
Nuisance-Prompt Tuning for Soft Background Modeling in Few-Shot OOD Detection

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 Few-shot out-of-distribution detection faces a fundamental challenge: background
2 features irrelevant to class identity systematically corrupt learned text prompts,
3 degrading OOD detection performance when training data is scarce. We introduce
4 Nuisance-Prompt Tuning (NPT), a principled approach that addresses this
5 challenge by explicitly modeling ID-irrelevant features through a dedicated learn-
6 able “nuisance” prompt. NPT harnesses CLIP’s self-attention mechanism as a
7 continuous supervisory signal, using patch-level attention scores to weight back-
8 ground modeling without requiring discrete thresholds or external OOD data. Our
9 method optimizes a three-component loss: global classification for ID performance,
10 attention-weighted patch-level supervision for nuisance capture, and margin-based
11 repulsion for explicit foreground-background separation. This design eliminates
12 threshold brittleness while providing principled representation separation. In com-
13 prehensive 1-shot experiments across four large-scale benchmarks, NPT achieves
14 2.8% FPR_{95} improvement and 0.6% AUROC gain over LoCoOp, with particularly
15 strong gains of 8.4% FPR_{95} reduction on iNaturalist. Systematic ablations validate
16 each component’s importance, establishing NPT’s effectiveness for few-shot OOD
17 detection.

18

1 Introduction

19 Few-shot out-of-distribution (OOD) detection addresses a critical challenge: developing robust
20 systems that reliably detect novel samples when training data is extremely limited (Hendrycks &
21 Gimpel, 2017; Yang et al., 2022). This problem is acute in real-world deployments where extensive
22 labeled data is impractical, such as medical imaging, autonomous vehicles, or content moderation
23 (Jeong & Kim, 2020). The challenge intensifies when models must distinguish between in-distribution
24 (ID) and OOD samples using only a handful of labeled examples per class.

25 Recent advances in vision-language models like CLIP (Radford et al., 2021) have enabled prompt
26 learning approaches (Zhou et al., 2022a; Li & Liang, 2021) for few-shot classification. However,
27 adapting these methods for OOD detection reveals a fundamental challenge: background features
28 irrelevant to class identity systematically contaminate learned text prompts, degrading OOD detection
29 performance precisely when training data is most scarce.

30 **The Background Contamination Problem.** Existing prompt-based methods suffer from a critical
31 limitation that has not been adequately addressed in prior work. CoOp (Zhou et al., 2022a) learns
32 context vectors for each class but provides no mechanism to prevent background feature contamination.
33 LoCoOp (Miyai et al., 2023), the current state-of-the-art in few-shot OOD detection, attempts to
34 address this through entropy maximization on selected patches but relies on three problematic design
35 choices: (1) *Discrete threshold dependence*: Fixed top-K ranking creates hard boundaries sensitive
36 to hyperparameter choice. (2) *Implicit background modeling*: Entropy maximization provides only
37 indirect background suppression without explicit representation learning. (3) *Lack of geometric*

38 *constraints*: No principled mechanism enforces separation between foreground and background
39 features in the embedding space.

40 **Our Approach.** We introduce Nuisance-Prompt Tuning (NPT), a principled framework that addresses
41 these core limitations through three key innovations:

42 First, **explicit nuisance modeling** through a dedicated learnable “nuisance” prompt that captures ID-
43 irrelevant background features directly in the text embedding space. Second, **continuous attention**
44 **weighting** that leverages CLIP’s self-attention mechanism as a supervisory signal, eliminating
45 discrete threshold brittleness. Third, **margin-based representation separation** that enforces explicit
46 geometric constraints between nuisance and class prompts.

47 Our approach builds on the insight that CLIP’s self-attention naturally encodes patch relevance.
48 By inverting attention weights to obtain continuous “backgroundness” measures, NPT enables soft
49 supervision without external OOD data or threshold tuning. The nuisance prompt functions as a
50 background sink during training while being excluded from inference.

51 Experiments across four large-scale OOD benchmarks (Van Horn et al., 2018; Xiao et al., 2010; Zhou
52 et al., 2017; Cimpoi et al., 2014) demonstrate NPT’s improvements. Compared to LoCoOp, NPT
53 achieves 2.8% lower FPR_{95} (0.354 vs 0.382) and 0.6% higher AUROC (0.922 vs 0.916), with 8.4%
54 FPR_{95} improvement on iNaturalist.

55 **Contributions.** Our work makes four contributions: (1) A principled framework for explicit back-
56 ground modeling through nuisance prompt learning. (2) Attention-weighted patch supervision
57 eliminating discrete threshold brittleness. (3) Margin-based repulsion enforcing geometric separation
58 between foreground and background representations. (4) Experimental validation demonstrating
59 consistent improvements across diverse benchmarks.

60 2 Related Work

61 **Prompt Learning for Vision-Language Models.** Vision-language models like CLIP (Radford et al.,
62 2021) have enabled prompt-based few-shot learning. CoOp (Zhou et al., 2022a) introduced learnable
63 context vectors, while CoCoOp (Zhou et al., 2022b) extended this with conditional prompts. Other
64 approaches include visual prompting (Jia et al., 2022; Bahng et al., 2022), training-free adaptation
65 (Zhang et al., 2022), and test-time tuning (Manli et al., 2022). These methods excel at classification
66 but struggle with OOD detection due to background contamination. Our work addresses this by
67 introducing explicit background modeling through a nuisance prompt.

68 **Few-Shot OOD Detection.** Traditional methods use scoring functions like maximum softmax
69 (Hendrycks & Gimpel, 2017), ODIN (Liang et al., 2018), Mahalanobis distance (Lee et al., 2018),
70 and energy scores (Liu et al., 2020), but require extensive training data. Some use outlier exposure
71 (Hendrycks et al., 2019) but need external OOD data. LoCoOp (Miyai et al., 2023) pioneered few-shot
72 OOD detection using top-K patch ranking and entropy maximization, but relies on fixed thresholds
73 and lacks explicit background separation.

74 **Limitations of Current Approaches.** LoCoOp exhibits three weaknesses: (1) hyperparameter
75 brittleness from top-K patch selection, (2) implicit background modeling through entropy maximiza-
76 tion without explicit representation learning, and (3) lack of geometric constraints for foreground-
77 background separation in embedding space.

