https://arxiv.org/abs/2001.11111
https://arxiv.org/abs/2001.11111

Constructing CIs for “the” Generalization Error

S. Bates, T. Hastie, and R. Tibshirani. Cross-validation: what does it estimate and how
well does it do it? Journal of the American Statistical Association, 119(546):1434–1445,
2024.

P. Bayle, A. Bayle, L. Janson, and L. Mackey. Cross-validation confidence intervals for test
error. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33, pages 16339–16350. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/bce9abf229ffd7e570818476ee5d7dde-Paper.pdf.

B. Becker and R. Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20.

Y. Bengio and Y. Grandvalet. No unbiased estimator of the variance of k-fold cross-
validation. Advances in Neural Information Processing Systems, 16, 2003.

M. Binder, F. Pfisterer, M. Lang, L. Schneider, L. Kotthoff, and B. Bischl. mlr3pipelines-
flexible machine learning pipelines in r. Journal of Machine Learning Research, 22(184):
1–7, 2021.

B. Bischl, G. Casalicchio, M. Feurer, P. Gijsbers, F. Hutter, M. Lang, R. G. Mantovani, J. N.
van Rijn, and J. Vanschoren. OpenML benchmarking suites. In Thirty-fifth Conference
on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2),
2021. URL https://openreview.net/forum?id=OCrD8ycKjG.

B. Bischl, M. Binder, M. Lang, T. Pielok, J. Richter, S. Coors, J. Thomas, T. Ullmann,
M. Becker, A.-L. Boulesteix, D. Deng, and M. Lindauer. Hyperparameter optimization:
Foundations, algorithms, best practices, and open challenges. WIREs Data Mining and
Knowledge Discovery, 13(2):e1484, 2023. URL https://wires.onlinelibrary.wiley.
com/doi/abs/10.1002/widm.1484.

V. Borisov, K. Sessler, T. Leemann, M. Pawelczyk, and G. Kasneci. Language models are
realistic tabular data generators. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=cEygmQNOeI.

S. Borra and A. Di Ciaccio. Measuring the prediction error. a comparison of cross-validation,
bootstrap and covariance penalty methods. Computational Statistics & Data Analysis, 54
(12):2976–2989, 2010. ISSN 0167-9473. doi: https://doi.org/10.1016/j.csda.2010.03.004.

R. R. Bouckaert and E. Frank. Evaluating the replicability of significance tests for com-
paring learning algorithms. In H. Dai, R. Srikant, and C. Zhang, editors, Advances in
Knowledge Discovery and Data Mining, pages 3–12, Berlin, Heidelberg, 2004. Springer
Berlin Heidelberg. ISBN 978-3-540-24775-3.

A.-L. Boulesteix, S. Lauer, and M. J. Eugster. A plea for neutral comparison studies in
computational sciences. PloS one, 8(4):e61562, 2013.

37

https://proceedings.neurips.cc/paper_files/paper/2020/file/bce9abf229ffd7e570818476ee5d7dde-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/bce9abf229ffd7e570818476ee5d7dde-Paper.pdf
https://openreview.net/forum?id=OCrD8ycKjG
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/widm.1484
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/widm.1484
https://openreview.net/forum?id=cEygmQNOeI

Schulz-Kümpel, Fischer, et al.

X. Bouthillier, P. Delaunay, M. Bronzi, A. Trofimov, B. Nichyporuk, J. Szeto, N. Mo-
hammadi Sepahvand, E. Raff, K. Madan, V. Voleti, S. Ebrahimi Kahou, V. Michal-
ski, T. Arbel, C. Pal, G. Varoquaux, and P. Vincent. Accounting for vari-
ance in machine learning benchmarks. In A. Smola, A. Dimakis, and I. Sto-
ica, editors, Proceedings of Machine Learning and Systems, volume 3, pages 747–
769, 2021. URL https://proceedings.mlsys.org/paper_files/paper/2021/file/
0184b0cd3cfb185989f858a1d9f5c1eb-Paper.pdf.

L. Breiman, J. Friedman, C. J. Stone, and R. Olshen. Classification and Regression Trees.
Chapman and Hall/CRC, 1984.

G. W. Brier. Verification of forecasts expressed in terms of probability. Monthly Weather
Review, 78(1):1 – 3, 1950. doi: https://doi.org/10.1175/1520-0493(1950)078<0001:
VOFEIT>2.0.CO;2.

T. Chen. Xgboost: extreme gradient boosting. R package version 0.4-2, 1(4), 2015.

Z. Chen and W. Zhang. Integrative analysis using module-guided random forests reveals
correlated genetic factors related to mouse weight. PLoS computational biology, 9(3):
e1002956, 2013.

R. Collobert, S. Bengio, and Y. Bengio. A parallel mixture of svms for very large scale
problems. Advances in Neural Information Processing Systems, 14, 2001.

F. Degenhardt, S. Seifert, and S. Szymczak. Evaluation of variable selection methods for
random forests and omics data sets. Briefings in bioinformatics, 20(2):492–503, 2019.

T. Deneke. Online Video Characteristics and Transcoding Time Dataset. UCI Machine
Learning Repository, 2015. DOI: https://doi.org/10.24432/C58C9K.

T. G. Dietterich. Approximate Statistical Tests for Comparing Supervised Classifica-
tion Learning Algorithms. 10(7):1895–1923, 1998. ISSN 0899-7667. URL https:
//www.mitpressjournals.org/doi/10.1162/089976698300017197.

S. Dudoit and M. J. van der Laan. Asymptotics of cross-validated risk estimation in estimator
selection and performance assessment. Statistical methodology, 2(2):131–154, 2005.

B. Efron. Estimating the error rate of a prediction rule: Improvement on cross-validation.
Journal of the American Statistical Association, 78(382):316–331, 1983. doi: 10.1080/
01621459.1983.10477973.

B. Efron and R. Tibshirani. Improvements on cross-validation: The .632+ bootstrap method.
Journal of the American Statistical Association, 92(438):548–560, 1997. ISSN 01621459.
URL http://www.jstor.org/stable/2965703.

M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim. Do we need hundreds of
classifiers to solve real world classification problems? The journal of machine learning
research, 15(1):3133–3181, 2014.

38

https://proceedings.mlsys.org/paper_files/paper/2021/file/0184b0cd3cfb185989f858a1d9f5c1eb-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2021/file/0184b0cd3cfb185989f858a1d9f5c1eb-Paper.pdf
https://www.mitpressjournals.org/doi/10.1162/089976698300017197
https://www.mitpressjournals.org/doi/10.1162/089976698300017197
http://www.jstor.org/stable/2965703

Constructing CIs for “the” Generalization Error

M. Feurer, J. N. Van Rijn, A. Kadra, P. Gijsbers, N. Mallik, S. Ravi, A. Müller, J. Van-
schoren, and F. Hutter. Openml-python: an extensible python api for openml. Journal
of Machine Learning Research, 22(100):1–5, 2021.

S. Fischer and M. Binder. mlr3torch: Deep Learning with ’mlr3’, 2024. URL https:
//CRAN.R-project.org/package=mlr3torch. R package version 0.1.2.

