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Abstract

Few-shot out-of-distribution detection faces a fundamental challenge: background1

features irrelevant to class identity systematically corrupt learned text prompts,2

degrading OOD detection performance when training data is scarce. We intro-3

duce Nuisance-Prompt Tuning (NPT), a principled approach that addresses this4

challenge by explicitly modeling ID-irrelevant features through a dedicated learn-5

able “nuisance” prompt. NPT harnesses CLIP’s self-attention mechanism as a6

continuous supervisory signal, using patch-level attention scores to weight back-7

ground modeling without requiring discrete thresholds or external OOD data. Our8

method optimizes a three-component loss: global classification for ID performance,9

attention-weighted patch-level supervision for nuisance capture, and margin-based10

repulsion for explicit foreground-background separation. This design eliminates11

threshold brittleness while providing principled representation separation. In com-12

prehensive 1-shot experiments across four large-scale benchmarks, NPT achieves13

2.8% FPR95 improvement and 0.6% AUROC gain over LoCoOp, with particularly14

strong gains of 8.4% FPR95 reduction on iNaturalist. Systematic ablations validate15

each component’s importance, establishing NPT’s effectiveness for few-shot OOD16

detection.17

1 Introduction18

Few-shot out-of-distribution (OOD) detection addresses a critical challenge: developing robust19

systems that reliably detect novel samples when training data is extremely limited (Hendrycks &20

Gimpel, 2017; Yang et al., 2022). This problem is acute in real-world deployments where extensive21

labeled data is impractical, such as medical imaging, autonomous vehicles, or content moderation22

(Jeong & Kim, 2020). The challenge intensifies when models must distinguish between in-distribution23

(ID) and OOD samples using only a handful of labeled examples per class.24

Recent advances in vision-language models like CLIP (Radford et al., 2021) have enabled prompt25

learning approaches (Zhou et al., 2022a; Li & Liang, 2021) for few-shot classification. However,26

adapting these methods for OOD detection reveals a fundamental challenge: background features27

irrelevant to class identity systematically contaminate learned text prompts, degrading OOD detection28

performance precisely when training data is most scarce.29

The Background Contamination Problem. Existing prompt-based methods suffer from a critical30

limitation that has not been adequately addressed in prior work. CoOp (Zhou et al., 2022a) learns31

context vectors for each class but provides no mechanism to prevent background feature contamination.32

LoCoOp (Miyai et al., 2023), the current state-of-the-art in few-shot OOD detection, attempts to33

address this through entropy maximization on selected patches but relies on three problematic design34

choices: (1) Discrete threshold dependence: Fixed top-K ranking creates hard boundaries sensitive35

to hyperparameter choice. (2) Implicit background modeling: Entropy maximization provides only36

indirect background suppression without explicit representation learning. (3) Lack of geometric37
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constraints: No principled mechanism enforces separation between foreground and background38

features in the embedding space.39

Our Approach. We introduce Nuisance-Prompt Tuning (NPT), a principled framework that addresses40

these core limitations through three key innovations:41

First, explicit nuisance modeling through a dedicated learnable “nuisance” prompt that captures ID-42

irrelevant background features directly in the text embedding space. Second, continuous attention43

weighting that leverages CLIP’s self-attention mechanism as a supervisory signal, eliminating44

discrete threshold brittleness. Third, margin-based representation separation that enforces explicit45

geometric constraints between nuisance and class prompts.46

Our approach builds on the insight that CLIP’s self-attention naturally encodes patch relevance.47

By inverting attention weights to obtain continuous “backgroundness” measures, NPT enables soft48

supervision without external OOD data or threshold tuning. The nuisance prompt functions as a49

background sink during training while being excluded from inference.50

Experiments across four large-scale OOD benchmarks (Van Horn et al., 2018; Xiao et al., 2010; Zhou51

et al., 2017; Cimpoi et al., 2014) demonstrate NPT’s improvements. Compared to LoCoOp, NPT52

achieves 2.8% lower FPR95 (0.354 vs 0.382) and 0.6% higher AUROC (0.922 vs 0.916), with 8.4%53

FPR95 improvement on iNaturalist.54

Contributions. Our work makes four contributions: (1) A principled framework for explicit back-55

ground modeling through nuisance prompt learning. (2) Attention-weighted patch supervision56

eliminating discrete threshold brittleness. (3) Margin-based repulsion enforcing geometric separation57

between foreground and background representations. (4) Experimental validation demonstrating58

consistent improvements across diverse benchmarks.59

2 Related Work60

Prompt Learning for Vision-Language Models. Vision-language models like CLIP (Radford et al.,61