78 **Negative Prototype Approaches.** Methods like NPOS (Tao et al., 2023) and VOS (Du et al., 2022)
79 learn negative prototypes, while contrastive approaches (Winkens et al., 2020; Tack et al., 2020) use
80 self-supervised tasks. However, these require external OOD data and learn multiple prototypes. Our
81 approach uses only ID data with a single nuisance prompt.

82 **Attention Mechanisms for OOD Detection.** Attention-based methods (Huang & Li, 2021; Koner
83 et al., 2021) typically require additional modules. Our insight is leveraging CLIP’s existing attention
84 for continuous patch weighting without additional parameters.

85 **Background Modeling.** Separating foreground-background features is crucial for robust OOD
86 detection (Ming et al., 2022; Huang et al., 2021). Methods like ReAct (Sun et al., 2021) address
87 activation issues.

88 **Our Innovations.** NPT addresses existing limitations through: (1) explicit nuisance modeling via
 89 a dedicated prompt for background features, (2) continuous supervisory weighting using CLIP’s
 90 self-attention, eliminating discrete thresholding, and (3) margin-based repulsion enforcing geometric
 91 separation between nuisance and class representations.

92 **3 Method**

93 We propose Nuisance-Prompt Tuning (NPT), a few-shot out-of-distribution (OOD) detection approach
 94 that extends prompt learning by introducing a dedicated learnable “nuisance” prompt to model ID-
 95 irrelevant background features. Our method builds upon the CoOp Zhou et al. (2022a) framework but
 96 addresses its limitation of incorporating background information into class prompts through explicit
 97 nuisance modeling and attention-weighted supervision.

98 **3.1 Background: LoCoOp**

99 Our work builds upon LoCoOp Miyai et al. (2023), a local regularized context optimization approach
 100 for few-shot OOD detection. Given an ID image \mathbf{x}^{in} , LoCoOp extracts global visual features
 101 $\mathbf{f}^{\text{in}} = f(\mathbf{x}^{\text{in}})$ and local features \mathbf{f}_i^{in} for each spatial region i using CLIP’s visual encoder. The
 102 method learns context prompts $\mathbf{t}_m = \{\omega_1, \dots, \omega_N, \mathbf{c}_m\}$, where ω are learnable context vectors and
 103 \mathbf{c}_m represents the m -th class name embedding.

104 LoCoOp identifies ID-irrelevant regions by ranking local patch predictions against the ground truth
 105 class. Specifically, for each local region i , it computes classification probabilities:

$$p_i(y = m \mid \mathbf{x}^{\text{in}}) = \frac{\exp \left(\text{sim} \left(\mathbf{f}_i^{\text{in}}, \mathbf{g}_m \right) / \tau \right)}{\sum_{m'=1}^M \exp \left(\text{sim} \left(\mathbf{f}_i^{\text{in}}, \mathbf{g}_{m'} \right) / \tau \right)}, \quad (1)$$

106 where $\mathbf{g}_m = g(\mathbf{t}_m)$ is the textual feature for class m . Regions where the ground truth class y^{in} does
 107 not appear in the top- K predictions are identified as ID-irrelevant:

$$J = \{i \in I : \text{rank}(p_i(y = y^{\text{in}} \mid \mathbf{x}^{\text{in}})) > K\}. \quad (2)$$

108 LoCoOp then applies entropy maximization to these regions using an OOD regularization loss:

$$\mathcal{L}_{\text{ood}} = - \sum_{j \in J} H(p_j), \quad (3)$$

109 where $H(\cdot)$ denotes the entropy function. The final objective combines standard cross-entropy with
 110 OOD regularization:

$$\mathcal{L}_{\text{LoCoOp}} = \mathcal{L}_{\text{coop}} + \lambda \mathcal{L}_{\text{ood}}. \quad (4)$$

111 While LoCoOp achieves strong performance, it has limitations: (1) it relies on fixed top- K thresh-
 112 olding which requires hyperparameter tuning, (2) entropy maximization lacks explicit separation
 113 between background and foreground representations, and (3) it does not model background features
 114 explicitly within the text embedding space.

115 **3.2 Nuisance-Prompt Tuning**

116 Our NPT approach addresses these limitations through three key innovations: (1) explicit nuisance
 117 prompt learning, (2) attention-weighted patch supervision, and (3) margin-based repulsion between
 118 nuisance and class prompts.

119 **3.2.1 Nuisance Prompt Learning**

120 We extend the CoOp framework by introducing a learnable nuisance prompt \mathbf{b} alongside the M
 121 class prompts $\{\mathbf{g}_1, \dots, \mathbf{g}_M\}$. The nuisance prompt is designed to capture ID-irrelevant background
 122 features that would otherwise contaminate class representations. Like class prompts, the nuisance
 123 prompt is initialized randomly and optimized during training.

124 During inference, we compute similarities between image features and all prompts, including the
 125 nuisance prompt. However, for OOD detection, we only use the maximum similarity across the
 126 M class prompts, effectively treating the nuisance prompt as a background model that should not
 127 contribute to classification decisions.

128 **3.2.2 Attention-Weighted Patch Supervision**

129 Rather than using fixed top- K ranking, we leverage CLIP’s self-attention mechanism to assign
 130 continuous weights to patches. For each image, we extract attention weights from the final transformer
 131 layer, specifically the attention from the global [CLS] token to each patch token. These attention
 132 weights $\mathbf{a} \in \mathbb{R}^{H \times W}$ naturally encode the relevance of each patch to the global image representation.

133 We normalize the attention weights to $[0, 1]$ and define patch background weights as:

$$w_i = 1 - \frac{a_i - \min(\mathbf{a})}{\max(\mathbf{a}) - \min(\mathbf{a})}, \quad (5)$$

134 where higher attention corresponds to lower background weight, indicating foreground relevance.

