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Abstract

In this paper, we study Adam in non-convex smooth scenarios with potential
unbounded gradients and affine variance noise. We consider a general noise model
which governs affine variance noise, bounded noise, and sub-Gaussian noise. We
show that Adam with a specific hyper-parameter setup can find a stationary point
with a O(poly(log T )/

√
T ) rate in high probability under this general noise model

where T denotes total number iterations, matching the lower rate of stochastic
first-order algorithms up to logarithm factors. We also provide a probabilistic
convergence result for Adam under a generalized smooth condition which allows
unbounded smoothness parameters and has been illustrated empirically to capture
the smooth property of many practical objective functions more accurately.

1 Introduction

Since its introduction by [33], the Stochastic Gradient Descent (SGD): xt+1 = xt−ηtgt has achieved
significant success in solving the unconstrained stochastic optimization problems:

min
x∈Rd

f(x), where f(x) = Eξ[fξ(x, ξ)], (1)

where ξ is a random variable, gt is the stochastic gradients and ηt is the step-size. From then on,
numerous literature focused on the convergence behavior of SGD in various scenarios. Several studies
focused on the non-convex smooth scenario where the stochastic gradient g(x) is unbiased with
affine variance noise, i.e., for some constants σ0, σ1 ≥ 0 and all x ∈ Rd,

E[∥g(x)−∇f(x)∥2] ≤ σ2
0 + σ2

1∥∇f(x)∥2. (2)

Under the noise assumption (2), [3] provided an almost-sure convergence bound for SGD. [4] proved
that SGD could reach a stationary point with a O(1/

√
T ) rate when step-sizes are tuned by problem-

parameters such as the smooth parameter L. The theoretical result also revealed that the analysis of
SGD under (2) is not essentially different from the bounded noise case [17].

In the popular field of deep learning, a range of variants based on SGD, known as adaptive gradient
methods have emerged. These methods employ the past gradients to adaptively tune their step-
sizes and are preferred to SGD for minimizing various objective functions due to their efficiency.
Among these methods, Adam [22] has been one of the most effective methods empirically. Generally
speaking, Adam absorbs some key ideas from previous adaptive methods such as AdaGrad [12, 36]
and RMSProp [37] while adding more unique structures. It combines the exponential moving average
mechanism from RMSProp and meanwhile adds the heavy-ball style momentum [29] and two unique
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Table 1: Comparison for existing Adam analyses with ours.
FCT Grad. Noise Smooth β1, β2 ϵ Conv. Rate Conv. Type

[48] ✗ Bounded Bounded L 1− β2 ≤ cϵ2 poly( 1ϵ )
1
T + σ2 E

[7] ✗ Bounded Bounded L β1,t < β1, β2 = 1− 1
T - 1√

T
E

[57] ✗ Bounded - L β2 = 1− c
T poly(log 1

ϵ )
1√
T

E
[34] ✗ - Finite Sum Affine L T (β1, β2) → 01 - - E
[10] ✗ Bounded Bounded L β1 < β2, β2 = 1− 1

T poly(log 1
ϵ )

1√
T

E
[18] ✗ Bounded Affine L β1 = 1− c√

T
poly( 1ϵ )

1√
T

E
[52] ✗ - Finite Sum Affine L β1 <

√
β2, β2 = 1− c

T
[3] - 1√

T
E

[41] ✗ - Finite Sum Affine (L0, L1) β1 <
√
β2 - - E

[24] ✓ - Sub-Gaussian (L0, L1) β1 = 1− c√
T

1√
ϵ

1√
T

w.h.p.
[39] ✗ - Coordinate-wise Affine L β1 = b

√
β2, β2 = 1− c

T poly(log 1
ϵ )

1√
T

E
[19] ✓ - Coordinate-wise Affine L β1 < β2, β2 = 1− 1

T poly(log 1
ϵ )

1√
T

w.h.p.
Thm. 3.1 ✓ - Affine L β1 < β2, β2 = 1− c

T poly(log 1
ϵ )

1√
T

w.h.p.
Thm. 4.1 ✓ - Affine (L0, L1) β1 < β2, β2 = 1− c

T poly(log 1
ϵ )

1√
T

w.h.p.

1 [34] requires T (β1, β2) = O
(

β1
βn
2

(
1−β1
1−βn

1
+ 1

))
→ 0, which seems could only achieve when β1 = 0 .

2 Though not explicitly stated, the results in (Zhang et al., 2022) could imply convergence to the stationary point when with some calculations.
3 “FCT" refers to “full corrective terms". The “Conv. rate" column presents the convergence rate omitting logarithm factors.

corrective terms. This unique structure leads to a huge success for Adam in practical applications but
at the same time brings more challenges to the theoretical analysis.

Considering the significance of affine variance noise and Adam in both theoretical and empirical
fields, it’s natural to question whether Adam can find a stationary point at a rate comparable to
SGD under the same smooth condition and (2). Earlier researches [14, 40, 2] have shown that
AdaGrad-Norm, a scalar version of AdaGrad, can find a stationary point at the same rate as SGD,
not tuning step-sizes based on problem-parameters. Moreover, they addressed an essential challenge
brought by the correlation of adaptive step-sizes and noise from (2) which does not appear in SGD’s
cases. However, since AdaGrad-Norm applies a cumulative step-sizes mechanism which is rather
different from the exponential moving average step-sizes in Adam, the analysis for AdaGrad-Norm
could not be trivially extended to Adam. Furthermore, the coordinate-wise step-size architecture of
Adam, rather than the unified step-size for all coordinates in AdaGrad-Norm, brings more challenge
when considering (2). In affine variance noise landscape, existing literature could only ensure the
Adam’s convergence with random-reshuffling scheme under certain parameter restrictions [52, 41],
or deduce the convergence at the expense of requiring bounded gradient assumption and using
problem-parameters to tune the step-sizes [18], both of which ignored the corrective terms. Some
other works proved convergence to a stationary point by altering the original Adam algorithm such as
removing certain corrective terms and modifying (2) to a stronger coordinate-wise variant [39, 19].

To the best of our knowledge, existing research has not yet fully confirmed the convergence of Adam
under affine variance noise. To address this gap, we conduct an in-depth analysis and prove that
Adam with the right parameter can find a stationary point in high probability. We assume a milder
noise model (detailed in Assumption (A3)), covering almost surely affine variance noise, the bounded
noise, and sub-Gaussian noise. We show that the convergence rate can reach at O

(
poly(log T )/

√
T
)

matching the lower rate in [1] up to logarithm factors. Our proof employs the descent lemma over
the introduced proxy iterative sequence and adopts techniques related to the new proxy step-sizes
and error decomposition. Based on this, we are able to handle the correlation between stochastic
gradients and adaptive step-sizes and transform the first-order term from the descent lemma into the
gradient norm.

Finally, we apply the analysis to the (L0, Lq)-smooth condition [51]. Several researchers have found
empirical evidence of objective functions satisfying (L0, Lq)-smoothness but out of L-smoothness
range, especially in large-scale language models [49, 38, 11, 8]. Theoretical analysis of adaptive
methods under this relaxed condition is more complicated and needs further nontrivial proof tech-
niques. Also, prior knowledge of problem-parameters to tune step-sizes is needed, as indicated by the
counter-examples from [40] for the AdaGrad. Existing works [13, 40] obtained a convergence bound
for AdaGrad-Norm with (2), and [24] considered Adam with sub-Gaussian noise. In this paper, we
provide a probabilistic convergence result for Adam with the affine variance noise and the generalized
smoothness condition.
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Algorithm 1 Adam
Input: Horizon T , x1 ∈ Rd, β1, β2 ∈ [0, 1), m0 = v0 = 0d, η, ϵ > 0, ϵ = ϵ1d

for s = 1, · · · , T do
Draw a new sample zs and generate gs = g(xs, zs);
ms = β1ms−1 + (1− β1)gs;
vs = β2vs−1 + (1− β2)g

2
s ;

ηs = η
√

1− βs
2/(1− βs

1), ϵs = ϵ
√
1− βs

2;
xs+1 = xs − ηs ·ms/

(√
vs + ϵs

)
;

end for

We also refer readers to see the main contributions of our works and comparisons with the existing
works in Table 1.

Notations We use [T ] to denote the set {1, 2, · · · , T} for any positive integer T , ∥·∥, ∥·∥1 and ∥·∥∞
to denote l2-norm, l1-norm and l∞-norm respectively. a ∼ O(b) and a ≤ O(b) denote a = C1b and
a ≤ C2b for some positive universal constants C1, C2, and a ≤ Õ(b) denotes a ≤ O(b)poly(log b).
a ≲ b denotes a ≤ O(b). For any vector x ∈ Rd, x2 and

√
x denote coordinate-wise square and

square root respectively. xi denotes the i-th coordinate of x. For any two vectors x,y ∈ Rd, we use
x⊙ y and x/y to denote the coordinate-wise product and quotient respectively. 0d and 1d represent
zero and one d-dimensional vectors respectively.

2 Problem set up and algorithm

We consider unconstrained stochastic optimization (1) over Rd with l2-norm. The objective function
f : Rd → R is differentiable. Given x ∈ Rd, we assume a gradient oracle that returns a random
vector g(x, z) ∈ Rd dependent by the random sample z. The true gradient of f at x is denoted by
∇f(x) ∈ Rd.

Assumptions We make the following assumptions throughout the paper.

• (A1) Bounded below: There exists f∗ > −∞ such that f(x) ≥ f∗,∀x ∈ Rd;

• (A2) Unbiased estimator: The gradient oracle provides an unbiased estimator of ∇f(x), i.e.,
Ez [g(x, z)] = ∇f(x),∀x ∈ Rd;

• (A3) Generalized affine variance noise: The gradient oracle satisfies that there are some constants
σ0, σ1 > 0, p ∈ [0, 4), Ez

[
exp

(
∥g(x,z)−∇f(x)∥2

σ2
0+σ2

1∥∇f(x)∥p

)]
≤ exp(1),∀x ∈ Rd.

The first two assumptions are standard in the stochastic optimization. The third assumption provides
a mild noise model that covers the almost surely bounded noise and sub-Gaussian noise. Moreover,
it’s more general than almost surely affine variance noise as follows

∥g(x, z)−∇f(x)∥2 ≤ σ2
0 + σ2

1∥∇f(x)∥2, a.s., (3)

and enlarge the range of p to [0, 4). Assumption (A3) with p = 2 and (3) are also utilized in [2]
to establish high probability results for AdaGrad-Norm. It represents a stronger condition than
the expected version of (2) that is commonly employed for deriving the expected convergence of
algorithms. However, almost surely assumption enables the derivation of stronger high-probability
convergence guarantees for algorithms, while still ensuring expected convergence.

The affine noise variance assumption is important for machine learning applications with feature
noise (including missing features) [15, 21], in robust linear regression [45], and generally whenever
the model parameters are multiplicatively perturbed by noise (e.g., a multilayer network, where noise
from a previous layer multiplies the parameters in subsequent layers). We refer interested readers to
see e.g., [3, 45, 4, 14, 40, 2] for more discussions about the affine variance noise.

Adam For the stochastic optimization problem, we study Algorithm 1, which is an equivalent form
of Adam [22] with the two corrective terms for ms and vs included into ηs for notation simplicity.
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The iterative relationship in Algorithm 1 can be also written as for any s ∈ [T ],

xs+1 = xs − ηs(1− β1) ·
gs√

vs + ϵs
+ β1 ·

ηs(
√
vs−1 + ϵs−1)

ηs−1(
√
vs + ϵs)

⊙ (xs − xs−1), (4)

where we let x0 = x1 and η0 = η. (4) plays a key role in the convergence analysis, showing that
Adam incorporates a heavy-ball style momentum and dynamically adjusts its momentum through
β1 and β2, along with adaptive step-sizes. This inspires us to learn from some classical analysis
methods for algorithms with momentum and provides some new estimations to fit in with the adaptive
property.

3 Convergence of Adam with smooth objective functions

In this section, we assume that the objective function f is L-smooth satisfying that for any x,y ∈ Rd,

∥∇f(y)−∇f(x)∥ ≤ L∥y − x∥. (5)

We then show that Adam has the following high probability results.
Theorem 3.1. Let T ≥ 1 and {xs}s∈[T ] be the sequence generated by Algorithm 1. If Assumptions
(A1)-(A3) hold, and the hyper-parameters satisfy that

0 ≤ β1 < β2 < 1, β2 = 1− c/T, η = C0

√
1− β2, ϵ = ϵ0

√
1− β2, (6)

for some constants c, C0 > 0 and ϵ0 > 0, then for any given δ ∈ (0, 1/2), it holds that with
probability at least 1− 2δ,

1

T

T∑
s=1

∥∇f(xs)∥2 ≤ O

{
G2

(√
σ2
0 + σ2

1G
p +G2

T
+

ϵ0
T

)
log

(
T

δ

)}
,

where G2 is defined by the following order with respect to T, ϵ0, δ:2

G2 ∼ O
(
log

3
2 max{2, 4

4−p}
(

T

ϵ0δ

))
. (7)

Theorem 3.1 provides the nearly optimal convergence rate O
(

poly(log T )/
√
T
)

to find a stationary
point when setting the parameter probably: β2 = 1 − O(1/T ). It’s worth noting that the setting
requires β2 to be closed enough to 1 when T is sufficiently large, which roughly aligns with the
typical setting in [22, 57, 10, 39].

For a more detailed comparison of our results to existing works, including assumptions, convergence
rate, and dependency, we refer readers to Table 1.

4 Convergence of Adam with generalized smooth objective functions

In this section, we study the convergence behavior of Adam in the generalized smooth case. We first
provide some necessary introduction to the generalized smooth condition.

