
MeshFormer: High-Quality Mesh Generation with
3D-Guided Reconstruction Model

Minghua Liu∗1,2† Chong Zeng∗3‡ Xinyue Wei1,2† Ruoxi Shi1,2†
Linghao Chen2,3† Chao Xu2,4† Mengqi Zhang2 Zhaoning Wang5

Xiaoshuai Zhang1,2† Isabella Liu1 Hongzhi Wu3 Hao Su1,2

1 UC San Diego 2 Hillbot Inc. 3 Zhejiang University 4 UCLA 5 University of Central Florida

Project Website: https://meshformer3d.github.io/

Figure 1: Given a sparse set (e.g., 6) of multi-view RGB images and their normal maps as input,
MeshFormer reconstructs high-quality 3D textured meshes with fine-grained, sharp geometric details
in a feed-forward pass of just a few seconds. Here, ground truth multi-view RGB and normal images
are used as input.

Abstract
Open-world 3D reconstruction models have recently garnered significant attention.
However, without sufficient 3D inductive bias, existing methods typically entail
expensive training costs and struggle to extract high-quality 3D meshes. In this
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work, we introduce MeshFormer, a sparse-view reconstruction model that explicitly
leverages 3D native structure, input guidance, and training supervision. Specifically,
instead of using a triplane representation, we store features in 3D sparse voxels and
combine transformers with 3D convolutions to leverage an explicit 3D structure
and projective bias. In addition to sparse-view RGB input, we require the network
to take input and generate corresponding normal maps. The input normal maps
can be predicted by 2D diffusion models, significantly aiding in the guidance and
refinement of the geometry’s learning. Moreover, by combining Signed Distance
Function (SDF) supervision with surface rendering, we directly learn to generate
high-quality meshes without the need for complex multi-stage training processes.
By incorporating these explicit 3D biases, MeshFormer can be trained efficiently
and deliver high-quality textured meshes with fine-grained geometric details. It
can also be integrated with 2D diffusion models to enable fast single-image-to-3D
and text-to-3D tasks.

1 Introduction

High-quality 3D meshes are essential for numerous applications, including rendering, simulation,
and 3D printing. Traditional photogrammetry systems [57, 61] and recent neural approaches, such
as NeRF [43], typically require a dense set of input views of the object and long processing times.
Recently, open-world 3D object generation has made significant advancements, aiming to democratize
3D asset creation by reducing input requirements. There are several prevailing paradigms: training a
native 3D generative model using only 3D data [13, 95] or performing per-shape optimization with
Score Distillation Sampling (SDS) losses [30, 47]. Another promising direction is to first predict
a sparse set of multi-view images using 2D diffusion models [33, 59] and then lift these predicted
images into a 3D model by training a feed-forward network [31, 32]. This strategy addresses the
limited generalizability of models trained solely on 3D data and overcomes the long runtime and 3D
inconsistency of per-shape-optimization-based methods.

While many recent works explore utilizing priors from 2D diffusion models, such as generating
consistent multi-view images [59, 60] and predicting normal maps from RGB [12, 37, 59], the feed-
forward model that converts multi-view images into 3D remains underexplored. One-2-3-45 [32]
leverages a generalizable NeRF method for 3D reconstruction but suffers from limited quality and
success rates. One-2-3-45++ [31] improves on this by using a two-stage 3D diffusion model, yet
it still struggles to generate high-quality textures or fine-grained geometry. Given that sparse-view
reconstruction of open-world objects requires extensive priors, another family of works pioneered
by the large reconstruction model (LRM) [16] combines large-scale transformer models with the
triplane representation and trains the model primarily using rendering loss. Although straightforward,
these methods typically require over a hundred GPUs to train. Moreover, due to their reliance on
volume rendering, these methods have difficulty extracting high-quality meshes. For instance, some
recent follow-up works [79, 85] implement complex multi-stage “NeRF-to-mesh” training strategies,
but the results still leave room for improvement.

In this work, we present MeshFormer, an open-world sparse-view reconstruction model that takes a
sparse set of posed images of an arbitrary object as input and delivers high-quality 3D textured meshes
with a single forward pass in a few seconds. Instead of representing 3D data as “2D planes” and
training a “black box” transformer model optimizing only rendering loss, we find that by incorporating
various types of 3D-native priors into the model design, including network architecture, supervision
signals, and input guidance, our model can significantly improve both mesh quality and training
efficiency. Specifically, we propose representing features in explicit 3D voxels and introduce a
novel architecture that combines large-scale transformers with 3D (sparse) convolutions. Compared
to triplanes and pure transformers models with little 3D-native design, MeshFormer leverages the
explicit 3D structure of voxel features and the precise projective correspondence between 3D voxels
and 2D multi-view features, enabling faster and more effective learning.

Unlike previous works that rely on NeRF-based representation in their pipeline, we utilize mesh
representation throughout the process and train MeshFormer in a unified, single-stage manner. Specif-
ically, we propose combining surface rendering with additional explicit 3D supervision, requiring the
model to learn a signed distance function (SDF) field. The network is trained with high-resolution
SDF supervision, and efficient differentiable surface rendering is applied to the extracted meshes
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for rendering losses. Due to the explicit 3D geometry supervision, MeshFormer enables faster
training while eliminating the need for expensive volume rendering and learning an initial coarse
NeRF. Furthermore, in addition to multi-view posed RGB images, we propose using corresponding
normal maps as input, which can be captured through sensors and photometric techniques [4, 82] or
directly estimated by recent 2D vision models [12, 37, 59]. These multi-view normal images provide
important clues for 3D reconstruction and fine-grained geometric details. We also task the model
with learning a normal texture in addition to the RGB texture, which can then be used to enhance the
generated geometry through a traditional post-processing algorithm [44].