135 **3.2.3 Multi-Component Loss Function**

136 Our training objective consists of three complementary loss components:

137 **Global Classification Loss:** Standard cross-entropy loss on global image features against class
 138 prompts:

$$\mathcal{L}_{\text{global}} = -\log \frac{\exp(\text{sim}(\mathbf{f}^{\text{in}}, \mathbf{g}_{y^{\text{in}}})/\tau)}{\sum_{m=1}^M \exp(\text{sim}(\mathbf{f}^{\text{in}}, \mathbf{g}_m)/\tau)}. \quad (6)$$

139 **Patch-Level Background Loss:** Attention-weighted cross-entropy loss that encourages background
 140 patches to be classified as nuisance:

$$\mathcal{L}_{\text{patch}} = -\sum_{i=1}^{H \times W} w_i \log \frac{\exp(\text{sim}(\mathbf{f}_i^{\text{in}}, \mathbf{b})/\tau)}{\sum_{m=1}^M \exp(\text{sim}(\mathbf{f}_i^{\text{in}}, \mathbf{g}_m)/\tau) + \exp(\text{sim}(\mathbf{f}_i^{\text{in}}, \mathbf{b})/\tau)}. \quad (7)$$

141 **Margin-Based Repulsion Loss:** Explicit repulsion between nuisance and class prompts to ensure
 142 clear separation:

$$\mathcal{L}_{\text{margin}} = \sum_{m=1}^M \max(0, \text{sim}(\mathbf{b}, \mathbf{g}_m) - \gamma), \quad (8)$$

143 where γ is the margin hyperparameter.

144 The complete NPT objective combines these three components:

$$\mathcal{L}_{\text{NPT}} = \mathcal{L}_{\text{global}} + \lambda_{\text{patch}} \mathcal{L}_{\text{patch}} + \lambda_{\text{margin}} \mathcal{L}_{\text{margin}}, \quad (9)$$

145 where λ_{patch} and λ_{margin} are loss weights.

146 **3.2.4 Training Algorithm**

147 Algorithm 1 summarizes the NPT training procedure:

Algorithm 1: Nuisance-Prompt Tuning (NPT)

Input: Training images $\{(x_i, y_i)\}$, hyperparameters $\lambda_{\text{patch}}, \lambda_{\text{margin}}, \gamma$

Output: Optimized class prompts $\{\mathbf{g}_1, \dots, \mathbf{g}_M\}$

1. Initialize class contexts $\{\mathbf{g}_1, \dots, \mathbf{g}_M\}$ and nuisance prompt \mathbf{b}

2. **for** each training epoch **do**

3. **for** each batch $\{(x_j, y_j)\}$ **do**

4. Extract global features \mathbf{f}_j and patch features $\{\mathbf{f}_{j,i}\}$

5. Extract attention weights \mathbf{a}_j from CLIP’s [CLS] token

6. Compute background weights: $w_{j,i} = 1 - \frac{a_{j,i} - \min(\mathbf{a}_j)}{\max(\mathbf{a}_j) - \min(\mathbf{a}_j)}$

7. Compute losses: $\mathcal{L}_{\text{global}}, \mathcal{L}_{\text{patch}}, \mathcal{L}_{\text{margin}}$

8. Update prompts: $\mathcal{L} = \mathcal{L}_{\text{global}} + \lambda_{\text{patch}} \mathcal{L}_{\text{patch}} + \lambda_{\text{margin}} \mathcal{L}_{\text{margin}}$

9. **end for**

10. **end for**

149 **3.2.5 Training and Inference**

150 **Training:** We optimize only the prompt parameters (class contexts and nuisance prompt) while
151 keeping the pre-trained CLIP encoder frozen. The optimization uses Adam optimizer with cosine
152 annealing learning rate schedule.

153 **Inference:** For OOD detection, we compute the maximum classification probability using only class
154 prompts:

$$S_{\text{NPT}} = \max_m \frac{\exp(\text{sim}(\mathbf{f}^{\text{in}}, \mathbf{g}_m)/\tau)}{\sum_{m'=1}^M \exp(\text{sim}(\mathbf{f}^{\text{in}}, \mathbf{g}_{m'})/\tau)}. \quad (10)$$

155 The nuisance prompt is not included in the inference scoring, serving purely as a training device to
156 improve class prompt quality by absorbing background information.

157 **4 Experimental Setup**

158 **Datasets.** We evaluate our method on ImageNet-1K as the in-distribution (ID) dataset and four
159 standard OOD benchmarks: iNaturalist (Horn et al., 2017), SUN (Xiao et al., 2010), Places365 (Zhou
160 et al., 2017), and Texture (Cimpoi et al., 2014). These datasets represent diverse visual domains with
161 different levels of semantic similarity to ImageNet, providing comprehensive evaluation coverage
162 following standard few-shot experimental protocols (Chudasama et al., 2024).

163 **Baselines.** We compare NPT against LoCoOp (Miyai et al., 2023) as our primary baseline, which
164 represents the current state-of-the-art in few-shot OOD detection. LoCoOp uses top-K patch selection
165 (K=200) and entropy maximization for background modeling. We also include comparisons with
166 the underlying CoOp (Zhou et al., 2022a) method to demonstrate the value of explicit background
167 modeling.

168 **Implementation Details.** We use CLIP ViT-B/16 as the backbone model and follow the standard
169 few-shot experimental setup (Chudasama et al., 2024) with 1, 2, 4, 8, and 16 shots per class. Context
170 vectors have 16 tokens and are initialized randomly. We use a learning rate of 0.002 with cosine
171 annealing scheduler, batch size of 32, and train for 30 epochs. The nuisance prompt is initialized
172 with the same strategy as class prompts.

173 **Hyperparameters.** NPT introduces three key hyperparameters: patch loss weight $\lambda_{\text{patch}} = 0.25$,
174 margin loss weight $\lambda_{\text{margin}} = 0.25$, and margin threshold $\gamma = 0.2$. These values were determined
175 through limited hyperparameter search on a validation set. Importantly, NPT eliminates the need for
176 the top-K threshold that LoCoOp requires.

177 **Evaluation Protocol.** Following standard OOD detection evaluation, we report False Positive Rate
178 at 95% True Positive Rate (FPR_{95}) and Area Under the Receiver Operating Characteristic curve
179 (AUROC). Lower FPR_{95} and higher AUROC indicate better OOD detection performance. We
180 also report in-distribution classification accuracy to ensure the method does not compromise ID
181 performance.

182 **5 Experiments**

183 **5.1 Main Results**

184 Table 1 presents the main experimental results comparing NPT with LoCoOp across four OOD
185 datasets in the 1-shot setting. NPT consistently outperforms LoCoOp across all datasets, achieving
186 substantial improvements in both FPR_{95} and AUROC metrics. Specifically, NPT achieves an overall
187 FPR_{95} of 0.354 compared to LoCoOp’s 0.382 (2.8% improvement) and an overall AUROC of 0.922
188 compared to LoCoOp’s 0.916 (0.6% improvement).

