
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A UNIFIED MULTI-TASK LEARNING FRAMEWORK
FOR GENERATIVE AUTO-BIDDING WITH VALIDATION-
ALIGNED OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In online advertising, heterogeneous advertiser requirements give rise to numerous
customized bidding tasks that are typically optimized independently, resulting in
extensive computation and limited data efficiency. Multi-task learning offers a
principled framework to train these tasks jointly through shared representations.
However, existing multi-task optimization strategies are primarily guided by train-
ing dynamics and often generalize poorly in volatile bidding environments. To
this end, we present Validation-Aligned Multi-task Optimization (VAMO), which
adaptively assigns task weights based on the alignment between per-task train-
ing gradients and a held-out validation gradient, thereby steering updates toward
validation improvement and better matching deployment objectives. We further
equip the framework with a periodicity-aware temporal module and couple it with
an advanced generative auto-bidding backbone to enhance cross-task transfer of
seasonal structure and strengthen bidding performance. Meanwhile, we provide
theoretical insights into the proposed method, e.g., convergence guarantee and
alignment analysis. Extensive experiments on both simulated and large-scale real-
world advertising systems consistently demonstrate significant improvements over
typical baselines, illuminating the effectiveness of the proposed approach.

1 INTRODUCTION

In modern advertising platforms, auto-bidding tasks play a critical role in optimizing campaign
performance (He et al., 2021; Mou et al., 2022; Guo et al., 2024). To accommodate advertisers’
varying demands, advertising platforms offer a range of bidding campaign types (Borissov et al.,
2010; Aggarwal et al., 2024; Li et al., 2025). Beyond the primary campaign types, there exist
several less commonly used types, such as supplementary budgets added to the primary campaign to
optimize metrics like overall store conversions, direct conversions, and cart additions. For lower-usage
campaign types, training dedicated automated bidding models for each type often yields limited
performance gains due to data scarcity and incurs substantial maintenance overhead (Wang et al.,
2023), thereby motivating the development of multi-task learning (MTL) frameworks that share
representations across related objectives (Wu et al., 2020; Zhang & Yang, 2021).

Pitfalls of applying naive MTL to online auto-bidding. Although MTL provides a promising
framework for handling heterogeneous tasks (Navon et al., 2022; Zhang et al., 2022), directly
applying it to online advertising poses substantial challenges due to the highly volatile and uncertain
nature of bidding environments (Zhao et al., 2020; Gao et al., 2025), as shown in Fig. 1. In
practice, user behavior evolves rapidly and competitor strategies adjust unpredictably, creating
frequent distributional shifts that are often abrupt and difficult to anticipate (Qin et al., 2025). Such
nonstationary dynamics not only compromise the reliability and stability of learned models but also
result in suboptimal bidding decisions that directly translate into degraded deployment performance
in live systems (Chen et al., 2018a; Gao et al., 2025). Importantly, the consequences of these
distributional shifts are not uniform across tasks. Certain tasks might leverage the changing patterns
to improve short-term effectiveness, whereas others are more vulnerable and tend to overfit to transient
fluctuations, thereby weakening the model’s overall generalization ability. All of these practical
scenarios give rise to two central research questions: (i) How to design adaptive mechanisms that can
robustly suppress or mitigate the negative impact of unpredictable online distribution shifts, and (ii)
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(a) Hourly volume of candidate impressions (left axis) and average value per candidate impression (right axis).
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(b) Daily distribution of candidate impression values for two tasks, illustrating task-specific distribution shifts
across days.

Figure 1: Periodic patterns in nonstationary environments. The bidding environments exhibit nonstationary
dynamics with recurring temporal structures, such as diurnal periodicity.

How to construct a unified multi-task framework that not only facilitates effective knowledge transfer
across related tasks, but also utilizes changing dynamics. This work will answer the above research
questions in the context of the generative auto-bidding paradigm (Guo et al., 2024; Li et al., 2025).

Generalization-aware task reweighting from online crafted distribution shifts. For adaptive
mechanism design, we propose validation-aligned optimization, which directly links task prioritiza-
tion to validation performance in order to derive adaptive task weights. Over the course of online
auto-bidding, the validation set is constructed by reserving full days from the training period without
temporal overlap. This manner preserves structure and mimics the distribution shift between training
and deployment. The task-specific weights are derived by aligning each task’s training gradient with
the gradient of the total validation loss, which serves as a reference for generalization improvement.
Consequently, tasks with higher alignment receive larger weights, which emphasizes updates with
stronger real-world effectiveness and aligns training dynamics with deployment objectives.

Unified MTL structure for auto-bidding with temporal modules. The design of the model
architecture is equally critical for enabling effective knowledge transfer. Although each bidding task
targets distinct objectives, they operate within a shared bidding environment, creating opportunities
for joint learning. Despite the inherent nonstationarity of bidding dynamics, we observe some
temporal patterns such as diurnal cycles that provide consistent signals in the environment, as shown
in Fig. 1a. These recurring structures offer a valuable anchor for learning transferable representations.
To exploit this property, we incorporate a dedicated temporal module to capture multi-scale periodicity
in auction dynamics. By integrating this temporal module into the advanced generative auto-bidding
paradigm (Guo et al., 2024; Li et al., 2025; Gao et al., 2025), we develop a unified multi-task learning
framework that effectively fulfills multiple auto-bidding tasks.