S. Fischer and H. Schulz-Kümpel. Reproducible code for ”Constructing confidence intervals
for ’the’ Generalization Error”. https://github.com/slds-lmu/paper_2023_ci_for_ge,
2024.

S. F. Fischer, M. Feurer, and B. Bischl. Openml-ctr23–a curated tabular regression bench-
marking suite. In AutoML Conference 2023 (Workshop), 2023.

J. H. Friedman. Multivariate adaptive regression splines. The annals of statistics, 19(1):
1–67, 1991.

M. Fuchs, R. Hornung, A.-L. Boulesteix, and R. De Bin. On the asymptotic behaviour of
the variance estimator of a u-statistic. Journal of Statistical Planning and Inference, 209:
101–111, 2020. ISSN 0378-3758. doi: https://doi.org/10.1016/j.jspi.2020.03.003.

S. Geisser. The predictive sample reuse method with applications. Journal of the American
Statistical Association, 70(350):320–328, 1975. ISSN 01621459, 1537274X. URL http:
//www.jstor.org/stable/2285815.

Y. Gorishniy, I. Rubachev, V. Khrulkov, and A. Babenko. Revisiting deep learning models
for tabular data. Advances in Neural Information Processing Systems, 34:18932–18943,
2021.

F. E. Harrell Jr, K. L. Lee, and D. B. Mark. Multivariable prognostic models: issues in
developing models, evaluating assumptions and adequacy, and measuring and reducing
errors. Statistics in medicine, 15(4):361–387, 1996.

T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning: data mining,
inference and prediction. Springer, 2 edition, 2009. URL http://www-stat.stanford.
edu/~tibs/ElemStatLearn/.

T. Hastie, J. Qian, and K. Tay. An introduction to glmnet. CRAN R Repositary, 5:1–35,
2021.

M. Herrmann, F. J. D. Lange, K. Eggensperger, G. Casalicchio, M. Wever, M. Feurer,
D. Rügamer, E. Hüllermeier, A.-L. Boulesteix, and B. Bischl. Position: Why we
must rethink empirical research in machine learning. In R. Salakhutdinov, Z. Kolter,
K. Heller, A. Weller, N. Oliver, J. Scarlett, and F. Berkenkamp, editors, Proceed-
ings of the 41st International Conference on Machine Learning, volume 235 of Proceed-
ings of Machine Learning Research, pages 18228–18247. PMLR, 21–27 Jul 2024. URL
https://proceedings.mlr.press/v235/herrmann24b.html.

39

https://CRAN.R-project.org/package=mlr3torch
https://CRAN.R-project.org/package=mlr3torch
https://github.com/slds-lmu/paper_2023_ci_for_ge
http://www.jstor.org/stable/2285815
http://www.jstor.org/stable/2285815
http://www-stat.stanford.edu/~tibs/ElemStatLearn/
http://www-stat.stanford.edu/~tibs/ElemStatLearn/
https://proceedings.mlr.press/v235/herrmann24b.html

Schulz-Kümpel, Fischer, et al.

G. James, D. Witten, T. Hastie, and R. Tibshirani. An Introduction to Statistical Learn-
ing: with Applications in R. Springer Texts in Statistics. Springer US, 2021. ISBN
9781071614181. URL https://books.google.de/books?id=5dQ6EAAAQBAJ.

S. Janitza and R. Hornung. On the overestimation of random forest’s out-of-bag error. PloS
one, 13(8):e0201904, 2018.

W. Jiang, S. Varma, and R. Simon. Calculating confidence intervals for prediction error in
microarray classification using resampling. Stat Appl Genet Mol Biol, 7(1):Article8, 2008.

J.-H. Kim. Estimating classification error rate: Repeated cross-validation, repeated hold-out
and bootstrap. Computational statistics & data analysis, 53(11):3735–3745, 2009.

R. Kohavi et al. A study of cross-validation and bootstrap for accuracy estimation and
model selection. In Ijcai, volume 14, pages 1137–1145. Montreal, Canada, 1995.

M. Lang and S. Fischer. mlr3oml: Connector Between ’mlr3’ and ’OpenML’, 2023. URL
https://CRAN.R-project.org/package=mlr3oml. R package version 0.7.2.

M. Lang, B. Bischl, and D. Surmann. batchtools: Tools for r to work on batch systems.
Journal of Open Source Software, 2(10):135, 2017.

M. Lang, M. Binder, J. Richter, P. Schratz, F. Pfisterer, S. Coors, Q. Au, G. Casalicchio,
L. Kotthoff, and B. Bischl. mlr3: A modern object-oriented machine learning framework
in r. Journal of Open Source Software, 4(44):1903, 2019.

E. LeDell, M. Petersen, and M. van der Laan. Computationally efficient confidence intervals
for cross-validated area under the roc curve estimates. Electronic journal of statistics, 9
(1):1583, 2015.

C. L. Mallows. Some comments on cp. Technometrics, 15(4):661–675, 1973. ISSN 00401706.
URL http://www.jstor.org/stable/1267380.

D. McElfresh, S. Khandagale, J. Valverde, V. Prasad C, G. Ramakrishnan, M. Goldblum,
and C. White. When do neural nets outperform boosted trees on tabular data? Advances
in Neural Information Processing Systems, 36, 2024.

A. M. Molinaro, R. Simon, and R. M. Pfeiffer. Prediction error estimation: a comparison of
resampling methods. Bioinformatics, 21(15):3301–3307, 2005.

C. Nadeau and Y. Bengio. Inference for the Generalization Error. 52(3):239–281, 2003.
ISSN 1573-0565. URL https://doi.org/10.1023/A:1024068626366.

T. Nagler, L. Schneider, B. Bischl, and M. Feurer. Reshuffling resampling splits can improve
generalization of hyperparameter optimization, 2024. URL https://arxiv.org/abs/
2405.15393.

H. Noma, T. Shinozaki, K. Iba, S. Teramukai, and T. A. Furukawa. Confidence intervals of
prediction accuracy measures for multivariable prediction models based on the bootstrap-
based optimism correction methods. Statistics in Medicine, 40(26):5691–5701, 2021.

40

https://books.google.de/books?id=5dQ6EAAAQBAJ
https://CRAN.R-project.org/package=mlr3oml
http://www.jstor.org/stable/1267380
https://doi.org/10.1023/A:1024068626366
https://arxiv.org/abs/2405.15393
https://arxiv.org/abs/2405.15393

Constructing CIs for “the” Generalization Error

C. Nugteren and V. Codreanu. Cltune: A generic auto-tuner for opencl kernels. In 2015
IEEE 9th International Symposium on Embedded Multicore/Many-core Systems-on-Chip,
pages 195–202. IEEE, 2015.

P. Probst, A.-L. Boulesteix, and B. Bischl. Tunability: Importance of hyperparameters of
machine learning algorithms. Journal of Machine Learning Research, 20(53):1–32, 2019.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2018. URL https://www.R-project.org/.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models are
unsupervised multitask learners. 2019.

P. Rana. Physicochemical Properties of Protein Tertiary Structure. UCI Machine Learning
Repository, 2013. DOI: https://doi.org/10.24432/C5QW3H.