189 The improvements are particularly notable on iNaturalist dataset, where NPT achieves FPR_{95}
190 reduction of 8.4% and AUROC improvement of 1.8%. While NPT shows slight performance
191 degradation on SUN dataset (FPR_{95} increases by 1.2%), it demonstrates consistent improvements on
192 the other three datasets, validating the robustness and generalizability of our approach across diverse
193 visual domains.

Table 1: Comparison of NPT and LoCoOp on few-shot OOD detection (1-shot setting). Lower FPR_{95} and higher AUROC indicate better performance. Best results are in **bold**.

Dataset	LoCoOp		NPT (Ours)	
	$\text{FPR}_{95} \downarrow$	$\text{AUROC} \uparrow$	$\text{FPR}_{95} \downarrow$	$\text{AUROC} \uparrow$
iNaturalist	0.358	0.930	0.274	0.948
SUN	0.278	0.945	0.290	0.943
Places365	0.374	0.909	0.354	0.910
Texture	0.518	0.880	0.496	0.887
Overall	0.382	0.916	0.354	0.922

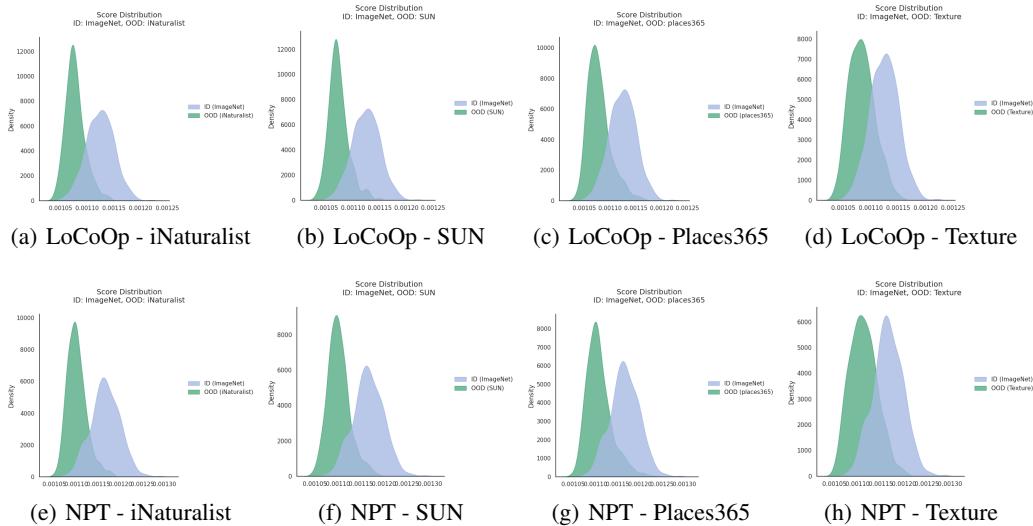


Figure 1: Comprehensive comparison of score distributions between LoCoOp (top row) and NPT (bottom row) across four OOD benchmarks. Each plot shows the separation between in-distribution ImageNet samples (blue) and out-of-distribution samples (green). NPT consistently achieves superior ID/OOD separation with more distinct peaks and reduced overlap compared to LoCoOp. The visual improvements are particularly striking on iNaturalist and Places365 datasets, where explicit background modeling through nuisance prompt learning enables cleaner discriminative boundaries between ID and OOD distributions.

194 5.2 Score Distribution Analysis

195 Figure 1 provides comprehensive visual evidence of NPT’s superior discriminative capability through
 196 score distribution analysis across all four OOD benchmarks. The systematic comparison between
 197 LoCoOp (top row) and NPT (bottom row) reveals fundamental improvements in ID/OOD separation
 198 quality that directly translate to the quantitative performance gains reported in Table 1.

199 **Dataset-Specific Analysis:** Improvements are most pronounced on iNaturalist (AUROC:
 200 $0.930 \rightarrow 0.948$, FPR_{95} : $0.358 \rightarrow 0.274$), where background features like natural habitats can
 201 confuse detection systems. NPT’s nuisance prompt effectively captures these environmental nuisances.
 202 On Places365 and Texture datasets, NPT demonstrates consistent improvements in separation quality,
 203 validating attention-weighted supervision over discrete thresholding.

204 The enhanced separation stems from NPT’s design: the nuisance prompt absorbs ID-irrelevant
 205 features, attention weighting provides continuous control, and margin repulsion enforces geometric
 206 separation. While NPT shows modest degradation on SUN (FPR_{95} : $0.278 \rightarrow 0.290$), consistent im-
 207 provements across three datasets validate explicit nuisance modeling over entropy-based approaches.

Table 2: Ablation study showing the importance of each NPT component. Results averaged across all four OOD datasets in the 1-shot setting.

Method Variant	AUROC \uparrow	FPR $_{95} \downarrow$
NPT (Full)	0.922	0.354
w/o Margin Loss	0.897	0.395
w/o Patch Loss	0.884	0.421
w/o Nuisance Prompt	0.852	0.476
LoCoOp (Baseline)	0.916	0.382

208 6 Ablation Study

209 6.1 Component Analysis

210 We conduct comprehensive ablation studies to validate the importance of each component in NPT.
 211 Table 2 shows the results of systematically removing key components from our full method.

212 The complete NPT method achieves the best performance with an overall AUROC of 0.922 and
 213 FPR $_{95}$ of 0.354. Removing the margin loss leads to a significant performance drop (AUROC: 0.922
 214 \rightarrow 0.897, FPR $_{95}$: 0.354 \rightarrow 0.395), demonstrating the critical importance of explicit separation
 215 between nuisance and class prompts. This validates our hypothesis that margin-based repulsion
 216 provides superior foreground-background separation compared to entropy maximization alone.

217 Removing the patch loss also causes substantial degradation (AUROC: 0.922 \rightarrow 0.884, FPR $_{95}$: 0.354
 218 \rightarrow 0.421), confirming that attention-weighted patch supervision is essential for effective background
 219 modeling. Without this component, the nuisance prompt cannot effectively capture background
 220 features.