4.1 Generalized smoothness

For a differentiable objective function f : Rd → R, we consider the following (L0, Lq)-smoothness
condition: there exist constants q ∈ [0, 2) and L0, Lq > 0, satisfying that for any x,y ∈ Rd with
∥x− y∥ ≤ 1/Lq ,

∥∇f(y)−∇f(x)∥ ≤ (L0 + Lq∥∇f(x)∥q) ∥x− y∥. (8)

The generalized smooth condition was originally put forward by [51] for any twice differentiable
function f satisfying that

∥∇2f(x)∥ ≤ L0 + L1∥∇f(x)∥. (9)

2Note that we hide the constants β1, β2 inside O. The detailed expression of G2 could be found in (52) from
Appendix.
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It has been proved that a lot of objective functions in experimental areas satisfy (9) but out of
L-smoothness range, especially in training large language models, see e.g., Figure 1 in [51] and [8].

To better understand the theoretical significance of the generalized smoothness, [49] provided an
alternative form in (8) with q = 1, only requiring f to be differentiable. They showed that (8) is
sufficient to elucidate the convergence of gradient-clipping algorithms.

There are three key reasons for opting for (8). Firstly, considering our access is limited to first-order
stochastic gradients, it’s logical to only assume that f is differentiable. Second, as pointed out by
Lemma A.2 in [49] and Proposition 1 in [13], (8) and (9) are equivalent up to constant factors when
f is twice differentiable considering q = 1. Thus, (8) covers a broader range of functions than (9).
Finally, it’s easy to verify that (8) is strictly weaker than L-smoothness. A concrete example is that
the simple function f(x) = x4, x ∈ R does not satisfy any global L-smoothness but (8). Moreover,
the expanded range of q to [0, 2) is necessary as all univariate rational functions P (x)/Q(x), where
P,Q are polynomials and double exponential functions a(b

x) with a, b > 1 are (L0, Lq)-smooth with
1 < q < 2 (see [24, Proposition 3.4]). We refer interested readers to see [51, 49, 13, 24] for more
discussions of concrete examples of generalized smoothness.

4.2 Convergence result

We then provide the high probability convergence result of Adam with (L0, Lq)-smoothness condition
as follows.
Theorem 4.1. Let T ≥ 1 and δ ∈ (0, 1/2). Suppose that {xs}s∈[T ] is a sequence generated by
Algorithm 1, f is (L0, Lq)-smooth satisfying (8), Assumptions (A1)-(A3) hold, and the parameters
satisfy

0 ≤ β1 < β2 < 1, β2 = 1− c/T, ϵ = ϵ0
√
1− β2, η = C̃0

√
1− β2,

C̃0 ≤ min

{
E0,

E0

H
,
E0

L
,

√
β2(1− β1)2(1− β1/β2)

4L2
qd

}
, (10)

where c, ϵ0, E0, C̃0 > 0 are constants, Ĥ is controlled by O
(
log
(

T
ϵ0δ

))
3, and H,H,L are defined

as

H := L0/Lq +
(
4LqĤ

)q
+
(
4LqĤ

) q
2−q

+
(
4L0Ĥ

) q
2

+ 4LqĤ +
(
4LqĤ

) 1
2−q

+

√
4L0Ĥ,

H :=

√
2(σ2

0 + σ2
1H

p +H2) log

(
eT

δ

)
, L := L0 + Lq

(
Hq +H +

L0

Lq

)q

. (11)

Then it holds that with probability at least 1− 2δ,

1

T

T∑
s=1

∥∇f(xs)∥2 ≤ O

{
Ĥ

C̃0

(√
σ2
0 + σ2

1H
p +H2

T
+

ϵ0
T

)
log

(
T

δ

)}
. (12)

Note that in the above theorem, the order of log T in Ĥ and the final convergence bound is better than
the one in Theorem 3.1 under the same noise assumption. This better dependency comes from the
expense of using problem parameters to tune step-size C̃0. Since Ĥ is logarithm order of T , H,H,L
are both polynomial logarithm order of T and the final convergence rate in (12) is also polynomial
logarithm order of T . Note that C̃0 ≤ O(1/poly(log T )) from (10) when T ≫ d. Hence, when T is
large enough, a possible optimal setting is that η = c1/(

√
Tpoly(log T )) for some constant c1 > 0,

which roughly matches the typical setting as mentioned before.

5 Related works

There is a large amount of works on stochastic approximations (or online learning algorithms) and
adaptive variants, e.g., [5, 35, 47, 28, 12, 4, 6, 26, 54] and the references therein. In this section, we
will discuss the most related works and make a comparison with our main results.

3The specific definition of Ĥ can be found in (82) from Appendix.
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5.1 Convergence with affine variance noise and its variants

We mainly list previous literature considering (2) over non-convex smooth scenario. [3] provided an
asymptotic convergence result for SGD with (2). In terms of non-asymptotic results, [4] proved the
convergence of SGD, illustrating that the analysis was non-essentially different from the bounded
noise case from [17].

In the adaptive methods field, [14] studied convergence of AdaGrad-Norm with (2), pointing out that
the analysis is more challenging than the bounded noise and bounded gradient case in [43]. They
provided a convergence rate of Õ(1/

√
T ) without knowledge of problem parameters, and further

improved the bound adapting to the noise level: when σ1 ∼ O(1/
√
T ),

1

T

T∑
t=1

E∥∇f(xt)∥2 ≤ Õ
(

σ0√
T

+
1

T

)
. (13)

(13) matches exactly with SGD’s case [4], showing a fast rate of Õ(1/T ) when σ0 is sufficiently
low. Later, [40] proposed a deep analysis framework obtaining (13) with a tighter dependency to T
and not requiring any restriction over σ1. They further obtained the same rate for AdaGrad under a
stronger coordinate-wise version of (2): for all i ∈ [d],

Ez|g(x, z)i −∇f(x)i|2 ≤ σ2
0 + σ2

1 |∇f(x)i|2. (14)

[2] obtained a probabilistic convergence rate for AdaGrad-Norm with (3) using a novel induction
argument to estimate the function value gap without any requirement over σ1 as well.

In the analysis of Adam, a line of works [34, 52, 41] considered Adam without corrective terms for
finite-sum objective functions under different regimes while possibly incorporating natural random
shuffling technique. They could ensure that this variant converged to a bounded region where

min
t∈[T ]

E
[
min{∥∇f(xt)∥, ∥∇f(xt)∥2}

]
≲

log T√
T

+ C1σ0 (15)

under the affine growth condition which is equivalent to (2). Though not explicitly concluded,
when setting β2 = 1−O(1/T ), [52]’s work can also ensure a convergence rate of order Õ(1/

√
T )

under certain settings. Besides, both [20] and [18] provided convergence bounds allowing for large
heavy-ball momentum parameter that aligns more closely with practical settings. However, they
relied on the assumption for step-sizes where Cl ≤ ∥ 1√

vt+ϵt
∥∞ ≤ Cu,∀t ∈ [T ]. [39] and [19]

used distinct methods to derive convergence bounds in expectation and high probability respectively,
without relying on bounded gradients. Both studies achieved a convergence rate of the form in (13)
for Adam ignoring the corrective terms. [19] further achieved a Õ(1/

√
T ) rate for Adam. However,

the two works only studied coordinate-wise affine variance noise.

In this paper, we derive a stronger high probability convergence rate for Adam with original corrective
terms, relying on an almost surely noise assumption. The noise model is general enough to cover
bounded noise, sub-Gaussian noise, and (coordinate-wise) affine variance noise. Although we
consider a stronger almost surely assumption, our probabilistic convergence result is also stronger
than the expected convergence.

5.2 Convergence with generalized smoothness

The generalized smooth condition was first proposed for twice differentiable functions by [51] (see
(9)) to explain the acceleration mechanism of gradient-clipping. This assumption was extensively
confirmed in experiments of large-scale language models [51]. Later, [49] further relaxed it to a more
general form in (8) allowing for first-order differentiable functions. Subsequently, a series of works
[30, 53, 32] studied different algorithms’ convergence under this condition.

In the field of adaptive methods, [13] provided a convergence bound for AdaGrad-Norm assuming
(2) and (8) with q = 1, albeit requiring σ1 < 1. Based on the same conditions, [40] improved the
convergence rate to the form in (13) without restriction on σ1. [41] explored how Adam without
corrective terms behaves under generalized smoothness with q = 1 and (2). However, they could only
assert convergence to a bounded region as shown in (15). [8] showed that an Adam-type algorithm
converges to a stationary point under a stronger coordinate-wise generalized smooth condition.
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Recently, [24] provided a novel framework to derive high probability convergence bound for Adam
under the generalized smooth and sub-Gaussian noise case.

In this paper, we consider a more general noise setup and investigate Adam’s convergence under the
generalized smooth landscape. We prove that Adam is powerful enough to find a stationary point
with properly tuned step-sizes even under these relaxed assumptions. Moreover, the convergence rate
is not harmed by the relaxation of noise and smoothness, matching the optimal O(1/

√
T ) rate up to

logarithm factors.

5.3 Convergence of Adam

Adam was first proposed by [22] with empirical studies and theoretical results on online convex
learning. The original proof of convergence in [22] was later shown by [31] to contain gaps. [31] and
the subsequent work [42] also showed that for a range of momentum parameters chosen independently
with the problem instance, Adam does not necessarily converge even for convex objectives. Many
works have focused on its convergence behavior in non-convex smooth fields. A series of works
studied Adam ignoring corrective terms, all requiring a uniform bound for gradients’ norm. Among
these works, [48] demonstrated that Adam can converge within a specific region if step-sizes and
decay parameters are determined properly by the smooth parameter. [9] proposed a convergence result
to a stationary point and required all stochastic gradients must keep the same sign. To circumvent this
requirement, [57] introduced a convergence bound only requiring hyper-parameters to satisfy specific
conditions. [10] conducted a simple proof and further improved the dependency on the heavy-ball
momentum parameter. Recently, [55] introduced Nesterov-like acceleration into Adam and AdamW
[27] indicating their superiority in convergence over the non-accelerated versions. For Adam-related
works under (2) or generalized smoothness, we refer readers to Sections 5.1 and 5.2.

We also want to highlight that a series of works [23, 44, 50] investigated the geometry of Adam from
an l∞-norm perspective. [23] and [44] studied the geometry of Adam by regarding it as a variant of
SignSGD and [50] showed that full-batch Adam converges towards a linear classifier that achieves
the maximum l∞-margin when the training data are linearly separable.

6 Proof sketch under the smooth case

In this section, we provide a proof sketch of Theorem 3.1 with some insights and proof novelty. Our
proof borrows some ideas from [43, 10, 14, 2, 39, 19]. The detailed proof can be found in Appendix
B.

Preliminary To start with, we let the stochastic gradient gs = (gs,i)i, the true gradient ∇f(xs) =

ḡs = (ḡs,i)i and ξs = (ξs,i)i = gs − ḡs. We also let ϵs = ϵ
√
1− βs

2 and thus ϵs = ϵs1d. For any
positive integer T and δ ∈ (0, 1), we define MT =

√
log (eT/δ). We denote the adaptive part of the

step-size as

bs :=
√
vs + ϵs =

√
β2vs−1 + (1− β2)g2

s + ϵs. (16)

We define two auxiliary sequences {ps}s≥1 and {ys}s≥1,

p1 = 0d, y1 = x1, ps =
β1

1− β1
(xs − xs−1),ys = ps + xs,∀s ≥ 2. (17)

We follow from [16, 46] which was used to prove the convergence of SGD with momentum and later
applied to handle many variants of momentum-based algorithms. Recalling the iteration of xs in (4),
we reveal that ys satisfies

ys+1 = ys − ηs ·
gs
bs

+
β1

1− β1

(
ηsbs−1

ηs−1bs
− 1d

)
⊙ (xs − xs−1). (18)

In addition, given T ≥ 1, we define, ∀s ∈ [T ],

Gs = max
j∈[s]

∥ḡj∥,GT (s) = MT

√
2σ2

0 + 2σ2
1G

p
s + 2G2

s,GT = MT

√
2σ2

0 + 2σ2
1G

p + 2G2, (19)

where G is as in Theorem 3.1. Both Gs and GT (s) will serve as upper bounds for gradients’ norm
before time s. We will verify their importance in the later argument.
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Starting from the descent lemma We fix the horizon T and start from the standard descent lemma
of L-smoothness. Then, for any given t ∈ [T ], combining with (18) and summing over s ∈ [t],

f(yt+1) ≤ f(x1) +

t∑
s=1

−ηs

〈
∇f(ys),

gs
bs

〉
︸ ︷︷ ︸

A

+
β1

1− β1

t∑
s=1

⟨∆s ⊙ (xs − xs−1),∇f(ys)⟩︸ ︷︷ ︸
B

+
L

2

t∑
s=1

∥∥∥∥ηs · gsbs − β1

1− β1
(∆s ⊙ (xs − xs−1))

∥∥∥∥2︸ ︷︷ ︸
C

, (20)

where we let ∆s =
ηsbs−1

ηs−1bs
− 1d and use y1 = x1 from (17). In what follows, we will estimate A, B,

and C respectively.

Probabilistic estimations To proceed with the analysis, we next introduce two probabilistic
estimations showing that the norm of the noises and a related summation of martingale difference
sequence could be well controlled with high probability. We show that with probability at least 1−2δ,
the following two inequalities hold simultaneously for all t ∈ [T ]:

∥ξt∥2 ≤ M2
T

(
σ2
0 + σ2

1∥ḡt∥p
)
, and (21)

−
t∑

s=1

ηs

〈
ḡs,

ξs
as

〉
≤ GT (t)

4GT

t∑
s=1

ηs

∥∥∥∥ ḡs√
as

∥∥∥∥2 +D1GT , (22)

where D1 is a constant defined in Lemma B.7 and as will be introduced later. In what follows, we
always assume that (21) and (22) hold for all t ∈ [T ] and carry out our subsequent analysis with
some deterministic estimations.