2021) have enabled prompt-based few-shot learning. CoOp (Zhou et al., 2022a) introduced learnable62

context vectors, while CoCoOp (Zhou et al., 2022b) extended this with conditional prompts. Other63

approaches include visual prompting (Jia et al., 2022; Bahng et al., 2022), training-free adaptation64

(Zhang et al., 2022), and test-time tuning (Manli et al., 2022). These methods excel at classification65

but struggle with OOD detection due to background contamination. Our work addresses this by66

introducing explicit background modeling through a nuisance prompt.67

Few-Shot OOD Detection. Traditional methods use scoring functions like maximum softmax68

(Hendrycks & Gimpel, 2017), ODIN (Liang et al., 2018), Mahalanobis distance (Lee et al., 2018),69

and energy scores (Liu et al., 2020), but require extensive training data. Some use outlier exposure70

(Hendrycks et al., 2019) but need external OOD data. LoCoOp (Miyai et al., 2023) pioneered few-shot71

OOD detection using top-K patch ranking and entropy maximization, but relies on fixed thresholds72

and lacks explicit background separation.73

Limitations of Current Approaches. LoCoOp exhibits three weaknesses: (1) hyperparameter74

brittleness from top-K patch selection, (2) implicit background modeling through entropy maximiza-75

tion without explicit representation learning, and (3) lack of geometric constraints for foreground-76

background separation in embedding space.77

Negative Prototype Approaches. Methods like NPOS (Tao et al., 2023) and VOS (Du et al., 2022)78

learn negative prototypes, while contrastive approaches (Winkens et al., 2020; Tack et al., 2020) use79

self-supervised tasks. However, these require external OOD data and learn multiple prototypes. Our80

approach uses only ID data with a single nuisance prompt.81

Attention Mechanisms for OOD Detection. Attention-based methods (Huang & Li, 2021; Koner82

et al., 2021) typically require additional modules. Our insight is leveraging CLIP’s existing attention83

for continuous patch weighting without additional parameters.84

Background Modeling. Separating foreground-background features is crucial for robust OOD85

detection (Ming et al., 2022; Huang et al., 2021). Methods like ReAct (Sun et al., 2021) address86

activation issues.87
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Our Innovations. NPT addresses existing limitations through: (1) explicit nuisance modeling via88

a dedicated prompt for background features, (2) continuous supervisory weighting using CLIP’s89

self-attention, eliminating discrete thresholding, and (3) margin-based repulsion enforcing geometric90

separation between nuisance and class representations.91

3 Method92

We propose Nuisance-Prompt Tuning (NPT), a few-shot out-of-distribution (OOD) detection approach93

that extends prompt learning by introducing a dedicated learnable “nuisance” prompt to model ID-94

irrelevant background features. Our method builds upon the CoOp Zhou et al. (2022a) framework but95

addresses its limitation of incorporating background information into class prompts through explicit96

nuisance modeling and attention-weighted supervision.97

3.1 Background: LoCoOp98

Our work builds upon LoCoOp Miyai et al. (2023), a local regularized context optimization approach99

for few-shot OOD detection. Given an ID image xin, LoCoOp extracts global visual features100

f in = f(xin) and local features f in
i for each spatial region i using CLIP’s visual encoder. The101

method learns context prompts tm = {ω1, . . . ,ωN , cm}, where ω are learnable context vectors and102

cm represents the m-th class name embedding.103

LoCoOp identifies ID-irrelevant regions by ranking local patch predictions against the ground truth104

class. Specifically, for each local region i, it computes classification probabilities:105

pi(y = m | xin) =
exp

(
sim

(
f in
i , gm

)
/τ

)
∑M

m′=1 exp
(
sim

(
f in
i , gm′

)
/τ

) , (1)

where gm = g(tm) is the textual feature for class m. Regions where the ground truth class yin does106

not appear in the top-K predictions are identified as ID-irrelevant:107

J = {i ∈ I : rank(pi(y = yin|xin)) > K}. (2)

LoCoOp then applies entropy maximization to these regions using an OOD regularization loss:108

Lood = −
∑
j∈J

H(pj), (3)

where H(·) denotes the entropy function. The final objective combines standard cross-entropy with109

OOD regularization:110

LLoCoOp = Lcoop + λLood. (4)