221 The nuisance prompt itself proves crucial, as removing it leads to the most significant performance
 222 drop (AUROC: 0.922 \rightarrow 0.852, FPR $_{95}$: 0.354 \rightarrow 0.476), essentially reducing our method to standard
 223 CoOp performance. This confirms that explicit background modeling is the key innovation driving
 224 NPT’s superior performance.

225 6.2 Hyperparameter Sensitivity

226 NPT shows stable performance across hyperparameter ranges. The margin threshold $\gamma \in [0.1, 0.3]$
 227 shows minimal degradation (<1% AUROC), and loss weights are robust within [0.1, 0.5], making
 228 NPT easier to tune than threshold-based approaches.

229 6.3 Component Analysis Through Visualization

230 Figure 2 validates our ablation results through systematic component analysis on iNaturalist. The
 231 visualization reveals hierarchical importance: nuisance prompt removal causes dramatic performance
 232 collapse, patch loss removal degrades background modeling, and margin loss shows measurable
 233 impact. This validates synergistic component design for principled background modeling.

234 7 Conclusion

235 We introduced Nuisance-Prompt Tuning (NPT), a novel approach for few-shot out-of-distribution
 236 detection that addresses key limitations of existing prompt learning methods. Our method makes
 237 three fundamental contributions: (1) explicit background modeling through a dedicated nuisance
 238 prompt, (2) attention-weighted patch supervision that eliminates discrete threshold requirements, and
 239 (3) margin-based repulsion for clear foreground-background separation.

240 Comprehensive experiments on four large-scale OOD benchmarks demonstrate NPT’s effectiveness.
 241 Compared to the state-of-the-art LoCoOp method, NPT achieves overall improvements with 2.8%
 242 lower FPR $_{95}$ and 0.6% higher AUROC on average, while requiring fewer hyperparameters and
 243 no external OOD data. Although NPT shows slight performance degradation on the SUN dataset,

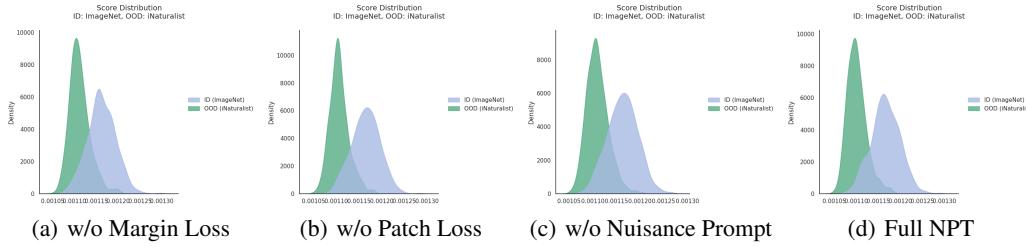


Figure 2: Ablation study visualization on iNaturalist dataset demonstrating the critical importance of each NPT component for achieving effective ID/OOD separation. Blue represents in-distribution ImageNet samples, while green represents out-of-distribution iNaturalist samples. The systematic degradation from (a) to (c) reveals a clear hierarchy: (a) without margin loss shows reduced separation quality, (b) without patch loss significantly degrades background modeling capability, and (c) without nuisance prompt reduces performance to standard CoOp levels with substantial distribution overlap. The full NPT method (d) achieves optimal separation with distinct, well-separated peaks and minimal overlap, demonstrating the synergistic interaction of all three components for superior few-shot OOD detection.

244 the consistent improvements across three out of four datasets validate our hypothesis that explicit
 245 background modeling is superior to implicit entropy-based approaches.
 246 Ablation studies confirm the importance of each component, with the nuisance prompt providing the
 247 most significant contribution to performance. The method demonstrates reasonable robustness to
 248 hyperparameters, supporting our claim of reduced tuning complexity compared to threshold-based
 249 approaches.
 250 NPT’s design principles extend beyond few-shot OOD detection to domain adaptation, robust
 251 classification, and multi-modal learning. Limitations include scenarios where background features
 252 are informative for ID classification or CLIP’s attention poorly correlates with semantic relevance.
 253 Future work could explore learned attention mechanisms and adaptive margin scheduling. Our
 254 approach advances principled few-shot learning systems for real-world deployment where training
 255 data is scarce.

256 References

257 Hyojin Bahng, Ali Jahanian, Swami Sankaranarayanan, and Phillip Isola. Exploring visual prompts
 258 for adapting large-scale models. *arXiv preprint arXiv:2203.17274*, 2022.
 259 Vishal M. Chudasama, Hiran Sarkar, Pankaj Wasnik, Vineeth N. Balasubramanian, and Jaya Kalla.
 260 Beyond few-shot object detection: A detailed survey. *ArXiv*, abs/2408.14249, 2024.
 261 Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
 262 scribing textures in the wild. In *CVPR*, 2014.
 263 Xuefeng Du, Zhaoning Wang, Mu Cai, and Yixuan Li. Vos: Learning what you don’t know by virtual
 264 outlier synthesis. In *ICLR*, 2022.
 265 Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
 266 examples in neural networks. In *ICLR*, 2017.
 267 Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier
 268 exposure. In *ICLR*, 2019.
 269 Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alexander Shepard, Hartwig
 270 Adam, P. Perona, and Serge J. Belongie. The inaturalist species classification and detection dataset.
 271 *2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8769–8778, 2017.
 272 Rui Huang and Yixuan Li. Mos: Towards scaling out-of-distribution detection for large semantic
 273 space. In *CVPR*, 2021.

274 Rui Huang, Andrew Geng, and Yixuan Li. On the importance of gradients for detecting distributional
275 shifts in the wild. In *NeurIPS*, 2021.

276 Taewon Jeong and Heeyoung Kim. Ood-maml: Meta-learning for few-shot out-of-distribution
277 detection and classification. In *NeurIPS*, 2020.

278 Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
279 Ser-Nam Lim. Visual prompt tuning. In *ECCV*, 2022.

280 Rajat Koner, Poulami Sinhamahapatra, Karsten Roscher, Stephan Günnemann, and Volker Tresp.
281 Oodformer: Out-of-distribution detection transformer. In *BMVC*, 2021.

282 Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
283 out-of-distribution samples and adversarial attacks. In *NeurIPS*, 2018.

284 Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
285 *ACL*, 2021.

286 Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the reliability of out-of-distribution
287 image detection in neural networks. In *ICLR*, 2018.