Estimating A We first decompose A as

A =

t∑
s=1

−ηs

〈
ḡs,

gs
bs

〉
︸ ︷︷ ︸

A.1

+

t∑
s=1

ηs

〈
ḡs −∇f(ys),

gs
bs

〉
︸ ︷︷ ︸

A.2

.

Due to the correlation of the stochastic gradient gs and the step-size ηs/bs, the estimating of A.1 is
challenging, as also noted in the analysis for other adaptive gradient methods, e.g., [43, 10, 14, 2, 39,
19]. To break this correlation, the so-called proxy step-size technique is introduced and variants of
proxy step-size have been introduced in the related literature. However, to our best knowledge, none
of these proxy step-sizes could be used in our analysis for Adam considering potential unbounded
gradients under the noise model in Assumption (A3). In this paper, we construct a proxy step-size
ηs/as, with as relying on GT (s) in (19), defined as for any s ∈ [T ],

as =

√
β2vs−1 + (1− β2) (GT (s)1d)

2
+ ϵs. (23)

With the so-called proxy step-size technique over ηs/as and ξs = gs − ḡs, we decompose A.1 as

A.1 = −
t∑

s=1

ηs

∥∥∥∥ ḡs√
as

∥∥∥∥2 − t∑
s=1

ηs

〈
ḡs,

ξs
as

〉
︸ ︷︷ ︸

A.1.1

+

t∑
s=1

ηs

〈
ḡs,

(
1

as
− 1

bs

)
gs

〉
︸ ︷︷ ︸

A.1.2

.

In the above decomposition, the first term serves as a descent term. A.1.1 is now a summation of
a martingale difference sequence which could be estimated by (22). A.1.2 is regarded as an error
term when introducing as. However, due to the delicate construction of as, the definition of local
gradients’ bound GT (t), and using some basic inequalities, we show that

A.1.2 ≤ 1

4

t∑
s=1

ηs

∥∥∥∥ ḡs√
as

∥∥∥∥2 + ηGT (t)
√
1− β2

1− β1

t∑
s=1

∥∥∥∥gsbs
∥∥∥∥2 .
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The first RHS term can be eliminated with the descent term while the summation of the last term can
be bounded by

t∑
s=1

∥∥∥∥gsbs
∥∥∥∥2 ∨ t∑

s=1

∥∥∥∥ms

bs

∥∥∥∥2 ∨ t∑
s=1

∥∥∥∥ ms

bs+1

∥∥∥∥2 ∨ t∑
s=1

∥∥∥∥m̂s

bs

∥∥∥∥ ≲
d

1− β2
log

(
T

βT
2

)
, (24)

due to the step-size’s adaptivity, the iterative relationship of the algorithm, the smoothness of the
objective function, as well as (21). Here, m̂s =

ms

1−βs
1
.

Estimating B and C The key to estimate B is to decompose B as

B =
β1

1− β1

t∑
s=1

⟨∆s ⊙ (xs − xs−1), ḡs⟩︸ ︷︷ ︸
B.1

+
β1

1− β1

t∑
s=1

⟨∆s ⊙ (xs − xs−1),∇f(ys)− ḡs⟩︸ ︷︷ ︸
B.2

.

To estimate B.1, we use the updated rule and further write ∆s ⊙ (xs − xs−1) as(
ηs
bs

− ηs
as

)
⊙ms−1 +

(
ηs
as

− ηs
bs−1

)
⊙ms−1 + (ηs − ηs−1)

ms−1

bs−1
,

and upper bound the three related inner products. Using some basic inequalities, the smoothness,
(24), and some delicate computations, one can estimate the three related inner products, B.2 and C,
and thus get that

B+C ≤ 1

4

t∑
s=1

ηs

∥∥∥∥ ḡs√
as

∥∥∥∥2 + (b1GT (t) + b2) log

(
T

βT
2

)
,

where b1 and b2 are positive constants determined by β1, β2, d, L, η.

Bounding gradients through induction The last challenge comes from the potential unbounded
gradients’ norm. Plugging the above estimations into (20), we obtain that

f(yt+1) ≤ f(x1) +

(
GT (t)

4GT
− 1

2

) t∑
s=1

ηs

∥∥∥∥ ḡs√
as

∥∥∥∥2 + c1GT + (c2GT (t) + c3) log

(
T

βT
2

)
, (25)

where c1, c2, c3 are constants determined by β1, β2, d, L, η. Then, we will first show that G1 ≤ G
and suppose that for some t ∈ [T ],

Gs ≤ G, ∀s ∈ [t] thus GT (s) ≤ GT , ∀s ∈ [t]. (26)

It’s then clear to reveal from (25) and the induction assumption that f(yt+1) is restricted by the
first-order of GT . Moreover, f(yt+1)− f∗ could be served as the upper bound of ∥ḡt+1∥2 since

∥ḡt+1∥2 ≤ ∥∇f(yt+1)∥2 + ∥ḡt+1 −∇f(yt+1)∥2 ≤ 2L(f(yt+1)− f∗) + ∥ḡt+1 −∇f(yt+1)∥2,
(27)

where we use a standard result ∥∇f(x)∥2 ≤ 2L(f(x)− f∗) in smooth-based optimization. We also
use the smoothness to control ∥ḡt+1 −∇f(yt+1)∥2 and combine with (26) and (27) to derive that

∥ḡt+1∥2 ≤ d̃1 + d̃2(σ1G
p/2 +G),

where d̃1, d̃2 are constants that are also determined by hyper-parameters and restricted by O(log T −
T log β2) with respect to T . Then, using Young’s inequality,

∥ḡt+1∥2 ≤ G2

2
+ d̃1 +

4− p

4
· p

p
4−p

(
d̃2

) 4
4−p

+
(
d̃2

)2
.

Thus, combining with a proper construction G2 (detailed in (52)), we could prove that

G2 = 2d̃1 +
4− p

2
· p

p
4−p

(
d̃2

) 4
4−p

+ 2
(
d̃2

)2
,

which leads to ∥ḡt+1∥2 ≤ G2. Combining with the induction argument, we deduce that ∥ḡt∥2 ≤
G2,∀t ∈ [T + 1].
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Final estimation Following the induction step for upper bounding the gradients’ norm, we also
prove the following result in high probability:

L

T∑
s=1

ηs
∥as∥∞

∥ḡs∥2 ≤ L

T∑
s=1

ηs

∥∥∥∥ ḡs√
as

∥∥∥∥2 ≤ G2.

We could rely on GT to prove that ∥as∥∞ ≤ GT

√
1− βs

2 + ϵs,∀s ∈ [T ], and then combine with ηs

in Algorithm 1 to further deduce the desired guarantee for
∑T

s=1 ∥ḡs∥2/T .

7 Conclusion

In this paper, we investigate the convergence of the Adam optimization algorithm on non-convex
smooth problems under certain relaxed conditions. We begin by considering a mild noise assumption
that encompasses several noise types, particularly the almost surely affine variance noise. Under this
noise condition, we demonstrate that Adam can find a stationary point at a rate of O(poly(log T )/

√
T )

with high probability. Within our framework, we introduce a novel proxy step-size to manage the
entanglement of stochastic gradients and adaptive step-sizes, and we employ a new decomposition
method to estimate the errors introduced by the proxy step-size, the momentum, and the corrective
terms in Adam.

We also extend our analysis to the convergence of Adam when the objective function is generalized
smooth. This relaxed assumption is empirically validated to be more realistic in practical applications.
Our results indicate that, with appropriate hyper-parameter tuning, Adam can find a stationary point
at the same order of convergence rate as in the smooth case.

Limitations Our study has several limitations that warrant further exploration. First, it would be
advantageous to provide experimental results to validate the hyper-parameter settings in our results.
Second, the convergence bound is not strictly tight compared to the lower bound, leaving a gap
involving logarithmic factors, which may be improved in future work.
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The appendix is organized as follows. The next section presents some necessary technical lemmas,
some of which have appeared in the previous literature. In Appendix B and Appendix C, the detailed
proofs for Theorem 3.1 and Theorem 4.1 are presented respectively. Finally, Appendix D and
Appendix E provide all the omitted proofs in previous sections.

A Complementary lemmas

We first provide some necessary technical lemmas as follows.

Lemma A.1. Suppose that {αs}s≥1 is a non-negative sequence. Given β2 ∈ (0, 1] and ε > 0, we
define θs =

∑s
j=1 β

s−j
2 αj . Then, for any t ≥ 1,

t∑
s=1

αj

ε+ θj
≤ log

(
1 +

θt
ε

)
− t log β2.

Proof. See the proof of Lemma 5.2 in [10].

Lemma A.2. Suppose that {αs}s≥1 is a real number sequence. Given 0 ≤ β1 < β2 ≤ 1 and ε > 0,
we define ζs =

∑s
j=1 β

s−j
1 αj , γs = 1

1−βs
1

∑s
j=1 β

s−j
1 αj and θs =

∑s
j=1 β

s−j
2 α2

j , then

t∑
s=1

ζ2s
ε+ θs

≤ 1

(1− β1)(1− β1/β2)

(
log

(
1 +

θt
ε

)
− t log β2

)
, ∀t ≥ 1,

t∑
s=1

γ2
s

ε+ θs
≤ 1

(1− β1)2(1− β1/β2)

(
log

(
1 +

θt
ε

)
− t log β2

)
, ∀t ≥ 1.

Proof. The proof for the first inequality can be found in the proof of Lemma A.2 [10]. For the second
result, let M̂ =

∑s
j=1 β

s−j
1 . Then using Jensen’s inequality, we have s∑

j=1

βs−j
1 αj

2

=

M̂

s∑
j=1

βs−j
1

M̂
αj

2

≤ M̂2
s∑

j=1

βs−j
1

M̂
α2
j = M̂

s∑
j=1

βs−j
1 α2

j . (28)

Hence, we further have

γ2
s

ε+ θs
≤ M̂

(1− βs
1)

2

s∑
j=1

βs−j
1

α2
j

ε+ θs
=

1

(1− β1)(1− βs
1)

s∑
j=1

βs−j
1

α2
j

ε+ θs
.

Recalling the definition of θs, we have ε + θs ≥ ε + βs−j
2 θj ≥ βs−j

2 (ε + θj). Hence, combining
with 1− β1 ≤ 1− βs

1 ,

γ2
s

ε+ θs
≤ 1

(1− β1)(1− βs
1)

s∑
j=1

(
β1

β2

)s−j α2
j

ε+ θj
≤ 1

(1− β1)2

s∑
j=1

(
β1

β2

)s−j α2
j

ε+ θj
.

Summing up both sides over s ∈ [t], and noting that β1 < β2,

t∑
s=1

γ2
s

ε+ θs
≤ 1

(1− β1)2

t∑
s=1

s∑
j=1

(
β1

β2

)s−j α2
j

ε+ θj
≤ 1

(1− β1)2(1− β1/β2)

t∑
j=1

α2
j

ε+ θj
.

Finally applying Lemma A.1, we obtain the desired result.

Then, we introduce a standard concentration inequality for the martingale difference sequence that is
useful for achieving the high probability bounds, see [25] for a proof.
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Lemma A.3. Suppose {Zs}s∈[T ] is a martingale difference sequence with respect to ζ1, · · · , ζT .
Assume that for each s ∈ [T ], σs is a random variable only dependent by ζ1, · · · , ζs−1 and satisfies
that

E
[
exp(Z2

s/σ
2
s) | ζ1, · · · , ζs−1

]
≤ e,

then for any λ > 0, and for any δ ∈ (0, 1), it holds that

P

(
T∑

s=1

Zs >
1

λ
log

(
1

δ

)
+

3

4
λ

T∑
s=1

σ2
s

)
≤ δ.

B Proof of Theorem 3.1

The detailed proof of Theorem 3.1 corresponds to the proof sketch in Section 6.

B.1 Preliminary

To start with, we introduce the following two notations,

m̂s =
ms

1− βs
1

, v̂s =
vs

1− βs
2

, (29)

which include two corrective terms for ms and vs. It is easy to see that ηs satisfies

ηs =
η
√
1− βs

2

1− βs
1

≤ η

1− βs
1

≤ η

1− β1
. (30)

We follow all the notations in Section 6, which we present here for the convenience of reading,

MT =

√
log

(
eT

δ

)
, Gs = max

j∈[s]
∥ḡj∥,

GT (s) = MT

√
2σ2

0 + 2σ2
1G

p
s + 2G2

s, GT = MT

√
2σ2

0 + 2σ2
1G

p + 2G2,

bs =
√
β2vs−1 + (1− β2)g2

s + ϵs,

as =

√
β2vs−1 + (1− β2) (GT (s)1d)

2
+ ϵs.

The following lemmas provide some estimations for the algorithm-dependent terms, which play vital
roles in the proof of Theorem 3.1. The detailed proofs could be found in Appendix D.1.
Lemma B.1. Let ηs, bs be given in Algorithm 1 and (16), then∥∥∥∥ηsbs−1

ηs−1bs
− 1d

∥∥∥∥
∞

≤ Σmax := max

{
1,

√
1 + β2

β2
− 1

}
, ∀s ≥ 2.

The following lemma could be found similarly in [56, Lemma A.2].
Lemma B.2. Let ms, bs be given in Algorithm 1 and (16) with 0 ≤ β1 < β2 < 1, respectively.
Then, ∥∥∥∥ms

bs

∥∥∥∥
∞

≤

√
(1− β1)(1− βs

1)

(1− β2)(1− β1/β2)
, ∀s ≥ 1.

Consequently, if f is L-smooth and we set η = C0

√
1− β2 for some constant C0 > 0, then

∥ḡs∥ ≤ ∥ḡ1∥+ LC0s

√
d

1− β1/β2
, ∀s ≥ 1.