To summarize, our contributions are three-fold:

1. We propose Validation-Aligned Multi-task Optimization (VAMO) that uses validation
gradient feedback to guide training updates toward better generalization;

2. We design a unified multi-task learning framework that is built upon the emerging generative
auto-bidding paradigm, incorporating a dedicated temporal modeling to capture periodic
auction dynamics and enhance cross-task knowledge transfer;

3. We provide theoretical justification through convergence guarantee and alignment analysis
linked to our strategy VAMO.

Extensive simulated and real-world experiments demonstrate significant performance improvements,
offering practical insights for industrial deployment.
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2 PRELIMINARIES

Auto-bidding seeks a bidding policy that maximizes the cumulative value of impressions won over
a finite bidding episode, e.g., one day (He et al., 2021; Mou et al., 2022). Formally, the auto-
bidding problem is usually modeled as a Markov Decision Process (MDP) defined by the tuple
< S,A,R,P >. At each discrete time step t ∈ [T ], the state st ∈ S describes the real-time
advertising status that includes the remaining time, left budget, consumption speed, etc. The action
at ∈ A specifies a scaling factor applied to the bid at time t. After taking action at, the auto-bidding
agent obtains a reward rt(st,at) ∈ R reflecting the value of won impressions during [t, t+ 1), and
incurs a cost ct(st,at) that corresponds to the expenditure within this period. The environment
dynamics are characterized by P(·|st,at) that governs the evolution of the state, and γ ∈ [0, 1] is the
discount factor.

The goal of auto-bidding is to find a policy πθ(·|s) maximizing the expected cumulative reward while
satisfying the budget constraint B, formulated as:

L(θ) = −Eat∼πθ(·|st),st+1∼P(·|st,at)

[ T∑
t=1

γtrt(st,at)
]
, s.t.

T∑
t=1

ct(st,at) ≤ B. (1)

Generative Auto-bidding. Recent studies have demonstrated the effectiveness of the generative
auto-bidding paradigm over traditional reinforcement learning in improving bidding performance
(Guo et al., 2024; Li et al., 2025). This paradigm generates bidding trajectories through conditional
generative modeling, enabling flexible and effective policy learning. Let D denote the offline dataset
of trajectories τ and their quality y(τ). The generative auto-bidding objective is:

L(θ) = −E(τ,y(τ))∼D[log pθ(τ |y(τ))], (2)

where pθ denotes the likelihood of trajectories conditioned on their quality signals. Building on the
advanced paradigm, we propose a multi-task auto-bidding generative framework to better address
diverse auto-bidding tasks.

Multi-task Learning. MTL aims to train a unified model capable of simultaneously fulfilling K
different tasks. The ultimate goal of MTL is to achieve superior performance across all tasks. A
trivial method is to optimize the average loss across all tasks:

min
θ∈Θ

1

K

K∑
k=1

Lk(θ), (3)

where Lk(θ) is the task-specific loss function associated with the k-th task.

However, directly minimizing the average loss often leaves some tasks under-optimized due to scale
and difficulty imbalances as well as gradient interference. Loss-based methods instead minimize a
weighted sum of task losses

∑K
k=1 wkLk(θ) with wk ≥ 0, where θ collects shared and task-specific

parameters. The weights are typically set based on uncertainty (Kendall et al., 2018), learning pace
(Murugesan & Carbonell, 2017; Liu et al., 2019; 2023), random loss weight (Lin et al., 2021), or task
prioritization (Guo et al., 2018) to balance optimization across tasks. Gradient-based methods modify
task gradients on the shared network using gradient information, e.g., normalization (Chen et al.,
2018b), projection (Yu et al., 2020), or conflict mitigation (Liu et al., 2021a). However, both families
are driven by training dynamics and tend to overfit transient signals (Mao et al., 2022), which leads to
poor generalization under distribution shift and in volatile bidding environments, and to misalignment
with validation time objectives.

3 METHOD

This section presents a unified multi-task learning framework for auto-bidding, as shown in Fig. 2. We
first introduce a validation-aligned multi-task optimization strategy, then propose a temporal module
that captures periodic auction dynamics and integrates it with the generative backbone. Finally, we
provide the theoretical analysis to show the convergence of the proposed method.
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Figure 2: The overall flowchart of VAMO and multi-task learning architectures. The online-generated
dataset is partitioned into a training and a validation dataset over time, where distribution shift probably happens
when the bidding environment changes a lot. The neural architecture extracts the shared information and
constitutes task-specific generative auto-bidding modules. VAMO learns to align with the objective of the shifted
test environment while balancing multi-task performance.

3.1 VALIDATION-ALIGNED MULTI-TASK OPTIMIZATION

Much of prior work in multi-task optimization focuses on mitigating task interference, such as gradient
conflicts (Liu et al., 2021a). In our setting, such issues are less pronounced because all bidding tasks
ultimately support the same goal of maximizing advertiser value under budget constraints, resulting
in coherent optimization signals. Instead, our work addresses a different and practically critical
challenge: generalization under temporal distribution shifts in volatile bidding environments. In
real-world auto-bidding systems, user behavior evolves quickly and competitor strategies change
unpredictably (Borissov et al., 2010), causing frequent and often abrupt distributional shifts that are
challenging to forecast (Gao et al., 2025). As a result, strong performance on training data often does
not translate to reliable deployment performance.

Furthermore, different tasks exhibit varying sensitivities to these distribution shifts, with some
showing short-term effectiveness and others experiencing pronounced deterioration. This disparity
underscores the importance of adaptive task weighting that can respond to evolving task-specific
generalization trends. Yet, without a reliable estimate of out-of-distribution performance, such
adaptation risks overfitting to transient patterns or favoring short-term gains.