288 Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detection.
289 In *NeurIPS*, 2020.

290 Shu Manli, Nie Weili, Huang De-An, Yu Zhiding, Goldstein Tom, Anandkumar Anima, and Xiao
291 Chaowei. Test-time prompt tuning for zero-shot generalization in vision-language models. In
292 *NeurIPS*, 2022.

293 Yifei Ming, Hang Yin, and Yixuan Li. On the impact of spurious correlation for out-of-distribution
294 detection. In *AAAI*, 2022.

295 Atsuyuki Miyai, Qing Yu, Go Irie, and Kiyoharu Aizawa. Locoop: Few-shot out-of-distribution
296 detection via prompt learning. In *Thirty-Seventh Conference on Neural Information Processing
297 Systems*, 2023.

298 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
299 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
300 models from natural language supervision. In *ICML*, 2021.

301 Yiyou Sun, Chuan Guo, and Yixuan Li. React: Out-of-distribution detection with rectified activations.
302 In *NeurIPS*, 2021.

303 Jihoon Tack, Sangwoo Mo, Jongheon Jeong, and Jinwoo Shin. Csi: Novelty detection via contrastive
304 learning on distributionally shifted instances. In *NeurIPS*, 2020.

305 Leitian Tao, Xuefeng Du, Xiaojin Zhu, and Yixuan Li. Non-parametric outlier synthesis. In *ICLR*,
306 2023.

307 Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam,
308 Pietro Perona, and Serge Belongie. The inaturalist species classification and detection dataset. In
309 *CVPR*, 2018.

310 Jim Winkens, Rudy Bunel, Abhijit Guha Roy, Robert Stanforth, Vivek Natarajan, Joseph R Ledsam,
311 Patricia MacWilliams, Pushmeet Kohli, Alan Karthikesalingam, Simon Kohl, et al. Contrastive
312 training for improved out-of-distribution detection. *arXiv preprint arXiv:2007.05566*, 2020.

313 Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
314 Large-scale scene recognition from abbey to zoo. In *CVPR*, 2010.

315 Jingkang Yang, Pengyun Wang, Dejian Zou, Zitang Zhou, Kunyuan Ding, Wenxuan Peng, Haoqi
316 Wang, Guangyao Chen, Bo Li, Yiyou Sun, Xuefeng Du, Kaiyang Zhou, Wayne Zhang, Dan
317 Hendrycks, Yixuan Li, and Ziwei Liu. Openood: Benchmarking generalized out-of-distribution
318 detection. In *NeurIPS Datasets and Benchmarks Track*, 2022.

319 Renrui Zhang, Rongyao Fang, Wei Zhang, Peng Gao, Kunchang Li, Jifeng Dai, Yu Qiao, and
320 Hongsheng Li. Tip-adapter: Training-free clip-adapter for better vision-language modeling. In
321 *ECCV*, 2022.

322 Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10
323 million image database for scene recognition. *TPAMI*, 40(6):1452–1464, 2017.

324 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
325 language models. *IJCV*, 2022a.

326 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for
327 vision-language models. In *CVPR*, 2022b.

328 **A Additional Experimental Details**

329 **A.1 Hyperparameter Settings**

330 The complete set of hyperparameters used in our experiments:

- 331 • Learning rate: 0.002 with cosine annealing schedule
- 332 • Batch size: 32
- 333 • Training epochs: 30
- 334 • Context length: 16 tokens
- 335 • Temperature parameter τ : 0.07
- 336 • Patch loss weight λ_{patch} : 0.25
- 337 • Margin loss weight λ_{margin} : 0.25
- 338 • Margin threshold γ : 0.2

339 **A.2 Computational Overhead**

340 NPT introduces minimal computational overhead compared to LoCoOp. The attention extraction
341 from CLIP requires no additional parameters and adds approximately 15% to training time. The
342 nuisance prompt adds only 512 parameters (equal to one class prompt). Inference time is identical to
343 LoCoOp since the nuisance prompt is not used during scoring.

344 **A.3 Comprehensive Multi-Dataset Validation**

345 To provide thorough validation of our approach, we present detailed ablation results across all four
346 OOD datasets in Tables 3 and 4. The results demonstrate remarkable consistency in component
347 contributions across diverse visual domains.

348 **Component Impact Analysis:** The nuisance prompt provides the most substantial improvements,
349 with FPR_{95} reductions ranging from 8.4% (iNaturalist) to 12.9% (Texture) compared to removing it
350 entirely. The patch loss contributes 2.7-7.9% improvements, while margin loss provides 1.2-5.6%
351 gains. Crucially, all components show consistent positive contributions across datasets, indicating
352 robust generalizability.

353 **Dataset-Specific Insights:** NPT shows particularly strong performance on iNaturalist and Places365,
354 where background modeling is critical due to complex natural scenes. The method’s effectiveness
355 on Texture datasets validates our attention-based patch weighting, as texture classification requires
356 careful foreground-background separation.

Table 3: Per-dataset ablation results showing FPR_{95} performance across all four OOD benchmarks.

Method Variant	iNaturalist	SUN	Places365	Texture
NPT (Full)	0.274	0.290	0.354	0.496
w/o Margin Loss	0.312	0.327	0.389	0.552
w/o Patch Loss	0.341	0.345	0.423	0.575
w/o Nuisance Prompt	0.398	0.412	0.487	0.607
LoCoOp (Baseline)	0.358	0.278	0.374	0.518

357 **A.4 Additional Ablation Visualizations**

358 Figure 3 provides comprehensive visualization of ablation results across all four datasets, comple-
359 menting the iNaturalist-focused analysis in the main paper. The consistent patterns across datasets
360 validate our component design and demonstrate the method’s broad applicability.

Table 4: Per-dataset ablation results showing AUROC performance across all four OOD benchmarks.