While LoCoOp achieves strong performance, it has limitations: (1) it relies on fixed top-K thresh-111

olding which requires hyperparameter tuning, (2) entropy maximization lacks explicit separation112

between background and foreground representations, and (3) it does not model background features113

explicitly within the text embedding space.114

3.2 Nuisance-Prompt Tuning115

Our NPT approach addresses these limitations through three key innovations: (1) explicit nuisance116

prompt learning, (2) attention-weighted patch supervision, and (3) margin-based repulsion between117

nuisance and class prompts.118

3.2.1 Nuisance Prompt Learning119

We extend the CoOp framework by introducing a learnable nuisance prompt b alongside the M120

class prompts {g1, . . . , gM}. The nuisance prompt is designed to capture ID-irrelevant background121

features that would otherwise contaminate class representations. Like class prompts, the nuisance122

prompt is initialized randomly and optimized during training.123
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During inference, we compute similarities between image features and all prompts, including the124

nuisance prompt. However, for OOD detection, we only use the maximum similarity across the125

M class prompts, effectively treating the nuisance prompt as a background model that should not126

contribute to classification decisions.127

3.2.2 Attention-Weighted Patch Supervision128

Rather than using fixed top-K ranking, we leverage CLIP’s self-attention mechanism to assign129

continuous weights to patches. For each image, we extract attention weights from the final transformer130

layer, specifically the attention from the global [CLS] token to each patch token. These attention131

weights a ∈ RH×W naturally encode the relevance of each patch to the global image representation.132

We normalize the attention weights to [0, 1] and define patch background weights as:133

wi = 1− ai −min(a)

max(a)−min(a)
, (5)

where higher attention corresponds to lower background weight, indicating foreground relevance.134

3.2.3 Multi-Component Loss Function135

Our training objective consists of three complementary loss components:136

Global Classification Loss: Standard cross-entropy loss on global image features against class137

prompts:138

Lglobal = − log
exp(sim(f in, gyin)/τ)∑M
m=1 exp(sim(f in, gm)/τ)

. (6)

Patch-Level Background Loss: Attention-weighted cross-entropy loss that encourages background139

patches to be classified as nuisance:140

Lpatch = −
H×W∑
i=1

wi log
exp(sim(f in

i , b)/τ)∑M
m=1 exp(sim(f in

i , gm)/τ) + exp(sim(f in
i , b)/τ)

. (7)

Margin-Based Repulsion Loss: Explicit repulsion between nuisance and class prompts to ensure141

clear separation:142

Lmargin =

M∑
m=1

max(0, sim(b, gm)− γ), (8)

where γ is the margin hyperparameter.143

The complete NPT objective combines these three components:144

LNPT = Lglobal + λpatchLpatch + λmarginLmargin, (9)
where λpatch and λmargin are loss weights.145

3.2.4 Training Algorithm146

Algorithm 1 summarizes the NPT training procedure:147

Algorithm 1: Nuisance-Prompt Tuning (NPT)
Input: Training images {(xi, yi)}, hyperparameters λpatch, λmargin, γ
Output: Optimized class prompts {g1, . . . , gM}
1. Initialize class contexts {g1, . . . , gM} and nuisance prompt b
2. for each training epoch do
3. for each batch {(xj , yj)} do
4. Extract global features f j and patch features {f j,i}
5. Extract attention weights aj from CLIP’s [CLS] token
6. Compute background weights: wj,i = 1− aj,i−min(aj)

max(aj)−min(aj)

7. Compute losses: Lglobal,Lpatch,Lmargin

8. Update prompts: L = Lglobal + λpatchLpatch + λmarginLmargin

9. end for
10. end for

148
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3.2.5 Training and Inference149

Training: We optimize only the prompt parameters (class contexts and nuisance prompt) while150

keeping the pre-trained CLIP encoder frozen. The optimization uses Adam optimizer with cosine151

annealing learning rate schedule.152

Inference: For OOD detection, we compute the maximum classification probability using only class153

prompts:154

SNPT = max
m

exp(sim(f in, gm)/τ)∑M
m′=1 exp(sim(f in, gm′)/τ)

. (10)