Multi-Task Optimization with Validation Alignment. To address these challenges, we introduce a
validation-aligned optimization strategy that uses a temporally held-out validation set to estimate gen-
eralization. In auto-bidding, where data consists of sequential auction logs, we reserve a contiguous
time window after the training period as validation. This design avoids temporal leakage, preserves
real-world distribution shifts, and provides a reliable signal for adaptive task balancing. The resulting
validation loss provides a realistic estimate of future performance and directly informs the adaptive
task weighting mechanism during training.

Given this setup, let {Ltrain
k (θ)}Kk=1 and {Lval

k (θ)}Kk=1 denote the per-task training and validation
losses. Our ultimate goal is to minimize the average validation loss across tasks:

Lval(θ) =
1

K

K∑
k=1

Lval
k (θ), (4)

which directly targets improved generalization in the downstream application. During training, we
use an adaptive weighted training loss as a surrogate: Ltrain(w,θ) =

∑K
k=1 wkLtrain

k (θ), where
the weights w = {w1, w2, · · · , wK} ∈ ∆K−1 lie in (K − 1)-dimensional probability simplex, i.e.,
wk ≥ 0 and

∑K
k=1 wk = 1. Starting from parameters θi at the i-th iteration, a one-step update with

step size η > 0 yields:

θi+1(w) = θi − η

K∑
k=1

wi,k g
train
i,k , gtrain

i,k ≜ ∇θLtrain
k (θi). (5)

The wi,k are adaptively adjusted using validation feedback to maximize improvements in Lval(θ).

Analysis of Validation Loss Change. Using a first-order Taylor expansion of Lval(θ) around θi, the
validation loss after one update is approximated as:

Lval(θi+1) = Lval(θi)− η
〈
gval
i ,

K∑
k=1

wi,kg
train
i,k

〉
+O(||θi+1 − θi||), (6)
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Algorithm 1: Validation Aligned Multi-Task Optimization (VAMO)
1: Input: Maximum iteration number I; Learning rate η; Temperature hyperparameter λ; Task

number K; Batch size B; Dataset D;
2: Let dmax be the last day in D. Split the data into training and validation sets by time:

Dtrain =
⋃

d<dmax
Dd, Dval = Ddmax

;
3: Initialize model parameters θ0;
4: for i = 0 : I do
5: Sample a training mini-batch Btrain ⊂ Dtrain with |Btrain| = B, and a validation mini-batch

Bval ⊂ Dval with |Bval| = B, with task proportions matched to the empirical distribution
over tasks in D.

6: Compute gtrain
i,k = ∇θLtrain

k (θi;B
train
k ) for each task, where Btrain

k ⊂ Btrain;
7: Compute gval

i = ∇θLval(θi;B
val);

8: Compute marginal gains mi,k = ⟨gval
i , gtrain

i,k ⟩;
9: Compute weights wi,k =

exp(mi,k/λ)∑K
j=1 exp(mi,j/λ)

;

10: Update parameters θi+1 = θi − η
∑

k wi,kg
train
i,k ;

11: end for

where gval
i ≜ ∇θLval(θi). Consequently, the change in validation loss is:

∆Lval ≜ Lval(θi+1)− Lval(θi) ≈ −η

K∑
k=1

wi,kmi,k, (7)

where mi,k ≜ ⟨gval
i , gtrain

i,k ⟩ denotes the marginal gain of the overall performance from task k.

The marginal gain mi,k provides a first-order measure to quantify task k’s contribution to the
reduction of the validation loss. Intuitively, a positive mi,k > 0 indicates that the training gradient
of task k is aligned with the direction of validation improvement, and thus increasing its weight
promotes generalization. Conversely, a negative mi,k < 0 suggests misalignment or conflict with
validation dynamics, and down-weighting such tasks avoids harmful interference during training.
This establishes a principled weighting scheme that directly links each task’s weight to its marginal
gain in validation performance. In particular, learning weights to maximize

∑K
k=1 wi,kmi,k over

the probability simplex ∆K−1 aligns the training update with the steepest predicted decrease in
validation loss, prioritizing the task that contributes most to generalization.

Balanced Optimization with Entropy-Regularization. While selecting the task with the highest
marginal gain improves validation performance in the short term, this greedy approach often leads
to imbalanced optimization, where one task dominates and others are neglected. Such imbalance
may compromise training stability and weaken the effectiveness of multi-task learning. To promote
balanced task participation, we introduce entropy regularization into the objective:

max
w∈∆K−1

K∑
k=1

wi,kmi,k + λH(w), H(w) = −
K∑

k=1

wi,k logwi,k, (8)

where λ > 0 controls the strength of regularization. This convex optimization has a closed solution:

w∗
i,k =

exp(mi,k/λ)∑K
j=1 exp(mi,j/λ)

. (9)

It can be seen that w∗
i,k = softmax(mi,k/λ) with λ as a temperature hyperparameter. A smaller λ

produces sharper distributions, with weights concentrating around tasks with the highest marginal
gain, while a larger λ flattens the distribution, approaching uniform allocation. The entropy term thus
balances validation alignment with optimization stability, promoting robust and effective MTL.

3.2 MULTI-TASK GENERATIVE AUTO-BIDDING ARCHITECTURE

Besides optimization, the model architecture is also important in multi-task learning. We adopt a
shared-bottom architecture augmented with task-specific generators. The shared backbone extracts

5
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common representations across tasks, promoting knowledge transfer and parameter efficiency. Each
task-specific generator then maps these shared features to its own output space, enabling flexible and
specialized modeling of different bidding objectives.