The following lemma is necessary for deriving (24) in the proof sketch.
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Lemma B.3. Let gs,ms be given in Algorithm 1 and m̂s, bs be defined in (29) and (16). If
0 ≤ β1 < β2 < 1 and Fi(t) = 1 + 1

ϵ2

∑t
s=1 g

2
s,i, then for any t ≥ 1,

t∑
s=1

∥∥∥∥gsbs
∥∥∥∥2 ≤ 1

1− β2

d∑
i=1

log

(
Fi(t)

βt
2

)
,

t∑
s=1

∥∥∥∥ms

bs

∥∥∥∥2 ≤ 1− β1

(1− β2)(1− β1/β2)

d∑
i=1

log

(
Fi(t)

βt
2

)
,

t∑
s=1

∥∥∥∥ ms

bs+1

∥∥∥∥2 ≤ 1− β1

β2(1− β2)(1− β1/β2)

d∑
i=1

log

(
Fi(t)

βt
2

)
,

t∑
s=1

∥∥∥∥m̂s

bs

∥∥∥∥ ≤ 1

(1− β2)(1− β1/β2)

d∑
i=1

log

(
Fi(t)

βt
2

)
.

The following lemmas are based on the smooth condition.

Lemma B.4. Suppose that f is L-smooth and Assumption (A1) holds, then for any x ∈ Rd,

∥∇f(x)∥2 ≤ 2L(f(x)− f∗).

Lemma B.5. Let xs be given in Algorithm 1 and ys be defined in (17). If f is L-smooth, η =
C0

√
1− β2 and 0 ≤ β1 < β2 < 1, then

∥∇f(xs)∥ ≤ ∥∇f(ys)∥+M, M :=
LC0

√
d

(1− β1)
√
1− β1/β2

, ∀s ≥ 1.

B.2 Start point and decomposition

Specifically, we fix the horizon T and start from the descent lemma of L-smoothness,

f(ys+1) ≤ f(ys) + ⟨∇f(ys),ys+1 − ys⟩+
L

2
∥ys+1 − ys∥2, ∀s ∈ [T ]. (31)

For any given t ∈ [T ], combining with (18) and (31) and then summing over s ∈ [t], we obtain the
same inequality in (20),

f(yt+1) ≤ f(x1) +

t∑
s=1

−ηs

〈
∇f(ys),

gs
bs

〉
︸ ︷︷ ︸

A

+
β1

1− β1

t∑
s=1

⟨∆s ⊙ (xs − xs−1),∇f(ys)⟩︸ ︷︷ ︸
B

+
L

2

t∑
s=1

∥∥∥∥ηs · gsbs − β1

1− β1
(∆s ⊙ (xs − xs−1))

∥∥∥∥2︸ ︷︷ ︸
C

, (32)

where we use ∆s in (20) and y1 = x1. We then further make a decomposition by introducing ḡs into
A and B

A =

t∑
s=1

−ηs

〈
ḡs,

gs
bs

〉
︸ ︷︷ ︸

A.1

+

t∑
s=1

ηs

〈
ḡs −∇f(ys),

gs
bs

〉
︸ ︷︷ ︸

A.2

, (33)

and

B =
β1

1− β1

t∑
s=1

⟨∆s ⊙ (xs − xs−1), ḡs⟩︸ ︷︷ ︸
B.1

+
β1

1− β1

t∑
s=1

⟨∆s ⊙ (xs − xs−1),∇f(ys)− ḡs⟩︸ ︷︷ ︸
B.2

.

(34)
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B.3 Probabilistic estimations

We will provide two probabilistic inequalities with the detailed proofs given in Appendix D.2. The
first one establishes an upper bound for the noise norm, which we have already informally presented
in (21).
Lemma B.6. Given T ≥ 1, suppose that for any s ∈ [T ], ξs = gs − ḡs satisfies Assumption (A3).
Then for any given δ ∈ (0, 1), it holds that with probability at least 1− δ,

∥ξs∥2 ≤ M2
T

(
σ2
0 + σ2

1∥ḡs∥p
)
, ∀s ∈ [T ]. (35)

We next provide a probabilistic upper bound as shown in (22) for a summation of the inner product,
where we rely on the property of the martingale difference sequence and the proxy step-size as in
(23).
Lemma B.7. Given T ≥ 1 and δ ∈ (0, 1). If Assumptions (A2) and (A3) hold, then for any λ > 0,
with probability at least 1− δ,

−
t∑

s=1

ηs

〈
ḡs,

ξs
as

〉
≤ 3ληGT (t)

4(1− β1)
√
1− β2

t∑
s=1

ηs

∥∥∥∥ ḡs√
as

∥∥∥∥2 + d

λ
log

(
dT

δ

)
, ∀t ∈ [T ]. (36)

As a consequence, when setting λ = (1− β1)
√
1− β2/(3ηGT ), it holds that with probability at least

1− δ,

−
t∑

s=1

ηs

〈
ḡs,

ξs
as

〉
≤ GT (t)

4GT

t∑
s=1

ηs

∥∥∥∥ ḡs√
as

∥∥∥∥2 +D1GT , ∀t ∈ [T ], (37)

where D1 = 3η
(1−β1)

√
1−β2

log
(
T
δ

)
.

B.4 Deterministic estimations

In this section, we shall assume that (35) or/and (37) hold whenever the related estimation is needed.
Then we obtain the following key lemmas with the detailed proofs given in Appendix D.3.
Lemma B.8. Given T ≥ 1. If (35) holds, then we have

max
j∈[s]

∥ξj∥ ≤ GT (s), max
j∈[s]

∥gj∥ ≤ GT (s), max
j∈[s]

∥vj∥∞ ≤ (GT (s))
2
, ∀s ∈ [T ].

Lemma B.9. Given T ≥ 1. If bs = (bs,i)i and as = (as,i)i follow the definitions in (16) and (23)
respectively, and (35) holds, then for all s ∈ [T ], i ∈ [d],∣∣∣∣ 1

as,i
− 1

bs,i

∣∣∣∣ ≤ GT (s)
√
1− β2

as,ibs,i
and

∣∣∣∣ 1

as,i
− 1

bs−1,i

∣∣∣∣ ≤ (GT (s) + ϵ)
√
1− β2

as,ibs−1,i
.

Lemma B.10. Given T ≥ 1. Under the conditions in Lemma B.3 and Lemma B.5, if (35) holds, then
the following inequality holds,

Fi(t) ≤ F(T ), ∀t ∈ [T ], i ∈ [d],

where M̂ = M(1− β1) and M follows the definition in Lemma B.5, F(T ) is define by

F(T ) := 1 +
2M2

T

ϵ2

[
σ2
0T + σ2

1T
(
∥ḡ1∥+ TM̂

)p
+ T

(
∥ḡ1∥+ TM̂

)2]
. (38)

We move to estimate all the related terms in Appendix B.2. First, the estimation for A.1 relies on
both the two probabilistic estimations in Appendix B.3.
Lemma B.11. Given T ≥ 1, suppose that (35) and (37) hold. Then for all t ∈ [T ],

A.1 ≤
(
GT (t)

4G
− 3

4

) t∑
s=1

ηs

∥∥∥∥ ḡs√
as

∥∥∥∥2 +D1GT +D2GT (t)

t∑
s=1

∥∥∥∥gsbs
∥∥∥∥2 , (39)

where D1 is given as in Lemma B.7 and D2 = η
√
1−β2

1−β1
.
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We also obtain the following lemma to estimate the adaptive momentum part B.1.
Lemma B.12. Given T ≥ 1, if (35) holds, then for all t ∈ [T ],

B.1 ≤ 1

4

t∑
s=1

ηs

∥∥∥∥ ḡs√
as

∥∥∥∥2 + (D3GT (t) +D4)

t∑
s=1

(∥∥∥∥ms−1

bs

∥∥∥∥2 + ∥∥∥∥ms−1

bs−1

∥∥∥∥2
)

+D5Gt, (40)

where

D3 =
2η

√
1− β2

(1− β1)3
, D4 = ϵD3, D5 =

2η
√
d√

(1− β1)3(1− β2)(1− β1/β2)
. (41)

Proposition B.13. Given T ≥ 1. If f is L-smooth, then the following inequality holds,

f(yt+1) ≤f(x1) +A.1+B.1+D6

t−1∑
s=1

∥∥∥∥m̂s

bs

∥∥∥∥2 +D7

t∑
s=1

∥∥∥∥gsbs
∥∥∥∥2 , ∀t ∈ [T ],

where Σmax is as in Lemma B.1 and

D6 =
Lη2(1 + 4Σ2

max)

2(1− β1)2
, D7 =

3Lη2

2(1− β1)2
. (42)

Proof. Recalling the decomposition in Appendix B.2. We first estimate A.2. Using the smoothness
of f and (17), we have

∥∇f(ys)− ḡs∥ ≤ L∥ys − xs∥ =
Lβ1

1− β1
∥xs − xs−1∥. (43)

Hence, applying Young’s inequality, (43) and (30),

ηs

〈
ḡs −∇f(ys),

gs
bs

〉
≤ ηs∥ḡs −∇f(ys)∥ ·

∥∥∥∥gsbs
∥∥∥∥

≤ 1

2L
∥ḡs −∇f(ys)∥2 +

Lη2s
2

∥∥∥∥gsbs
∥∥∥∥2 ≤ Lβ2

1

2(1− β1)2
∥xs − xs−1∥2 +

Lη2

2(1− β1)2

∥∥∥∥gsbs
∥∥∥∥2 . (44)

Recalling the updated rule in Algorithm 1 and applying (29) as well as (30),

∥xs − xs−1∥2 = η2s−1

∥∥∥∥ms−1

bs−1

∥∥∥∥2 ≤ η2
∥∥∥∥m̂s−1

bs−1

∥∥∥∥2 . (45)

Therefore, applying (44), (45) and β1 ∈ [0, 1), and then summing over s ∈ [t]

A.2 ≤ Lη2

2(1− β1)2

t∑
s=1

∥∥∥∥m̂s−1

bs−1

∥∥∥∥2 + Lη2

2(1− β1)2

t∑
s=1

∥∥∥∥gsbs
∥∥∥∥2 . (46)

Applying Cauchy-Schwarz inequality, Lemma B.1, and combining with (43), (45), Σmax ≥ 1, and
β1 ∈ [0, 1)

B.2 ≤ β1

1− β1

t∑
s=1

∥∆s∥∞ ∥xs − xs−1∥∥∇f(ys)− ḡs∥

≤ Lβ2
1Σmax

(1− β1)2

t∑
s=1

∥xs − xs−1∥2 ≤ LΣ2
maxη

2

(1− β1)2

t∑
s=1

∥∥∥∥m̂s−1

bs−1

∥∥∥∥2 , (47)

Finally, applying the basic inequality, Lemma B.1 and (45),

C ≤ L

t∑
s=1

η2s

∥∥∥∥gsbs
∥∥∥∥2 + Lβ2

1

(1− β1)2

t∑
s=1

∥∆s∥2∞ ∥xs − xs−1∥2

≤ Lη2

(1− β1)2

t∑
s=1

∥∥∥∥gsbs
∥∥∥∥2 + Lη2Σ2

max

(1− β1)2

t∑
s=1

∥∥∥∥m̂s−1

bs−1

∥∥∥∥2 . (48)

Recalling the decomposition in (33) and (34), then plugging (46), (47) and (48) into (32), we obtain
the desired result.
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B.5 Bounding gradients

Based on all the results in Appendix B.3 and Appendix B.4, we are now ready to provide a global
upper bound for gradients’ norm along the optimization trajectory.
Proposition B.14. Under the same conditions in Theorem 3.1, for any given δ ∈ (0, 1/2), it holds
that with probability at least 1− 2δ,

∥ḡt∥2 ≤ G2
t ≤ G2, ∥gt∥2 ≤ (GT (t))

2 ≤ G2
T , ∀t ∈ [T + 1], (49)

and

∥ḡt+1∥2 ≤ G2 − L

t∑
s=1

ηs

∥∥∥∥ ḡs√
as

∥∥∥∥2 , ∀t ∈ [T ], (50)

where G2 is as in Theorem 3.1 and Gt, G,GT are given by (19).

Proof. Applying Lemma B.6 and Lemma B.7, we know that (35) or (37) hold with probability at
least 1 − δ. With these two inequalities, we could deduce the desired inequalities (49) and (50).
Therefore, (49) and (50) hold with probability at least 1 − 2δ. We first plug (39) and (40) into the
result in Proposition B.13, which leads to that for all t ∈ [T ],

f(yt+1) ≤ f(x1) +

(
GT (t)

4GT
− 1

2

) t∑
s=1

ηs

∥∥∥∥ ḡs√
as

∥∥∥∥2 +D1GT + (D2GT (t) +D7)

t∑
s=1

∥∥∥∥gsbs
∥∥∥∥2

+ (D3GT (t) +D4)

t∑
s=1

(∥∥∥∥ms−1

bs

∥∥∥∥2 + ∥∥∥∥ms−1

bs−1

∥∥∥∥2
)

+D5Gt +D6

t−1∑
s=1

∥∥∥∥m̂s

bs

∥∥∥∥2 . (51)

Next, we will introduce the induction argument based on (51). We first provide the specific definition
of G2 as follows which is a constant determined by the horizon T and other hyper-parameters but not
relying on t,4

G2 := 8L(f(x1)− f∗) +
48MTLC0σ0

1− β1
log

(
T

δ

)
+

16MTLC0σ0d

1− β1
log

(
F(T )

βT
2

)
+ 8

(
3LC0 + 8(MTσ0 + ϵ0)

β2

)
LC0d

(1− β1)2(1− β1/β2)
log

(
F(T )

βT
2

)
+

4− p

2
· p

p
4−p

[
72MTLσ1C0d

β2(1− β1)2(1− β1/β2)
log

(
T + F(T )

δβT
2

)] 4
4−p

+ 32

[
18MTLC0d

β2(1− β1)2(1− β1/β2)
log

(
T + F(T )

δβT
2

)]2
+

4L2C2
0d

(1− β1)2(1− β1/β2)
. (52)

The induction then begins by noting that G2
1 = ∥ḡ1∥2 ≤ 2L(f(x1)− f∗) ≤ G2 from Lemma B.4

and (52). Then we assume that for some t ∈ [T ],

Gs ≤ G, ∀s ∈ [t] consequently GT (s) ≤ GT , ∀s ∈ [t]. (53)

Using this induction assumption over (51) and subtracting with f∗ on both sides,

f(yt+1)− f∗ ≤ f(x1)− f∗ − 1

4

t∑
s=1

ηs

∥∥∥∥ ḡs√
as

∥∥∥∥2 +D1GT + (D2GT +D7)

t∑
s=1

∥∥∥∥gsbs
∥∥∥∥2

+ (D3GT +D4)

t∑
s=1

(∥∥∥∥ms−1

bs

∥∥∥∥2 + ∥∥∥∥ms−1

bs−1

∥∥∥∥2
)

+D5G+D6

t−1∑
s=1

∥∥∥∥m̂s

bs

∥∥∥∥2 . (54)

Further, we combine with Lemma B.3 and Lemma B.10 to estimate the four summations defined in
Lemma B.3, and then use G ≤ GT ≤ 2MT

(
σ0 + σ1G

p/2 +G
)

to control the RHS of (54),

f(yt+1)− f∗ ≤− 1

4

t∑
s=1

ηs

∥∥∥∥ ḡs√
as

∥∥∥∥2 + D̃1 + D̃2 + D̃3H(G), (55)

4We further deduce (7) in Theorem 3.1 based on (52).
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where H(G) = σ1G
p/2 +G and D̃1, D̃2, D̃3 are defined as

D̃1 = f(x1)− f∗ + 2MTσ0D1,

D̃2 =

[
2MTσ0D2 +D7

1− β2
+

4 (MTσ0D3 +D4) (1− β1)

β2(1− β2)(1− β1/β2)
+

D6

(1− β2)(1− β1/β2)

]
d log

(
F(T )

βT
2

)
,

D̃3 = 2MT

[
D1 +

(
D2d

1− β2
+

2D3(1− β1)d

β2(1− β2)(1− β1/β2)

)
log

(
F(T )

βT
2

)]
+D5.