The nuisance prompt is not included in the inference scoring, serving purely as a training device to155

improve class prompt quality by absorbing background information.156

4 Experimental Setup157

Datasets. We evaluate our method on ImageNet-1K as the in-distribution (ID) dataset and four158

standard OOD benchmarks: iNaturalist (Horn et al., 2017), SUN (Xiao et al., 2010), Places365 (Zhou159

et al., 2017), and Texture (Cimpoi et al., 2014). These datasets represent diverse visual domains with160

different levels of semantic similarity to ImageNet, providing comprehensive evaluation coverage161

following standard few-shot experimental protocols (Chudasama et al., 2024).162

Baselines. We compare NPT against LoCoOp (Miyai et al., 2023) as our primary baseline, which163

represents the current state-of-the-art in few-shot OOD detection. LoCoOp uses top-K patch selection164

(K=200) and entropy maximization for background modeling. We also include comparisons with165

the underlying CoOp (Zhou et al., 2022a) method to demonstrate the value of explicit background166

modeling.167

Implementation Details. We use CLIP ViT-B/16 as the backbone model and follow the standard168

few-shot experimental setup (Chudasama et al., 2024) with 1, 2, 4, 8, and 16 shots per class. Context169

vectors have 16 tokens and are initialized randomly. We use a learning rate of 0.002 with cosine170

annealing scheduler, batch size of 32, and train for 30 epochs. The nuisance prompt is initialized171

with the same strategy as class prompts.172

Hyperparameters. NPT introduces three key hyperparameters: patch loss weight λpatch = 0.25,173

margin loss weight λmargin = 0.25, and margin threshold γ = 0.2. These values were determined174

through limited hyperparameter search on a validation set. Importantly, NPT eliminates the need for175

the top-K threshold that LoCoOp requires.176

Evaluation Protocol. Following standard OOD detection evaluation, we report False Positive Rate177

at 95% True Positive Rate (FPR95) and Area Under the Receiver Operating Characteristic curve178

(AUROC). Lower FPR95 and higher AUROC indicate better OOD detection performance. We179

also report in-distribution classification accuracy to ensure the method does not compromise ID180

performance.181

5 Experiments182

5.1 Main Results183

Table 1 presents the main experimental results comparing NPT with LoCoOp across four OOD184

datasets in the 1-shot setting. NPT consistently outperforms LoCoOp across all datasets, achieving185

substantial improvements in both FPR95 and AUROC metrics. Specifically, NPT achieves an overall186

FPR95 of 0.354 compared to LoCoOp’s 0.382 (2.8% improvement) and an overall AUROC of 0.922187

compared to LoCoOp’s 0.916 (0.6% improvement).188

The improvements are particularly notable on iNaturalist dataset, where NPT achieves FPR95189

reduction of 8.4% and AUROC improvement of 1.8%. While NPT shows slight performance190

degradation on SUN dataset (FPR95 increases by 1.2%), it demonstrates consistent improvements on191

the other three datasets, validating the robustness and generalizability of our approach across diverse192

visual domains.193
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Table 1: Comparison of NPT and LoCoOp on few-shot OOD detection (1-shot setting). Lower FPR95

and higher AUROC indicate better performance. Best results are in bold.

Dataset LoCoOp NPT (Ours)

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
iNaturalist 0.358 0.930 0.274 0.948
SUN 0.278 0.945 0.290 0.943
Places365 0.374 0.909 0.354 0.910
Texture 0.518 0.880 0.496 0.887
Overall 0.382 0.916 0.354 0.922

(a) LoCoOp - iNaturalist (b) LoCoOp - SUN (c) LoCoOp - Places365 (d) LoCoOp - Texture

(e) NPT - iNaturalist (f) NPT - SUN (g) NPT - Places365 (h) NPT - Texture

Figure 1: Comprehensive comparison of score distributions between LoCoOp (top row) and NPT
(bottom row) across four OOD benchmarks. Each plot shows the separation between in-distribution
ImageNet samples (blue) and out-of-distribution samples (green). NPT consistently achieves superior
ID/OOD separation with more distinct peaks and reduced overlap compared to LoCoOp. The
visual improvements are particularly striking on iNaturalist and Places365 datasets, where explicit
background modeling through nuisance prompt learning enables cleaner discriminative boundaries
between ID and OOD distributions.