Shared Backbone and Task-specific Generators. The backbone in this work depicts the conditional
distribution over bidding trajectories. Each bidding trajectory is represented as a sequence of states.
At each step t, the state embedding st ∈ Rh is enriched with a periodicity-aware representation
zt ∈ Rh derived from a temporal module, yielding an augmented state vector:

s̃t = st + zt. (10)

The Transformer encoder (Vaswani et al., 2017) then maps the historical sequence s̃<t =
{s̃1, . . . , s̃t−1} into a hidden representation ht = fθs(s̃<t) ∈ Rh, where fθs denotes the
shared encoder. The task-specific head autoregressively generates the next state for task k:
pθ(sk,t | s<t, k, y(τk)) = fθk(ht, y(τk)), where fθk denotes the generator specialized for task
k and θ = {θs,θk} represents shared parameter and task-specific parameter, respectively. Thus, the
conditional distribution over a trajectory τk = {sk,1, . . . , sk,T } is factorized as:

pθ(τk | y(τk)) =
T∏

t=1

pθ(sk,t | s<t, k, y(τk)). (11)

Periodicity-aware Temporal Module. We observe that all bidding tasks share a common bidding
environment, which induces similarities in traffic patterns and market dynamics. The underlying
temporal patterns exhibit strong periodicity, as shown in Fig. 1a. To capture this property, we employ
a periodicity-aware time series module based on TimesNet (Wu et al., 2023). Given a multivariate
history time series x−H:−1 ∈ RH×d, we first compute its frequency spectrum via Fast Fourier
Transform (FFT):

S(f) =

∣∣∣∣∣
H∑

h=1

xhe
−2πifh/H

∣∣∣∣∣, f = 0, 1, . . . , H − 1, (12)

and construct a candidate period set Q from dominant frequencies. For each q ∈ Q, the time series is
reshaped into a two-dimensional period–phase tensor of shape q × ⌊H/q⌋, separating intra-period
temporal structures from inter-period evolutionary trends. A parameter-efficient Inception block
(Szegedy et al., 2015) is then applied to jointly capture local and global dependencies.

zt = Aggregate
(
Inception(Reshapeq(x−H:−1)) : q ∈ Q

)
. (13)

Finally, zt is fed into the shared backbone of our multi-task framework, enabling all bidding tasks to
benefit from a unified, periodicity-aware representation of auction dynamics.

3.3 THEORETICAL ANALYSIS

We provide a theoretical analysis of the proposed VAMO strategy. Under the following assumptions,
we establish that VAMO converges to a stationary point and derive sublinear convergence rates,
offering theoretical justification for its reliable performance.
Assumption 1 (Smoothness). The validation loss Lval is L-smooth, i.e., there exists a positive real
constant L to satisfy |Lval(θi)− Lval(θj)| ≤ L||θi − θj ||2 ∀ θi and θj .
Assumption 2 (Bounded gradients). There exists G > 0 such that for all tasks k and iterations i,
∥gtrain

i,k ∥2 ≤ G.

Assumption 3 (Alignment coverage). At each iteration i, the convex cone spanned by the K
training task gradients provides sufficient coverage of the validation direction. Concretely, there exist
constants γ ∈ (0, 1] and M ≥ 1 such that:

max
w∈∆K−1

〈
gval
i ,

K∑
k=1

wi,k g
train
i,k

〉
≥ γ ∥gval

i ∥22, min
w∈∆K−1

∥∥∑K
k=1 wi,k g

train
i,k

∥∥
2

∥gval
i ∥2

≤ M.

The assumption indicates that there exists a convex combination of training gradients with nontrivial
positive alignment with gval

i and comparable magnitude. A larger γ and a smaller M imply better
alignment. The requirement is mild and only excludes cases where the training gradients are nearly
orthogonal to the validation gradient or have extreme norm mismatch.
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Lemma 1 (Maximal alignment among convex combinations). Let mi,k ≜ ⟨gval
i , gtrain

i,k ⟩ and mi =

(mi,1, . . . ,mi,K)⊤ ∈ RK . Let d⋆
i ∈ argmaxw∈∆K ⟨gval

i ,
∑

k wi,kg
train
i,k ⟩, di =

∑
k w

λ
i,kg

train
i,k

where wλ
i = softmax(mi/λ) for some λ > 0. Then

⟨gval
i , di⟩ ≥ ⟨gval

i ,d⋆
i ⟩ − λ logK.

Theorem 1 (Convergence). Under Assumptions 1/2/3 and Lemma 1, and the update is θi+1 =
θi − η di, for any fixed step size η > 0 and I ≥ 1, we have:

1

I

I−1∑
i=0

E
[
∥gval

i ∥22
]
≤

E
[
Lval(θ0)− infθ Lval(θ)

]
η γ I

+
λ logK

γ︸ ︷︷ ︸
entropy floor

+
LG2

2γ
η︸ ︷︷ ︸

step size floor

. (14)

As I → ∞, the average squared validation gradient norm converges to a neighborhood of radius
O(λ) +O(η).

Corollary 1. Under the Robbins-Monro conditions on the step size ηi, i.e.,
∑∞

i=0 ηi =
∞ and

∑∞
i=0 η

2
i < ∞, and with λ = 0 (hard-max weights) or λ = θ(η), then

limI→∞
1
I

∑I−1
i=0 E

[
∥gval

i ∥22
]
= 0. This establishes convergence to a first-order stationary point in

the ergodic sense, with a sublinear rate of O(1/I).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Experiment Environment. We evaluate our method on both simulated and real-world scenarios to
demonstrate its effectiveness. Our experiments evaluate three bidding tasks, each targeting a specific
campaign objective: Store conversion bidding typically aims at increasing ad-driven store-wide Gross
Merchandise Value (GMV), direct conversion bidding aims at improving directly ad-driven product
GMV (Dir-GMV), and add-to-cart bidding aims at boosting the number of ad-driven add-to-cart
actions (CartCnt). The simulated experiments are conducted in an open-source advertising system as
used in Guo et al. (2024). The real-world experiments are conducted on one of the world’s largest
E-commerce platforms, TaoBao. Detailed settings are given in Appendix C.