S. Rosset and R. J. Tibshirani. From fixed-x to random-x regression: Bias-variance decom-
positions, covariance penalties, and prediction error estimation. Journal of the Amer-
ican Statistical Association, 115(529):138–151, 2020. URL https://doi.org/10.1080/
01621459.2018.1424632.

L. Schneider, J. Richter, M. Becker, M. Lang, B. Bischl, F. Pfisterer, M. Binder,
and S. Fischer. mlr3mbo: Flexible Bayesian Optimization, 2024. URL
https://github.com/mlr-org/mlr3mbo. R package version 0.2.6.9000, commit
c249a5143b5897b880a11d9f3dcc00d2ed6b54fc.

J. Shao and C. F. J. Wu. A general theory for jackknife variance estimation. The Annals of
Statistics, 17(3):1176–1197, 1989. ISSN 00905364, 21688966. URL http://www.jstor.
org/stable/2241717.

M. Stone. Cross-validatory choice and assessment of statistical predictions. Journal of the
Royal Statistical Society: Series B (Methodological), 36(2):111–133, 1974. URL https:
//rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1974.tb00994.x.

T. Therneau, B. Atkinson, B. Ripley, and M. B. Ripley. Package ‘rpart’. Available online:
cran. ma. ic. ac. uk/web/packages/rpart/rpart. pdf (accessed on 20 April 2016), 2015.

K. Ushey and H. Wickham. renv: Project Environments, 2024. URL https://CRAN.
R-project.org/package=renv. R package version 1.0.7.

T. van Erven, P. Grünwald, N. Mehta, M. Reid, and R. Williamson. Fast rates in statistical
and online learning. Journal of Machine Learning Research, 16(54):1793–1861, 2015.

J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo. Openml: networked science in ma-
chine learning. SIGKDD Explorations, 15(2):49–60, 2013. doi: 10.1145/2641190.2641198.
URL http://doi.acm.org/10.1145/2641190.264119.

L. Waldron, M. Pintilie, M.-S. Tsao, F. A. Shepherd, C. Huttenhower, and I. Jurisica.
Optimized application of penalized regression methods to diverse genomic data. Bioin-
formatics, 27(24):3399–3406, 2011.

41

https://www.R-project.org/
https://doi.org/10.1080/01621459.2018.1424632
https://doi.org/10.1080/01621459.2018.1424632
https://github.com/mlr-org/mlr3mbo
http://www.jstor.org/stable/2241717
http://www.jstor.org/stable/2241717
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1974.tb00994.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1974.tb00994.x
https://CRAN.R-project.org/package=renv
https://CRAN.R-project.org/package=renv
http://doi.acm.org/10.1145/2641190.264119

Schulz-Kümpel, Fischer, et al.

M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. Baak,
N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E. Bourne, et al. The fair guiding
principles for scientific data management and stewardship. Scientific data, 3(1):1–9, 2016.

M. N. Wright and A. Ziegler. ranger: A fast implementation of random forests for high
dimensional data in c++ and r. Journal of Statistical Software, 77(1):1–17, 2017. doi: 10.
18637/jss.v077.i01. URL https://www.jstatsoft.org/index.php/jss/article/view/
v077i01.

H. Xu, S. Mei, S. Bates, J. Taylor, and R. Tibshirani. Uncertainty intervals for prediction
errors in time series forecasting, 2023. URL https://arxiv.org/abs/2309.07435.

W. A. Yousef. On the smoothness of cross-validation-based estimators of classifier perfor-
mance, 2022. URL https://arxiv.org/abs/1907.13413.

42

https://www.jstatsoft.org/index.php/jss/article/view/v077i01
https://www.jstatsoft.org/index.php/jss/article/view/v077i01
https://arxiv.org/abs/2309.07435
https://arxiv.org/abs/1907.13413

Constructing CIs for “the” Generalization Error

Appendix A. Missing constant in the Austern and Zhou Variance
Estimator

Lemma 1 Consider a random variable Z ∼ µZ and let qα(µZ), α ∈ (0, 1), denote the α-
quantile of the symmetric probability distribution µZ of Z, If, for some sequence of values
in R (sn)n∈N it holds that

1.
1

sn

(
Θ̂0,n(Dn)−Θ0,n(Dn, P)

) d−→ Z (4)

2. and, for some sequence of variance estimators
(
ŝn :

n
×
i=1

(X × Y
)
−→ R)n∈N, with

ŝn(Dn) =: ŝ(Dn),
ŝ(Dn)

sn

p−→ 1 . (5)

then the interval [Θ̂0(Dn)± q1−α
2
(µZ)ŝ(Dn)] is an asymptotically exact coverage interval for

Θ0(Dn, P); with Dn denoting any realization of Dn.

Proof This follows immediately from the fact that if Equation (5) holds, sn may be replaced
with ŝ(Dn) in Equation (4).

The following now provides our reasoning behind the argument of

Remark 5 (Missing scaling constant in variance estimate of Austern and Zhou
(2020)) In the experiments conducted by Bates et al. (2024) the original CI suggested for
CV by Austern and Zhou (2020) proved to be wider than expected by a factor of about 1.4.
This is consistent with our argument in Appendix A that the standard error of Austern and
Zhou (2020) should be scaled by 1√

2
to be theoretically valid, which is also confirmed by the

experiment presented in Appendix A.1.

In (Austern and Zhou, 2020, Thm. 3, Eq. (22)), statement 1. of Lemma 1 is proven for
Z ∼ N (0, 1),

Θ0,n(Dn, P) =E
[
RP (f̂D)

]
(n− n

K
) ,

Θ̂0,n(Dn) =
1

n

K∑
k=1

∑
i∈Jtest,k

ek[i] ,

and
√
n · sn equal to σCV from the notation of Austern and Zhou (2020). Subsequently,

statement 2 from Lemma 1 is shown by (Austern and Zhou, 2020, Prop. 2) for
√
n · ŝn equal

to the following quantity

Ŝ2
CV =

n

2

n/2∑
l=1

(
Θ̂0,n(D

⌊n
2
⌋

train)− Θ̂0,n(D̃
⌊n
2
⌋

train[l])
)2
, (6)

43

Schulz-Kümpel, Fischer, et al.

with D⌊n
2
⌋

train equal to the first ⌊n2 ⌋ elements of Dn and D̃
⌊n
2
⌋

train[l] denotes D⌊n
2
⌋

train with the lth
element replaced with the (⌊n2 ⌋+ l)th element of Dn.

Given that Equation (4) is proven under the conditions of (Austern and Zhou, 2020,
Thm. 3), it immediately follows that

lim
n→∞

nVar
(
Θ̂0,n(Dn)

)
−→ σ2CV

=⇒ lim
n→∞

n

2
Var

(
Θ̂0,n(D

⌊n
2
⌋

train)
)
−→ σ2CV , (⋆)

given that Dn has size ⌊n2 ⌋. Furthermore, given (Austern and Zhou, 2020, Prop. 2) it should
hold that

∥Ŝ2
CV − σ2CV ∥L1

p−→ 0 (⋆⋆)

=⇒
(
E[Ŝ2

CV]− σ2CV

)
−→ 0 ,

which, given that σ2CV is a constant, also implies

n−
1
2 Ŝ2

CV

n−
1
2σ2CV

=
ŝ(Dn)

sn

p−→ 1 .