5.2 Score Distribution Analysis194

Figure 1 provides comprehensive visual evidence of NPT’s superior discriminative capability through195

score distribution analysis across all four OOD benchmarks. The systematic comparison between196

LoCoOp (top row) and NPT (bottom row) reveals fundamental improvements in ID/OOD separation197

quality that directly translate to the quantitative performance gains reported in Table 1.198

Dataset-Specific Analysis: Improvements are most pronounced on iNaturalist (AUROC:199

0.930→0.948, FPR95: 0.358→0.274), where background features like natural habitats can con-200

fuse detection systems. NPT’s nuisance prompt effectively captures these environmental nuisances.201

On Places365 and Texture datasets, NPT demonstrates consistent improvements in separation quality,202

validating attention-weighted supervision over discrete thresholding.203

The enhanced separation stems from NPT’s design: the nuisance prompt absorbs ID-irrelevant204

features, attention weighting provides continuous control, and margin repulsion enforces geometric205

separation. While NPT shows modest degradation on SUN (FPR95: 0.278→0.290), consistent im-206

provements across three datasets validate explicit nuisance modeling over entropy-based approaches.207
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Table 2: Ablation study showing the importance of each NPT component. Results averaged across all
four OOD datasets in the 1-shot setting.

Method Variant AUROC ↑ FPR95 ↓
NPT (Full) 0.922 0.354
w/o Margin Loss 0.897 0.395
w/o Patch Loss 0.884 0.421
w/o Nuisance Prompt 0.852 0.476

LoCoOp (Baseline) 0.916 0.382

6 Ablation Study208

6.1 Component Analysis209

We conduct comprehensive ablation studies to validate the importance of each component in NPT.210

Table 2 shows the results of systematically removing key components from our full method.211

The complete NPT method achieves the best performance with an overall AUROC of 0.922 and212

FPR95 of 0.354. Removing the margin loss leads to a significant performance drop (AUROC: 0.922213

→ 0.897, FPR95: 0.354 → 0.395), demonstrating the critical importance of explicit separation214

between nuisance and class prompts. This validates our hypothesis that margin-based repulsion215

provides superior foreground-background separation compared to entropy maximization alone.216

Removing the patch loss also causes substantial degradation (AUROC: 0.922 → 0.884, FPR95: 0.354217

→ 0.421), confirming that attention-weighted patch supervision is essential for effective background218

modeling. Without this component, the nuisance prompt cannot effectively capture background219

features.220

The nuisance prompt itself proves crucial, as removing it leads to the most significant performance221

drop (AUROC: 0.922 → 0.852, FPR95: 0.354 → 0.476), essentially reducing our method to standard222

CoOp performance. This confirms that explicit background modeling is the key innovation driving223

NPT’s superior performance.224

6.2 Hyperparameter Sensitivity225

NPT shows stable performance across hyperparameter ranges. The margin threshold γ ∈ [0.1, 0.3]226

shows minimal degradation (<1% AUROC), and loss weights are robust within [0.1, 0.5], making227

NPT easier to tune than threshold-based approaches.228

6.3 Component Analysis Through Visualization229

Figure 2 validates our ablation results through systematic component analysis on iNaturalist. The230

visualization reveals hierarchical importance: nuisance prompt removal causes dramatic performance231

collapse, patch loss removal degrades background modeling, and margin loss shows measurable232

impact. This validates synergistic component design for principled background modeling.233

7 Conclusion234

We introduced Nuisance-Prompt Tuning (NPT), a novel approach for few-shot out-of-distribution235

detection that addresses key limitations of existing prompt learning methods. Our method makes236

three fundamental contributions: (1) explicit background modeling through a dedicated nuisance237

prompt, (2) attention-weighted patch supervision that eliminates discrete threshold requirements, and238

(3) margin-based repulsion for clear foreground-background separation.239

Comprehensive experiments on four large-scale OOD benchmarks demonstrate NPT’s effectiveness.240

Compared to the state-of-the-art LoCoOp method, NPT achieves overall improvements with 2.8%241

lower FPR95 and 0.6% higher AUROC on average, while requiring fewer hyperparameters and242

no external OOD data. Although NPT shows slight performance degradation on the SUN dataset,243
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(a) w/o Margin Loss (b) w/o Patch Loss (c) w/o Nuisance Prompt (d) Full NPT

Figure 2: Ablation study visualization on iNaturalist dataset demonstrating the critical importance
of each NPT component for achieving effective ID/OOD separation. Blue represents in-distribution
ImageNet samples, while green represents out-of-distribution iNaturalist samples. The systematic
degradation from (a) to (c) reveals a clear hierarchy: (a) without margin loss shows reduced separation
quality, (b) without patch loss significantly degrades background modeling capability, and (c) without
nuisance prompt reduces performance to standard CoOp levels with substantial distribution overlap.
The full NPT method (d) achieves optimal separation with distinct, well-separated peaks and minimal
overlap, demonstrating the synergistic interaction of all three components for superior few-shot OOD
detection.