Baselines. We compare our validation-aligned approach VAMO against three categories of baselines:
single-task learning, loss-based methods, and gradient-based methods. The single-task learning (STL)
trains an independent model for each task separately. The loss-based methods consist of the vanilla
approach that assigns equal weights to all tasks, Dynamic Weight Average (DWA) (Liu et al., 2019),
which adaptively adjusts task weights based on rates of loss changes, and FAMO (Liu et al., 2023),
which balances task losses by ensuring each task’s loss decreases approximately at an equal rate. The
gradient-based methods include PCGrad (Yu et al., 2020), which projects conflicting gradients to
mitigate interference, and FairGrad (Ban & Ji, 2024), which adjusts gradients through fair resource
allocation to ensure balanced task updates.

Implementation Details. We used a 10-day dataset, with the first 8 days allocated to training data,
day 9 reserved for validation data to adjust loss weights, and the last day serving as the test set to
evaluate model performance. The temperature hyperparameter is set to 1.

Evaluations. The primary evaluation metrics for three bidding tasks are GMV, Direct GMV (Dir-
GMV), and Add-to-Cart Count (CartCnt). In addition, we adopt a common metric for evaluating
multi-task learning (MTL) performance: ∆m%, which measures the average per-task performance
drop relative to single-task learning (STL) (Liu et al., 2023; Shen et al., 2024). It is calculated by
∆m% = 1

K

∑K
k=1 −(Mm,k−Mb,k)/Mb,k×100, where Mb,k and Mm,k are the STL and m’s value

for metric Mk. A more negative ∆m% indicates stronger MTL performance. In online experiments,
we extend the evaluations by incorporating three efficiency metrics: ROI (=GMV/COST), Dir-ROI
(=Dir-GMV/COST), and COST-per-Cart (=COST/CartCnt). These supplementary metrics provide a
more comprehensive view of campaign effectiveness, where higher ROI/Dir-ROI and lower COST-
per-Cart are preferred.
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Table 1: Results on three bidding tasks in the simulation environment. Each experiment is conducted across
three random seeds, and the mean is reported. Metrics include return for each task and overall MTL performance
∆m%. The best result is marked in bold. The ↓ denotes the lower the better.

Method Store
Conversion

Direct
Conversion Add-to-Cart ∆m% ↓

STL 12.06 17.88 2.87 -

Vanilla 17.67 23.72 2.92 -26.97
DWA (Liu et al., 2019) 18.42 20.64 2.55 -19.01

FAMO (Liu et al., 2023) 18.68 19.56 3.31 -26.54

PCGrad (Yu et al., 2020) 17.12 21.92 1.94 -10.72
FairGrad (Ban & Ji, 2024) 15.18 19.49 2.40 -6.17

VAMO (Ours) 24.23 24.25 3.77 -55.97

Table 2: Results on three bidding tasks in real-world A/B tests. We compare against the Vanilla baseline only.
Thus, ∆m% is not reported.

Method Store Conversion Direct Conversion Add-to-Cart

GMV ↑ ROI ↑ Dir-GMV ↑ Dir-ROI ↑ CartCnt ↑ COST-per-CartCnt ↓
Vanilla 200 2.50 235 2.53 8.62 6.76

VAMO (Ours) 205 2.58 246 2.67 8.84 6.64

Diff +2.5% +3.3% + 4.6% +5.4% +2.5% -1.8%

4.2 EMPIRICAL RESULT ANALYSIS

We provide performance comparisons on simulated experiments in Table 1. Our method achieves the
best overall MTL performance among both gradient-based and loss-based methods, and also delivers
the best results on each individual task. We observe that most MTL baselines outperform single-task
learning, which contrasts with common observations in the literature that MTL may suffer from
performance degradation due to task interference (Yu et al., 2020; Chen et al., 2020; Liu et al., 2021a;
2023; Ban & Ji, 2024). This discrepancy may be attributed to the fact that all tasks in our setting
belong to the auto-bidding domain, with similar input spaces and temporal dynamics, which could
reduce task conflict. Additionally, since single-task models are trained on limited data, joint training
may improve generalization by enabling more efficient data utilization and knowledge sharing across
related tasks. The strong performance of our method stems from its adaptive weighting mechanism,
which leverages validation alignment to guide task gradient updates. Unlike baselines that solely rely
on training dynamics, our approach aligns task weights with a held-out validation signal, promoting
generalization. The combination of this alignment with entropy regularization avoids focusing on
one task, resulting in more reliable multi-task learning.

We also conduct online experiments to evaluate the effectiveness of our method in a real-world
auto-bidding system, as shown in Table 2. Due to the high operational costs and potential business
risks associated with online experiments, we restrict the comparison to the Vanilla baseline and our
proposed approach. To protect the privacy of advertisers, all absolute values in the online experiments
are uniformly normalized. While the normalized absolute values do not reflect actual magnitudes,
the relative improvements (e.g., percentage gains) remain statistically accurate and meaningful for
comparison. The online results show that our method achieves 2.5%, 4.6%, and 2.5% improvements
in GMV, Dir-GMV, and CartCnt, respectively, confirming the real-world effectiveness of our method.