Thanks to the explicit 3D-native structure, supervision signal, and normal guidance that we have
incorporated, MeshFormer can generate high-quality textured meshes with fine-grained geometric
details, as shown in Figure 1. Compared to concurrent methods that require over one hundred GPUs
or complex multi-stage training, MeshFormer can be trained more efficiently and conveniently with
just eight GPUs over two days, achieving on-par or even better performance. It can also seamlessly
integrate with various 2D diffusion models to enable numerous tasks, such as single-image-to-3D
and text-to-3D. In summary, our key contributions include:

• We introduce MeshFormer, an open-world sparse-view reconstruction model capable of generating
high-quality 3D textured meshes with fine-grained geometric details in a few seconds. It can be
trained with only 8 GPUs, outperforming baselines that require over one hundred GPUs.

• We propose a novel architecture that combines 3D (sparse) convolution and transformers. By
explicitly leveraging 3D structure and projective bias, it facilitates better and faster learning.

• We propose a unified single-stage training strategy for generating high-quality meshes by combin-
ing surface rendering and explicit 3D geometric supervision.

• We are the first to introduce multi-view normal images as input to the feed-forward reconstruction
network, providing crucial geometric guidance. Additionally, we propose to predict extra 3D
normal texture for geometric enhancement.

2 Related Work

Open-world 3D Object Generation Thanks to the emergence of large-scale 3D datasets [8, 9]
and the extensive priors learned by 2D models [50, 51, 55, 56], open-world 3D object generation
have recently made significant advancements. Exemplified by DreamFusion [47], a line of work [5,
6, 10, 26, 30, 48, 58, 60, 62, 65, 70, 76] uses 2D models as guidance to generate 3D objects
through per-shape optimization with SDS-like losses. Although these methods produce increasingly
better results, they are still limited by lengthy runtimes and many other issues. Another line of
work [16, 20, 40, 45, 84, 96] trains a feed-forward generative model solely on 3D data that consumes
text prompts or single-image inputs. While fast during inference, these methods struggle to generalize
to unseen object categories due to the scarcity of 3D data. More recently, works such as Zero123 [33]
have shown that 2D diffusion models can be fine-tuned with 3D data for novel view synthesis. A
line of work [27, 27, 31, 64, 77, 79, 85], pioneered by One-2-3-45 [32], proposes first predicting
multi-view images through 2D diffusion models and then lifting them to 3D through a feed-forward
network, effectively addressing the speed and generalizability issues. Many recent works have also
explored better strategies to fine-tune 2D diffusion models for enhancing the 3D consistency of multi-
view images [14, 17, 23, 34, 36, 49, 59, 60, 69, 72, 80, 81, 89, 91]. In addition to the feed-forward
models, the generated multi-view images can also be lifted to 3D through optimizations [14, 34, 37].
Sparse-View Feed-Forward Reconstruction Models When a small baseline between input images
is assumed, existing generalizable NeRF methods [35, 52, 68, 88] aim to find pixel correspondences
and learn generalizable priors across scenes by leveraging cost-volume-based techniques [3, 38, 90]
or transformer-based structures [19, 24, 54, 71, 74]. Some of methods have also incorporated a 2D
diffusion process into the pipeline [1, 21, 66]. However, these methods often struggle to handle large
baseline settings (e.g., only frontal-view reconstruction) or are limited by a small training set and
fail to generalize to open-world objects. Recently, many models [27, 64, 73, 77, 79, 85–87, 92, 94]
specifically aimed at open-world 3D object generation have been proposed. They typically build large
networks and aim to learn extensive reconstruction priors by training on large-scale 3D datasets [9].
For example, the triplane representation and transformer models are often used. By applying volume
rendering or Gaussian splatting [64, 86, 92], they train the model with rendering losses. However,
these methods typically require extensive GPUs to train and have difficulty extracting high-quality
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Figure 2: Pipeline Overview. MeshFormer takes a sparse set of multi-view RGB and normal
images as input, which can be estimated using existing 2D diffusion models. We utilize a 3D feature
volume representation, and submodules Voxel Former and Sparse Voxel Former share a similar novel
architecture, detailed in the gray region. We train MeshFormer in a unified single stage by combining
mesh surface rendering and 5123 SDF supervision. MeshFormer learns an additional normal texture,
which can be used to further enhance the geometry and generate fine-grained sharp geometric details.

meshes. While some recent (concurrent) works [79, 85] utilize multi-stage “NeRF-to-mesh” training
strategies to improve the quality, the results still leave room for improvement.
Geometry Guidance for 3D Reconstruction Many recent works have shown that in addition to multi-
view RGB images, 2D diffusion models can be fine-tuned to generate other geometric modalities,
such as depth maps [75], normal maps [12, 37, 41], or coordinate maps [28, 77]. These additional
modalities can provide crucial guidance for 3D generation and reconstruction. While many recent
methods utilize these geometric cues as inverse optimization guidance [5, 12, 28, 37, 49, 77], we
propose to take normal maps as input in a feed-forward reconstruction model and task the model with
generating 3D-consistent normal texture for geometry enhancement of sharp details.
3D Native Representations and Network Architectures in 3D Generation The use of 3D voxel
representations and 3D convolutions is common in general 3D generation. However, most recent
works focus on 3D-native diffusion [7, 18, 29, 31, 53, 95], one of the key paradigms in 3D generation,
which differs from the route taken by MeshFormer. These 3D-diffusion-based methods have some
common limitations. For instance, they focus solely on geometry generation and cannot directly
predict high-quality textures from the network [7, 18, 29, 31, 53, 95]. Due to the limited availability
of 3D data, 3D-native diffusion methods also typically struggle with open-world capabilities and are
often constrained to closed-domain datasets (e.g., ShapeNet [2]) in their experiments [7, 29, 95].