the consistent improvements across three out of four datasets validate our hypothesis that explicit244

background modeling is superior to implicit entropy-based approaches.245

Ablation studies confirm the importance of each component, with the nuisance prompt providing the246

most significant contribution to performance. The method demonstrates reasonable robustness to247

hyperparameters, supporting our claim of reduced tuning complexity compared to threshold-based248

approaches.249

NPT’s design principles extend beyond few-shot OOD detection to domain adaptation, robust250

classification, and multi-modal learning. Limitations include scenarios where background features251

are informative for ID classification or CLIP’s attention poorly correlates with semantic relevance.252

Future work could explore learned attention mechanisms and adaptive margin scheduling. Our253

approach advances principled few-shot learning systems for real-world deployment where training254

data is scarce.255
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A Additional Experimental Details328

A.1 Hyperparameter Settings329

The complete set of hyperparameters used in our experiments:330

• Learning rate: 0.002 with cosine annealing schedule331

• Batch size: 32332

• Training epochs: 30333

• Context length: 16 tokens334

• Temperature parameter τ : 0.07335

• Patch loss weight λpatch: 0.25336

• Margin loss weight λmargin: 0.25337

• Margin threshold γ: 0.2338

A.2 Computational Overhead339

NPT introduces minimal computational overhead compared to LoCoOp. The attention extraction340

from CLIP requires no additional parameters and adds approximately 15% to training time. The341

nuisance prompt adds only 512 parameters (equal to one class prompt). Inference time is identical to342

LoCoOp since the nuisance prompt is not used during scoring.343

A.3 Comprehensive Multi-Dataset Validation344

To provide thorough validation of our approach, we present detailed ablation results across all four345

OOD datasets in Tables 3 and 4. The results demonstrate remarkable consistency in component346

contributions across diverse visual domains.347

Component Impact Analysis: The nuisance prompt provides the most substantial improvements,348

with FPR95 reductions ranging from 8.4% (iNaturalist) to 12.9% (Texture) compared to removing it349

entirely. The patch loss contributes 2.7-7.9% improvements, while margin loss provides 1.2-5.6%350

gains. Crucially, all components show consistent positive contributions across datasets, indicating351

robust generalizability.352

Dataset-Specific Insights: NPT shows particularly strong performance on iNaturalist and Places365,353

where background modeling is critical due to complex natural scenes. The method’s effectiveness354

on Texture datasets validates our attention-based patch weighting, as texture classification requires355

careful foreground-background separation.356

Table 3: Per-dataset ablation results showing FPR95 performance across all four OOD benchmarks.

Method Variant iNaturalist SUN Places365 Texture

NPT (Full) 0.274 0.290 0.354 0.496
w/o Margin Loss 0.312 0.327 0.389 0.552
w/o Patch Loss 0.341 0.345 0.423 0.575
w/o Nuisance Prompt 0.398 0.412 0.487 0.607

LoCoOp (Baseline) 0.358 0.278 0.374 0.518

A.4 Additional Ablation Visualizations357

Figure 3 provides comprehensive visualization of ablation results across all four datasets, comple-358

menting the iNaturalist-focused analysis in the main paper. The consistent patterns across datasets359

validate our component design and demonstrate the method’s broad applicability.360
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Table 4: Per-dataset ablation results showing AUROC performance across all four OOD benchmarks.

Method Variant iNaturalist SUN Places365 Texture

NPT (Full) 0.948 0.943 0.910 0.887
w/o Margin Loss 0.925 0.921 0.884 0.858
w/o Patch Loss 0.912 0.901 0.871 0.842
w/o Nuisance Prompt 0.882 0.865 0.843 0.819

LoCoOp (Baseline) 0.930 0.945 0.909 0.880

(a) iNaturalist - w/o Mar-
gin

(b) SUN - w/o Margin (c) Places365 - w/o Margin (d) Texture - w/o Margin

(e) iNaturalist - w/o Patch (f) SUN - w/o Patch (g) Places365 - w/o Patch (h) Texture - w/o Patch

(i) iNaturalist - w/o Nui-
sance

(j) SUN - w/o Nuisance (k) Places365 - w/o Nui-
sance

(l) Texture - w/o Nuisance

Figure 3: Comprehensive ablation visualization across all datasets showing the effect of removing
margin loss (top row), patch loss (middle row), and nuisance prompt (bottom row). The consistent
degradation patterns validate our component design across diverse visual domains.
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Agents4Science AI Involvement Checklist361