4.3 ABLATION STUDY

Store Conversion Direct Conversion Add-to-Cart
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Figure 3: Ablation on validation signal. Error
bars denote the standard deviation (3 runs).

Effects of Validation Signal. To evaluate the role of the
validation set in our task weighting strategy, we conduct
an ablation study by removing the held-out validation
data and instead using the total training gradient as the
alignment target. This variant, denoted as “w/o held-out
validation”, relies solely on training dynamics without
external generalization feedback. As shown in Fig.
3, despite better performance on the store conversion
task, it underperforms our validation-aligned method by
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21.21 in overall performance ∆m%. This discrepancy arises because tasks with rapid loss reduction
may dominate the training gradients, biasing optimization toward certain tasks. While beneficial
in the short term, this leads to overfitting to transient patterns and harms overall generalization. In
contrast, our method uses out-of-distribution feedback from a temporally separated hold-out set,
providing a more reliable and realistic estimate of a task’s generalization impact. This enables robust
and well-calibrated task balance, leading to improved generalization.

0.1 1 10

55

50

45

40

35

30

25

m
%

Figure 4: Ablation on λ. The
error bars denote the standard de-
viation (3 runs).

Influence of λ. To investigate the role of entropy regularization,
we conduct an ablation study by varying the temperature parameter
λ, which governs the strength of regularization. We set λ from
near-zero to very large, corresponding to different levels of entropy
regularization. As λ → 0, the weighting becomes assigning all mass
to the task with the highest marginal gain. As λ → ∞, the weights
converge to uniform, which corresponds to the Vanilla baseline in
our experiments. As shown in Fig. 4, λ = 0.1 reduces to greedy
task weighting, where only the task with the highest marginal gain
dominates training. This leads to unstable optimization and poor
generalization due to task imbalance. When λ → ∞, the vanilla
baseline treats all tasks equally regardless of their impact on validation performance. This approach
fails to prioritize high-impact tasks, limiting its ability to adapt to dynamic bidding environments.
Moderate values can achieve optimal performance, striking a trade-off between validation alignment
and task balance. Our method VAMO allows the model to dynamically emphasize tasks that contribute
most to validation improvement, while maintaining sufficient balance in training updates to ensure
robustness.

Table 3: Ablation on temporal modeling. Performance compar-
ison of no temporal module, LSTM variant, and our periodicity-
aware design.

Architecture Store
Conversion

Direct
Conversion Add-to-Cart ∆m% ↓

w/o TimesNet 18.01 16.20 3.70 -22.95
with LSTM 25.15 17.36 3.75 -45.43

VAMO (Ours) 24.23 24.25 3.77 -55.97

Effect of Periodicity-aware Tempo-
ral Module. To evaluate the effec-
tiveness of our periodicity-aware tem-
poral module, we conduct an abla-
tion study with two variants: (i) with-
out TimesNet, where the module is
removed; (ii) with LSTM, where an
LSTM model is used to model tem-
poral dependencies, serving as a base-
line for sequential modeling. Both
variants maintain the same multi-task
architecture and training pipeline to ensure a fair comparison. Results are reported in Table 3. Re-
moving the temporal module leads to a performance drop, highlighting the critical role of temporal
modeling. While LSTM outperforms our method on a specific task, its overall performance lags
behind, demonstrating that although LSTM can capture general sequential patterns, it falls short
in modeling the multi-periodic structures inherent in auction dynamics. Additionally, the LSTM
variant shows improved performance over the baselines listed in Table 1, further highlighting the
effectiveness and necessity of our approach.

5 CONCLUSION

Technical Discussion. This work focuses on the distributional shift in multi-task learning for online
auto-bidding. Our proposed VAMO addresses the issue by adaptively balancing tasks based on
validation signals, improving generalization under nonstationary environments. To capture shared
temporal dynamics, we incorporate a dedicated module modeling multi-scale periodicity in the
environment. The resulting multi-task framework enables robust and transferable learning across
multiple auto-bidding tasks. The theoretical analysis establishes convergence guarantees for the
proposed VAMO scheme, offering insights into its stable dynamics under nonstationary distributions.
The significant improvement in multi-task performance over both single-task models and baselines
validates the effectiveness of our method and practical value in real-world auto-bidding systems.

Limitations and Future Work. This work has validated the effectiveness of the proposed approach
on multi-task generative auto-bidding. Future work will explore enhancing the multi-task model with
more complex architectures, such as mixture-of-experts models.
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A LITERATURE REVIEW

Auto-bidding Methods. The mainstream auto-bidding methods can be broadly categorized into
two branches to achieve diverse bidding tasks: Reinforcement Learning (RL)-based auto-bidding
methods and generative auto-bidding methods. RL-based auto-bidding methods model auto-bidding
as a Markov Decision Process and learn the optimal bidding policy through RL techniques. For
example, Deep Reinforcement Learning to Bid (DRLB) (Wu et al., 2018) uses deep Q-network (DQN)
(Mnih et al., 2015) with reward shaping to maximize impression value under budget constraints.
USCB (He et al., 2021) employs the DDPG (Silver et al., 2014) algorithm to dynamically adjust
bidding parameters to an optimal strategy. SORL (Mou et al., 2022) develops a variance-suppressed
conservative Q-learning method to effectively learn auto-bidding policies. Due to the risks of real-
time bidding, offline RL methods such as BCQ (Fujimoto et al., 2019), CQL (Kumar et al., 2020),
and IQL (Kostrikov et al., 2022) have gained prominence for learning policies solely from historical
datasets without online interaction.