However, we also have that

E[Ŝ2
CV] =E

[
n

2

n/2∑
l=1

(
Θ̂0,n(D

⌊n
2
⌋

train)− Θ̂0,n(D̃
⌊n
2
⌋

train[l])
)2]

=n · E
[
1

2

n/2∑
l=1

(
Θ̂0,n(D

⌊n
2
⌋

train)− Θ̂0,n(D̃
⌊n
2
⌋

train[l])
)2]

and by the Efron-Stein inequality: ≥ n ·Var
(
Θ̂0,n(D

⌊n
2
⌋

train)
) by (⋆)
−−−−→ 2σCV ,

which leads us to believe that the statement of (⋆⋆) should actually be ∥12 Ŝ
2
CV −σ2CV ∥L1

p−→
0. This, in turn, would result in the standard error being scaled by the factor 1√

2
.

A.1 Empirical Evaluation of Austern and Zhou Variance Estimator

Besides the main benchmark study, we conducted a separate experiment to compare the
variance estimator from the ROCV inference method (Austern and Zhou, 2020) with the
true variance of the CV point estimate. We used a linear regression model on datasets
simulated from a distribution following the relationship below:

Yi = Xi + ϵi, where i = 1, . . . , n, Xi
i.i.d.∼ N (0, 1), ϵi

i.i.d.∼ N (0, 0.04)

44

Constructing CIs for “the” Generalization Error

The experiment was repeated for different choices of n ∈ {500, 1000, 5000, 10000}. To
estimate the true variance of the (5-fold) cross-validation, we obtained 100 cross-validation
point estimates on independently simulated datasets. The variance estimation for the ROCV
method was conducted 10 times. Figure A.1 shows that the ratio of the estimated standard
deviation to the true standard deviation of the cross-validation point estimate is close to√
2, thereby empirically supporting the theoretical argument from above.

Figure A.1: Ratio of the Replace-One CV variance estimator to the approximated true vari-
ance of 5-fold cross-validation.

45

Schulz-Kümpel, Fischer, et al.

Appendix B. Benchmark Datasets

Here, we give a detailed description of the datasets that were used in the benchmark exper-
iments and that were presented in Table 3. Due to the requirements of having i.i.d. data
and a large number of observations to allow for disjunct subsets, we were unable to find
many suitable datasets. For this reason, all but the Higgs (11 million observations) dataset
were created by us and have 5.1 million rows (except for the highdim data). The collection
of datasets that were used is available as a Benchmarking Suite on OpenML (Bischl et al.,
2021) and can be accessed via this link: https://www.openml.org/search?type=study&
study_type=task&id=441.

Accessing these datasets is, e.g., possible via the OpenML website or one of the client
libraries in python (Feurer et al., 2021) or R (Lang and Fischer, 2023). Due to the large size
of the datasets, we recommend working with the parquet files.

We now continue to describe the process used to generate the datasets in detail. The
code for reproducing this can be found in the datamodels directory of the accompanying
GitHub repository.

B.1 Category: physics-simulation

The Higgs dataset (Baldi et al., 2014) is a classification problem where the task is to distin-
guish between a process that produces Higgs bosons and one that does not. It was created
using Monte Carlo simulations.

B.2 Category: artificial

The datasets from the artificial category were simplistically generated using distributions
that are not directly related to any real-world dataset or phenomenon.

Four datasets were simulated according to the procedure described by Bates et al. (2024),
the regression variant of which is defined by the following definition:

Yi = (Xi,1, . . . , Xi,p)
⊤θ + ϵi, i = 1, . . . , n, j = 1, . . . , p, where

ϵi
i.i.d.∼ N (0, 1), Xi,j

i.i.d.∼ N(0, 1), θ ∈ Rp

Using the same definitions for Xi,j and θ, the classification variant was simulated using a
logistic distribution:

P (Yi = 1|Xi,1, . . . , Xi,p) =
(
1 + exp

(
− (Xi,1, . . . , Xi,p)

⊤θ
))−1

For the parameter vector θ we used the values (1, 1, 1, 1, 1, 0, . . . , 0) ∈ R20 and (1, 1, 1, 1, 1,
0, . . . , 0) ∈ R100, resulting in a total of four datasets.

Further, we simulated a non-linear artificial dataset using the definition provided by
Friedman (1991), which includes five features with no information on the target variable:

Yi = 10 sin(πXi,1Xi,2) + 20(Xi,3 − 0.5)2 + 10Xi,4 + 5Xi,5 + ϵi, i = 1, . . . , n, j = 1, . . . , 10

46

https://www.openml.org/search?type=study&study_type=task&id=441
https://www.openml.org/search?type=study&study_type=task&id=441

Constructing CIs for “the” Generalization Error

where ϵi ∼ N (0, 1), Xi,j
i.i.d.∼ U(0, 1).

The third class of artificial data generating processes was taken from Degenhardt et al.
(2019), but originated in Chen and Zhang (2013), and is defined by the following random
variables:

Yi = 0.25 exp(4Xi,1) + 4
(
1 + exp(−20(Xi,2 − 0.5))

)−1
+ 3Xi,3 + ϵi, i = 1, . . . , n where

Xi,1, . . . , Xi,6
i.i.d.∼ U(0, 1), ϵi ∼ N (0, 0.04)

Note that the Yi depends only onXi,1, Xi,2 and Xi,3. Further, the features on the dataset
are not the Xi,j , but a transformation thereof:

Vi,l,j = Xi,l +

(
0.01 +

0.5(j − 1)

10

)
Zi,l,j , where

Zi,l,j
i.i.d.∼ N (0, 0.09) and l = 1, . . . , 6, j = 1, . . . , 10

The dataset that is simulated this way is referred to as the chen_10 dataset and has 60
features. The benchmarking suite also contains another version, the chen_10_null dataset,
where the features Vi,l,j are generated just like above, but the target variable is obtained
using X̃i,j ∼ N (0, 0.2) that are independent of the Xi,j - i.e. without any causal relationship
between the features and the target variable.

The high-dimensional datasets were simulated using the pensim R package (Waldron et al.,
2011). The predictors Xi,j ∼ N (0, 1) are generated for i = 1, . . . , n, j = 1, . . . , p. The
features are grouped into 25 blocks where there is a correlation ρ = 0.8 within a block, but
no correlation between blocks. The size of the blocks is set to p/25. Different values for p
are considered, namely p = 100× 2{0,1,...,6}.
With θj being defined as:

θj =

{
1, if j is the first variable in group k,
0, otherwise,

the probability of success is then defined as

P (Yi = 1|Xi,1, . . . , Xi,p) =
(
1 + exp(−(

p∑
j=1

θj ×Xi,j))
)−1

.

47

Schulz-Kümpel, Fischer, et al.