Applying Lemma B.5 and Lemma B.4,

∥ḡt+1∥2 ≤ 2∥∇f(yt+1)∥2 + 2M2 ≤ 4L(f(yt+1)− f∗) + 2M2. (56)

Then combining (55) with (56),

∥ḡt+1∥2 ≤ −L

t∑
s=1

ηs

∥∥∥∥ ḡs√
as

∥∥∥∥2 + 4L(D̃1 + D̃2) + 4LD̃3H(G) + 2M2.

Applying two Young’s inequalities where ab ≤ a2

2 + b2

2 and ab
p
2 ≤ 4−p

4 · a
4

4−p + p
4 · b2,∀a, b ≥ 0,

∥ḡt+1∥2 ≤ G2

4
+

G2

4
− L

t∑
s=1

ηs

∥∥∥∥ ḡs√
as

∥∥∥∥2 + 4L(D̃1 + D̃2)

+ 16L2D̃2
3 +

4− p

4
· p

p
4−p

(
4Lσ1D̃3

) 4
4−p

+ 2M2. (57)

Recalling the definitions of Di, i ∈ [7] in (37), (39), (41), and (42). With a simple calculation relying
on η = C0

√
1− β2, ϵ ≤ ϵ0,Σmax ≤ 1/

√
β2 and 0 ≤ β1 < β2 < 1, we could deduce that G2 given

in (52) satisfies

G2 = 8L(D̃1 + D̃2) + 32L2D̃2
3 +

4− p

2
· p

p
4−p

(
4Lσ1D̃3

) 4
4−p

+ 4M2. (58)

Based on (57) and (58), we then deduce that ∥ḡt+1∥2 ≤ G2. Further combining with Gt+1 in (19)
and the induction assumption in (53),

Gt+1 ≤ max{∥ḡt+1∥, Gt} ≤ G.

Hence, the induction is complete and we obtain the desired result in (49). Furthermore, as a
consequence of (57), we also prove that (50) holds.

B.6 Proof of the main result

Now we are ready to prove the main convergence result.

Proof of Theorem 3.1. We set t = T in (50) to obtain that with probability at least 1− 2δ,

L

T∑
s=1

ηs
∥as∥∞

∥ḡs∥2 ≤ L
T∑

s=1

ηs

∥∥∥∥ ḡs√
as

∥∥∥∥2 ≤ G2 − ∥ḡT+1∥2 ≤ G2. (59)

Then, in what follows, we will assume that both (49) and (59) hold. Based on these two inequalities,
we could derive the final convergence bound. Since (49) and (59) hold with probability at least 1−2δ,
the final convergence bound also holds with probability at least 1− 2δ. Applying as in (23) and (49),
we have

∥as∥∞ = max
i∈[d]

√
β2vs−1,i + (1− β2)(GT (s))2 + ϵs

≤ max
i∈[d]

√√√√√(1− β2)

s−1∑
j=1

βs−j
2 g2j,i + (GT (s))2

+ ϵs

≤

√√√√(1− β2)

s∑
j=1

βs−j
2 G2

T + ϵs = GT

√
1− βs

2 + ϵs, ∀s ∈ [T ]. (60)
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Then combining with the setting ηs and ϵs in (6), we have for any s ∈ [T ],

ηs
∥as∥∞

≥
C0

√
(1− βs

2)(1− β2)

GT

√
1− βs

2 + ϵ0
√
(1− βs

2)(1− β2)
· 1

1− βs
1

≥ C0

√
1− β2

GT + ϵ0
√
1− β2

.

We therefore combine with (59) to obtain that with probability at least 1− 2δ,

1

T

T∑
s=1

∥ḡs∥2 ≤ G2

TLC0

(√
2σ2

0 + 2σ2
1G

p + 2G2

√
1− β2

+ ϵ0

)√
log

(
eT

δ

)
. (61)

Since β2 ∈ (0, 1), we have

− log β2 = log

(
1

β2

)
≤ 1− β2

β2
=

c

Tβ2
,

where we apply log(1/a) ≤ (1− a)/a, ∀a ∈ (0, 1). With both sides multiplying T , we obtain that
log
(
1/βT

2

)
≤ c/β2. Then, we further have that when β2 = 1− c/T ,

log

(
T

βT
2

)
≤ log T +

c

β2
. (62)

Since 0 ≤ β1 < β2 < 1, there exists some constants ε1, ε2 > 0 such that
1

β2
≤ 1

ε1
,

1

1− β1/β2
≤ 1

ε2
. (63)

Therefore combining (62), (63) and (52), we could verify that G2 ∼ O (poly(log T )) with respect to
T . Finally, using the convergence result in (61), we obtain the desired result.

C Proof of Theorem 4.1

In this section, we shall follow all the notations defined in Section 6. Further, we will add two
non-decreasing sequences {L(x)

s }s≥1 and {L(y)
s }s≥1 as follows

L(x)
s = L0 + LqG

q
s, L(y)

s = L0 + Lq(Gs +Gq
s + L0/Lq)

q, ∀s ≥ 1. (64)

C.1 Preliminary

We first mention that Lemma B.1, Lemma B.2, and Lemma B.3 in Appendix B.1 remain unchanged
since they are independent of the smooth condition. Then the first essential challenge is that we need
to properly tune η to restrict the distance between xs+1 and xs, ys+1 and ys within 1/Lq for all
s ≥ 1. The following two lemmas then ensure this point. The detailed proofs could be found in
Appendix E.
Lemma C.1. Let xs,ys be defined in Algorithm 1 and (17). If 0 ≤ β1 < β2 < 1, then for any s ≥ 1,

max{∥xs+1 − xs∥, ∥ys − xs∥, ∥ys+1 − ys∥} ≤ η

√
4d

β2(1− β1)2(1− β2)(1− β1/β2)
. (65)

As a consequence, when

η ≤ 1

LqF
, F :=

√
4d

β2(1− β1)2(1− β2)(1− β1/β2)
, (66)

then for any s ≥ 1, all the three gaps in (65) are smaller than 1/Lq .
Lemma C.2. Let η ≤ 1/(LqF ) where F is as in Lemma C.1. If f is (L0, Lq)-smooth, then for any
s ≥ 1,

∥∇f(ys)∥ ≤ L0/Lq + ∥∇f(xs)∥q + ∥∇f(xs)∥,
∥∇f(xs)∥ ≤ L0/Lq + ∥∇f(ys)∥q + ∥∇f(ys)∥.

As a consequence, for any s ≥ 1,

∥∇f(ys)−∇f(xs)∥ ≤ L(x)
s ∥ys − xs∥, ∥∇f(ys+1)−∇f(ys)∥ ≤ L(y)

s ∥ys+1 − ys∥, (67)

f(ys+1)− f(ys)− ⟨∇f(ys),ys+1 − ys⟩ ≤
L(y)
s

2
∥ys+1 − ys∥. (68)
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In the generalized smooth case, Lemma B.4 does not hold. In contrast, we provide a generalized
smooth version of [49, Lemma A.5], which establishes a different relationship between the gradient’s
norm and the function value gap. Noting that when q = 1, Lemma C.3 reduces to [49, Lemma A.5].
Lemma C.3. Suppose that f is (L0, Lq)-smooth and Assumption (A1) holds. Then for any x ∈ Rd,

∥∇f(x)∥ ≤ max
{
4Lq(f(x)− f∗), [4Lq(f(x)− f∗)]

1
2−q ,

√
4L0(f(x)− f∗)

}
.

C.2 Probabilistic estimations

The probabilistic inequalities in (35) and (36) remain unchanged since they do not rely on any
smooth-related conditions. However, we shall rely on a different setting of λ in (36) as follows.
Lemma C.4. Given T ≥ 1 and δ ∈ (0, 1). Under the same conditions of Lemma B.7, if we set
λ = (1− β1)

√
1− β2/(3ηH) where H is as in (11), then with probability at least 1− δ,

t∑
s=1

−ηs

〈
ḡs,

ξs
as

〉
≤ GT (t)

4H

t∑
s=1

ηs

∥∥∥∥ ḡs√
as

∥∥∥∥2 +D1H, ∀t ∈ [T ], (69)

where D1 is given in Lemma B.7.

The bounds of the four summations in Lemma B.3 also remain unchanged. However, the upper bound
for Fi(t) should be revised by the following lemma. The detailed proof could be found in Appendix
E.
Lemma C.5. Given T ≥ 1. Under the conditions and notations of Lemma B.3, if f is (L0, Lq)-
smooth, η = C̃0

√
1− β2, (35) and (66) hold, then the following inequalities hold,

Fi(t) ≤ J (t), ∀t ∈ [T ], i ∈ [d], (70)

where J (t) is defined as

J (t) := 1 +
2M2

T

ϵ2

[
σ2
0t+ σ2

1t
(
∥ḡ1∥+ tM̃t

)p
+ t
(
∥ḡ1∥+ tM̃t

)2]
, (71)

and M̃t := C̃0L(x)
t

√
d

1−β1/β2
.

It’s worth noting that J (t) is still random relying on the random variable L(x)
t .

C.3 Deterministic estimations

Note that (40) in Appendix B.4 remains unchanged since it’s independent from any smooth-related
condition. In terms of A.1, the only difference is using H to replace G in (39) as we choose a different
λ in (36), leading to

A.1 ≤
(
GT (t)

4H
− 3

4

) t∑
s=1

ηs

∥∥∥∥ ḡs√
as

∥∥∥∥2 +D1H+D2GT (t)

t∑
s=1

∥∥∥∥gsbs
∥∥∥∥2 . (72)

We also establish the following proposition which is a generalized smooth version of Proposition
B.13.
Proposition C.6. Given T ≥ 1. If f is (L0, Lq)-smooth and (66) holds, then

f(yt+1) ≤f(x1) +A.1+B.1+

t−1∑
s=1

D6(s)

∥∥∥∥m̂s

bs

∥∥∥∥2 + t∑
s=1

D7(s)

∥∥∥∥gsbs
∥∥∥∥2 , ∀t ∈ [T ], (73)

where Σmax is as in Lemma B.1 and D6(s), D7(s) are defined as,5

D6(s) =
L(y)
s η2(1 + 4Σ2

max)

2(1− β1)2
, D7(s) =

3L(y)
s η2

2(1− β1)2
.

5The notations are different from D6 and D7 defined in (42).
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Proof. The proof follows some same parts in proving Proposition B.14. We start from the descent
lemma (68) in Lemma C.2 and sum over s ∈ [t] to obtain that

f(yt+1) ≤ f(x1) +

t∑
s=1

⟨∇f(ys),ys+1 − ys⟩+
t∑

s=1

L(y)
s

2
∥ys+1 − ys∥2

= f(x1) + A + B +

t∑
s=1

L(y)
s

2

∥∥∥∥ηs · gsbs − β1

1− β1

(
ηsbs−1

ηs−1bs
− 1

)
Σs ⊙ (xs − xs−1)

∥∥∥∥2︸ ︷︷ ︸
C’

,

(74)

where A and B follow the same definitions in (32). We also follow the decompositions in (33) and
(34). We could also rely on the same analysis for the smooth case in (46) but the smooth parameter is
replaced by L(x)

s . Hence, we obtain that

A.2 ≤
t∑

s=1

L(x)
s η2

2(1− β1)2

∥∥∥∥m̂s−1

bs−1

∥∥∥∥2 + t∑
s=1

L(x)
s η2

2(1− β1)2

∥∥∥∥gsbs
∥∥∥∥2 . (75)

Similarly,

B.2 ≤
t∑

s=1

Σ2
maxL

(x)
s η2

(1− β1)2

∥∥∥∥m̂s−1

bs−1

∥∥∥∥2 , (76)

Noting that C’ differs from C with L replaced by L(y)
s . Hence, relying on a similar analysis in (48),

we obtain that

C’ ≤
t∑

s=1

L(y)
s η2

(1− β1)2

∥∥∥∥gsbs
∥∥∥∥2 + t∑

s=1

Σ2
maxL

(y)
s η2

(1− β1)2

∥∥∥∥m̂s−1

bs−1

∥∥∥∥2 . (77)

Combining (74) with (75), (76) and (77), and noting that L(x)
s ≤ L(y)

s from (64), we thereby obtain
the desired result.