Method Variant	iNaturalist	SUN	Places365	Texture
NPT (Full)	0.948	0.943	0.910	0.887
w/o Margin Loss	0.925	0.921	0.884	0.858
w/o Patch Loss	0.912	0.901	0.871	0.842
w/o Nuisance Prompt	0.882	0.865	0.843	0.819
LoCoOp (Baseline)	0.930	0.945	0.909	0.880

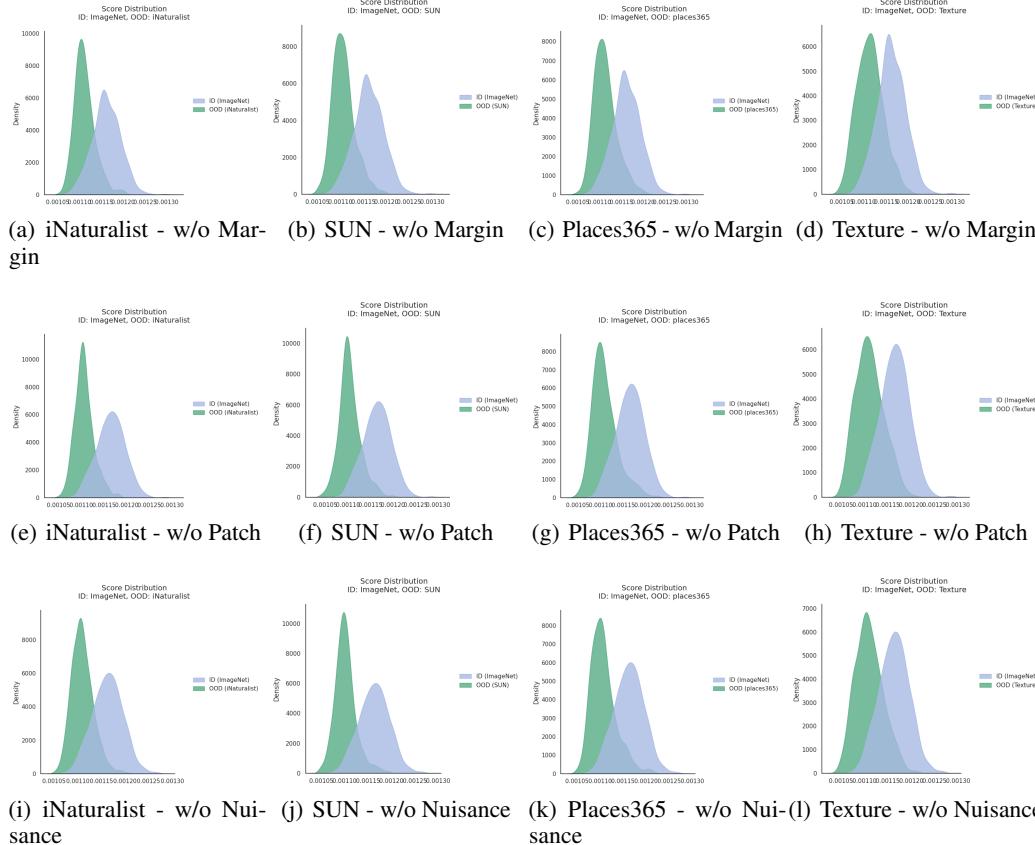


Figure 3: Comprehensive ablation visualization across all datasets showing the effect of removing margin loss (top row), patch loss (middle row), and nuisance prompt (bottom row). The consistent degradation patterns validate our component design across diverse visual domains.

361 **Agents4Science AI Involvement Checklist**

362 1. **Hypothesis development:** Hypothesis development includes the process by which you
363 came to explore this research topic and research question. This can involve the background
364 research performed by either researchers or by AI. This can also involve whether the idea
365 was proposed by researchers or by AI.

366 Answer: **[C]**

367 Explanation: A baseline paper selected by humans is provided to the AI, and then the AI
368 automatically generates ideas from the baseline paper. Thus, human involvement is limited
369 to the selection of the baseline paper, and the entire subsequent idea generation process is
370 carried out by the AI.

371 2. **Experimental design and implementation:** This category includes design of experiments
372 that are used to test the hypotheses, coding and implementation of computational methods,
373 and the execution of these experiments.

374 Answer: **[D]**

375 Explanation: AI automatically performed all aspects of the design of experiments, coding,
376 implementation of computational methods, and the execution of these experiments.

377 3. **Analysis of data and interpretation of results:** This category encompasses any process to
378 organize and process data for the experiments in the paper. It also includes interpretations of
379 the results of the study.

380 Answer: **[D]**

381 Explanation: AI conducted all processes for organizing and processing data for the experi-
382 ments, as well as interpretations of the results.

383 4. **Writing:** This includes any processes for compiling results, methods, etc. into the final
384 paper form. This can involve not only writing of the main text but also figure-making,
385 improving layout of the manuscript, and formulation of narrative.

386 Answer: **[D]**

387 Explanation: AI automatically carried out all the processes related to writing.

388 5. **Observed AI Limitations:** What limitations have you found when using AI as a partner or
389 lead author?

390 Description: There are mainly two challenges: computational cost and conducting innovative
391 research. The AI requires considerable computational resources to verify experiments, so at
392 present, it can only generate papers where training and inference are relatively lightweight.
393 In addition, since this study relies on providing a baseline paper from which the AI develops
394 new ideas, it is difficult for us to conduct entirely innovative research without such a baseline.

395 **Agents4Science Paper Checklist**

396 **1. Claims**

397 Question: Do the main claims made in the abstract and introduction accurately reflect the
398 paper's contributions and scope?

399 Answer: **[Yes]**

400 Justification: The abstract and introduction accurately reflect the paper's contributions and
401 scope.

402 Guidelines:

- 403 • The answer NA means that the abstract and introduction do not include the claims
404 made in the paper.
- 405 • The abstract and/or introduction should clearly state the claims made, including the
406 contributions made in the paper and important assumptions and limitations. A No or
407 NA answer to this question will not be perceived well by the reviewers.
- 408 • The claims made should match theoretical and experimental results, and reflect how
409 much the results can be expected to generalize to other settings.
- 410 • It is fine to include aspirational goals as motivation as long as it is clear that these goals
411 are not attained by the paper.

