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Abstract

Deriving compact and temporally aware visual representations from dynamic
scenes is essential for successful execution of sequential scene understanding tasks
such as visual tracking and robotic manipulation. In this paper, we introduce Token
Bottleneck (ToBo), a simple yet intuitive self-supervised learning pipeline that
squeezes a scene into a bottleneck token and predicts the subsequent scene using
minimal patches as hints. The ToBo pipeline facilitates the learning of sequential
scene representations by conservatively encoding the reference scene into a compact
bottleneck token during the squeeze step. In the reconstruction step, we guide
the model to capture temporal dynamics by predicting the target scene using the
bottleneck token along with few target patches as hints. This design encourages the
vision backbone to embed temporal dependencies, thereby enabling understanding
of dynamic transitions across scenes. Extensive experiments in diverse sequential
tasks, including video label propagation and robot manipulation in simulated
environments demonstrate the superiority of ToBo over baselines. Moreover,
deploying our pre-trained model on physical robots confirms its robustness and
effectiveness in real-world environments. We further validate the scalability of
ToBo across different model scales. Code is available at https://github.com/
naver-ai/tobo.

1 Introduction

With the increasing interest in deploying machines in real-world environments, ensuring seamless
perception and interaction with their surroundings has emerged a crucial challenge. These operations
are inherently sequential in nature, requiring the ability to trace objects (e.g., visual tracking) and
predict future actions (e.g., manipulation) based on current and immediate past observations. Such
understanding of the surrounding environments primarily depends on vision backbones. Therefore, a
strong and robust backbone capable of generalizing across diverse tasks and environments is essential
for effective sequential scene understanding.

Self-supervised learning (SSL) of visual representations has been highlighted as pivotal research in
vision domains, with the pre-trained models being widely adopted for effective backbone deployment.
A series of studies have introduced promising recipes for learning image [3, 4, 5, 6, 8, 14, 18] and
video representations [36, 44] without labeled data. However, these studies primarily focus on
understanding entire scenes or videos, which poses limitations for sequential scene understanding, as
it requires capturing temporal changes across consecutive scenes and conservatively encoding the
visual states of observed scenes.

To address the challenges, a sequence of studies [12, 16, 22] have attempted to incorporate correspon-
dence learning into the MAE [18] framework, aiming to retain its strong localization capability while
enabling the model to match corresponding regions across consecutive scenes. However, we observe
that such additional considerations have a limited impact on the quality of scene representations
and may result in suboptimal performance in sequential scene understanding tasks, such as robotic
manipulation (§3.2). This limitation arises since recognizing temporal changes alone is insufficient;
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Figure 1: (a) We describe the underlying mechanism of our Token Bottleneck (ToBo) pipeline during
pre-training, which conservatively encode a reference scene into a bottleneck token and predict the
subsequent target scene based on a scarce target patches and the bottleneck token. ToBo facilitates
learning the capability of temporal progression recognition and preservation of observed information
(top). Therefore, using bottleneck tokens from the current and recent past observations enables the
robot to better understand its current state (bottom). (b) Our method significantly surpasses previous
self-supervised visual representation learning methods designed for static [4, 5, 8, 18] and dynamic
scenes [16, 22, 49] on various robot manipulation and locomotion tasks.

these tasks require the ability to summarize the essential information from each scene without loss,
while preserving temporal cues within the summarized representation.

In this paper, we introduce Token Bottleneck (ToBo), a simple yet effective SSL approach that
intuitively facilitates the conservative summarization of observed scenes while enabling effective
recognition of temporal evolution within the summarized representations. As illustrated in Fig. 1a,
ToBo squeezes a reference scene into a bottleneck token and then predicts the subsequent target
scene using only a minimal set of patches as hints. This design enforces strong reliance on the
bottleneck token, encouraging the vision backbone to capture essential scene information. Moreover,
predicting the target scene from the bottleneck token implicitly embeds temporal dependencies,
guiding the vision backbone to generate representations capable of capturing dynamic transitions
across consecutive scenes.

We conduct comprehensive experiments to assess the effectiveness of our pre-training pipeline in
comparison with existing self-supervised learning methods. We evaluate our method on various
sequential understanding tasks, including manipulation tasks in simulated environments and video
label propagation tasks, surpassing baselines [4, 5, 8, 12, 16, 18, 22, 49] with significant gaps (see
Fig. 1b). Furthermore, we deploy our pre-trained models on real-world robots, demonstrating strong
generalization performance in unseen physical environments. Finally, we validate the scalability of
our approach by observing consistent performance gains across various model scales.

2 Related Work

Self-supervised learning on a static scene. Self-supervised learning (SSL) approaches have been
widely explored in the image domain. Contrastive learning approaches [3, 5, 7, 8, 17] aim to learn
useful representations by maximizing the similarity between positive pairs derived from a static scene
through strong augmentations. Although these methods excel in facilitating a cohesive understanding
of images, they suffer from limited localization capabilities [27], essential for action prediction in
robotics. On the other hand, masked image modeling (MIM) [1, 2, 18, 27, 28, 50] has recently
gained attention for its promising capacity to learn visual representations through predictive learning.
Inspired by masked language modeling (MLM) in transformers [10], BEiT [2] extends MLM into
the vision domain, adopting an external offline tokenizer. MAE [18] and SimMIM [50] showcase
efficient MIM by directly reconstructing masked input pixels without any tokenizer. However, these
approaches do not incorporate mechanisms for capturing temporal progression during pre-training.
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Figure 2: Comparative analysis for
motivation. We compare robot manip-
ulation performance using MAE and
SiamMAE as visual backbones. While
SiamMAE employ temporal correspon-
dence to the limitation of MAE, its im-
provement over MAE remains limited.
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Figure 3: Overview of our Token Bottleneck (ToBo).
Our ToBo reconstructs the masked patches from the bot-
tleneck token representation of the reference scene xt

and extremely scarce patches from the target scene xt+k.
Such extreme scarcity leads the decoder dϕ to rely heavily
on the reference scene xt, facilitating the preservation of
observed information in the bottleneck token.