In MeshFormer, our goal is to achieve direct high-quality texture generation while handling arbitrary
object categories. Therefore, we adopt a different approach: sparse-view feed-forward reconstruction,
as opposed to 3D-native diffusion. In this specific task setting, more comparable works are recent
LRM-style methods [64, 67, 79, 85]. However, most of these methods rely on a combination of
triplane representation and large-scale transformers. In this paper, we demonstrate that 3D-native
representations and networks can not only be used in 3D-native diffusion but can also be combined
with differentiable rendering to train a feed-forward sparse-view reconstruction model using rendering
losses. In open-world sparse-view reconstruction, we are not limited to the triplane representation.
Instead, 3D-native structures (e.g., voxels), network architectures, and projective priors can facilitate
more efficient training, significantly reducing the required training resources. While scalable networks
are necessary to learn extensive priors, scalability is not exclusive to triplane-based transformers. By
integrating 3D convolutions with transformer layers, scalability can also be achieved.

3 Method

As shown in Figure 2, MeshFormer takes a sparse set of posed multi-view RGB and normal images
as input and generates a high-quality textured mesh in a single feed-forward pass. In the following
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sections, we will first introduce our choice of 3D representation and a novel model architecture
that combines large-scale transformers with 3D convolutions (Sec. 3.1). Then, we will describe our
training objectives, which integrate surface rendering and explicit 3D SDF supervision (Sec. 3.2).
Last but not least, we will present our normal guidance and geometry enhancement module, which
plays a crucial role in generating high-quality meshes with fine-grained geometric details (Sec. 3.3).

3.1 3D Representation and Model Architecture

Triplane vs. 3D Voxels Open-world sparse-view reconstruction requires extensive priors, which can
be learned through a large-scale transformer. Prior arts [27, 67, 77, 79, 85] typically utilize the triplane
representation, which decomposes a 3D neural field into a set of 2D planes. While straightforward for
processing by transformers, the triplane representation lacks explicit 3D spatial structures and makes
it hard to enable precise interaction between each 3D location and its corresponding 2D projected
pixels from multi-view images. For instance, these methods often simply apply self-attention across
all triplane patch tokens and cross-attention between triplane tokens and all multi-view image tokens.
This all-to-all attention is not only costly but also makes the methods cumbersome to train. Moreover,
the triplane representation often shows results with notable artifacts at the boundaries of patches and
may suffer from limited expressiveness for complex structures. Consequently, we choose the 3D
voxel representation instead, which explicitly preserves the 3D spatial structures.
Combining Transformer with 3D Convolution To leverage the explicit 3D structure and the power-
ful expressiveness of a large-scale transformer model while avoiding an explosion of computational
costs, we propose VoxelFormer and SparseVoxelFormer, which follow a 3D UNet architecture while
integrating a transformer at the bottleneck. The overall idea is that we use local 3D convolution to
encode and decode a high-resolution 3D feature volume, while the global transformer layer handles
reasoning and memorizing priors for the compressed low-resolution feature volume. Specifically,
as shown in Figure 2, a 3D feature volume begins with a learnable token shared by all 3D voxels.
With the 3D voxel coordinates, we can leverage the projection matrix to enable each 3D voxel to
aggregate 2D local features from multi-view images via a projection-aware cross-attention layer. By
iteratively performing projection-aware cross-attention and 3D (sparse) convolution, we can compress
the 3D volume to a lower-resolution one. After compression, each 3D voxel feature then serves as a
latent token, and a deep transformer model is applied to a sequence of all 3D voxel features (position
encoded) to enhance the model’s expressiveness. Finally, we use the convolution-based inverse upper
branch with skip connection to decode a 3D feature volume with the initial high resolution.
Projection-Aware Cross Attention Regarding 3D-2D interaction, the input multi-view RGB and
normal images are initially processed by a 2D feature extractor, such as a trainable DINOv2 [46],
to generate multi-view patch features. While previous cost-volume-based methods [3, 38] typically
use mean or max pooling to aggregate multi-view 2D features, these simple pooling operations
might be suboptimal for addressing occlusion and visibility issues. Instead, we propose a projection-
aware cross-attention mechanism to adaptively aggregate the multi-view features for each 3D voxel.
Specifically, we project each 3D voxel onto the m views to interpolate m RGB and normal features.
We then concatenate these local patch features with the projected RGB and normal values to form m
2D features. In the projection-aware cross-attention module, we use the 3D voxel feature to calculate
a query and use both the 3D voxel feature and the m 2D features to calculate m+ 1 keys and values.
A cross-attention is then performed for each 3D voxel, enabling precise interaction between each 3D
location and its corresponding 2D projected pixels, and allowing adaptive aggregation of 2D features,
which can be formulated as:

v ← CrossAttention(Q = {v},K = {pvi }mi=1 + {v}, V = {pvi }mi=1 + {v}) (1)

Where v denotes a 3D voxel feature, and pvi denotes its projected 2D pixel feature from view i,
which is a concatenation of the RGB feature fv

i , the normal feature gvi , and the RGB and normal
values cvi and nv

i , respectively.
Coarse-to-Fine Feature Generation As shown in Fig. 2, to generate a high-resolution 3D feature
volume that captures the fine-grained details of 3D shapes, we follow previous work [31, 95] by
employing a coarse-to-fine strategy. Specifically, we first use VoxelFormer, which is equipped with
full 3D convolution, to predict a low-resolution (e.g., 643), coarse 3D occupancy volume. Each
voxel in this volume stores a binary value indicating whether it is close to the surface. The predicted
occupied voxels are then subdivided to create higher-resolution sparse voxels (e.g., 2563). Next,
we utilize a second module, SparseVoxelFormer, which features 3D sparse convolution [63], to
predict features for these sparse voxels. After this, we trilinearly interpolate the 3D feature of any
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near-surface 3D point, which encodes both geometric and color information, from the high-resolution
sparse feature volume. The features are then fed into various MLPs to learn the corresponding fields.