Generative auto-bidding methods show greater potential than RL-based methods because they can
better model the complex distribution of bidding strategies. These methods formulate auto-bidding as
a conditional generative modeling problem. Decision Transformer (DT) (Chen et al., 2021) generates
optimal actions using an auto-regressive transformer conditioned on desired returns, historical states,
and action. GAS (Li et al., 2025) adopts DT to generate actions for auto-bidding and employs a
Monte Carlo Tree Search-inspired post-training refinement to better align generated bids with diverse
user preferences. AIGB (Guo et al., 2024) employs a conditional diffusion model to generate bidding
trajectories alongside an inverse dynamic model for action generation. In this work, we focus on
generative auto-bidding methods and aim to develop a unified framework to handle multiple bidding
tasks simultaneously.

Multi-task Learning. Multi-task learning aims to jointly learn multiple tasks within a single model,
improving learning efficiency by enabling information sharing across tasks (Caruana, 1997; Sun et al.,
2020; Xu et al., 2020; Thung & Wee, 2018; Yang et al., 2022). Common architectural approaches
include the shared bottom model, which employs a shared backbone with separate task-specific heads.
More advanced variants include cross-stitch networks (Misra et al., 2016), which learn adaptive
feature sharing between tasks, and the Multi-Task Attention Network (MTAN) (Liu et al., 2019),
which uses soft attention to dynamically select shared features for each task. Other representative
architectures are MMoE (Ma et al., 2018) and PLE (Tang et al., 2020), designed to balance shared
and task-specific representations effectively.

For multi-task optimization, approaches can be roughly divided into gradient-based and loss-based
methods. Gradient-based methods balance tasks by manipulating gradients, including Pareto optimal
solutions (Désidéri, 2012; Sener & Koltun, 2018), gradient normalization (Chen et al., 2018b),
gradient projection (Yu et al., 2020; Liu et al., 2021a;b), gradient sign dropout (Chen et al., 2020), and
Nash bargaining solution (Navon et al., 2022). Loss-based methods adaptively adjust task-specific
loss weights during training to balance learning progress among tasks. Representative approaches
include uncertainty weighting (Kendall et al., 2018), random loss weighting (Lin et al., 2021), and
strategies based on learning dynamics (Liu et al., 2019; 2023; Shen et al., 2024). However, these
methods rely solely on training signals, which may not reflect true generalization performance and
thus limit their ability to generalize under nonstationary environments.

B THEOREMS & PROOFS

B.1 ASSUMPTIONS

Assumption 1 (Smoothness). The validation loss Lval is L-smooth, i.e., there exists a positive real
constant L to satisfy |Lval(θi)− Lval(θj)| ≤ L||θi − θj ||2 ∀ θi and θj .

Assumption 2 (Bounded gradients). There exists G > 0 such that for all tasks k and iterations i,
∥gtrain

i,k ∥2 ≤ G.

Assumption 3 (Alignment coverage). At each iteration i, the convex cone spanned by the K
training task gradients provides sufficient coverage of the validation direction. Concretely, there exist
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constants γ ∈ (0, 1] and M ≥ 1 such that:

max
w∈∆K−1

〈
gval
i ,

K∑
k=1

wi,k g
train
i,k

〉
≥ γ ∥gval

i ∥22, min
w∈∆K−1

∥∥∑K
k=1 wi,k g

train
i,k

∥∥
2

∥gval
i ∥2

≤ M.

B.2 PROOF OF LEMMA 1

Lemma 1 (Maximal alignment among convex combinations) Let mi,k ≜ ⟨gval
i , gtrain

i,k ⟩ and mi =

(mi,1, . . . ,mi,K)⊤ ∈ RK . Let d⋆
i ∈ argmaxw∈∆K ⟨gval

i ,
∑

k wi,kg
train
i,k ⟩, di =

∑
k w

λ
i,kg

train
i,k

where wλ
i = softmax(mi/λ) for some λ > 0. Then

⟨gval
i ,di⟩ ≥ ⟨gval

i ,d⋆
i ⟩ − λ logK.

Proof. Consider the entropy-regularized problem

(Pλ) max
w∈∆K

Φλ(w;mi) ≜
K∑

k=1

wi,k mi,k + λH(w), H(w) = −
K∑

k=1

wi,k logwi,k,

and the unregularized problem

(P0) max
w∈∆K

K∑
k=1

wi,k mi,k = max
k

mi,k.

We proceed in three steps.

Step 1: Entropy-regularized maximization and its value. di =
∑

k w
λ
i,kg

train
i,k is the entropy-

regularized solution with weights wλ
i,k = exp(mi,k/λ)/

∑
j exp(mi,j/λ). Plugging wλ back into

Φλ yields the optimal value

max
w∈∆K

Φλ(w;mi) = λ log

K∑
j=1

exp
(
mi,j/λ

)
. (15)

Step 2: Log-sum-exp sandwich. For any vector x ∈ RK and λ > 0,

max
j

xj ≤ λ log

K∑
j=1

exj/λ ≤ max
j

xj + λ logK. (16)

The left inequality follows since
∑

j e
xj/λ ≥ emaxj xj/λ. For the right inequality, note

∑
j e

xj/λ ≤
K emaxj xj/λ. The left inequality is what we use in the proof. The right inequality is not required
here but provides intuition: log-sum-exp is always within λ logK of the max, meaning entropy
regularization yields a smooth approximation of the hard maximum.