Self-supervised learning on dynamic scenes. Recent studies have focused on enhancing the
recognition of dynamic transitions. SiamMAE [16] proposes visual representation learning methods
that utilize dynamic scenes. CropMAE [12] introduce a simple augmentation strategy that enables
the generation of dynamic scenes even from a single static image. On the other hand, RSP employs
stochastic frame prediction tasks along with masked autoencoding. Several works have also explored
applying these techniques to embodied agents and robotic manipulation. For example, VC-1 [33],
MVP [40], and Dasari et al. [9] adopt MAE objectives for visual pretraining, while STP [51] builds
on SiamMAE with a reference masking strategy. On the other hand, some prior works investigate
representation learning with annotated supervision. Theia [42] distills representations from large scale
pre-trained teacher networks, some of which are trained with annotation supervision, into student
models. MPI [24], Voltron [25], and R3m [34] explore language-driven representation learning,
leveraging an auxiliary textual guidance through manually annotated data. In contrast, we focus on
self-supervised learning directly from raw dynamic scenes without any guidance from annotations.

3 Method

3.1 Preliminary

Masked autoencoding. Given a scene image, we patchify the image into N non-overlapping p×p-
size patches {xi}Ni=1 where xi ∈ R3p2

. We randomly select a masked patch setM⊂ {1, 2, ..., N}
with a ratio r ∈ (0, 1) where |M| = ⌊rN⌋. The remaining patches {xi}i∈Mc fed into the encoder
fθ, becoming spatial representations {ui}i∈Mc where ui ∈ Rd for encoder dimension d. Note that a
learnable CLS token e[CLS] is also encoded with spatial representations as a part of the encoding
process. The encoded tokens are reconstructed to N tokens by substituting masked positions to a
mask token m ∈ Rd. i.e. ui ← m for i ∈ M. The decoder dϕ gets {ui}Ni=1 as input and predicts
the masked image patches {x̂i}i∈M using encoded tokens.

3.2 Motivation

Real-world robots must see and act seamlessly in complex dynamic environments. This fundamental
challenge motivates our central research question: how should a vision backbone learn to capture
spatiotemporal relationships across a sequence of observations? While conventional self-supervised
vision encoders [16, 18, 22, 50] have been widely employed for this purpose, they possess significant
limitations from the perspective of sequential scene understanding. In this section, we discuss the
strengths and limitations of these prior approaches, thereby providing the insights for our proposed
method.
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Limits of self-supervised learning on static scenes Self-supervised learning approaches on static
scenes such as MAE [18] and SimMIM [50] are effective for appearance modeling and localization,
which leads to their adoption in several robotics studies [9, 33, 40]. These strengths stem from the
design that enforces the autoencoder to predict missing information from available prior information
(e.g., visible patches). This pipeline implicitly encourages the encoder to facilitate interactions
among the remaining sparse tokens, thereby enhancing localization capabilities. However, since
their predictive learning is performed exclusively within single static scenes, the encoder is never
explicitly optimized to compare consecutive frames, leaving them ineffective at modeling temporal
dynamics. Moreover, a recent study reveals that they struggle with learning broader contexts [27],
leading to representations with a limited cohesive understanding. These limitations further constrain
their potential for sequential scenes understanding. Consequently, MAE shows limited sequential
understanding and thus underperforms some manipulation task, as depicted in Fig. 2.

Limits of self-supervised learning with patch-wise temporal correspondence To alleviate
the chronic limitations of static scene-based SSL approaches, SiamMAE [16] builds a non-trivial
correspondence matching problem by randomly sampling two dynamic scenes from sequential data.
The core principle involves propagating patches from the reference scene to their corresponding
locations in the target scene. Applying this guidance using a cross-attention layer-based decoder
encourages patch-level correlation between target patches and reference patches. However, while the
training objective successfully enforces patch-level correspondences, it overlooks the crucial step
of interpreting what these collective matches represent from a holistic perspective. Consequently,
despite being built upon the MAE framework, its performance gain over MAE is marginal or even
negative in some sequential scene-based tasks, as shown in Fig. 2. This suggests that fine-grained
recognition of temporal evolution is insufficient for sequential scene understanding, and a conservative
summarization of the observed scenes is essential.

Computational inefficiency of combinatorial architectures A common approach to achieve com-
prehensive capabilities is to construct a combinatorial architecture that integrates separate pipelines
specialized for each desired capability. For example, RSP [22] combines masked autoencoding,
global representation alignment, and target scene reconstruction for localization, global understanding,
and patch-level correlation, respectively. However, this combinatory design leads to a substantial
increase in computational overhead. As a result, RSP requires more than double the computation cost
of competing methods, as reported in Table 9.

3.3 The Proposed Method - Token Bottleneck (ToBo)

Our claim Our goal is to achieve representations optimized for resolving sequential scene-based
tasks. In light of the discussions in §3.2, we extend our focus beyond simply recognizing tempo-
ral evolution; we consider the conservative summarization of observed scenes in a way that also
effectively embeds temporal dynamics within the summarized representation.

To this end, we present Token Bottleneck (ToBo), a self-supervised visual representation learning
pipeline that enables these capabilities through a token bottleneck mechanism. ToBo consists of
two key steps: squeezing a scene into a single token, which we denote as the bottleneck token, and
reconstructing information from this token. Suppose a reference scene and a target scene are given.
In the squeeze step, visual information from the reference scene is compactly encoded into the
bottleneck token. Subsequently, in the reconstruction step, we guide the model to predict the target
scene using the bottleneck token, with only a minimal set of patches from the target scene provided
as hints. In this situation, the model cannot precisely reconstruct the target scene based solely on the
limited hints, which strengthens the reliance of the reconstruction step on the bottleneck token. This
design yields two advantages: (1) the bottleneck token should preserve essential information from
the reference scene, and (2) such information should be encoded in a way that enables recognition of
temporal dynamics when interleaved with the hints from the target scene. Eventually, our goal can be
achieved by optimizing the objective of the Token Bottleneck pipeline. The overall description of our
pipeline is depicted in Fig. 3.