3.2 Unified Single-Stage Training: Surface Rendering with SDF Supervision

Existing works typically use NeRF [42] and volume rendering or 3D Gaussian splatting [22] since
they come with a relatively easy and stable learning process. However, extracting high-quality meshes
from their results is often non-trivial. For example, directly applying Marching Cubes [39] to density
fields of learned NeRFs typically generates meshes with many artifacts. Recent methods [78, 79, 85]
have designed complex, multi-stage “NeRF-to-mesh” training with differentiable surface rendering,
but the generated meshes still leave room for improvement. On the other hand, skipping a good
initialization and directly learning meshes from scratch using purely differentiable surface rendering
losses is also infeasible, as it is highly unstable to train and typically results in distorted geometry.
In this work, we propose leveraging explicit 3D supervision in addition to 2D rendering losses.
As shown in Figure 2, we task MeshFormer with learning a signed distance function (SDF) field
supervised by a high-resolution (e.g., 5123) ground truth SDF volume. The SDF loss provides explicit
guidance for the underlying 3D geometry and facilitates faster learning. It also allows us to use mesh
representation and differentiable surface rendering from the beginning without worrying about good
geometry initialization or unstable training, as the SDF loss serves as a strong regularization for the
underlying geometry. By combining surface rendering with explicit 3D SDF supervision, we train
MeshFormer in a unified, single-stage training process. As shown in Figure 2, we employ three tiny
MLPs that take as input the 3D feature interpolated from the 3D sparse feature volume to learn an
SDF field, a 3D color texture, and a 3D normal texture. We extract meshes from the SDF volume
using dual Marching Cubes [39] and employ NVDiffRast [25] for differentiable surface rendering.
We render both the multi-view RGB and normal images and compute the rendering losses, which
consist of both the MSE and perceptual loss terms. As a result, our training loss can be expressed as:

L = λ1Lcolor
MSE + λ2Lcolor

LPIPS + λ3Lnormal
MSE + λ4Lnormal

LPIPS + λ5Locc + λ6LSDF (2)

where Locc and LSDF are MSE losses for occupancy and SDF volumes, and λi denotes the weight of
each loss term. Note that we do not use mesh geometry to derive normal maps; instead, we utilize the
learned normal texture from the MLP, which will be detailed later.

3.3 Fine-Grained Geometric Details: Normal Guidance and Geometry Enhancement

Without dense-view correspondences, 3D reconstruction from sparse-view RGB images typically
struggles to capture geometric details and suffers from texture ambiguity. While many recent
works [27, 79, 85] attempt to employ large-scale models to learn mappings from RGB to geometric
details, this typically requires significant computational resources. Additionally, these methods are
primarily trained using 3D data, but it’s still uncertain whether the scale of 3D datasets is sufficient
for learning such extensive priors. On the other hand, unlike RGB images, normal maps explicitly
encode geometric information and can provide crucial guidance for 3D reconstruction. Notably,
open-world normal map estimation has achieved great advancements. Many recent works [12, 37, 59]
demonstrate that 2D diffusion models, trained on billions of natural images, embed extensive priors
and can be fine-tuned to predict normal maps. Given the significant disparity in data scale between 2D
and 3D datasets, it may be more effective to use 2D models first for generating geometric guidance.
Input Normal Guidance As shown in Figure 2, in addition to multi-view RGB images, MeshFormer
also takes multi-view normal maps as input, which can be generated using recent open-world normal
estimation models [12, 37, 59]. In our experiments, we utilize Zero123++ v1.2 [59], which trains an
additional ControlNet [93] over the multi-view prediction model. The ControlNet takes multi-view
RGB images, predicted by Zero123++, as a condition and produces corresponding multi-view normal
maps, expressed in the camera coordinate frame. Given these maps, MeshFormer first converts them
to a unified world coordinate frame, and then treats them similarly to the multi-view RGB images,
using projection-aware cross-attention to guide 3D reconstruction. According to our experiments
(Sec. 4.4), the multi-view normal maps enable the networks to better capture geometry details, and
thus greatly improve final mesh quality.
Geometry Enhancement While the straightforward approach of deriving normal maps from the
learned mesh and using a normal loss to guide geometry learning has been commonly used, we find
that this approach makes our mesh learning less stable. Instead, we propose learning a 3D normal
texture, similar to a color texture, using a separate MLP. By computing the normal loss for MLP-
queried normal maps instead of mesh-derived normal maps, we decouple normal texture learning
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Figure 3: Qualitative Examples of Single Image to 3D (GSO dataset). Both the textured and
textureless mesh renderings are shown. Please zoom in to examine details and mesh quality, and refer
to the supplemental material for results of One-2-3-45++ [31] and CRM [77].

from underlying geometry learning. This makes the training more stable, as it is easier to learn a sharp
3D normal map than to directly learn a sharp mesh geometry. The learned 3D normal texture can be
exported with the mesh, similar to the color texture, to support various graphics rendering pipelines.
In applications that require precise 3D geometry, such as 3D printing, the learned normal texture can
also be used to refine the mesh geometry with traditional algorithms. Specifically, during inference,
after extracting a 3D mesh from the SDF volume, we utilize a post-processing algorithm [44] that
takes as input the 3D positions of the mesh vertices and the vertex normals estimated from the MLP.
The algorithm adjusts the mesh vertices to align with the predicted normals in a few seconds, further
enhancing the geometry quality and generating sharp geometric details, as shown in Figure 5.