Applying equation 16 to x = mi and using equation 15, we get

max
w∈∆K

∑
k

wi,kmi,k ≤ max
w∈∆K

Φλ(w;mi) ≤ max
w∈∆K

∑
k

wi,kmi,k + λ logK. (17)

Step 3: From optimal value to the inner product at wλ
i . At the optimizer wλ

i of (Pλ),

K∑
k=1

wλ
i,kmi,k = max

w∈∆K
Φλ(w;mi) − λH(wλ

i ). (18)

Since H(wλ
i ) ≤ logK (Brémaud, 2012), we have

K∑
k=1

wλ
i,kmi,k ≥ max

w∈∆K
Φλ(w;mi) − λ logK. (19)
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Combining equation 19 with the left inequality of equation 17 yields
K∑

k=1

wλ
i,kmi,k ≥ max

w∈∆K

∑
k

wi,kmi,k − λ logK. (20)

Recalling mi,k = ⟨gval
i , gtrain

i,k ⟩,

⟨gval
i ,di⟩ =

∑
k

wλ
i,k⟨gval

i , gtrain
i,k ⟩ ≥ max

w∈∆K

〈
gval
i ,

∑
k

wi,kg
train
i,k

〉
− λ logK = ⟨gval

i ,d⋆
i ⟩ − λ logK,

(21)
which proves the lemma.

B.3 PROOF OF THEOREM 1

Theorem 1 (Convergence) Under Assumptions 1/2/3 and Lemma 1, and the update is θi+1 = θi−η di,
for any fixed step size η > 0 and I ≥ 1, we have:

1

I

I−1∑
i=0

E
[
∥gval

i ∥22
]
≤

E
[
Lval(θ0)− infθ Lval(θ)

]
η γ I

+
λ logK

γ︸ ︷︷ ︸
entropy floor

+
LG2

2γ
η︸ ︷︷ ︸

step size floor

. (22)

As I → ∞, the average squared validation gradient norm converges to a neighborhood of radius
O(λ) +O(η).

Proof. By Assumption 3 and Lemma 1, we have

⟨gval
i ,di⟩ ≥ max

w∈∆K

〈
gval
i ,

∑
k

wi,kg
train
i,k

〉
− λ logK ≥ γ∥gval

i ∥22 − λ logK. (23)

Apply the second-order Taylor expansion of Lval around θi:

Lval(θi+1) = Lval(θi)− η⟨gval
i ,di⟩+ η2

2

( K∑
k=1

wkg
train
k

)⊤
Hval(θ̃)

( K∑
j=1

wjg
train
j

)
, (24)

where Hval(θ̃) = ∇2
θLval(θ̃) is the Hessian at some point on the line segment between θi and θi+1.

Under Assumptions 1/2, the validation loss is L-smooth, i.e. for all ξ, ∥Hval(ξ)∥2 ≤ L, then the
magnitude of the second-order remainder is bounded by:∣∣∣∣∣∣η2

2

(∑
k

wkg
train
k

)⊤
Hval(θ̃)

(∑
j

wjg
train
j

)∣∣∣∣∣∣ ≤ Lη2

2

∥∥∥ K∑
k=1

wkg
train
k

∥∥∥2
2
. (25)

Using the triangle inequality and convexity of the norm,∥∥∥ K∑
k=1

wkg
train
k

∥∥∥
2
≤

K∑
k=1

wk∥gtrain
k ∥2 ≤ G (since w ∈ ∆K), (26)

so a bound on the second-order remainder is L
2 η

2G2. Then,

Lval(θi+1) ≤ Lval(θi)− η⟨gval
i ,di⟩+

L

2
η2G2 (27a)

≤ Lval(θi)− η
(
γ∥gval

i ∥22 − λ logK
)
+

L

2
η2G2. (27b)

Taking the expectation on both sides:

E
[
Lval(θi+1)

]
≤ E

[
Lval(θi)

]
− η γ E

[
∥gval

i ∥22
]
+ η λ logK +

L

2
η2G2. (28)

Rearranging,

E
[
∥gval

i ∥22
]
≤

E
[
Lval(θi)

]
− E

[
Lval(θi+1)

]
η γ

+
λ logK

γ
+

LG2

2γ
η, (29)
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summing from i = 0 to I − 1, the telescoping sum of the first term yields

I−1∑
i=0

E[Lval(θi)]− E[Lval(θi+1)]

η γ
=

E[Lval(θ0)]− E[Lval(θI)]

η γ
≤ E[Lval(θ0)]− infθ Lval(θ)

η γ
.

(30)
Therefore,

1

I

I−1∑
i=0

E
[
∥gval

i ∥22
]
≤

E
[
Lval(θ0)− infθ Lval(θ)

]
η γ I

+
λ logK

γ︸ ︷︷ ︸
entropy floor

+
LG2

2γ
η︸ ︷︷ ︸

step size floor

, (31)

which completes the proof.

C ADDITIONAL EXPERIMENTAL SETTINGS

We include the number of samples for different tasks under various experimental environments in
Table 4. Specifically, we consider the bidding process in a day, where the bidding episode is divided
into 96 time steps. Thus, the duration between two adjacent time steps t and t+ 1 is 15 minutes.

Table 4: Number of samples for different tasks under various experimental environments.

Store Conversion Direct Conversion Add-to-Cart
Simulation 20 20 10
Real-world 4700 4200 1200

Hardware Resource. The simulated experiments are conducted based on an NVIDIA T4 Tensor
Core GPU. We use 10 CPUs and 200G memory.

D LLM USAGE

We declare that we use Large Language Models (LLMs) for grammar checking and lexical refinement
during the writing process. No LLM-generated content, data analysis, or substantive contributions to
the research methodology, results, or conclusions are involved in this work.
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