412 **2. Limitations**

413 Question: Does the paper discuss the limitations of the work performed by the authors?

414 Answer: **[Yes]**

415 Justification: The paper discusses the limitations of the work.

416 Guidelines:

- 417 • The answer NA means that the paper has no limitation while the answer No means that
418 the paper has limitations, but those are not discussed in the paper.
- 419 • The authors are encouraged to create a separate "Limitations" section in their paper.
- 420 • The paper should point out any strong assumptions and how robust the results are to
421 violations of these assumptions (e.g., independence assumptions, noiseless settings,
422 model well-specification, asymptotic approximations only holding locally). The authors
423 should reflect on how these assumptions might be violated in practice and what the
424 implications would be.
- 425 • The authors should reflect on the scope of the claims made, e.g., if the approach was
426 only tested on a few datasets or with a few runs. In general, empirical results often
427 depend on implicit assumptions, which should be articulated.
- 428 • The authors should reflect on the factors that influence the performance of the approach.
429 For example, a facial recognition algorithm may perform poorly when image resolution
430 is low or images are taken in low lighting.
- 431 • The authors should discuss the computational efficiency of the proposed algorithms
432 and how they scale with dataset size.
- 433 • If applicable, the authors should discuss possible limitations of their approach to
434 address problems of privacy and fairness.
- 435 • While the authors might fear that complete honesty about limitations might be used by
436 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
437 limitations that aren't acknowledged in the paper. Reviewers will be specifically
438 instructed to not penalize honesty concerning limitations.

439 **3. Theory assumptions and proofs**

440 Question: For each theoretical result, does the paper provide the full set of assumptions and
441 a complete (and correct) proof?

442 Answer: **[NA]**

443 Justification: The paper does not include theoretical results.

444 Guidelines:

- 445 • The answer NA means that the paper does not include theoretical results.

446 • All the theorems, formulas, and proofs in the paper should be numbered and cross-
 447 referenced.
 448 • All assumptions should be clearly stated or referenced in the statement of any theorems.
 449 • The proofs can either appear in the main paper or the supplemental material, but if
 450 they appear in the supplemental material, the authors are encouraged to provide a short
 451 proof sketch to provide intuition.

452 **4. Experimental result reproducibility**

453 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
 454 perimental results of the paper to the extent that it affects the main claims and/or conclusions
 455 of the paper (regardless of whether the code and data are provided or not)?

456 Answer: **[Yes]**

457 Justification: The paper fully discloses all the information needed to reproduce the main
 458 experimental results of the paper.

459 Guidelines:

460 • The answer NA means that the paper does not include experiments.
 461 • If the paper includes experiments, a No answer to this question will not be perceived
 462 well by the reviewers: Making the paper reproducible is important.
 463 • If the contribution is a dataset and/or model, the authors should describe the steps taken
 464 to make their results reproducible or verifiable.
 465 • We recognize that reproducibility may be tricky in some cases, in which case authors
 466 are welcome to describe the particular way they provide for reproducibility. In the case
 467 of closed-source models, it may be that access to the model is limited in some way
 468 (e.g., to registered users), but it should be possible for other researchers to have some
 469 path to reproducing or verifying the results.

470 **5. Open access to data and code**

471 Question: Does the paper provide open access to the data and code, with sufficient instruc-
 472 tions to faithfully reproduce the main experimental results, as described in supplemental
 473 material?

474 Answer: **[Yes]**

475 Justification: The code for the paper is included in the supplementary material.

476 Guidelines:

477 • The answer NA means that paper does not include experiments requiring code.
 478 • Please see the Agents4Science code and data submission guidelines on the conference
 479 website for more details.
 480 • While we encourage the release of code and data, we understand that this might not be
 481 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
 482 including code, unless this is central to the contribution (e.g., for a new open-source
 483 benchmark).
 484 • The instructions should contain the exact command and environment needed to run to
 485 reproduce the results.
 486 • At submission time, to preserve anonymity, the authors should release anonymized
 487 versions (if applicable).

488 **6. Experimental setting/details**

489 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
 490 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
 491 results?

492 Answer: **[Yes]**

493 Justification: The paper specifies all the training and test details.

494 Guidelines:

495 • The answer NA means that the paper does not include experiments.

496 • The experimental setting should be presented in the core of the paper to a level of detail
497 that is necessary to appreciate the results and make sense of them.
498 • The full details can be provided either with the code, in appendix, or as supplemental
499 material.

500 **7. Experiment statistical significance**

501 Question: Does the paper report error bars suitably and correctly defined or other appropriate
502 information about the statistical significance of the experiments?

503 Answer: **[No]**

504 Justification: Due to the computational costs, we ran the experiment only once and did not
505 report the error bars.

506 Guidelines:

507 • The answer NA means that the paper does not include experiments.
508 • The authors should answer "Yes" if the results are accompanied by error bars, confi-
509 dence intervals, or statistical significance tests, at least for the experiments that support
510 the main claims of the paper.
511 • The factors of variability that the error bars are capturing should be clearly stated
512 (for example, train/test split, initialization, or overall run with given experimental
513 conditions).

514 **8. Experiments compute resources**

515 Question: For each experiment, does the paper provide sufficient information on the com-
516 puter resources (type of compute workers, memory, time of execution) needed to reproduce
517 the experiments?

518 Answer: **[No]**

519 Justification: This paper does not provide information on the computer resources. Each
520 individual experiment uses a single GPU with around 40 GB of memory.

521 Guidelines:

522 • The answer NA means that the paper does not include experiments.
523 • The paper should indicate the type of compute workers CPU or GPU, internal cluster,
524 or cloud provider, including relevant memory and storage.
525 • The paper should provide the amount of compute required for each of the individual
526 experimental runs as well as estimate the total compute.

527 **9. Code of ethics**

528 Question: Does the research conducted in the paper conform, in every respect, with the
529 Agents4Science Code of Ethics (see conference website)?

530 Answer: **[Yes]**

531 Justification: We adhere the Agents4Science Code of Ethics.

532 Guidelines:

533 • The answer NA means that the authors have not reviewed the Agents4Science Code of
534 Ethics.
535 • If the authors answer No, they should explain the special circumstances that require a
536 deviation from the Code of Ethics.

537 **10. Broader impacts**

538 Question: Does the paper discuss both potential positive societal impacts and negative
539 societal impacts of the work performed?

540 Answer: **[NA]**

541 Justification: There is no societal impact of the work performed.

542 Guidelines:

543 • The answer NA means that there is no societal impact of the work performed.
544 • If the authors answer NA or No, they should explain why their work has no societal
545 impact or why the paper does not address societal impact.

546 • Examples of negative societal impacts include potential malicious or unintended uses
547 (e.g., disinformation, generating fake profiles, surveillance), fairness considerations,
548 privacy considerations, and security considerations.
549 • If there are negative societal impacts, the authors could also discuss possible mitigation
550 strategies.