4 Experiments

4.1 Implementation Details and Evaluation Settings

Implementation Details We trained MeshFormer on the Objaverse [9] dataset. The total number
of network parameters is approximately 648 million. We trained the model using 8 H100 GPUs for
about one week (350k iterations) with a batch size of 1 per GPU, although we also show that the
model can achieve similar results in just two days. Please refer to the supplementary for more details.
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Table 1: Quantitative Results of Single Image to 3D. Evaluated on the 1,030 and 1,038 3D
shapes from the GSO [11] and the OmniObject3D [83] datasets, respectively. One-2-3-45++ [31],
InstantMesh [85], MeshLRM [79], and our method all take the same multi-view RGB images
predicted by Zero123++ [59] as input. CD denotes Chamfer Distance.

Method
GSO [11] OmniObject3D [83]

F-Score ↑ CD ↓ PSNR ↑ LPIPS ↓ F-Score ↑ CD ↓ PSNR ↑ LPIPS ↓
One-2-3-45++ [31] 0.936 0.039 20.97 0.21 0.871 0.054 17.08 0.31

TripoSR [67] 0.896 0.047 19.85 0.26 0.895 0.048 17.68 0.28
CRM [77] 0.886 0.051 19.99 0.27 0.821 0.065 16.01 0.34
LGM [64] 0.776 0.074 18.52 0.35 0.635 0.114 14.75 0.45

InstantMesh [64] 0.934 0.037 20.90 0.22 0.889 0.049 17.61 0.28
MeshLRM [79] 0.956 0.033 21.31 0.19 0.910 0.045 18.10 0.26

Ours 0.963 0.031 21.47 0.20 0.914 0.043 18.14 0.27

Evaluation Settings We evaluate the methods on two datasets: GSO [11] and OmniObject3D [83].
Both datasets contain real-scanned 3D objects that were not seen during training. For the GSO dataset,
we use all 1,030 3D shapes for evaluation. For the OmniObject3D dataset, we randomly sample up to
5 shapes from each category, resulting in 1,038 shapes for evaluation. We utilize both 2D and 3D
metrics. For 3D metrics, we use both the F-score and Chamfer distance (CD), calculated between the
predicted meshes and ground truth meshes, following [31, 85]. For 2D metrics, we compute both
PSNR and LPIPS for the rendered color images. Since each baseline may use a different coordinate
frame for generated results, we carefully align the predicted meshes of all methods to the ground truth
meshes before calculating the metrics. Please refer to the supplemental material for more details.

4.2 Comparison with Single/Sparse-View to 3D Methods

We compare MeshFormer with recent open-world feed-forward single/sparse-view to 3D meth-
ods, including One-2-3-45++ [31], TripoSR [67], CRM [77], LGM [64], InstantMesh [85], and
MeshLRM [79]. Many of these methods have been released recently and should be considered
concurrent methods. For MeshLRM [79], we contacted the authors for the results. For the other
methods, we utilized their official implementations. Please refer to the supplementary for details.

Since input settings differ among the baselines, we evaluate all methods in a unified single-view to
3D setting. For the GSO dataset, we utilized the first thumbnail image as the single-view input. For
the OmniObject3D dataset, we used a rendered image with a random pose as input. For One-2-3-
45++ [31], InstantMesh [85], MeshLRM [79], and our MeshFormer, we first utilized Zero123++ [59]
to convert the input single-view image into multi-view images before 3D reconstruction. Other
baselines follow their original settings and take a single-view image directly as input. In addition to
the RGB images, our MeshFormer also takes additional multi-view normal images as input, which
are also predicted by Zero123++ [59]. Note that when comparing with baseline methods, we
never use ground truth normal images to ensure a fair comparison.

In Fig. 3, we showcase qualitative examples. Our MeshFormer produces the most accurate meshes
with fine-grained, sharp geometric details. In contrast, baseline methods produce inferior mesh quality.
For example, TripoSR directly extracts meshes from the learned NeRF representation, resulting in
significant artifacts. While InstantMesh and MeshLRM use mesh representation in their second stage,
notable uneven artifacts are still observable upon a zoom-in inspection. Additionally, all baseline
methods incorrectly close the surface of the copper bell. We also provide quantitative results in
Tab. 1. Although our baselines include four methods released just one or two months before the
time of submission, our MeshFormer significantly outperforms many of them and achieves the best
performance on most metrics across two datasets. For the color LPIPS metric, our performance is
very similar to MeshLRM’s, despite a perceptual loss being their main training loss term. We also
highlight that many of the baselines require over one hundred GPUs for training, whereas our model
can be efficiently trained with just 8 GPUs. Please refer to Sec. 4.4 for analysis on training efficiency.

4.3 Application: Text to 3D

In addition to the single image to 3D, MeshFormer can also be integrated with 2D diffusion models
to enable various 3D object generation tasks. For example, we follow the framework proposed
by [37] to finetune Stable Diffusion [56] and build a text-to-multi-view model. By integrating this
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Figure 4: Application: Text to 3D. Given a text prompt, a 2D diffusion model first predicts multi-
view RGB and normal images, which are then fed to MeshFormer for 3D reconstruction. Please refer
to the supplementary for comparisons with Instant3D [27].