C.4 Bounding gradients

Based on the unchanged parts in Appendix B.3 and Appendix B.4 and the new estimations in (72)
and (73), we are now ready to provide the uniform gradients’ bound in the following proposition.

Proposition C.7. Under the same conditions in Theorem 4.1, for any given δ ∈ (0, 1/2), it holds
that with probability at least 1− 2δ,

∥ḡt∥ ≤ H, GT (t) ≤ H, L(x)
t ≤ L(y)

t ≤ L, ∀t ∈ [T + 1], (78)

and

f(yt+1)− f∗ ≤ −1

4

t∑
s=1

ηs

∥∥∥∥ ḡs√
as

∥∥∥∥2 + Ĥ, ∀t ∈ [T ], (79)

where H,H,L are given in (11) and Ĥ is given in (82).

Proof. Based on the two inequalities (35) and (69), we could deduce the final results in (78) and (79).
Since (35) and (69) hold with probability at least 1−2δ, we thereby deduce the desired result holding
with probability at least 1− 2δ. To start with, we shall verify that (66) always holds. Recalling η in
(10) and F in Lemma C.1,

ηF = C̃0

√
1− β2F ≤

√
β2(1− β1)2(1− β2)(1− β1/β2)

4L2
qd

· F ≤ 1

Lq
.
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Hence, we make sure that the distance requirement in (8) always holds according to Lemma C.1.
Second, plugging (72) and (40) into the result in (73),

f(yt+1) ≤f(x1) +

(
GT (t)

4H
− 1

2

) t∑
s=1

ηs

∥∥∥∥ ḡs√
as

∥∥∥∥2 +D1H+D2GT (t)

t∑
s=1

∥∥∥∥gsbs
∥∥∥∥2

+

t∑
s=1

D7(s)

∥∥∥∥gsbs
∥∥∥∥2 + (D3GT (t) +D4)

t∑
s=1

(∥∥∥∥ms−1

bs

∥∥∥∥2 + ∥∥∥∥ms−1

bs−1

∥∥∥∥2
)

+D5Gt +

t−1∑
s=1

D6(s)

∥∥∥∥m̂s

bs

∥∥∥∥2 . (80)

We still rely on an induction argument to deduce the result. First, we provide the detail expressions of
Ĥ,H as follows which is determined by hyper-parameters β1, β2 and constants E0, d, T, δ,MT ,

Ĥ := f(x1)− f∗ +
3E0MT

1− β1
log

(
T

δ

)
+

E0MT d

1− β1
log

(
J̃ (T )

βT
2

)

+
4E0(MT + ϵ)d

β2(1− β1)2(1− β1/β2)
log

(
J̃ (T )

βT
2

)
+

2E0d√
(1− β1)3(1− β1/β2)

+
3E2

0d

2(1− β1)2
log

(
J̃ (T )

βT
2

)
+

5E2
0d

2β2(1− β1)2(1− β1/β2)
log

(
J̃ (T )

βT
2

)
, (81)

H := L0/Lq +
(
4LqĤ

)q
+
(
4LqĤ

) q
2−q

+
(
4L0Ĥ

) q
2

+ 4LqĤ +
(
4LqĤ

) 1
2−q

+

√
4L0Ĥ.

(82)

where E0 > 0 is a constant and J̃ (T ) is a polynomial of T given as

J̃ (T ) := 1 +
2M2

T

ϵ2

[
σ2
0T + σ2

1T
(
∥ḡ1∥+ TM̃

)p
+ T

(
∥ḡ1∥+ TM̃

)2]
, (83)

and M̃ := E0

√
d

1−β1/β2
. The induction then begins by noting that from Lemma C.3 and H in (82),

G1 = ∥ḡ1∥ ≤ 4Lq(f(x1)− f∗) + (4Lq(f(x1)− f∗))
1

2−q +
√

4L0(f(x1)− f∗) ≤ H.

Suppose that for some t ∈ [T ],
Gs ≤ H, ∀s ∈ [t]. (84)

Consequently, recalling GT (s) in (19), L(x)
s ,L(y)

s in (64) and H,L in (11),

GT (s) ≤ H, L(x)
s ≤ L(y)

s ≤ L, ∀s ∈ [t]. (85)
We thus apply (85) to (80),

f(yt+1) ≤f(x1)−
1

4

t∑
s=1

ηs

∥∥∥∥ ḡs√
as

∥∥∥∥2 +D1H+D2H
t∑

s=1

∥∥∥∥gsbs
∥∥∥∥2 + t∑

s=1

D7(s)

∥∥∥∥gsbs
∥∥∥∥2

+ (D3H+D4)

t∑
s=1

(∥∥∥∥ms−1

bs

∥∥∥∥2 + ∥∥∥∥ms−1

bs−1

∥∥∥∥2
)

+D5H +

t−1∑
s=1

D6(s)

∥∥∥∥m̂s

bs

∥∥∥∥2 . (86)

Further recalling the setting of C̃0 in (10), with a simple calculation it holds that,

C̃0H ≤ E0, C̃0H ≤ E0, C̃0L ≤ E0, C̃2
0L ≤ E2

0 , C̃0ϵ0 ≤ E0ϵ0. (87)

Therefore, combining with (85), (87) and M̃t in (71), we could use the deterministic polynomial
J̃ (t) to further control J (t) in (71),

M̃t ≤ C̃0L

√
d

1− β1/β2
≤ E0

√
d

1− β1/β2
= M̃, J (t) ≤ J̃ (t) ≤ J̃ (T ),

log

(
Fi(t)

βt
2

)
≤ log

(
J (t)

βt
2

)
≤ log

(
J̃ (T )

βT
2

)
, ∀t ≤ T, i ∈ [d].
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Then, we could use J̃ (T ) to control the four summations in Lemma B.3 which emerge in (86). In
addition, we rely on η = C̃0

√
1− β2 and the induction assumptions of (84) and (85) to further upper

bound the RHS of (86), leading to

f(yt+1)− f∗ ≤f(x1)− f∗ − 1

4

t∑
s=1

ηs

∥∥∥∥ ḡs√
as

∥∥∥∥2 + 3C̃0H
1− β1

log

(
T

δ

)
+

C̃0Hd

1− β1
log

(
J̃ (T )

βT
2

)

+
4C̃0(H+ ϵ0)d

β2(1− β1)2(1− β1/β2)
log

(
J̃ (T )

βT
2

)
+

2C̃0Hd√
(1− β1)3(1− β1/β2)

+
3C̃2

0Ld
2(1− β1)2

log

(
J̃ (T )

βT
2

)
+

5C̃2
0Ld

2β2(1− β1)2(1− β1/β2)
log

(
J̃ (T )

βT
2

)
. (88)

Then combining with (87) and the definition of Ĥ in (81), we obtain that

∆t+1 := f(yt+1)− f∗ ≤ −1

4

t∑
s=1

ηs

∥∥∥∥ ḡs√
as

∥∥∥∥2 + Ĥ ≤ Ĥ. (89)

Then, further using Lemma C.2, Lemma C.3 and H in (82),

∥ḡt+1∥ ≤ L0/Lq + ∥∇f(yt+1)∥q + ∥∇f(yt+1)∥

≤ L0/Lq + (4Lq∆t+1)
q
+ (4Lq∆t+1)

q
2−q

+ (4L0∆t+1)
q
2 + 4Lq∆t+1 + (4Lq∆t+1)

1
2−q +

√
4L0∆t+1 ≤ H.

We then deduce that Gt+1 = max{Gt, ∥ḡt+1∥} ≤ H . The induction is then complete and we obtain
the desired result in (78). Finally, as an intermediate result of the proof, we obtain that (79) holds as
well.

C.5 Proof of the main result

Proof of Theorem 4.1. The proof for the final convergence rate follows a similar idea and some same
estimations in the proof of Theorem 3.1. Setting t = T in (79), it holds that with probability at least
1− 2δ,

1

4

t∑
s=1

ηs
∥as∥∞

· ∥ḡs∥2 ≤ 1

4

t∑
s=1

ηs

∥∥∥∥ ḡs√
as

∥∥∥∥2 ≤ Ĥ. (90)

Then in what follows, we would assume that (78) and (90) always hold. Relying on the two
inequalities, we thereby deduce the final convergence result. Furthermore, since (78) and (90) hold
with probability at least 1− 2δ, the final convergence result also holds with probability at least 1− 2δ.
Using (78) and following the same analysis in (60),

∥as∥∞ ≤ max
i∈[d]

√√√√√(1− β2)

s−1∑
j=1

βs−j
2 g2j,i + (GT (j))2

+ ϵs ≤ (H+ ϵ)
√

1− βs
2, ∀s ∈ [T ].

Combining with the parameter setting in (10),

ηs
∥as∥∞

≥
η
√
1− βs

2

(1− βs
1)∥as∥∞

≥ C̃0

√
1− β2

H+ ϵ0
√
1− β2

.

We then combine with (90) and H in (11) to obtain that with probability at least 1− 2δ,

1

T

T∑
s=1

∥ḡs∥2 ≤ 4Ĥ

T C̃0

(√
2(σ2

0 + σ2
1H

p +H2)√
1− β2

+ ϵ0

)√
log

(
eT

δ

)
.

Finally, following the same deduction in (62) and (63), we could derive that Ĥ ∼ O
(
log2

(
T
ϵ0δ

))
from (81) and the desired results in Theorem 4.1.
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D Omitted proof in Appendix B

D.1 Omitted proof in Appendix B.1

Proof of Lemma B.1. We fix arbitrary i ∈ [d] and have the following two cases. When ηsbs−1,i

ηs−1bs,i
< 1,

we have ∣∣∣∣ηsbs−1,i

ηs−1bs,i
− 1

∣∣∣∣ = 1− ηsbs−1,i

ηs−1bs,i
< 1.

When ηsbs−1,i

ηs−1bs,i
≥ 1, let r = βs−1

2 . Since 0 < 1− βs−1
1 < 1− βs

1,∀s ≥ 2, then we have

ηs
ηs−1

=

√
1− βs

2

1− βs−1
2

· 1− βs−1
1

1− βs
1

≤

√
1 +

βs−1
2 (1− β2)

1− βs−1
2

=

√
1 + (1− β2) ·

r

1− r
.

Since h(r) = r/(1− r) is increasing as r grows and r takes the maximum value when s = 2. Hence,
it holds that

ηs
ηs−1

≤

√
1 + (1− β2) ·

β2

1− β2
=
√
1 + β2. (91)

Then, since ϵs−1 ≤ ϵs, we further have

bs−1,i

bs,i
=

ϵs−1 +
√
vs−1,i

ϵs +
√
β2vs−1,i + (1− β2)g2s,i

≤
ϵs +

√
vs−1,i

ϵs +
√
β2vs−1,i

≤ 1√
β2

. (92)

Combining with (91) and (92), we have∣∣∣∣ηsbs−1,i

ηs−1bs,i
− 1

∣∣∣∣ = ηsbs−1,i

ηs−1bs,i
− 1 ≤

√
1 + β2

β2
− 1.

Combining the two cases and noting that the bound holds for any i ∈ [d], we then obtain the desired
result.

Proof of Lemma B.2. Denoting M̃ =
∑s−1

j=1 β
s−1−j
1 and applying (28) with M̂ and αj replaced by

M̃ and gj,i respectively, s−1∑
j=1

βs−1−j
1 gj,i

2

≤ M̃ ·
s−1∑
j=1

βs−1−j
1 g2j,i. (93)

Hence, combining with the definition of bs,i in (16), we further have for any i ∈ [d] and s ≥ 2,

∣∣∣∣ms−1,i

bs−1,i

∣∣∣∣ ≤ ∣∣∣∣ ms−1,i√
vs−1,i

∣∣∣∣ =
√√√√√ (1− β1)2

(∑s−1
j=1 β

s−1−j
1 gj,i

)2
(1− β2)

∑s−1
j=1 β

s−1−j
2 g2j,i

≤ 1− β1√
1− β2

√√√√M̃ ·
∑s−1

j=1 β
s−1−j
1 g2j,i∑s−1

j=1 β
s−1−j
2 g2j,i

≤ 1− β1√
1− β2

√√√√M̃ ·
s−1∑
j=1

(
β1

β2

)s−1−j

=
1− β1√
1− β2

√
1− βs−1

1

1− β1
· 1− (β1/β2)s−1

1− β1/β2
≤

√
(1− β1)(1− βs−1

1 )

(1− β2)(1− β1/β2)
,

where the last inequality applies β1 < β2. We thus prove the first result. To prove the second result,
from the smoothness of f ,

∥ḡs∥ ≤ ∥ḡs−1∥+ ∥ḡs − ḡs−1∥ ≤ ∥ḡs−1∥+ L∥xs − xs−1∥. (94)
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Combining with (30) and η = C0

√
1− β2,

∥xs − xs−1∥∞ ≤ ηs−1

∥∥∥∥ms−1

bs−1

∥∥∥∥
∞

≤ η

√
1

(1− β2)(1− β1/β2)
= C0

√
1

1− β1/β2
. (95)

Using ∥xs − xs−1∥ ≤
√
d∥xs − xs−1∥∞ and (94),

∥ḡs∥ ≤ ∥ḡs−1∥+ LC0

√
d

1− β1/β2
≤ ∥ḡ1∥+ LC0s

√
d

1− β1/β2
.