Overall pipeline formulation Suppose we sample a reference scene xt ∈ R3×H×W and a target
scene xt+k ∈ R3×H×W with a temporal gap k. We patchify xt and xt+k into N non-overlapping
patches {xt

i}Ni=1 and {xt+k
i }Ni=1, respectively. The reference scene patches {xt

i}Ni=1 are fed into
an encoder fθ, yielding spatial representations {ut

i}i∈Mc . We use the CLS token output from this
encoding process as the bottleneck token utobo, which will be guided to compactly summarize the
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Table 1: Experimental results on vision-based robot policy learning on Franka Kitchen. We
report the performance of imitation learning agents on Franka Kitchen [15], which are trained upon
representations from the ViT-S/16 model pre-trained on Kinetics-400 [26] dataset. The success rates
(%) are reported for all the tasks. We underline the second-best performance. We report the gains of
our method over the second-best baseline.

Tasks SimCLR MoCo v3 DINO MAE SiamMAE RSP CropMAE ToBo

Knob1 on 25.3±2.1 11.5±3.9 27.0±3.2 12.0±3.3 16.8±4.4 31.0±2.4 31.5±5.3 57.0±2.0
Light on 55.8±6.4 24.3±5.0 44.3±6.5 24.3±4.2 36.5±7.0 44.5±5.6 54.0±11.2 82.0±1.6
Sdoor open 72.3±2.8 66.5±3.2 77.0±5.0 71.5±4.3 68.0±7.9 82.5±2.7 77.0±8.1 95.0±7.1
Ldoor open 17.0±2.9 10.3±2.1 16.5±2.5 12.8±3.9 17.3±3.7 28.8±4.8 25.5±5.7 51.0±1.4
Micro open 23.3±2.8 14.3±2.5 28.5±4.8 10.0±2.8 13.5±4.8 30.3±5.6 32.5±4.1 55.0±1.4

Table 2: Experimental results on vision-based robot policy learning on CortexBench. The
performance of imitation learning agents on CortexBench [33] is reported, where the agents are
trained upon representations from the ViT-S/16 model pre-trained on the Kinetics-400 [26] dataset.
We report the normalized score for DeepMind Control Suite (DMC) and success rates (%) for other
tasks. We report the gains of our method over the second-best baseline.

Tasks SimCLR MoCo v3 DINO MAE SiamMAE RSP CropMAE ToBo

Adroit 40.4±3.3 39.6±4.3 45.6±6.2 39.6±4.3 44.0±6.6 45.6±4.6 50.0±5.1 60.4±2.2
MetaWorld 78.4±5.2 65.4±8.0 82.4±5.8 65.4±8.0 81.1±6.3 84.5±6.6 82.4±5.8 87.8±4.6
DMC 39.7±2.9 43.7±3.2 50.9±1.5 43.7±3.2 56.0±2.9 61.6±3.4 46.4±1.1 73.5±0.9
TriFinger 63.3±3.3 53.3±1.6 64.2±3.5 53.3±1.6 52.1±7.6 66.2±0.8 46.3±1.7 66.5±1.0

reference scene. The target scene {xt+k
i }Ni=1 is masked with an extremely high ratio r ∈ (0, 1), where

M⊂ {1, 2, ..., N} and |M| = ⌊rN⌋. The unmasked target patches {xt+k
i }i∈Mc are processed by

the same encoder fθ, producing {ut+k
i }i∈Mc for the target scene. We then concatenate the bottleneck

token utobo with the target representations {ut+k
i }i∈Mc and fill mask tokens m for missing regions

i ∈M. These are passed to the decoder dϕ, which predicts the masked image patches {x̂t+k
i }i∈M

by using utobo and {ut+k
i }i∈Mc . Due to the extremely high masking ratio applied to the target scene,

the decoder dϕ proactively rely on utobo, which enable the encoder fθ to conservatively summarize
the reference scene in a way that facilitates temporal reasoning when compared to the target hints.
We minimize the reconstruction loss throughout the training as follows:

LToBo =
∑
i∈M

d(x̂t+k
i ,xt+k

i ), (1)

where d(·) is a distance function; we use cosine distance for the pre-training.

Decoder structure Previous methods in dynamic SSL [12, 16, 22] utilize cross-attention layers as
a core component for learning temporal evolution awareness, placing them within the decoders to
guide the encoder to learn representations that effectively capture correspondences. These approaches
leverage a hybrid structure of cross-attention layers, self-attention layers, and multi-layer perceptron
(MLP) layers. In contrast, ToBo employs self-attention layers to ensure that the decoder exclusively
attends to the given information during the reconstruction step, with MLP layers for progressive
transformation from representation embedding spaces into the pixel space.

4 Experiment

In this section, we focus on demonstrating the effectiveness of our pre-training pipeline through fair
comparisons with existing self-supervised learning methods. To this end, we evaluate our method
on sequential tasks, including video label propagation tasks [23, 38, 55] and vision-based policy
learning for robotic manipulation and locomotion across various simulated environments [15, 21, 33].
We extend our validation to real-world settings by deploying our pre-trained model on physical
robots, showcasing its transferability. We further investigate the scalability of our method. In the
appendix, we validate our claim regarding the importance of extremely high masking ratios to the
target scene, present qualitative comparisons of manipulation processes against baseline methods,
and show provide demonstrations of real-world manipulation tasks.
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Table 3: Experimental results on vision-based robot policy learning on RLBench. We report the
performance of imitation learning agents on RLBench [21], which are trained upon representations
from the ViT-S/16 model pre-trained on Kinetics-400 [26] dataset. The success rates (%) are reported
for all the tasks. We report the gains of our method over the second-best baseline.