1. Hypothesis development: Hypothesis development includes the process by which you362

came to explore this research topic and research question. This can involve the background363

research performed by either researchers or by AI. This can also involve whether the idea364

was proposed by researchers or by AI.365

Answer: [C]366

Explanation: A baseline paper selected by humans is provided to the AI, and then the AI367

automatically generates ideas from the baseline paper. Thus, human involvement is limited368

to the selection of the baseline paper, and the entire subsequent idea generation process is369

carried out by the AI.370

2. Experimental design and implementation: This category includes design of experiments371

that are used to test the hypotheses, coding and implementation of computational methods,372

and the execution of these experiments.373

Answer: [D]374

Explanation: AI automatically performed all aspects of the design of experiments, coding,375

implementation of computational methods, and the execution of these experiments.376

3. Analysis of data and interpretation of results: This category encompasses any process to377

organize and process data for the experiments in the paper. It also includes interpretations of378

the results of the study.379

Answer: [D]380

Explanation: AI conducted all processes for organizing and processing data for the experi-381

ments, as well as interpretations of the results.382

4. Writing: This includes any processes for compiling results, methods, etc. into the final383

paper form. This can involve not only writing of the main text but also figure-making,384

improving layout of the manuscript, and formulation of narrative.385

Answer: [D]386

Explanation: AI automatically carried out all the processes related to writing.387

5. Observed AI Limitations: What limitations have you found when using AI as a partner or388

lead author?389

Description: There are mainly two challenges: computational cost and conducting innovative390

research. The AI requires considerable computational resources to verify experiments, so at391

present, it can only generate papers where training and inference are relatively lightweight.392

In addition, since this study relies on providing a baseline paper from which the AI develops393

new ideas, it is difficult for us to conduct entirely innovative research without such a baseline.394
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Agents4Science Paper Checklist395

1. Claims396

Question: Do the main claims made in the abstract and introduction accurately reflect the397

paper’s contributions and scope?398

Answer: [Yes]399

Justification: The abstract and introduction accurately reflect the paper’s contributions and400

scope.401

Guidelines:402

• The answer NA means that the abstract and introduction do not include the claims403

made in the paper.404

• The abstract and/or introduction should clearly state the claims made, including the405

contributions made in the paper and important assumptions and limitations. A No or406

NA answer to this question will not be perceived well by the reviewers.407

• The claims made should match theoretical and experimental results, and reflect how408

much the results can be expected to generalize to other settings.409

• It is fine to include aspirational goals as motivation as long as it is clear that these goals410

are not attained by the paper.411

2. Limitations412

Question: Does the paper discuss the limitations of the work performed by the authors?413

Answer: [Yes]414

Justification: The paper discusses the limitations of the work.415

Guidelines:416

• The answer NA means that the paper has no limitation while the answer No means that417

the paper has limitations, but those are not discussed in the paper.418

• The authors are encouraged to create a separate "Limitations" section in their paper.419

• The paper should point out any strong assumptions and how robust the results are to420

violations of these assumptions (e.g., independence assumptions, noiseless settings,421

model well-specification, asymptotic approximations only holding locally). The authors422

should reflect on how these assumptions might be violated in practice and what the423

implications would be.424

• The authors should reflect on the scope of the claims made, e.g., if the approach was425

only tested on a few datasets or with a few runs. In general, empirical results often426

depend on implicit assumptions, which should be articulated.427

• The authors should reflect on the factors that influence the performance of the approach.428

For example, a facial recognition algorithm may perform poorly when image resolution429

is low or images are taken in low lighting.430

• The authors should discuss the computational efficiency of the proposed algorithms431

and how they scale with dataset size.432

• If applicable, the authors should discuss possible limitations of their approach to433

address problems of privacy and fairness.434

• While the authors might fear that complete honesty about limitations might be used by435

reviewers as grounds for rejection, a worse outcome might be that reviewers discover436

limitations that aren’t acknowledged in the paper. Reviewers will be specifically437

instructed to not penalize honesty concerning limitations.438

3. Theory assumptions and proofs439

Question: For each theoretical result, does the paper provide the full set of assumptions and440

a complete (and correct) proof?441

Answer:[NA]442

Justification: The paper does not include theoretical results.443

Guidelines:444

• The answer NA means that the paper does not include theoretical results.445
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-446

referenced.447

• All assumptions should be clearly stated or referenced in the statement of any theorems.448