Table 2: We compare methods using limited training resources. Evaluated on the GSO [11] dataset.
Method Training Resources F-Score ↑ CD ↓ PSNR-C ↑ LPIPS-C ↓ PSNR-N ↑ LPIPS-N ↓

MeshLRM [79]
8×H100 48h

0.925 0.0397 21.09 0.26 21.69 0.22
Ours 0.960 0.0317 21.41 0.20 23.01 0.15

model, along with the normal prediction from Zero123++ [59], with MeshFormer, we can enable the
task of text to 3D. Figure 4 shows some interesting results, where we convert a single text prompt
into a high-quality 3D mesh in just a few seconds. Please refer to the supplemental materials for a
qualitative comparison with one of the state-of-the-art text-to-3D methods, Instant3D [27].

4.4 Analysis and Ablation Study

Explicit 3D structure vs. Triplane In Section 4.2, we demonstrated that MeshFormer outperforms
baseline methods that primarily utilize the triplane representation. Here, we highlight two additional
advantages of using the explicit 3D voxel structure: training efficiency and the avoidance of “triplane
artifacts”. Without leveraging explicit 3D structure, existing triplane-based large reconstruction
models require extensive computing resources for training. For example, TripoSR requires 176 A100
GPUs for five days of training. InstantMesh relies on OpenLRM [15], which requires 128 A100 GPUs
for three days of training. MeshLRM also utilizes similar resources during training. By utilizing
explicit 3D structure and projective bias, our MeshFormer can be trained much more efficiently using
only 8 GPUs. To better understand the gap, we trained both MeshLRM and our MeshFormer under
very limited training resources, and the results are shown in Table 2. When using only 8 GPUs
for two days, we found that MeshLRM failed to converge and experienced significant performance
degradation compared to the results shown in Table 1, while our MeshFormer had already converged
to a decent result, close to the fully-trained version, demonstrating superior training efficiency.

We observe that the triplane typically generates results with axis-aligned artifacts, as shown in Fig.3
(5th row, please zoom in). As demonstrated in the supplementary (Fig. 7), these artifacts also cause
difficulties for MeshLRM [79] in capturing the words on objects. These limitations are likely caused
by the limited number of triplane tokens (e.g., 32 × 32 × 3), constrained by the global attention,
which often leads to artifacts at the boundaries of the triplane patches. In contrast, MeshFormer
leverages sparse voxels, supports a higher feature resolution of 2563, and is free from such artifacts.

Normal Input and SDF supervision As shown in Table 3 (a), the performance significantly drops
when multi-view input normal maps are removed, indicating that the geometric guidance and clues
provided by normal images are crucial for facilitating network training, particularly for local geometric
details. In (f), we replace ground truth normal maps with normal predictions by Zero123++ [59] and
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Table 3: Ablation Study on the GSO [11] dataset. -C denotes color renderings, and -N denotes
normal renderings. CD stands for Chamfer distance. By default, ground truth multi-view images are
used to exclude the influence of errors from 2D diffusion models.

Setting PSNR-C ↑ LPIPS-C ↓ PSNR-N ↑ LPIPS-N ↓ F-Score ↑ CD ↓
a w/o normal input 24.82 0.129 24.85 0.107 0.964 0.024
b w/o SDF supervision 20.72 0.244 20.42 0.257 0.940 0.035
c w/o transformer layer 26.63 0.101 29.80 0.036 0.992 0.013
d w/o projection-aware cross-attention 25.48 0.155 29.01 0.045 0.991 0.013
e w/o geometry enhancement 27.95 0.085 29.10 0.048 0.992 0.012
f w/ pred normal 26.84 0.096 26.99 0.067 0.987 0.017

g full 28.15 0.083 29.80 0.036 0.992 0.012

observe a notable performance gap compared to (g). This indicates that although predicted multi-view
normal images can be beneficial, existing 2D diffusion models still have room for improvement in
generating more accurate results. See supplementary for qualitative examples. As shown in (b), if we
remove the SDF loss after the first epoch and train the network using only surface rendering losses,
the geometry learning quickly deteriorates, resulting in poor geometry. This explains why existing
methods [27, 79] typically employ complex multi-stage training and use volume rendering to learn
a coarse NeRF in the initial stage. By leveraging explicit 3D SDF supervision as strong geometric
regularization, we enable a unified single-stage training, using mesh as the only representation.
Projection-Aware Cross-Attention and Transformer Layers We propose to utilize projection-

Figure 5: Geometry enhancement generates
sharper details. Please zoom in to see the
details.

aware cross-attention to precisely aggregate multi-
view projected 2D features for each 3D voxel. In con-
ventional learning-based multi-view stereo (MVS)
methods [3, 38], average or max pooling is typically
employed for feature aggregation. In Table 3 (d), we
replace the cross-attention with a simple average pool-
ing and we observe a significant performance drop.
This verifies that projection-aware cross-attention pro-
vides a more effective way for 3D-2D interaction
while simple average pooling may fail to handle the
occlusion and visibility issues. In the bottleneck of
the UNet, we treat all 3D (sparse) voxels as a se-
quence of tokens and apply transformer layers to
them. As shown in row (c), after removing these lay-
ers, we observe a performance drop in metrics related
to texture quality. This indicates that texture learning requires more extensive priors and benefits
more from the transformer layers.
Geometry Enhancement We propose to learn an additional normal map texture and apply a tra-
ditional algorithm as post-processing for geometry enhancement during inference. As shown in
Figure 5, the geometry enhancement aligns the mesh geometry with the learned normal texture and
generates fine-grained sharp details. In some cases (such as the wolf), the meshes output by the
network are already good enough, and the difference caused by the enhancement tends to be subtle.
Row (e) also quantitatively verifies the effectiveness of the module.