B.3 Category: cov-estimate

In the cov-estimate category, the colon, breast, and prostate datasets are simulated using a
logistic relationship, following Janitza and Hornung (2018):

P (Yi = 1|Xi,1, . . . , Xi,p) =
(
1 + exp

(
− (Xi,1, . . . , Xi,p)

⊤θ
))−1

, where

(Xi,1, . . . , Xi,p)
i.i.d∼ N (0, Σ̂), 0 ∈ Rp, Σ̂ ∈ Rp×p, θ ∈ Rp, and i = 1, . . . , n

The covariance matrix Σ̂ of the multivariate normal distribution is estimated from three
different medical real world datasets. The datasets were retrieved from Janitza and Hornung
(2018), but are also included in the data folder of the accompanying GitHub repository. For
all three, the parameter vector Θ(ω) = θ ∈ Rp for the features (Xi,1, . . . , Xi,p) is generated
as follows:

Θ =
(
Z1/

√
var(X1,1), . . . , Zp/

√
var(X1,p)

)
, Zj

i.i.d.∼ Udis, j = 1, . . . , p, with

Udis denoting a discrete uniform distribution over {-3, -2, -1, -0.5, 0, 0.5, 1, 2, 3}

.

B.4 Category: density-estimate

The datasets in the density-estimate category are sampled from distributions that were
estimated from real-world datasets. Table B.1 provides an overview of the seven datasets
used for density estimation, where Name is the dataset name on OpenML, n the number of
observations, Data ID its unique identifier on OpenML, and Reference the associated paper
if available.

Table B.1: Overview of datasets used for density estimation
Name n Data ID Reference

adult 48842 1590 Becker and Kohavi (1996)

covertype 566602 44121 Collobert et al. (2001)

electricity 45312 151

diamonds 53940 44979

physiochemical_protein 45730 44963 Rana (2013)

sgemm_gpu_kernel_performance 241600 44961 Nugteren and Codreanu
(2015)

video_transcoding 68784 44974 Deneke (2015)

To estimate the density of these datasets, we followed the methodology from Borisov et al.
(2023), which involves encoding the observations as strings, fine-tuning a large language
model (LLM) for which we used GPT-2 (Radford et al., 2019), and generating new observa-
tions. For the implementation, we also used their Python implementation. We used a batch

48

Constructing CIs for “the” Generalization Error

size of 32 for all datasets, 20 epochs for the covertype data, 40 for the sgemm_gpu_kernel_
performance and 200 otherwise. The code to reproduce these datasets can also be found in
the datamodels sub-directory of the accompanying GitHub repository.

To evaluate the quality of the density estimation, we used only 80 % of the datasets for
learning the density and reserved the remaining 20 % for evaluation. This was achieved by
cross-evaluating the models on both real and synthetic data and by comparing the empirical
distribution of the generalization error, which we now describe in more detail. The code for
the evaluation can be found in datamodels/density-estimate/evaluation.

B.4.1 Cross-Evaluation

Let data D(r) = D(r)
train

·
∪ D(r)

test be the disjoint subsets of the 80 / 20 split from one of the
seven real data sets from table B.1. Furthermore, denote with D(s) a dataset that was
simulated using the density that was estimated on D(r)

train and which has the same size as
D(r) and that is also partitioned via an 80-20 split. In order to evaluate the quality of
the estimated density, we train random forests models using the ranger implementation by
Wright and Ziegler (2017)) on disjoint subsets of size 3000 on both D(r)

train and D(s)
train. We

then estimate the generalization error of these models on both D(s)
test and D(r)

test. Table B.2
shows the results, aggregated over the 10 repetitions. Here, we use Rx(f̂y) as a short-form
for RD(x)

(
f̂D(y)

)
for x, y ∈ {s, r}. Further, µ̂ denotes the mean predictor for regression and

the majority predictor for classification problems. The results show that datasets trained
on the simulated data still perform well on the original data and vice-versa.

Table B.2: Cross-Evaluation of datasets from category density-estimate
Name Rr(f̂r) Rs(f̂r) Rr(µ̂r) Rs(f̂s) Rr(f̂s) Rs(µ̂s)

adult 0.14 0.13 0.24 0.13 0.16 0.24

covertype 0.22 0.20 0.50 0.19 0.24 0.50

diamonds 0.94 0.96 1.00 0.96 0.96 1.00

electricity 0.17 0.17 0.43 0.17 0.20 0.42

physiochemical_protein 4.41 4.39 6.13 4.26 4.86 6.08

sgemm_gpu 165.66 171.66 366.50 179.82 177.77 376.32

video_transcoding 6.01 7.57 16.00 8.06 7.32 16.38

B.4.2 Risk Distribution

As a second evaluation measure, we empirically compared the risk distribution of a random
forest on the real and simulated datasets. To do so, we created 100 disjoint training sets of
size 200 from D(s)

train and D(r)
train and evaluated the models on the respective test sets D(r)

test

and D(s)
test. The results from B.1 show that the general shape of the risk distribution is

relatively similar, although shifted. As we are concerned with confidence intervals for the
generalization error and not its absolute value, this shift is acceptable.

49

Schulz-Kümpel, Fischer, et al.

Figure B.1: Empirical risk distribution of the random forest algorithm on the real and sim-
ulated datasets.

50

Constructing CIs for “the” Generalization Error

Appendix C. Experiment Details

C.1 Choices of loss function

As previously mentioned, squared error and 0− 1 loss, for continuous outcomes and classifi-
cation, respectively, are the most commonly chosen loss functions in the context of inference
for the generalization error. In fact, said choice is so common that it is rarely ever discussed
or compared to other possible choices in the literature. Since the empirical study in this
work is exploratory in the sense that it is not meant to confirm any prior hypothesis but
observe the performance of methods and, possibly, generate new hypotheses; we decided to
apply several less common loss functions in addition to the squared error and 0 − 1 loss.
Still fairly common, and therefore obvious, choices were Log Loss and L1 Loss, the latter
being equal to the absolute distance for Ỹ = R. As a robust measure, we also used the
winsorized squared error, using the 90% quantile as the cutoff value. Additionally, in the in-
terest of interpretability and comparability for continuous outcomes, we consider percentual
and standardized loss, defined, for Ỹ = R2 and some function l : Y ×R −→ R, for which we
used the L1 loss, measuring the distance between model prediction and observed value, by

L : Y × Ỹ −→ R,
(
y∗, f̂D(x

∗)
)⊤ 7−→ l(y∗, f̂D(x

∗))

|y∗|
(7)

and

L : Y × Ỹ −→ R,
(
y∗, f̂D(x

∗), σ
(
{y}Dtrain

))⊤ 7−→ l(y∗, f̂D(x
∗))

σ
(
{y}Dtrain

) , (8)

respectively. Here, σ
(
{y}D

)
denotes the standard deviation of all observations of the out-

come in D. Considering standardized loss may be particularly useful when comparing the
generalization error estimates of inducers applied to different data with outcomes of varying
variance.

Lastly, where applicable, we also consider the Brier Score, first proposed by Brier (1950).
Designed for performance evaluation of models whose standard point predictions are given
in terms of probability, it specifically applies to all binary classification models considered
in this work.

C.2 Algorithm Failure

In a total of 14 resample experiments an inducer failed to produce a model for exactly one
of the data splits. Of these failures, 13 were observed for the Conservative-Z and one for
the Two-stage Bootstrap method. In all cases, this happened when resampling a logistic
regression model on a data set of size 100 sampled from the adult DGP. In these cases, a
simple majority-class predictor was used for the resampling split.