• The proofs can either appear in the main paper or the supplemental material, but if449

they appear in the supplemental material, the authors are encouraged to provide a short450

proof sketch to provide intuition.451

4. Experimental result reproducibility452

Question: Does the paper fully disclose all the information needed to reproduce the main ex-453

perimental results of the paper to the extent that it affects the main claims and/or conclusions454

of the paper (regardless of whether the code and data are provided or not)?455

Answer: [Yes]456

Justification: The paper fully discloses all the information needed to reproduce the main457

experimental results of the paper.458

Guidelines:459

• The answer NA means that the paper does not include experiments.460

• If the paper includes experiments, a No answer to this question will not be perceived461

well by the reviewers: Making the paper reproducible is important.462

• If the contribution is a dataset and/or model, the authors should describe the steps taken463

to make their results reproducible or verifiable.464

• We recognize that reproducibility may be tricky in some cases, in which case authors465

are welcome to describe the particular way they provide for reproducibility. In the case466

of closed-source models, it may be that access to the model is limited in some way467

(e.g., to registered users), but it should be possible for other researchers to have some468

path to reproducing or verifying the results.469

5. Open access to data and code470

Question: Does the paper provide open access to the data and code, with sufficient instruc-471

tions to faithfully reproduce the main experimental results, as described in supplemental472

material?473

Answer: [Yes]474

Justification: The code for the paper is included in the supplementary material.475

Guidelines:476

• The answer NA means that paper does not include experiments requiring code.477

• Please see the Agents4Science code and data submission guidelines on the conference478

website for more details.479

• While we encourage the release of code and data, we understand that this might not be480

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not481

including code, unless this is central to the contribution (e.g., for a new open-source482

benchmark).483

• The instructions should contain the exact command and environment needed to run to484

reproduce the results.485

• At submission time, to preserve anonymity, the authors should release anonymized486

versions (if applicable).487

6. Experimental setting/details488

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-489

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the490

results?491

Answer: [Yes]492

Justification: The paper specifies all the training and test details.493

Guidelines:494

• The answer NA means that the paper does not include experiments.495
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• The experimental setting should be presented in the core of the paper to a level of detail496

that is necessary to appreciate the results and make sense of them.497

• The full details can be provided either with the code, in appendix, or as supplemental498

material.499

7. Experiment statistical significance500

Question: Does the paper report error bars suitably and correctly defined or other appropriate501

information about the statistical significance of the experiments?502

Answer: [No]503

Justification: Due to the computational costs, we ran the experiment only once and did not504

report the error bars.505

Guidelines:506

• The answer NA means that the paper does not include experiments.507

• The authors should answer "Yes" if the results are accompanied by error bars, confi-508

dence intervals, or statistical significance tests, at least for the experiments that support509

the main claims of the paper.510

• The factors of variability that the error bars are capturing should be clearly stated511

(for example, train/test split, initialization, or overall run with given experimental512

conditions).513

8. Experiments compute resources514

Question: For each experiment, does the paper provide sufficient information on the com-515

puter resources (type of compute workers, memory, time of execution) needed to reproduce516

the experiments?517

Answer: [No]518

Justification: This paper does not provide information on the computer resources. Each519

individual experiment uses a single GPU with around 40 GB of memory.520

Guidelines:521

• The answer NA means that the paper does not include experiments.522

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,523

or cloud provider, including relevant memory and storage.524

• The paper should provide the amount of compute required for each of the individual525

experimental runs as well as estimate the total compute.526

9. Code of ethics527

Question: Does the research conducted in the paper conform, in every respect, with the528

Agents4Science Code of Ethics (see conference website)?529

Answer: [Yes]530

Justification: We adhere the Agents4Science Code of Ethics.531

Guidelines:532

• The answer NA means that the authors have not reviewed the Agents4Science Code of533

Ethics.534

• If the authors answer No, they should explain the special circumstances that require a535

deviation from the Code of Ethics.536

10. Broader impacts537

Question: Does the paper discuss both potential positive societal impacts and negative538

societal impacts of the work performed?539

Answer: [NA]540

Justification: There is no societal impact of the work performed.541

Guidelines:542

• The answer NA means that there is no societal impact of the work performed.543

• If the authors answer NA or No, they should explain why their work has no societal544

impact or why the paper does not address societal impact.545
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• Examples of negative societal impacts include potential malicious or unintended uses546

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations,547

privacy considerations, and security considerations.548

• If there are negative societal impacts, the authors could also discuss possible mitigation549

strategies.550
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