5 Conclusion and Limitations

We present MeshFormer, an open-world sparse-view reconstruction model that leverages explicit 3D
native structure, supervision signals, and input guidance. MeshFormer can be conveniently trained in
a unified single-stage manner and efficiently with just 8 GPUs. It generates high-quality meshes with
fine-grained geometric details and outperforms baselines trained with over one hundred GPUs.
MeshFormer relies on 2D models to generate multi-view RGB and normal images from a single input
image or text prompt. However, existing models still have limited capabilities to generate consistent
multi-view images, which can cause a performance drop. Strategies to improve model robustness
against such imperfect predictions are worth further exploration, and we leave this as future work.
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A Appendix

A.1 Comparison with Instant3D

In Figure 6, we showcase the comparison with Instant3D [27] on the text-to-3D task. The results
are obtained from the paper authors. While Instant3D [27] also generates 3D shapes that match the
input text prompt, our method generates results with superior mesh quality and fine-grained, sharp
geometric details.

Figure 6: Application: Text-to-3D. Comparison with Instant3D [27].

A.2 Triplane Artifacts

Figure 7: The triplane-based method MeshLRM [79] has difficulty capturing words on objects, even
when ground truth multi-view RGB images are used as input.
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Figure 8: Ablation study on input normal maps. Evaluated on the GSO dataset [11]. “w/o normal”
indicates that the model is trained with multi-view RGB images only. “w/ predicted normal” indicates
that the model is trained with ground truth normal maps but evaluated with predicted normals by
Zero123++ [59]. “w/ GT normal” indicates that the model is trained and tested with ground truth
normals.

Table 4: Normal consistency (angle error) between the mesh geometry (mesh vertex normals) and the
predicted normal maps, both before and after the geometry enhancement post-processing. The ratio
of mesh vertices below a specific error threshold is shown. Evaluated on the GSO dataset.

angle error threshold before after

< 1◦ 8.83% 16.27%
< 2◦ 26.39% 40.83%
< 5◦ 60.55% 73.19%
< 10◦ 78.79% 86.43%
< 15◦ 86.46% 91.29%

As shown in Fig.7, MeshLRM [79] has difficulty capturing words on objects, even when ground truth
multi-view RGB images are used as input. We speculate that this is due to the limited number of
triplane patches (e.g., 32× 32× 3) restricted by global attention. In contrast, our method leverages
sparse voxels and supports a much higher feature resolution of 2563, making it free from such issues.

A.3 Ablation Study: Input Normal Maps

In Figure 8, we qualitatively demonstrate the effect of input normal maps. When the model is trained
without multi-view normal maps, we find that the generated model can only capture the global 3D
shape but fails to generate fine-grained geometric details. However, when the model is given predicted
normal maps, the performance is significantly better, although there are still some small gaps when
compared to the results of ground truth normals (see the bread hole of the toaster and the wheel of
the tram). This indicates errors or inconsistencies from the 2D normal prediction models.

A.4 Ablation Study: Geometry Enhancement

We propose asking the network to predict an additional normal texture, which can be used for
further geometric enhancement by applying a traditional algorithm as post-processing. The geometric
enhancement aims to align the mesh geometry with the predicted normal map by adjusting the vertex
locations. However, the traditional algorithm we used cannot guarantee that the mesh normals will
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Table 5: Analysis of our mesh generation quality over training time. Evaluated on the GSO [11]
dataset.

Training Time PSNR-C ↑ LPIPS-C ↓ PSNR-N ↑ LPIPS-N ↓ CD ↓ F-Score ↑
8×H100 12h 21.28 0.2135 22.89 0.1536 0.0330 0.960
8×H100 24h 21.32 0.2076 22.96 0.1516 0.0320 0.960
8×H100 48h 21.41 0.2033 23.01 0.1484 0.0317 0.960

8×H100 120h 21.44 0.2029 23.04 0.1480 0.0314 0.961
8×H100 168h 21.47 0.2010 23.09 0.1466 0.0313 0.963

be fully aligned with the predicted normal maps after processing. This limitation arises because the
algorithm operates in local space and avoids large vertex displacements. Moreover, the predicted
normal maps may contain errors or inconsistencies, such as conflicting neighboring normals. The
adopted algorithm is an iterative numerical optimization method and does not compute an analytic
solution.

However, we have quantitatively verified that the post-processing module can significantly improve
normal consistency with the predicted normal map. For example, before post-processing, only 26.4%
of mesh vertices had a normal angle error of less than 2 degrees. After post-processing, this number
increased to 40.8%. For a 10-degree threshold, the ratio increases from 78.8% to 86.4%. For more
details, please refer to Table 4.

A.5 Ablation Study: Training time

Our MeshFormer can be trained efficiently using only 8 GPUs, typically converging in approximately
two days. Table 5 presents a quantitative analysis of our mesh generation quality over the training
period. We observe that performance improves rapidly and nearly converges, with only marginal
changes occurring after the two-day training period.

A.6 Training Details and Evaluation Metrics

Training Details: We trained the model using a subset of 395k 3D shapes filtered from the Obja-
verse [9] dataset. These objects have a distributable Creative Commons license and were obtained by
the Objaverse team using Sketchfab’s public API. For each filtered 3D shape, we randomly rotated
the mesh and generated 10 data samples. For each data sample, we compute a 5123 ground truth
SDF volume using a CUDA-based program and render multi-view RGB and normal images using
BlenderProc. In our experiments, the resolutions of the occupancy volume and sparse feature volume
are 64 and 256, respectively. The resolution of the predicted and ground truth SDF volumes is 512.
The model is trained with the Adam optimizer and a cosine learning rate scheduler. The loss weights
λ1, · · · , λ6 are set to 80, 2, 16, 2, 8, and 8, respectively.