Proof of Lemma B.3. Recalling the updated rule and the definition of bs,i in (16), using ϵ2s = ϵ2(1−
βs
2) ≥ ϵ2(1− β2),

b2s,i ≥ v2s,i + ϵ2s ≥ (1− β2)

 s∑
j=1

βs−j
2 g2j,i + ϵ2

 , and ms,i = (1− β1)

s∑
j=1

βs−j
1 gj,i. (96)

Proof for the first summation Using (96), for any i ∈ [d],

t∑
s=1

g2s,i
b2s,i

≤ 1

1− β2

t∑
s=1

g2s,i

ϵ2 +
∑s

j=1 β
s−j
2 g2j,i

.

Applying Lemma A.1 and recalling the definition of Fi(t),

t∑
s=1

g2s,i
b2s,i

≤ 1

1− β2

[
log

(
1 +

1

ϵ2

t∑
s=1

βt−s
2 g2s,i

)
− t log β2

]
≤ 1

1− β2
log

(
Fi(t)

βt
2

)
.

Summing over i ∈ [d], we obtain the first desired result.

Proof for the second summation Following from (96),

t∑
s=1

m2
s,i

b2s,i
≤ (1− β1)

2

1− β2
·

t∑
s=1

(∑s
j=1 β

s−j
1 gj,i

)2
ϵ2 +

∑s
j=1 β

s−j
2 g2j,i

.

Applying Lemma A.2 and β2 ≤ 1,

t∑
s=1

m2
s,i

b2s,i
≤ (1− β1)

2

1− β2
· 1

(1− β1)(1− β1/β2)

[
log

(
1 +

1

ϵ2

t∑
s=1

βt−s
2 g2s,i

)
− t log β2

]

=
1− β1

(1− β2)(1− β1/β2)
log

(
Fi(t)

βt
2

)
.

Summing over i ∈ [d], we obtain the second desired result.

Proof for the third summation Following from (96),

t∑
s=1

m2
s,i

b2s+1,i

≤
t∑

s=1

[
(1− β1)

∑s
j=1 β

s−j
1 gj,i

]2
ϵ2(1− β2) + (1− β2)

∑s+1
j=1 β

s+1−j
2 g2j,i

≤
t∑

s=1

(1− β1)
2
(∑s

j=1 β
s−j
1 gj,i

)2
ϵ2(1− β2) + (1− β2)β2

∑s
j=1 β

s−j
2 g2j,i

.
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Applying Lemma A.2, and using β2 ≤ 1,

t∑
s=1

m2
s,i

b2s+1,i

≤ (1− β1)
2

(1− β2)β2
·

t∑
s=1

(∑s
j=1 β

s−j
1 gj,i

)2
ϵ2

β2
+
∑s

j=1 β
s−j
2 g2j,i

≤ (1− β1)
2

(1− β2)β2
· 1

(1− β1)(1− β1/β2)

[
log

(
1 +

β2

ϵ2

t∑
s=1

βt−s
2 g2s,i

)
− t log β2

]

≤ 1− β1

β2(1− β2)(1− β1/β2)
log

(
Fi(t)

βt
2

)
.

Summing over i ∈ [d], we obtain the third desired result.

Proof for the fourth summation Following the definition of m̂s,i from (29), and combining with
(96),

t∑
s=1

m̂2
s,i

b2s,i
≤ (1− β1)

2

1− β2
·

t∑
s=1

(
1

1−βs
1

∑s
j=1 β

s−j
1 gj,i

)2
ϵ2 +

∑s
j=1 β

s−j
2 g2j,i

.

Applying Lemma A.2 and using β2 ≤ 1,

t∑
s=1

m̂2
s,i

b2s,i
≤ (1− β1)

2

1− β2
· 1

(1− β1)2(1− β1/β2)

[
log

(
1 +

1

ϵ2

t∑
s=1

βt−s
2 g2s,i

)
− t log β2

]

≤ 1

(1− β2)(1− β1/β2)
log

(
Fi(t)

βt
2

)
.

Summing over i ∈ [d], we obtain the fourth desired result.

Proof of Lemma B.4. Let x̂ = x− 1
L∇f(x). Then using the descent lemma of smoothness,

f(x̂) ≤ f(x) + ⟨∇f(x), x̂− x⟩+ L

2
∥x̂− x∥2 ≤ f(x)− 1

2L
∥∇f(x)∥2.

Re-arranging the order, and noting that f(x̂) ≥ f∗,

∥∇f(x)∥2 ≤ 2L(f(x)− f(x̂)) ≤ 2L(f(x)− f∗).

Proof of Lemma B.5. Applying the norm inequality and the smoothness of f ,

∥∇f(xs)∥ ≤ ∥∇f(ys)∥+ ∥∇f(xs)−∇f(ys)∥ ≤ ∥∇f(ys)∥+ L∥ys − xs∥.

Combining with the definition of ys in (17) and (95), and using β1 ∈ [0, 1), we obtain the desired
result that

∥∇f(xs)∥ ≤ ∥∇f(ys)∥+
Lβ1

1− β1
∥xs − xs−1∥ ≤ ∥∇f(ys)∥+

LC0

√
d

(1− β1)
√
1− β1/β2

.

D.2 Omitted proof in Appendix B.3

Proof of Lemma B.6. Let us denote γs = ∥ξs∥2

σ2
0+σ2

1∥ḡs∥p ,∀s ∈ [T ]. Then from Assumption (A3), we
first have Ezs [exp (γs)] ≤ exp(1). Taking full expectation,

E [exp(γs)] ≤ exp(1).
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By Markov’s inequality, for any A ∈ R,

P
(
max
s∈[T ]

γs ≥ A

)
= P

(
exp

(
max
s∈[T ]

γs

)
≥ exp(A)

)
≤ exp(−A)E

[
exp

(
max
s∈[T ]

γs

)]
≤ exp(−A)E

[
T∑

s=1

exp (γs)

]
≤ exp(−A)T exp(1),

which leads to that with probability at least 1− δ,

∥ξs∥2 ≤ log

(
eT

δ

)(
σ2
0 + σ2

1∥ḡs∥p
)
, ∀s ∈ [T ].

Proof of Lemma B.7. Recalling the definitions of as in (23) and ϵs in Algorithm 1, we have for any
s ∈ [T ], i ∈ [d],

1

as,i
≤ 1

GT (s)
√
1− β2 + ϵ

√
1− βs

2

≤ 1

(GT (s) + ϵ)
√
1− β2

≤ 1

GT (s)
√
1− β2

≤ 1√
σ2
0 + σ2

1∥ḡs∥p
√
1− β2

. (97)

Then given any i ∈ [d], we set

Xs = −ηs

〈
ḡs,

ξs
as

〉
, ωs = ηs

∥∥∥∥ ḡsas

∥∥∥∥√σ2
0 + σ2

1∥ḡs∥p, ∀s ∈ [T ].

Noting that ḡs,as and ηs are random variables dependent by z1, · · · , zs−1 and ξs is only dependent
on zs. We then verify that Xs is a martingale difference sequence since

E [Xs | z1, · · · , zs−1] = Ezs

[
−ηs

〈
ḡs,

ξs
as

〉]
= −ηs

〈
ḡs,

Ezs
[ξs]

as

〉
= 0.

Noting that ωs is a random variable only dependent by z1, · · · , zs−1 and applying Assumption (A3)
and Cauchy-Schwarz inequality, we have

E
[
exp

(
X2

s

ω2
s

)
| z1, · · · , zs−1

]
≤ E

[
exp

(
ξ2s

σ2
0 + σ2

1∥ḡs∥p

)
| z1, · · · , zs−1

]
≤ Ezs

[
exp

(
∥ξs∥2

σ2
0 + σ2

1∥ḡs∥p

)]
≤ exp(1), ∀s ∈ [T ].

Applying Lemma A.3 and (97), we have that for any λ > 0, with probability at least 1− δ,
t∑

s=1

Xs ≤
3λ

4

t∑
s=1

ω2
s +

1

λ
log

(
1

δ

)

≤ 3λ

4
√
1− β2

t∑
s=1

η2s

∥∥∥∥ ḡsas

∥∥∥∥2 (σ2
0 + σ2

1∥ḡs∥p) +
1

λ
log

(
1

δ

)

≤ 3λ

4
√
1− β2

t∑
s=1

η2s

∥∥∥∥ ḡs√
as

∥∥∥∥2√σ2
0 + σ2

1∥ḡs∥p +
1

λ
log

(
1

δ

)
. (98)

Note that for any t ∈ [T ], (98) holds with probability at least 1− δ. Then for any fixed λ > 0, we
could re-scale δ to obtain that with probability at least 1− δ, for all t ∈ [T ],

t∑
s=1

Xs ≤
3λ

4
√
1− β2

t∑
s=1

η2s

∥∥∥∥ ḡs√
as

∥∥∥∥2√σ2
0 + σ2

1∥ḡs∥p +
1

λ
log

(
T

δ

)
.

Using
√
σ2
0 + σ2

1∥ḡs∥p ≤ GT (t), s ≤ t from (19), together with (30), we have that with probability
at least 1− δ,

−
t∑

s=1

ηs

〈
ḡs,

ξs
as

〉
≤ 3ληGT (t)

4(1− β1)
√
1− β2

t∑
s=1

ηs

∥∥∥∥ ḡs√
as

∥∥∥∥2 + 1

λ
log

(
T

δ

)
, ∀t ∈ [T ].

Finally setting λ = (1− β1)
√
1− β2/ (3ηGT ), we then have the desired result in (37).
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D.3 Omitted proof of Appendix B.4

Proof of Lemma B.8. First directly applying (35) and Gs in (19), for any j ∈ [s],

∥ξj∥ ≤ MT

√
σ2
0 + σ2

1∥ḡj∥p ≤ MT

√
σ2
0 + σ2

1G
p
j ≤ MT

√
σ2
0 + σ2

1G
p
s ≤ GT (s).

Applying the basic inequality, (35) and MT ≥ 1, for any j ∈ [s],

∥gj∥2 ≤ 2∥ḡj∥2 + 2∥ξj∥2 ≤ 2M2
T

(
σ2
0 + σ2

1∥ḡj∥p + ∥ḡj∥2
)
≤ (GT (s))

2.

Finally, we would use an induction argument to prove the last result. Given any i ∈ [d], noting that
v1,i = (1− β2)g

2
1,i ≤ (GT (s))

2. Suppose that for some s′ ∈ [s], vj,i ≤ (GT (s))
2,∀j ∈ [s′],

vs′+1,i = β2vs′,i + (1− β2)g
2
s′,i ≤ β2(GT (s))

2 + (1− β2)(GT (s))
2 ≤ (GT (s))

2.

We then obtain that vj,i ≤ (GT (s))
2,∀j ∈ [s]. Noting that the above inequality holds for all i ∈ [d],

we therefore obtain the desired result.

Proof of Lemma B.9. Recalling the definition of bs,i in (16) and letting as,i =
√
ṽs,i + ϵs in (23),∣∣∣∣ 1

as,i
− 1

bs,i

∣∣∣∣ =
∣∣√vs,i −

√
ṽs,i
∣∣

as,ibs,i
=

1− β2

as,ibs,i

∣∣g2s,i − (GT (s))
2
∣∣

√
vs,i +

√
ṽs,i

≤ 1− β2

as,ibs,i
· (GT (s))

2

√
vs,i +

√
β2vs−1,i + (1− β2)(GT (s))2

≤ GT (s)
√
1− β2

as,ibs,i
,

where we apply g2s,i ≤ ∥gs∥2 ≤ (GT (s))
2 from Lemma B.8 in the first inequality since (35) holds.

The second result also follows from the same analysis. We first combine with ϵs = ϵ
√
1− βs

2 to
obtain that

|ϵs − ϵs−1| ≤ ϵ

(√
1− βs

2 −
√

1− βs−1
2

)
≤ ϵ

√
βs−1
2 (1− β2) ≤ ϵ

√
1− β2, (99)

where we apply
√
a−

√
b ≤

√
a− b,∀0 ≤ b ≤ a. Applying the definition of bs−1,i and as,i,∣∣∣∣ 1

bs−1,i
− 1

as,i

∣∣∣∣ =
∣∣√ṽs,i −

√
vs−1,i + (ϵs − ϵs−1)

∣∣
bs−1,ias,i

≤ 1

bs−1,ias,i

(1− β2)
∣∣(GT (s))

2 − vs−1,i

∣∣√
ṽs,i +

√
vs−1,i

+
|ϵs − ϵs−1|
bs−1,ias,i

≤ 1

bs−1,ias,i
· (1− β2)(GT (s))

2√
ṽs,i +

√
vs−1,i

+
ϵ
√
1− β2

bs−1,ias,i
≤ (GT (s) + ϵ)

√
1− β2

bs−1,ias,i
.

where the second inequality applies vs−1,i ≤ (GT (s))
2 in Lemma B.8 and the last inequality comes

from
√
1− β2GT (s) ≤ ṽs,i.

Proof of Lemma B.10. Applying the basic inequality and (35), for all t ∈ [T ], i ∈ [d],
t∑

s=1

g2s,i ≤
t∑

s=1

∥gs∥2 ≤ 2

t∑
s=1

(
∥ḡs∥2 + ∥ξs∥2

)
≤ 2M2

T

(
σ2
0t+ σ2

1

t∑
s=1

∥ḡs∥p +
t∑

s=1

∥ḡs∥2
)
.

(100)

Combining with Lemma B.2, we have
t∑

s=1

∥ḡs∥p ≤
t∑

s=1

(
∥ḡ1∥+

LC0

√
ds√

1− β1/β2

)p

≤ t ·

(
∥ḡ1∥+

LC0

√
dt√

1− β1/β2

)p

t∑
s=1

∥ḡs∥2 ≤ t ·

(
∥ḡ1∥+

LC0

√
dt√

1− β1/β2

)2

.