In another case, the 632+ Bootstrap method failed to produce a CI for the GE of a
logistic regression model trained on a data set of size 100 sampled from the colon DGP. In
this case, we imputed the mean lower and upper boundaries from the remaining 499 problem
instances.

As these instances occurred so rarely, the imputation has no relevant impact on the
results of the analysis.

51

Schulz-Kümpel, Fischer, et al.

Appendix D. Software and Computational Details

Most of the experiments were run in R (R Core Team, 2018) using the mlr3 ecosystem (Lang
et al., 2019; Binder et al., 2021). For the linear and logistic regression model, the standard
lm and glm functions from the stats package were used. For the lasso and ridge-penalized
linear and logistic regression we used the implementation from the R package glmnet (Hastie
et al., 2021). Further, we used the decision tree from the rpart package (Therneau et al.,
2015) and the random forest from the ranger package (Wright and Ziegler, 2017). For the
MLP, we used mlr3torch (Fischer and Binder, 2024) to interface the C++ base of PyTorch
(Ansel et al., 2024) and for gradient boosting the xgboost R package (Chen, 2015).

Hyperparameter tuning (Bischl et al., 2023) was conducted using the mlr3mbo R package
(Schneider et al., 2024) where we used 50 evaluations, a random forest as surrogate model and
expected improvement (EI) as acquisition function. We tuned log-loss for classification and
RMSE for regression. The hyperparameter tuning was conducted using nested resampling,
where the outer resampling corresponded to the respective resampling method from Table 1,
and for the inner resampling we used 3-fold cross-validation for datasets with n <= 1000
and otherwise a 2/3 holdout split.

Note that this nested resampling is not the same as the Nested CV method of Bates et al.
(2024). Instead, the inner resampling is applied to the training sets of the outer resampling
to find a good hyperparameter setting for a given train-test split. Doing this separately for
each train-test split ensures that there is no data leakage from the test observation to the
training data. This results in B different hyperparameter configurations, where B is the
number of resampling iterations. On each training set, the found hyperparameters are used
to train the model on the entire training set from the given (outer) resampling iteration,
which is then evaluated on the corresponding test data (Bischl et al., 2023).

The iterations/epochs were optimized using early stopping with a patience of 20 and an
upper limit of 500.

The search space for XGBoost is defined in Table D.1 and was taken from McElfresh
et al. (2024) 12.

Table D.1: Search space for XGBoost
Parameter Lower Upper Logscale

nrounds (early stopping) 0 500 No

max_depth 2 12 No

alpha 1× 10−8 1.0 Yes

lambda 1× 10−8 1.0 Yes

eta 0.01 0.3 Yes

For the MLP, we took the architecture and adapted the search space (variant A, defined
on p. 20) from Gorishniy et al. (2021) to reduce the runtime. One block in the architecture
consists of a linear transformation and ReLU activation, followed by a dropout layer. The
search space is described in Table D.2.

12. https://github.com/naszilla/tabzilla/blob/dd2f32cee8c404b30f61efa55577572c6680ab99/
TabZilla/models/tree_models.py#L75

52

https://github.com/naszilla/tabzilla/blob/dd2f32cee8c404b30f61efa55577572c6680ab99/TabZilla/models/tree_models.py#L75
https://github.com/naszilla/tabzilla/blob/dd2f32cee8c404b30f61efa55577572c6680ab99/TabZilla/models/tree_models.py#L75

Constructing CIs for “the” Generalization Error

Table D.2: Search pace for MLP
Parameter Lower Upper Logscale

epochs (early stopping) 0.0 500 No

p (dropout) 0.0 0.5 No

lr 1× 10−5 1× 10−2 Yes

weight_decay (disable
with P = 0.5)

1× 10−6 1× 10−3 Yes

n_layers 0 3 No

latent 1 256 No

To simplify the experiment execution on the high-performance computing cluster we
used the R package batchtools (Lang et al., 2017). For accessing and sharing datasets,
we used the OpenML platform (Vanschoren et al., 2013). All code is shared on GitHub13

and contains detailed instructions in the README files on how to run the experiments.
This includes an renv (Ushey and Wickham, 2024) file to reproduce the computational
environment.
For the density estimation of the real-world datasets we used the be_great14 python li-
brary (Borisov et al., 2023) and also included a yaml file describing the conda environment.

Finally, all well-performing methods were integrated into the mlr3 machine learning
framework via the R package mlr3inferr.15.

Table D.3: Total runtime and hardware for the experiments.
Task Runtime Hardware

Main
Experiments

135.7
years

Single CPUs with 4 - 16 GB of RAM on the Teton
partition of the Beartooth Compute Environment from
Wyoming’s Advanced Research Computing Center
(https://doi.org/10.15786/M2FY47), 64-core AMD
EPYC 7763 Milan processors with 128 cores and 256 GB
DDR4 memory per node
(https://doi.org/10.5065/qx9a-pg09)

Density
Estimation

117.7
hours

NVIDIA GeForce RTX 2080 Ti and 64 CPU cores.

13. https://github.com/slds-lmu/paper_2023_ci_for_ge
14. https://github.com/kathrinse/be_great
15. https://github.com/mlr-org/mlr3inferr

53

https://doi.org/10.15786/M2FY47
https://doi.org/10.5065/qx9a-pg09
https://github.com/slds-lmu/paper_2023_ci_for_ge
https://github.com/kathrinse/be_great
https://github.com/mlr-org/mlr3inferr

Schulz-Kümpel, Fischer, et al.

Appendix E. DGPs with Poor Coverage

In the main analysis, we excluded three DGPs, where all methods showed poor cover-
age. Those are chen_10_null, physiochemical_protein, and video_transcoding, all of which
are regression problems. Figure E.1 shows the coverage of the 90% Holdout method on
these DGPs. For chen_10_null, no good coverage is reached for any of the inducers. For
video_transcoding, the coverage is poor for small dataset sizes but improves with increasing
n. For physiochemical_protein the coverage is only poor for the (ridge-penalized) linear
regression. In the penalized case, coverage even gets worse with increasing n.

The video_transcoding and chen_10_null data have heavy tails in their target distri-
bution. Further, the video_transcoding and physiochemical_protein DGPs show strong
multicollinearity between their features, which poses problems for the stability of the linear
model.

Figure E.1: Relative coverage frequency of the 90% Holdout method for the three DGPs
that were omitted in the main analysis. The loss function is again squared
error.

Figure E.2 shows the standard deviation of the Risk for the three problematic DGPs
on the log scale. For physiochemical_protein, the linear regression and ridge regression are
considerably less stable than the two tree-based methods, whereas, for video_trancoding,
only the linear model stands out. In appendix Appendix G, we show that the coverage of
the inference methods for these three DGPs can improve significantly when selecting a more
robust loss function.

54

Constructing CIs for “the” Generalization Error

Figure E.2: Standard deviation (logscale) of the risk for the three problematic DGPs. Loss
is squared error.

55

Schulz-Kümpel, Fischer, et al.

Appendix F. Coverage vs. CI width

A well-performing CI method should result in reliable coverage in addition to small interval
width, indicating precision. Figure F.1 visualizes the relationship between coverage and
width (relative to the Corrected Resampled-T method) for those methods that were not
immediately filtered out by the analysis of Figure 2.