All data preparation, including image rendering and SDF computation, is performed using an internal
cluster. This process can be completed using 4000 CPU cores in roughly one week. The generated
data takes up approximately 30TB. All model training tasks are conducted in public cloud clusters.
Our main model is trained using 8 H100 GPUs for one week. All experiments listed in the paper can
be completed in 15 days using 32 H100 GPUs (running multiple parallel experiments), excluding the
preliminary exploration experiments.

Architecture Details: For VoxelFormer, the UNet consists of four levels with resolutions of 643, 323,
163 and 163. Each level includes a ResNet module, a projection-aware cross-attention module, and a
downsampling module, with channel sizes of 64, 128, 256, and 512. We added 6 transformer layers
at the bottleneck of the UNet, with each 3D voxel treated as a token, and token channels set to 512.

For SparseVoxelFormer, the sparse UNet consists of six levels with resolutions of 2563, 1283, 643,
323, 163, and 163. Each level includes a sparse ResNet module, a projection-aware cross-attention
module, and a downsampling module, with channel sizes of 16, 32, 64, 128, 512, and 2,048. We
added 16 transformer layers at the bottleneck of the UNet, with each 3D sparse voxel treated as a
token, and token channels set to 1,024. The feature dimension of the output sparse feature volume
(before the MLP) is 32.
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Figure 9: Qualitative Results of One-2-3-45++ [31] and CRM [77] on Single Image to 3D. Both
the textured and textureless mesh renderings are shown.

For both of them, a skip connection is added to the UNet.

Evaluation Metrics: To account for the scale and pose ambiguity of the generated mesh from
different baselines, we align the predicted mesh with the ground truth mesh prior to the evaluation
metric calculation. This alignment process involves uniformly sampling rotations and scales for
initialization and subsequently refining the alignment using the Iterative Closest Point (ICP) algorithm.
We select the alignment that yields the highest inlier ratio. Both the ground truth and predicted
meshes are then scaled to fit within a unit bounding box.

For 3D metrics, we sample 100,000 points on both the ground truth mesh and the predicted mesh and
compute the F-score and Chamfer distance, setting the F-score threshold at 0.05. To evaluate texture
quality, we compute the PSNR and LPIPS between images rendered from the reconstructed mesh and
those of the ground truth. Following InstantMesh [85], we sample 24 camera poses, encompassing
a full 360-degree view around the object, and utilize BlenderProc for rendering RGB and normal
images with a resolution of 320×320. Since we use the VGG model for LPIPS loss calculation during
training, we employ the Alex model for LPIPS loss calculation during evaluation.

A.7 Training Details of MeshLRM

All results of MeshLRM, except those in Table 2, were reproduced by the MeshLRM authors at
Hillbot following the original settings as described in the paper. For the results in Table 2, we trained
the model using the same training data as our method on 8×H100 GPUs for 48 hours. We maintained
the same batch size as reported in the paper and proportionally scaled down the original training time
for each stage of MeshLRM based on a total training time of 48 hours. This included 5.8 seconds per
iteration for 20,000 iterations in the 256-resolution pre-training, 12 seconds per iteration for 4,000
iterations in the 512-resolution fine-tuning, and 4.7 seconds per iteration for 4,000 iterations in mesh
refinement.

A.8 Qualitative Examples of One-2-3-45++ and CRM

Figure 9 shows qualitative results of One-2-3-45++ [31] and CRM [77] on single image to 3D and
our method produces better results.
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A.9 Broader Impact

We introduce an efficient approach for training open-world sparse-view reconstruction models, which
has the potential to significantly reduce energy consumption and carbon emissions, as baseline models
typically require much more computing resources for training. Previously, the creation of 3D assets
was reserved for specialized artists who spent hours or even days producing a single 3D model. Our
proposed technique allows even novice individuals without specialized 3D modeling knowledge
to create high-quality 3D assets in seconds. This democratization of 3D modeling has unleashed
unprecedented creative potential and operational efficiency across various sectors.

However, like other generative AI models, it also carries the risk of misuse, such as spreading
misinformation and creating pornography models. Therefore, it is crucial to implement strict ethical
guidelines to mitigate these risks.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We believe so. We provide an overview of our contributions at the end of the
introduction (see section 1).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We explicitly discuss limitations of our work in section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

22



Justification: We do not present theoretical results in this paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide extensive details about the implementation of our method, base-
lines, and evaluation in subsection 4.1, subsection A.6, and subsection A.7 to ensure
reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The code and model release have not yet passed our internal inspection, and
the model also needs a safety evaluation.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have included all details in subsection 4.1 and subsection A.6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not reported because it would be too computationally expensive
to train the models multiple times. Additionally, the computation of evaluation metrics does
not involve significant randomness or variation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We include details about computing resource in subsection 4.1, subsection A.6
and subsection A.7.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have read the NeurIPS Code of Ethics and ensured that our
research conforms to it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the broader impacts of our method in subsection A.9
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: As discussed in subsection A.9, our model carries the risk of misuse, including
the spread of misinformation and the creation of pornographic content. We will conduct an
internal safety inspection and implement necessary safeguards before releasing the model.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited all the original papers that produced the code and dataset used
in our paper, and have properly respected all licenses and terms of use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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