Further applying the definition of Fi(t) in Lemma B.3, it leads to Fi(t) ≤ F(t),∀i ∈ [d]. Finally,
since F(t) is increasing with t, we obtain the desired result.
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Proof of Lemma B.11. First, we have the following decomposition,

A.1 = −
t∑

s=1

ηs

∥∥∥∥ ḡs√
as

∥∥∥∥2 − t∑
s=1

ηs

〈
ḡs,

ξs
as

〉
︸ ︷︷ ︸

A.1.1

+

t∑
s=1

ηs

〈
ḡs,

(
1

as
− 1

bs

)
gs

〉
︸ ︷︷ ︸

A.1.2

. (101)

Since (35) holds, we could apply Cauchy-Schwarz inequality, Lemma B.9, and GT (s) ≤ GT (t),∀s ≤
t from (19) to obtain that for all t ∈ [T ],

A.1.2 ≤
d∑

i=1

t∑
s=1

ηs

∣∣∣∣ 1

as,i
− 1

bs,i

∣∣∣∣ · |ḡs,igs,i| ≤ d∑
i=1

t∑
s=1

ηs ·
GT (s)

√
1− β2

as,ibs,i
· |ḡs,igs,i|

≤ 1

4

d∑
i=1

t∑
s=1

ηsḡ
2
s,i

as,i
+ (1− β2)

d∑
i=1

t∑
s=1

(GT (s))
2

as,i
·
ηsg

2
s,i

b2s,i

(30),(97)
≤ 1

4

t∑
s=1

ηs

∥∥∥∥ ḡs√
as

∥∥∥∥2 + ηGT (t)
√
1− β2

1− β1

t∑
s=1

∥∥∥∥gsbs
∥∥∥∥2 .

Finally, combining with (37) for estimating A.1.1, we deduce the desired result in (39).

Proof of Lemma B.12. Let us denote Σ := β1

1−β1
⟨∆s ⊙ (xs − xs−1), ḡs⟩ where ∆s is defined in

(20). We have

Σ ≤ β1

1− β1
·
∣∣∣∣〈∆s ⊙

ηs−1ms−1

bs−1
, ḡs

〉∣∣∣∣ = β1

1− β1
·
∣∣∣∣〈(ηs

bs
− ηs−1

bs−1

)
⊙ms−1, ḡs

〉∣∣∣∣
≤ β1

1− β1
·
∣∣∣∣〈(ηs

bs
− ηs

as

)
⊙ms−1, ḡs

〉∣∣∣∣︸ ︷︷ ︸
Σ1

+
β1

1− β1
·
∣∣∣∣〈( ηs

as
− ηs

bs−1

)
⊙ms−1, ḡs

〉∣∣∣∣︸ ︷︷ ︸
Σ2

+
β1

1− β1
·
∣∣∣∣(ηs−1 − ηs)

〈
ms−1

bs−1
, ḡs

〉∣∣∣∣︸ ︷︷ ︸
Σ3

. (102)

Since (35) holds, we could apply Lemma B.9 and Young’s inequality and then use (97), (30),
β1 ∈ [0, 1) and GT (s) ≤ GT (t) ≤ GT (t) + ϵ,∀s ≤ t,

Σ1 ≤
d∑

i=1

β1

1− β1
· GT (s)ηs

√
1− β2

as,ibs,i
· |ḡs,ims−1,i|

≤
d∑

i=1

ηs
8

·
ḡ2s,i
as,i

+
2ηsβ

2
1(1− β2)

(1− β1)2

d∑
i=1

(GT (s))
2

as,i
·
m2

s−1,i

b2s,i

≤ ηs
8

∥∥∥∥ ḡs√
as

∥∥∥∥2 + 2(GT (t) + ϵ)η
√
1− β2

(1− β1)3

∥∥∥∥ms−1

bs

∥∥∥∥2 . (103)

Using the similar analysis for Σ1, we also have

Σ2 ≤
d∑

i=1

ηsβ1

1− β1

√
1− β2

as,ibs−1,i
· (GT (s) + ϵ) · |ḡs,i ·ms−1,i|

≤ ηs
8

∥∥∥∥ ḡs√
as

∥∥∥∥2 + 2 (GT (t) + ϵ) η
√
1− β2

(1− β1)3

∥∥∥∥ms−1

bs−1

∥∥∥∥2 . (104)
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Then we move to bound the summation of Σ3 over s ∈ {2, · · · , t} since m0 = 0. Recalling ηs in
(30), we have the following decomposition,

Σ3 ≤
ηβ1

√
1− βs

2

1− β1

∣∣∣∣( 1

1− βs−1
1

− 1

1− βs
1

)〈
ḡs,

ms−1

bs−1

〉∣∣∣∣︸ ︷︷ ︸
Σ3.1

+
ηβ1

(1− β1)(1− βs−1
1 )

∣∣∣∣(√1− βs−1
2 −

√
1− βs

2

)〈
ḡs,

ms−1

bs−1

〉∣∣∣∣︸ ︷︷ ︸
Σ3.2

. (105)

Noting that ∥ḡs∥ ≤ Gs ≤ Gt,∀s ≤ t. Then further applying Cauchy-Schwarz inequality and Lemma
B.2,

√
1− βs

2

∣∣∣∣〈ḡs, ms−1

bs−1

〉∣∣∣∣ ≤√1− βs
2∥ḡs∥

∥∥∥∥ms−1

bs−1

∥∥∥∥ ≤
√
dGt

√
(1− β1)(1− βs−1

1 )

(1− β2)(1− β1/β2)
.

Hence, summing Σ3.1 up over s ∈ [t], applying β1 ∈ (0, 1) and noting that Σ3.1 vanishes when
s = 1,

t∑
s=1

Σ3.1 ≤
√
dηGt

1− β1
·

√
1− β1

(1− β2)(1− β1/β2)

t∑
s=2

(
1

1− βs−1
1

− 1

1− βs
1

)

≤
√
dηGt√

(1− β1)3(1− β2)(1− β1/β2)
. (106)

Similarly, using ∥ḡs∥ ≤ Gs ≤ Gt,∀s ≤ t and 1− βs−1
1 ≥ 1− β1,

1

1− βs−1
1

∣∣∣∣〈ḡs, ms−1

bs−1

〉∣∣∣∣ ≤ 1

1− βs−1
1

∥ḡs∥
∥∥∥∥ms−1

bs−1

∥∥∥∥ ≤
√
dGt

√
1

(1− β2)(1− β1/β2)
.

Hence, summing Σ3.2 up over s ∈ [t] and still applying β1 ∈ [0, 1),

t∑
s=1

Σ3.2 ≤
√
dηGt

1− β1
·

√
1

(1− β2)(1− β1/β2)

t∑
s=2

(√
1− βs

2 −
√
1− βs−1

2

)

≤
√
dηGt

(1− β1)
√
(1− β2)(1− β1/β2)

≤
√
dηGt√

(1− β1)3(1− β2)(1− β1/β2)
. (107)

Combining with (105), (106) and (107), we obtain an upper bound for
∑t

s=1 Σ3. Summing (102),
(103) and (104) up over s ∈ [t], and combining with the estimation for

∑t
s=1 Σ3, we obtain the

desired inequality in (40).

E Omitted proof in Appendix C

Proof of Lemma C.1. Recalling in (95), we have already shown that

∥xs+1 − xs∥ ≤
√
d∥xs+1 − xs∥∞ ≤ η

√
d

(1− β2)(1− β1/β2)
, ∀s ≥ 1. (108)

Applying the definition of ys in (17), an intermediate result in (108) and β1 ∈ [0, 1),6

∥ys − xs∥ =
β1

1− β1
∥xs − xs−1∥ ≤ η

1− β1

√
d

(1− β2)(1− β1/β2)
, ∀s ≥ 1. (109)

6The inequality still holds for s = 1 since x1 = y1.
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Recalling the iteration of ys in (18) and then using Young’s inequality

∥ys+1 − ys∥2 ≤ 2η2s

∥∥∥∥gsbs
∥∥∥∥2︸ ︷︷ ︸

(∗)

+
2β2

1

(1− β1)2

∥∥∥∥ηsbs−1

ηs−1bs
− 1

∥∥∥∥2
∞

∥xs − xs−1∥2︸ ︷︷ ︸
(∗∗)

.

Noting that gs,i/bs,i ≤ 1/
√
1− β2 from (16), we then combine with (30) to have

(∗) ≤ 2η2s ·
d

1− β2
≤ 2η2d

(1− β1)2(1− β2)
.

Applying Lemma B.1 where Σ2
max ≤ 1/β2 and (108),

(∗∗) ≤ 2η2β2
1Σ

2
maxd

(1− β1)2(1− β2)(1− β1/β2)
≤ 2η2d

β2(1− β1)2(1− β2)(1− β1/β2)
.

Summing up two estimations and using 0 ≤ β1 < β2 < 1, we finally have

∥ys+1 − ys∥ ≤ η

√
4d

β2(1− β1)2(1− β2)(1− β1/β2)
. (110)

Combining with (108), (109) and (110), and using 0 ≤ β1 < β2 < 1, we then deduce a uniform
bound for all the three gaps.

Proof of Lemma C.2. Under the same conditions in Lemma C.1, we have

∥ys − xs∥ ≤ 1

Lq
, ∥ys+1 − ys∥ ≤ 1

Lq
.

Then, using the generalized smoothness in (8),

∥∇f(ys)∥ ≤ ∥∇f(xs)∥+ ∥∇f(ys)−∇f(xs)∥
≤ ∥∇f(xs)∥+ (L0 + Lq∥∇f(xs)∥q)∥ys − xs∥
≤ ∥∇f(xs)∥+ ∥∇f(xs)∥q + L0/Lq.

We could use a similar argument to deduce the bound for ∥∇f(xs)∥. Further, combining with L(x)
s

and L(y)
s in (64), we could bound the generalized smooth parameters as

L0 + Lq∥∇f(xs)∥q ≤ L0 + LqG
q
s = L(x)

s ,

L0 + Lq∥∇f(ys)∥q ≤ L0 + Lq(∥∇f(xs)∥+ ∥∇f(xs)∥q + L0/Lq)
q = L(y)

s . (111)

We could then deduce the first two inequalities in (67). Finally, (68) could be deduced by using the
same argument in the proof of [49, Lemma A.3].

Proof of Lemma C.3. Given any x ∈ Rd, we let

τ =
1

L0 + Lq max{∥∇f(x)∥q, ∥∇f(x)∥}
, x̂ = x− τ∇f(x).

From the definition of τ , we could easily verify that ∥x̂ − x∥ = τ∥∇f(x)∥ ≤ 1/Lq. Since f is
(L0, Lq)-smooth, we could thereby use the descent lemma in [49, Lemma A.3] such that

f(x̂) ≤ f(x) + ⟨∇f(x), x̂− x⟩+ L0 + Lq∥∇f(x)∥q

2
∥x̂− x∥2

= f(x)− τ∥∇f(x)∥2 + (L0 + Lq∥∇f(x)∥q)τ2

2
∥∇f(x)∥2 ≤ f(x)− τ

2
∥∇f(x)∥2.

Since f(x̂) ≥ f∗, when ∥∇f(x)∥ = 0, the desired result is trivial. Let us suppose ∥∇f(x)∥ > 0.
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Case 1 ∥∇f(x)∥q > ∥∇f(x)∥

τ

2
∥∇f(x)∥2 =

∥∇f(x)∥2−q

2L0/∥∇f(x)∥q + 2Lq
≤ f(x)− f(x̂) ≤ f(x)− f∗.

When ∥∇f(x)∥q < L0/Lq , it leads to

∥∇f(x)∥2

4L0
=

∥∇f(x)∥2−q

4L0/∥∇f(x)∥q
≤ ∥∇f(x)∥2−q

2L0/∥∇f(x)∥q + 2Lq
≤ f(x)− f∗.

When ∥∇f(x)∥q ≥ L0/Lq , it leads to

∥∇f(x)∥2−q

4Lq
≤ ∥∇f(x)∥2−q

2L0/∥∇f(x)∥q + 2Lq
≤ f(x)− f∗.

We then deduce that

∥∇f(x)∥ ≤ max
{
[4Lq(f(x)− f∗)]

1
2−q ,

√
4L0(f(x)− f∗)

}
. (112)

Case 2 ∥∇f(x)∥q ≤ ∥∇f(x)∥ We could rely on the similar analysis to obtain that7

∥∇f(x)∥ ≤ max
{
4Lq(f(x)− f∗),

√
4L0(f(x)− f∗)

}
. (113)

Combining (112) and (113), we then deduce the desired result.

Proof of Lemma C.5. Recalling (95), we then obtained that when η = C̃0

√
1− β2,

∥xs − xs−1∥ ≤
√
d∥xs − xs−1∥∞ ≤ C̃0

√
d

1− β1/β2
. (114)

Noting that when (66) holds, we have

∥ḡs∥ ≤ ∥ḡs−1∥+ ∥ḡs − ḡs−1∥ ≤ ∥ḡs−1∥+ (L0 + Lq∥ḡs−1∥q)∥xs − xs−1∥

≤ ∥ḡs−1∥+ C̃0L(x)
s−1

√
d

1− β1/β2
≤ ∥ḡ1∥+ C̃0

√
d

1− β1/β2

s−1∑
j=1

L(x)
j .

Using L(x)
j ≤ L(x)

t ,∀j ≤ t, we have

t∑
s=1

∥ḡs∥p ≤
t∑

s=1

(
∥ḡ1∥+ C̃0

√
d

1− β1/β2
(s− 1)L(x)

t

)p

≤ t

(
∥ḡ1∥+ tC̃0L(x)

t

√
d

1− β1/β2

)p

.

Similarly, we also have

t∑
s=1

∥ḡs∥2 ≤ t

(
∥ḡ1∥+ tC̃0L(x)

t

√
d

1− β1/β2

)2

.

Further combining with Fi(t) in Lemma B.3 and J (t) in (71),

Fi(t) ≤ 1 +
1

ϵ2

t∑
s=1

∥gs∥2 ≤ J (t), ∀t ∈ [T ], i ∈ [d].

7We refer readers to see [51, Lemma A.5] for a detailed proof under this case.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: [NA]
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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