Tasks SimCLR MoCo v3 DINO MAE SiamMAE RSP CropMAE ToBo

Button 7.4±2.6 11.4±4.1 24.7±1.5 6.4±2.2 6.1±2.3 28.4±3.0 26.9±6.7 41.2±7.4
Phone 34.6±6.6 36.2±3.4 32.0±5.5 37.7±1.9 5.4±0.5 48.0±4.6 16.6±3.8 52.3±3.2
Umbrella 5.8±3.3 13.2±1.5 28.1±1.4 10.0±1.2 4.0±0.0 37.3±3.0 37.5±8.8 42.2±6.9
Wine 11.0±2.1 8.7±0.7 31.4±1.5 10.0±2.1 8.7±0.8 31.9±2.3 33.2±0.2 35.4±3.8
Rubbish 5.2±1.2 6.7±0.8 12.9±1.5 6.2±3.2 3.5±0.9 18.5±1.1 20.6±1.7 37.0±6.1

Table 4: Performance on real-world vision-based
robot policy learning. Success rates (%) of imitation
learning agents on three manipulation tasks: Cabinet
Opening, Drawer Closing, and Cup Stacking. Agents
are trained with ViT-S/16 representations pre-trained
on Kinetics-400 [26] for 400 epochs. The results
demonstrate the generalizability of ToBo in real-world.

Method Cabinet
Opening

Drawer
Closing

Cup
Stacking

SiamMAE 20.0 55.0 50.0
RSP 25.0 65.0 55.0
CropMAE 0.0 25.0 20.0

ToBo (ours) 65.0 75.0 80.0

Figure 4: Real-world robot trajectories.
Initial, intermediate, and final states of
the robot during (a) Cabinet Opening, (b)
Drawer Closing, and (c) Cup Stacking.

(a)

(b)

(c)

4.1 Experimental Setup

Implementaion details We follow the evaluation protocol of Jang et. al. [22] for both video label
propagation and vision-based policy learning on simulated environments. To ensure fair comparisons
with the baselines, we also pre-train our method on Kinetics-400 for 400 epochs. Detailed explanation
for both pre-training and evaluation are provided in the Appendix.

Baselines We compare the performance of our method with conventional self-supervised learning
(SSL) methods for visual representations including SimCLR [5], MoCo v3 [8], DINO [4], and
MAE [18] We also consider previous dynamic scene SSL methods, i.e., SiamMAE [16], RSP [22],
and CropMAE [12]. We validate the impacts of explicitly learning state representations over these
approaches.

4.2 Vision-based robot policy learning in simulated environments

We evaluate our method through imitation learning on robot manipulation and locomotion tasks across
various simulated environments. Specifically, we evaluate five tasks from both the Franka Kitchen
and RLBench benchmarks. Moreover, we consider two, five, five, and two tasks from Adroit [41],
MetaWorld [53], DeepMind Control Suite (DMC) [43], and TriFinger [46] from the CortexBench
benchmark, respectively.

Franka Kitchen. We present a comparison between our method and the baselines on vision-based
robot policy learning in the Franka Kitchen environment in Table 1. The results demonstrate that our
method significantly outperforms all the baselines across all tasks. Notably, our method achieves
over 20% improvements in success rates on all tasks, except for the Light on task. This highlights the
effectiveness of explicitly encoding visual state representation for vision-based robot policy learning.

CortexBench. We compare our method with the baselines for the vision-based robot manipulation and
locomotion tasks in the Adroit, MetaWorld, DeepMind Control (DMC), and Trifinger environments in
Table 2. The results show that our method achieves superior performance compared to the baselines
across all tasks. In particular, our method surpasses the second-best performance with success rate
gains of 11.9%p on DMC and 10.4%p on Adroit.
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Table 5: Results on video label propagation. We report performances on video segmentation, video
part segmentation, and pose tracking tasks from DAVIS [38], VIP [55], and JHMDB [23] benchmarks,
respectively. For all methods, we report the performance with the representations pre-trained on the
Kinetics-400 [26] dataset for 400 epochs.

DAVIS VIP JHMDB

Method J&Fm Jm Fm mIoU PCK@0.1 PCK@0.2

SimCLR 53.9 51.7 56.2 31.9 37.9 66.1
MoCo v3 57.7 54.6 60.8 32.4 38.4 67.6
DINO 59.5 56.5 62.5 33.4 41.1 70.3
MAE 53.5 50.4 56.7 32.5 43.0 71.3
SiamMAE 58.1 56.6 59.6 33.3 44.7 73.0
RSP 60.1 57.4 62.8 33.8 44.6 73.4
CropMAE 58.6 55.8 61.4 33.7 42.9 71.1

ToBo (ours) 60.6 58.4 63.0 34.0 47.0 74.8

(a) Semantic Part Propagation

(b) Object Propagation (c) Pose Tracking
Figure 5: Qualitative results for video label propagation. We provide examples of predicted
propagation of our model on video object segmentation, video part segmentation, and pose tracking
benchmarks. The leftmost images indicate the ground-truth annotations. We visualize the propagated
results corresponding to 25, 50, and 100% ratio of the videos.

RLBench. Table 3 showcases the robot manipulation performance on five demonstration tasks in the
RLBench environment. Notably, our method consistently exceeds all baselines across the five tasks.
Moreover, the degraded performance of MAE and SiamMAE further highlights the significance of
state representation learning for the robot backbones.