Figure F.1: A Comparison of average CI coverage of the expected risk vs. the median CI
width relative to the Corrected Resampled-T method with ratio 0.9 and 10
repetitions. The recommended methods can be seen in blue, all others (that
were still considered for further analysis after Figure 2) in gray.

56

Constructing CIs for “the” Generalization Error

Appendix G. Influence of Loss Function

Figure G.1 shows the risk coverage for the Conservative-Z, Corrected Resampled-T, Nested
CV, Holdout, and CV Wald method for different loss functions for datasets of size 500.
Here, the points in each boxplot are the five different inference methods. The percentual
absolute error shows poor performance for bates_regr_20 and bates_regr_100, which is
likely because of instabilities of the loss around y values of 0. For chen_10_null, we see
that the winsorized loss considerably improves the Risk Coverage. For the problematic
DGP physiochemical_protein and video_transcoding, only the combination of the (ridge-
penalized) linear model and square error leads to poor coverage.

Figure G.1: Influence of the loss function on the risk coverage of well-performing methods:
Conservative-Z (R = 10, K = 15), Corrected Resampled-T (K = 10), Nested
CV (R = 200, K = 5), Holdout (ptest = 0.33), CV Wald (K = 10) for regression
problems of size 500.

Figure G.2 shows the same metrics for the classification problems. Here, it is the log loss
– the only unbounded one out of the three – that has the worst coverage of the GE.

57

Schulz-Kümpel, Fischer, et al.

Figure G.2: Influence of the loss function on the risk coverage of well-performing methods:
Conservative-Z (R = 10, K = 15), Corrected Resampled-T (K = 10), Nested CV
(R = 200, K = 5), Holdout (ptest = 0.33), CV Wald (K = 10) for classification
problems of size 500.

58

Constructing CIs for “the” Generalization Error

Appendix H. Extreme CI Widths

Besides some data generating processes that showed low coverage frequencies across infer-
ence methods, for some DGPs, the widths of individual CIs sometimes became very large.
Figure H.1 shows the distribution of the (0-1 scaled) widths of the 90% Holdout method
on regression problems of size 10000. For well-behaving combinations of DGP and loss, we
expect the median of the widths to be at around 0.5 and outliers to be similarly distributed
on both tails of the distribution. For chen_10_null, diamonds, physiochemical_protein,
and video_transcoding, the medians of the width are (for some inducers) close to 0 which
means their width distribution has heavy tails. All of these DGPs have strong outliers in
the target distribution. In all three cases, the problem can be mitigated to some extent by
using the more robust winsorized squared error. It is possible that further improvements
could be achieved by also using a more robust loss function for training.

Figure H.1: Boxplots of scaled widths for the 90% Holdout method on regression problems
of size 10000.

59

Schulz-Kümpel, Fischer, et al.

Appendix I. Parameter Influence on Coverage and Width (Stability)

In this section, we further analyze the influence of the resampling parameters on the coverage
and width of the Corrected Resampled-T, Conservative-Z, and Nested CV methods. We
restrict the analysis to classification problems for which it is easier to visualize the width,
but similar observations also hold in the regression case.

I.1 Corrected Resampled-T

Figure I.1 shows the results for the Corrected-T method with a ratio of 0.9 on datasets of
size 500 and 10000. For size 500, the coverage stays relatively constant across repetitions
for all inducers, whereas for size 10000, the coverage of the decision tree deteriorates with
an increased number of repetitions. Furthermore, the average median width of the CIs as
well as its standard deviation decreases up to around 50 repetitions, after which the curves
become relatively flat. In general, 25 seems like a good choice for the number of iterations.

Figure I.1: Influence of the number of repetitions for Corrected Resampled-T on coverage
and width for classification problems with 0-1 loss.

I.2 Conservative-Z

Graphic I.2 presents the influence of the repetitions for the Conservative-Z method. When
increasing the inner repetitions, the width decreases considerably, whereas the effect on the
coverage and stability is limited. As expected, the outer iterations have no effect on the
average width. However, the coverage as well as the standard deviation of the width improves
with the outer repetitions. Interestingly, the coverage for few outer or inner iterations is

60

Constructing CIs for “the” Generalization Error

less conservative than when increasing either. An explanation for this is the high estimation
variance in those cases, which can also cause the standard error to be underestimated.

Figure I.2: Influence of the number repetitions for Conservative-Z on coverage and width
for classification problems of size 500 with 0-1 loss. Inner and outer repetitions
are fixed to 15 if not varied.

61

Schulz-Kümpel, Fischer, et al.

Figure I.3 shows similar results for the cheaper variant of the Conservative-Z method
applied to datasets of size 10000. It is important to not set the number of repetitions too low,
as this hurts coverage. The coverage is still good for a small number of inner repetitions and
the primary benefit of increasing them is in the reduced width (variability) of the intervals.

Figure I.3: Influence of the number of outer repetitions for Conservative-Z on coverage and
width for classification problems of size 10000 with 0-1 loss.

62

Constructing CIs for “the” Generalization Error

Figure I.4 shows the influence of both the inner and outer repetitions of the Conservative
z method for datasets of size 500. It confirms that the conclusions that were drawn in the
previous figures did not depend on the specific choice of the inner parameter when varying
the outer repetitions and vice versa.

Figure I.4: Influence of the number of repetitions for Conservative-Z on coverage and width
for classification problems of size 500 with 0-1 loss.

63

Schulz-Kümpel, Fischer, et al.

I.3 Nested CV

Figure I.5 depicts the influence of the repetitions on the Nested CV method for datasets
of size 500 and 10000. The average coverage slightly increases with the number of outer
repetitions but is already high for only 10 repetitions. Further, the intervals become more
stable with an increase in the number of repetitions, showing that high numbers of repetitions
are beneficial.

Figure I.5: Influence of the number of repetitions of Nested CV on coverage and width for
classification problems with 0-1 loss. The folds are set to 5.

64

Constructing CIs for “the” Generalization Error

Appendix J. Estimation Error of CV for Risk and Test Error

The CV Wald method showed relatively poor coverage for the decision tree inducer when
evaluated using the relative coverage of the risk, whereas the coverage of the Test Error, for
which the method is shown to be asymptotically valid, is considerably better. In Figure J.1
we display the estimation error of the decision tree with respect to the risk (y-axis) and the
Test Error (x-axis). Out of the three inducers (ridge-regression is omitted for readability and
is similar to linear regression), the decision tree has in most cases the highest variability on
the y-axis, which explains why the difference in coverage for the risk and Test Error differs
the most for the decision tree.

65

Schulz-Kümpel, Fischer, et al.

Figure J.1: Comparison of the estimation error with respect to the proxy quantity and risk
for datasets of size 10000 and the CV Wald method with 10 folds. Outliers are
removed for readability. The results for the penalized approaches are omitted
as they are very similar to the linear/logistic regression.

66

Constructing CIs for “the” Generalization Error

Appendix K. Qualities of Point Estimates

Here, we provide an exemplary comparison of (expected) risk values with point estimates for
the three CI for GE methods recommended in this work, plus CV Wald with 5 folds (cv_5)
and Holdout with a 90 − 10 split (ho_90) for the datasets breast & higgs (classification,
Figure K.1) and diamonds & friedman1 (regression, Figure K.2), each with data size of 1000.