4.3 Vision-based Robot Policy Learning in Real-world Environments

Quantitative comparison. To validate the robustness of our method in real-world environments,
we further investigate SSL methods on real-world robot manipulation tasks. Specifically, we design
three demonstration tasks: Cabinet Opening, Drawer Closing, and Cup Stacking. For each task,
We collect 50 demonstration episodes for training and 10 demonstration episodes for evaluation for
imitation learning. Following the training protocol used in simulated environments, we train the
policy network using a standard behavior cloning loss. The experimental results for each individual
task are reported in Table 4. We first observe that our method exceeds SiamMAE [16], RSP [22], and
CropMAE [12] on all three tasks. Specifically, our method improves 40%p, 10%p, and 25%p over
the baselines on the Cabinet Opening, Drawer Closing, and Cup Stacking tasks, respectively. While
previous SSL methods on dynamic scenes struggle with tasks that require relatively high precision,
like cabinet opening tasks, our method even successfully executes the task with a considerable success
rate. This showcases that models pre-trained by our method can be robustly transferred to real-world
environments.
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Table 6: Comparison with robot representation learning models. We compare the performance of
our method with robot representation learning methods across multiple simulated manipulation tasks.
We categorize the methods into self-supervised learning, supervised learning through foundation
models, and supervised learning with auxiliary language guidance. Despite the unbalanced training
and evaluation setup, ToBo surpasses the RRL models on MetaWorld. Moreover, ToBo exceeds
self-supervised RRL models despite of a smaller model with a significantly smaller amount of data.
These results demonstrate the effectiveness of the representations learned by ToBo in diverse robot
manipulation tasks.

Method #Param Dataset #Seen frames Adroit MetaWorld Franka Kitchen

Supervision through Foundation Models
Theia† 52.9M Theia dataset 14.4B∗ 66.0 86.1 -

Supervision with Auxiliary Language Guidance
R3M 25.6M Ego4D 0.8B 65.0 69.2 53.1
MVP 21.7M MVP dataset 4.8B - 84.6 -
Voltron‡ 21.7M SS-v2 0.3B - 68.7 70.5
MPI‡ 21.7M Ego4D 0.1B - 85.7 76.5

Self-supervised Learning
R3M◦ 25.6M Ego4D 0.8B 45.6 67.0 47.2
data4robotics 86.0M Kinetics-700 0.5B - 87.0 55.0
VC-1 86.0M Ego4D+N 1.0B 50.0 86.4 -
ToBo (ours) 21.7M Kinetics-400 0.2B 60.4 87.8 68.0
† Uses additional compression layers. ‡ Uses multi-head attention pooling layers for integrating spatial tokens.
◦ Excludes language guidance from the vanilla recipe. ∗ Includes data for distillation models.

Qualitative comparison To illustrate the actual manipulation processes, we present the robot trajec-
tories from successful demonstrations for three real-world manipulation tasks in Fig. 4. Specifically,
the initial states of the physical robot are depicted in the left scenes, while the right scenes show
the final states of the demonstrations. The middle scenes illustrate the intermediate states of the
demonstrations. Our model clearly succeeds in all the tasks. We also compared the trajectories with
the baselines in the Appendix.

4.4 Video Label Propagation

We perform comparative analyses on the video label propagation tasks. We consider the video object
segmentation, video part segmentation, and pose tracking tasks from DAVIS [38], VIP [55], and
JHMDB [23]. We follow the evaluation protocol in Jang et. al [22]. We present the quantitative
evaluation in Table 5. Our method demonstrates superior performance compared to all the baselines
across the video label propagation tasks. We also provide qualitative results in Fig. 5, where our
method effectively traces visual appearances across various video label propagation tasks. These
visualizations highlight that our method maintains robust object identity, part consistency, and
pose continuity. The strong performance in both quantitative and qualitative evaluations further
demonstrate the effectiveness of our approach in capturing the temporal evolution of visual appearance
across consecutive scenes.

5 Discussion

Comparison with robot representation learning models We further compare our method with
recent robot representation learning (RRL) models, categorized by their supervision types: self-
supervised learning [9, 33], supervision via foundation model outputs [42], and supervision with
auxiliary language annotations [24, 25, 34, 40]. Table 6 shows the reported performance of RRL
models across several simulated robot manipulation benchmarks [15, 41, 53]. Here, our model is
based on a ViT-Small architecture trained on Kinetics-400 for 400 epochs. Notably, despite having
the smallest number of parameters and the second smallest amount of training data, and using no
annotation-based supervision, our method achieves the highest score on MetaWorld. In particular,
Theia is trained by distilling knowledge from five large-scale foundation models (CLIP large [39],
Depth Anything large [52], DINOv2 large [35], Segment Anything huge [29], and ViT huge [45]),
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Table 7: Performance with vision-language models. We compare the performance of our method
with vision-language models on Franka Kitchen. Despite using a smaller model, significantly less
pre-training data, and no auxiliary textual guidance from manually annotated data, ToBo consistently
outperform the other models across all tasks.

Method #Param Dataset #Seen frames Knob1 on Light on Sdoor open Ldoor open Micro open

CLIP∗ 149.3M WebImageText 12.8B 23.0 29.5 69.5 13.5 22.0
DINOv2 22.1M LVD-142M 4.3B 25.5 38.0 82.0 15.5 20.0
SigLIP∗ 203M WebLI 2.1B 17.5 38.5 75.0 8.5 16.5
SigLIP2∗ 375M WebLI 40B 11.0 23.5 58.5 11.0 18.0

ToBo (Ours) 21.7M Kinetics-400 0.2B 57.0 82.0 95.0 51.0 55.0
Gain + 31.5 + 43.5 + 13.0 + 35.5 + 33.0
* The model is trained using textual guidance with manually annotated data.

which are collectively trained on 14.3 billion annotated samples. It also employs convolution-based
compression layers during evaluation. Surpassing Theia under such an unbalanced training and
evaluation setup is noteworthy. Furthermore, the performance gap between R3M with and without
language guidance highlights the substantial benefit of auxiliary language supervision. Even with
such unfairness in the training setup, our method outperforms R3M, MVP, Voltron, and MPI on
MetaWorld. It also surpasses R3M on Franka Kitchen, despite significant differences in training data
and model size. Compared to self-supervised RRL models, our method outperforms all the models. It
surpasses much larger models such as VC-1 and data4robotics, despite being trained on a significantly
smaller amount of data. Given the minimal number of parameters and training scale, these results
demonstrates the effectiveness and efficiency of our proposed method for robot manipulation tasks.

Comparison with Vision-Language Models We compare our method with vision-language models
widely used either as backbones across various domains or as vision towers in large language models.
For fair evaluation, we follow the same evaluation protocol used in the main paper. We evaluate
CLIP [39], DINOv2 [35], SigLIP [54], and SigLIP2 [47] in the Franka Kitchen benchmark, as
shown in Table 7. Despite having the smallest number of learnable parameters and being exposed
to the smallest number of seen frames during pre-training, ToBo achieves consistently superior
performance, outperforming the baselines by margins at least 13.0%p to the maximum 43.5%p.
These performance gaps are notable given that all baselines except DINOv2 use language supervision
from manually annotated data. These results demonstrate the effectiveness of ToBo in summarizing
visual observations for sequential scene understanding tasks.

Figure 6: Varying the masking ratio of tar-
get scenes. We vary the masking ratio from
0.5 to 0.95 and pre-train ViT-S/16 models on
the Kinetics-400 [26] dataset for 100 epochs.

Ablation Study on Mask Ratio of Target Scenes
To verify our claim that extremely scarce information
from target scenes forces the decoder to rely highly
on the stored visual scene information of the refer-
ence scene, we conduct an ablation study varying the
mask ratio of target scenes. We pre-train the models
on the Kinetics-400 [26] dataset for 100 epochs and
evaluate five tasks on Franka Kitchen. As shown in
Figure 6, the effectiveness of our proposed method in-
creases as the masking ratio of target scenes increases
until 0.9, verifying our claim that scarce target scene
information facilitates the exploitation of the com-
pressed reference information. Besides, the models
pre-trained with a masking ratio of 0.95 yield de-
graded performance in some tasks, demonstrating
that minimal clues are necessary for the prediction of
the missing information.

Scalability We investigate the scalability of our ToBo beyond ViT-S/16 by pre-training ViT-
B/16 and ViT-L/16 on Kinetics-400 [26] for 100 epochs. We evaluate the pre-trained models on
vision-based robot policy learning on Franka Kitchen [15] using three different seeds. We compare
our method with MAE, SiamMAE, and RSP. Table 8 presents the mean and standard deviation
across all seeds. We observe that models pre-trained with ToBo consistently achieving the best
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Table 8: Scalability of our method. We report the performance of vision-based robot policy learning
on Franka Kitchen [15], which are trained upon representations from the ViT-B/16 and ViT-L/16
model pre-trained on Kinetics-400 [26] dataset for 100 epochs. The success rates (%) are reported
for all the tasks. We underline the second-best performance. We report the gains of our method over
the second-best baseline. We conduct evaluations using three different seeds.

Arch. Method Knob1 on Light on Sdoor open Ldoor open Micro open

ViT-B/16

MAE 18.7±1.2 21.3±4.6 70.0±2.0 17.3±2.3 15.3±2.3
SiamMAE 18.0±2.0 34.0±2.0 80.7±3.1 18.7±1.2 19.3±6.1
RSP 24.7±3.1 51.7±9.1 87.3±2.3 23.3±7.6 26.7±2.3
ToBo (ours) 46.7±6.4 78.7±7.6 95.3±1.2 47.3±5.0 37.3±4.6

Gain + 22.0 + 27.0 + 8.0 + 24.0 + 10.6

ViT-L/16

MAE 19.3±7.6 33.3±2.3 61.3±6.4 16.0±2.0 14.0±2.0
SiamMAE 20.7±3.1 34.0±4.0 76.0±2.0 12.7±6.4 22.0±0.0
RSP 26.7±2.3 48.0±2.0 88.0±2.0 22.7±8.3 23.3±4.2
ToBo (ours) 54.7±5.0 75.3±4.2 94.0±3.5 50.0±2.0 42.7±6.1

Gain + 28.0 + 27.3 + 6.0 + 27.3 + 19.4

performance across all five tasks, exhibiting significant improvements over the second-best results.
These demonstrate the scalability of our method.

Table 9: Comparison of training FLOPs and
downstream performance in Franka Kitchen.

Method Training FLOPs
(GFLOPs)

Franka
Kitchen (%)

MAE 13.0 26.1
SiamMAE 13.1 30.4
RSP 32.5 43.4

ToBo 15.9 68.1

Comparison of training and inference flops
We conducted FLOPs evaluation for both train-
ing and inference to quantitatively compare the
computational cost of each model, as summarized
in Table 9. During inference, all models use the
same backbone architecture and input resolution
without any input masking, resulting in identical
inference FLOPs at the same model scale (e.g., 4.6
GFLOPs for ViT-Small). During training, ToBo,
MAE [18], and SiamMAE [16] show similar com-
putational costs while RSP [22] requires substantially more computation of 32.5 GFLOPs due to
its complex decoding mechanisms. When considering computational costs with downstream perfor-
mance (e.g., performance in Franka Kitchen [15]), these results further support the effectiveness of
ToBo, which achieves a strong balance between efficiency and performance.