In both Figures K.1 and K.2, each column of facets represents one of the 5 CI for GE
methods, and each row a different learner. Within each facet, the x-axis represents the risk
values with a dark blue vertical line giving the expected risk, while the y-axis represents the
point estimates. Additionally, the MSE values for both risk (R) and expected risk (eR) are
provided in every facet’s top right corner.

Through these visualizations, two things immediately become apparent:

1. Although the (rather wide) Holdout CIs provided solid coverage for GE, the Holdout
based point estimate for the GE is inferior to other resampling-based point estimates,
as discussed in Remark 6.

2. While mostly very similar, some facets display point estimates that lie closer to the
E
[
RP (f̂D)

]
value and some that lie closer to the RP (f̂D) values. (Apart from the

MSEs, point estimates close to the risk may be detected be a point cloud that is
shaped slightly diagonally to the right.) However, which of the two is the case cannot
be traced back to the CI for the GE method. Rather, whether point estimates more
closely estimate risk or expected risk seems to depend on the learner and, potentially,
the DGP.

67

Schulz-Kümpel, Fischer, et al.

Figure K.1: (Expected) risk vs. point estimates for various CI methods on breast & higgs
datasets (classification). The vertical line represents E

[
RP (f̂D)

]
.

68

Constructing CIs for “the” Generalization Error

Figure K.2: (Expected) risk vs. point estimates for various CI methods on diamonds &
friedman1 datasets (regression). The vertical line represents E

[
RP (f̂D)

]
.

69

Schulz-Kümpel, Fischer, et al.

Appendix L. Results for BCCV Percentile

Figure L.1 shows the coverage of RP (f̂D) by the BCCV Percentile method, whose costs
scale with the number of observations. When applied to datasets of size 500 the expected
resampling iterations would already exceed 30000. While its performance is generally okay,
other methods showed similar coverage in our experiments, while being less expensive.

Figure L.1: Risk coverage of BCCV Percentile method for all datasets of size 100. Squared
error is chosen as the loss for regression and 0-1 for classification.

70

Constructing CIs for “the” Generalization Error

Appendix M. Runtime Estimation of Inference Methods

In Table M.1 we report the runtimes of the inference methods aggregated over all DGPs
measured in seconds. We only show the results for the random forest, which is the most
expensive inducer out of the four. Showing the most expensive inducer means that the
measurements are dominated by the time needed to train the models and make predictions
and not the implementation-specific overhead of running the resampling. For the same
reason, the rightmost columns are most informative in order to compare the relative cost
of the methods. When comparing conz_10_5 with ncv_3_5 both are relatively similar to
one another. For small values of nD, Nested CV is slightly cheaper, while for larger values
the opposite is true.

71

Schulz-Kümpel, Fischer, et al.

Table M.1: Runtime for inference methods (in seconds) for the random forest aggregated
over all DGPs. The runtimes only include the time for the resampling and not
the computation of the confidence intervals, which is negligible.

Method / Size 100 500 1000 5000 10000

holdout_66 0.17 0.19 0.23 0.79 1.72

holdout_90 0.17 0.21 0.25 1.05 2.45

cv_10_allpairs 1.66 2.03 2.53 10.28 24.56

cv_5_allpairs 0.86 0.99 1.20 4.58 10.51

cv_n_allpairs 16.58 103.43

conz_10_5 16.91 17.97 20.73 49.70 104.62

conz_12_10 40.16 43.43 50.12 121.87 244.94

conz_10_15 49.81 54.05

ncv_10_5 40.55 46.34 54.66 181.65 393.33

ncv_200_5 809.75 916.65

ncv_3_5 12.31 13.64 17.22 54.19 119.80

cort_10 1.64 1.99 2.55 10.26 24.34

cort_25 4.06 4.87 6.35 25.67 59.97

cort_50 8.54 9.68 12.97 51.83 122.35

cort_100 16.26 19.45 25.70 101.74 243.59

52cv 1.54 1.74 2.07 6.13 12.93

lsb_50 9.42 11.37 14.69 57.17 130.72

lsb_100 19.20 22.74 29.56 113.41 252.16

oob_10 1.83 2.29 2.94 10.95 25.35

oob_50 9.25 11.15 14.37 55.86 127.63

oob_100 19.04 22.52 29.24 112.11 249.07

oob_500 93.00 111.05

oob_1000 185.84 223.71

632plus_10 2.00 2.51 3.26 12.26 28.44

632plus_50 9.42 11.37 14.69 57.17 130.72

632plus_100 19.20 22.74 29.56 113.41 252.16

632plus_500 93.17 111.27

632plus_1000 186.01 223.93

tsb_200_10 406.10 472.58

rocv_5 40.74 218.71

rep_rocv_5_5 208.94 1064.31

bccv 1140.69

bccv_bias 1157.28

72

Constructing CIs for “the” Generalization Error

Appendix N. Highdimensional DGPs

In order to investigate whether the performance of the best-performing inference methods
deteriorates for high-dimensional problems, we evaluated a lasso-penalized logistic regres-
sion, where the λ was tuned using 10-fold cross-validation, and a random forest on datasets
with size n = 500 and an increasing number of features. The results are shown in Figure N.1.
For both inducers, the coverage of both the risk and expected risk is relatively stable when
increasing the number of features.

Figure N.1: Coverage of (Expected) Risk for Conservative-Z, Corrected-T, and Nested CV
on DGPs with an increasing number of features.

73

	Introduction
	Setting and notation
	Essential conceptual considerations
	The two targets of inference
	The role of resampling in estimating the generalization error
	Sources of uncertainty
	Theoretical validity

	Summary of existing methods
	Holdout
	Replace-One CV
	Repeated Replace-One CV
	CV Wald
	Corrected Resampled-T
	Conservative-Z
	52 CV
	Nested CV
	Out-of-Bag
	632+ Bootstrap
	Bootstrap Case CV Percentile
	Two-stage Bootstrap
	Location-shifted Bootstrap

	Empirical examination
	Choices of inducers, losses, and data sets
	Inducers
	Losses
	Data Sets

	Parameter settings for inference methods
	Evaluation measures for CI estimation
	Empirical results
	Calibration of different CI methods
	Best performing CI methods: Corrected Resampled-T, Conservative-Z, and Nested CV
	Additional analyses

	Conclusion
	Missing constant in the Austern and Zhou Variance Estimator
	Empirical Evaluation of Austern and Zhou Variance Estimator

	Benchmark Datasets
	Category: physics-simulation
	Category: artificial
	Category: cov-estimate
	Category: density-estimate
	Cross-Evaluation
	Risk Distribution

	Experiment Details
	Choices of loss function
	Algorithm Failure

	Software and Computational Details
	DGPs with Poor Coverage
	Coverage vs. CI width
	Influence of Loss Function
	Extreme CI Widths
	Parameter Influence on Coverage and Width (Stability)
	Corrected Resampled-T
	Conservative-Z
	Nested CV

	Estimation Error of CV for Risk and Test Error
	Qualities of Point Estimates
	Results for BCCV Percentile
	Runtime Estimation of Inference Methods
	Highdimensional DGPs