6 Conclusion

We have introduced Token Bottleneck (ToBo), a self-supervised visual representation learning
method designed for sequential scene understanding. The backbones for sequential scene-based tasks
should effectively preserve visual information from observations while facilitating the recognition of
temporal progression across sequential scenes. While conventional self-supervised learning (SSL)
methods have proven promising impacts in visual representation learning, they primarily focus on
understanding static images or entire videos, often lacking embeds for handling dynamic transitions
in sequential tasks. Recent SSLs aim to address this by adapting correspondence learning in dynamic
scenes. However, their patch-wise representations of observations are often suboptima for subsequent
policy networks, especially in tasks like robotic manipulation. To this end, ToBo introduces a
simple yet effective pipeline that facilitates conservative summarization of the observed scene into a
bottleneck token while enable capturing of dynamic transitions through the bottleneck token. Through
extensive experiments in various sequential understanding tasks including manipulation tasks and
video label propagation tasks, we verified the superiority of ToBo over conventional SSL methods
and previous dynamic scene SSL methods. Furthermore, applying ToBo in real-world settings
demonstrates its robustness and generalization capability.

Limitation Due to the resource constrains, we did not check the scalability of our method beyond
huge scale and explore beyond the commonly used input resolution. Additionally, our study focused
on a simplest setting involving two dynamic scenes to learn temporal dynamics.
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Appendix

• §A: Further analysis on the hyperparameter choices in the Token Bottleneck pre-training
pipeline

• §B: Manipulation trajectory visualization of real-world demonstrations

• §C: Implementation details for pre-training and evaluation

A Further Analysis

In this section, we examine how hyperparameter choices in the Token Bottleneck (ToBo) pre-training
pipeline affect performance, regarding the number of bottleneck tokens, impact of temporal difference,
We pre-train ViT-B/16 for 100 epochs on Kinetics-400 [26] throughout the ablation studies. The
comparisons are done on five Franka Kitchen imitation-learning tasks [15].

Ablation study on the number of bottleneck tokens We vary the number of bottleneck tokens
in {1, 2, 4, 8}. As shown in Table Aa, using a single token consistently yields the best performance
across tasks. This demonstrates that conservative summarization without auxiliary storage better
captures the current observation and thus improves action prediction in robotics.

Ablation study on temporal difference We further vary the maximum temporal gap between
frames among {48, 96, 144}. As shown in Table Ab, moderate temporal differences encourage the
model to learn dynamic scene evolution, since shorter gaps lack meaningful change whereas overly
longer gaps disrupt temporal coherence

Ablation study with no temporal difference We apply our method using the same frame for
both source and target scenes. As shown in Table Ac, our method still works even without temporal
difference, surpassing other baselines (e.g., MAE [18], SiamMAE [16], and RSP [22]) with significant
margin across tasks. However, its overall performance degrades compared to original ToBo, reflecting
the loss of supervision from temporal change. This highlights the importance of temporal contrast for
effective pre-training of ToBo.

Ablation study on multiple source frames We compare ToBo to a variant pre-trained with multiple
source frames. Specifically, we randomly sample four source frames and pre-train for 100 epochs
under the same recipe as ToBo. As shown in Table Ad, this multi-frame variant surpasses prior
baselines (e.g., MAE [18], SiamMAE [16], and RSP [22]) in most of the tasks. However, despite
requiring higher pre-training cost, it underperforms compared to ToBo across all robotics tasks. These
results suggest that while it is possible to extend ToBo to multi-frame settings, such naive extension
may encounter potential new challenges, leading to suboptimal performance.

B Manipulation trajectory visualization of Real-world Demonstrations

We showcase the robot manipulation trajectories for the SiamMAE [16], RSP [22], and our model
as robot backbones in the same episode on the real-world environment for each task. In Figure A,
Specifically, the leftmost scenes depicts the initial states of the physical robot, while the rightmost
scenes show the final states of the demonstrations. As shown in Fig. A, while SiamMAE and RSP fail
to execute the manipulation tasks, our method successfully completes them within the same episode.
We also provide videos of these demonstrations in the supplementary material.

C Implementation Details

We provide implementation details for pre-training and evaluation. Specifically, we present the
evaluation protocols for vision-based robot policy learning on each simulated environment (i.e.,
Franka Kitchen [15], CortexBench [33], RLBench [21]) and real-world environment. Then, we
explain experimental setups for video label propagation tasks.
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Table A: Ablation studies Token Bottleneck pre-training. We vary hyperparameters of the Token
Bottleneck (ToBo) pre-training pipeline. We report the success rates (%) on five imitation learning
tasks from the Franka Kitchen benchmark [15]. All models are ViT-B/16 and are pre-trained for 100
epochs on Kinetics-400 [26]. We mark our default settings in gray .

(a) Number of bottleneck tokens

# bottleneck tokens Knob1 on Light on Sdoor open Ldoor open Micro open Mean

1 46.7 78.7 95.3 47.3 37.3 61.1
2 31.0 54.0 74.0 26.0 24.0 41.8
4 28.0 24.3 78.0 28.0 22.0 36.1
8 10.0 20.0 56.0 26.0 9.3 24.3

(b) Temporal difference

Maximum temporal difference Knob1 on Light on Sdoor open Ldoor open Micro open Mean

48 40.7 78.7 96.0 44.0 35.3 58.9
96 46.7 78.7 95.3 47.3 37.3 61.1
144 36.0 69.3 97.3 46.7 39.3 57.7

(c) Ablation with no temporal difference

Method Knob1 on Light on Sdoor open Ldoor open Micro open Mean

MAE [18] 18.7 21.3 70.0 17.3 15.3 28.5
SiamMAE [16] 18.0 34.0 80.7 18.7 19.3 34.1
RSP [22] 24.7 51.7 87.3 23.3 26.7 42.7

ToBo (no temporal difference) 41.0 72.0 89.3 32.7 32.0 53.5
ToBo 46.7 78.7 95.3 47.3 37.3 61.1

(d) Ablation on multiple source frames

Method Knob1 on Light on Sdoor open Ldoor open Micro open Mean

MAE [18] 18.7 21.3 70.0 17.3 15.3 28.5
SiamMAE [16] 18.0 34.0 80.7 18.7 19.3 34.1
RSP [22] 24.7 51.7 87.3 23.3 26.7 42.7

ToBo (w/ multi-frame) 28.7 60.7 92.7 20.7 32.0 46.9
ToBo 46.7 78.7 95.3 47.3 37.3 61.1

C.1 Pre-training

We pre-train ViT-S/16 [11] on Kinetics-400 [26] for 400 epochs for the main comparison, while
we pre-train ViT-S/16, ViT-B/16, and ViT-L/16 for 100 epochs for analyses. We employ repeated
sampling [19, 13] with a factor of 2 so that the models are indeed pre-trained for 200 epochs. We
use AdamW optimizer [32] with a batch size of 1536, comprising dynamic scenes with a resolution
of 224×224. These scenes are randomly sampled from videos at a rate of 30 FPS, with a temporal
index gap ranging from 4 to 96. We simply apply random resized crop and horizontal flip to the
scenes, aligning the cropping region across the reference and target scenes. To drive the learning
mechanism of our proposed method, we randomly mask the target scenes with an extremely high
masking ratio of 0.9. Our decoder is composed of eight vision transformer blocks, i.e., each block
contains self-attention layers and multi-layer perceptrons. We follow the default hyperparameters of
the baselines for their pre-training on Kinetics-400 [26]. We adopt a siamese masked autoencoding
loss [16] as an auxiliary objective to enhance learn patch-level correspondence learning.

C.2 Vision-based Robot Policy Learning

Franka Kitchen. We validate models pre-trained by our method and other baselines in five imitation
learning tasks from the Franka Kitchen benchmark [15]. Our experiments mainly follow the imitation
learning evaluation setup in Jang et. al. [22], which builds upon [34, 37]. Specifically, we employ
an agent comprising a frozen backbone initialized with pre-trained models and a policy network
consisting of a two-layer MLP, with a batch normalization layer applied at the input stage. We
define the state representation for the policy network as the combination of the visual representation
and the robot’s proprioception. For the perception, we employ either a left or right camera with a
224×224 resolution while omitting depth. The policy network is trained with a standard behavior
cloning loss. Training for each demonstration task progresses for 20,000 steps, with a periodic online
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Figure A: Sampled Trajectories from Real World Experiment. We visualize the manipulation
trajectories of ToBo, RSP, and SiamMAE on physical robot manipulation tasks in real-world en-
vironments (i.e., Cabinet Opening, Drawer Closing, and Cup Stacking). Our ToBo successfully
demonstrates all tasks, which aligns with the quantitative performance comparisons results.

evaluation in the simulated environment every 1,000 steps. We evaluate the highest success rates of
each demonstration across four different seeds and report its average with a 95% confidence interval.

RLBench. We consider five manipulation tasks from RLBench [21]. Follow the evaluation setup
in Jang et. al. [22], we generate 100 demonstrations and utilize them for training the agent. We
employ a front camera with a 224×224 resolution. Point cloud information is excluded throughout
all experiments. We employ the end-effector controller with path planning. We evaluate the highest
success rates of each demonstration across four different seeds.

CortexBench. We evaluate the models on four simulated environments from CortexBench [33]. We
consider two, five, five, and two demonstrations from Adroit, DeepMind Control (DMC) [43], Meta-
World [53], and Trifinger, respectively. Proprioceptive data is utilized except the DMC benchmark.
We mainly follow the experimental setups in Jang et. al. [22], which builds upon [33]. For each task,
we train the agent for 100 epochs, with a periodic online evaluation in the simulated environment
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(a) Simulated environments (b) Real-world
Figure B: Visualization of environments for robot policy learning evaluation. We validate the ef-
fectiveness of our method on (a) simulated environments (e.g., Franka Kitchen [15], CortexBench [33],
RLBench [21] and (b) real-world environments. We design real-world environments with physical
robots to evaluate how the algorithm handles given tasks.

(a) Cabinet Opening (c) Cup Stacking(b) Drawer Closing

Figure C: Task Description for Real-world Environments. We illustrates the objectives of physical
robot manipulation tasks in the real-world. Yellow arrows indicate the target actions for each task.

every 5 epochs. We report the normalized score for DMC and the highest success rates for other tasks.
We conduct demonstration tasks for five different seeds and report its average with a 95% confidence
interval.

Real-world Environments. We evaluate our proposed method in real-world robotic imitation
learning tasks using a UR5e manipulator equipped with a parallel gripper. The policy operates at
a control frequency of 5 Hz, executing actions defined as delta end-effector poses and gripper’s
state, with specific parameterizations for each task: (dx, dy) for drawer closing, (dx, dy, gripper
open/close) for cabinet opening, and (dx, dy, dz, gripper) for cup stacking. The system employs
joint position control at 50 Hz, with a numerical inverse kinematics (IK) solver running in the
background to calculate the end-effector’s pose to the joint position. Our training dataset consists of
50 demonstrations for cabinet opening and cup stacking and 30 demonstrations for drawer closing.
We train the two-layer MLP policy for 100 epochs without incorporating proprioceptive states, using
a top-front camera view with a resolution of 224×224. The final performance is evaluated based on
the reported average success rate across tasks. Figure C provides visual examples of the three tasks
under consideration.

Video label propagation. We conduct comparative analyses for video label propagation on video
object segmentation on DAVIS [38], video part segmentation on VIP [55], and pose tracking on
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JHMDB [23]. Following the evaluation protocols in the previous studies [48, 31, 30, 20], we employ
k-nearest neighbor inference, maintain a queue of length m to provide temporal context, and restrict
the set of source nodes within a spatial radius r. Additionally, we perform a grid search to optimize
evaluation hyperparameters for each method and report the best results.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly state our claims in the abstract and introduction sections.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations at the end of the paper
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical result.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We explain the implementation details in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide a link to our source code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We explain them in the implementation details in the Appendix

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the experimental results with error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We explain them in the implementation details in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA] .
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cited all the papers from which we used code, data, and models.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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