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Abstract

Graph Neural Differential Equations (GNDEs) combine the structural inductive
bias of Graph Neural Networks (GNNs) with the continuous-depth architecture
of Neural ODEs, offering an effective framework for modeling dynamics on
graphs. In this paper, we present the first rigorous convergence analysis of GN-
DEs with time-varying parameters in the infinite-node limit, providing theoretical
insights into their size transferability. We introduce Graphon Neural Differen-
tial Equations (Graphon-NDEs) as the infinite-node limit of GNDEs and establish
their well-posedness. Leveraging tools from graphon theory and dynamical sys-
tems, we prove the trajectory-wise convergence of GNDE solutions to Graphon-
NDE solutions. Moreover, we derive explicit convergence rates for GNDEs over
weighted graphs sampled from Lipschitz-continuous graphons and unweighted
graphs sampled from {0, 1}-valued (discontinuous) graphons. We further ob-
tain size transferability bounds, providing theoretical justification for the practical
strategy of transferring GNDE models trained on moderate-sized graphs to larger,
structurally similar graphs without retraining. Numerical experiments support our
theoretical findings.

1 Introduction

Graph Neural Networks (GNNs) [Scarselli et al., 2008] have achieved remarkable success across
diverse graph-based learning tasks [Duvenaud et al., 2015, Battaglia et al., 2016, Hamilton et al.,
2017, Sanchez-Gonzalez et al., 2020, Derrow-Pinion et al., 2021], in part due to their potential for
size transferability: a model trained on smaller graphs can often be deployed on larger, structurally
similar graphs without retraining [Ruiz et al., 2020, Levie et al., 2021]. This property is typically
justified by convergence analyses under assumptions on graph sequences, message-passing opera-
tors, and activation functions, often modeled via graphons [Lovász, 2012]. Under such assumptions,
GNN outputs converge to a continuous limit as graph size grows, and convergence rates provide
explicit bounds on transferability errors. These results have been established for a wide range of
architectures, including spectral, message-passing, invariant, and higher-order GNNs [Ruiz et al.,
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Attribute GNNs GNDEs (ours)
Layer Type Discrete Continuum

Coefficient Type Static Temporally Continuous

Convergence Notion Layer-wise Trajectory-wise

Graphon Type Convergence Rates
Lipschitz Continuous O(1/

√
n) [Ruiz et al., 2020]; O(1/n) [Maskey et al., 2023] O(1/n)

{0, 1}-valued Inexplicit1 [Morency and Leus, 2021, Kenlay et al., 2021a,b] O(1/nc), c ∈ (0, 1)

Table 1: Comparison of Infinite-Node Limit Results for Spectral GNNs and GNDEs

2020, Keriven et al., 2020, Kenlay et al., 2021a, Levie et al., 2021, Cai and Wang, 2022, Maskey
et al., 2023, Cordonnier et al., 2023, Le and Jegelka, 2024, Herbst and Jegelka, 2025].

Continuous-depth GNNs, often referred to as Graph Neural Differential Equations (GNDEs) [Poli
et al., 2019, Liu et al., 2025], extend this paradigm by modeling node features as solutions of ODEs
parameterized by GNNs, combining the expressivity of Neural ODEs [Chen et al., 2018] with graph
inductive biases. Distinct from discrete-layer GNNs, GNDEs generate infinitely many intermedi-
ate states over time, requiring a stronger notion of convergence: the entire feature trajectory should
converge uniformly in the infinite-node limit. Discretizing GNDEs into residual GNNs cannot guar-
antee this, since step sizes may not scale with graph size and discrete evaluations neglect error
accumulation between time points. To overcome these limitations, we analyze GNDEs directly in
continuous time, obtaining simultaneous, uniform-in-time convergence of trajectories via dynamical
systems tools such as Grönwall-type stability estimates, thereby laying theoretical foundations for
size transferability in continuous-depth models.

Contributions. We summarize our contributions as follows:

• Infinite-node limits of GNDEs. We introduce an infinite-node limit of GNDEs, termed
Graphon Neural Differential Equations (Graphon-NDEs), which are a class of partial dif-
ferential equations (PDEs) defined on graphon spaces. We establish sufficient conditions
for their well-posedness, ensuring the existence and uniqueness of solutions. To the best of
our knowledge, this is the first work considering infinite-node limits of GNDEs.

• Trajectory-wise convergence. We prove that solution trajectories of GNDEs (a sequence
of ODEs) uniformly converge to a Graphon-NDE (a PDE) whenever the underlying graph
sequences and initial features converge. Our analysis relies on Grönwall-type inequalities
from dynamical systems and accommodates time-varying (temporally continuous) param-
eters.

• Convergence rates. We derive explicit convergence rates for both weighted and un-
weighted graphs which are generated deterministically from graphons. For weighted
graphs sampled from Lipschitz graphons, we present a convergence rate of O(1/n); for un-
weighted graphs sampled from {0, 1}-valued (hence non-continuous) graphons, we show
a convergence rate of O(1/nc), with c ∈ (0, 1) depending on the box-counting dimension
of the boundary of the graphon’s support.

• Size transferability bounds. Leveraging our derived convergence rates, we establish upper
bounds on the solution discrepancy of GNDEs over graphs of different sizes. This provides
theoretical justification for the size transferability of GNDEs – models trained on smaller
graphs can reliably generalize to larger, structurally similar graphs without retraining.

2 Preliminaries

Graph Neural Differential Equations (GNDEs) [Poli et al., 2019] extend Neural ODEs to the graph
domain by modeling the continuous-time dynamics with a Graph Neural Network (GNN). Formally,

1“Inexplicit” means that convergence is established, but no explicit rate is provided.
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a GNDE is defined as
d

dt
X(t) = Φ

(
S;X(t);H(t)

)
,

X(0) = Z ∈ R|V (G)|×F ,

(1)

in which X(t) ∈ R|V (G)|×F denotes the node feature matrix at time t and is initialized by the input
node feature matrix Z at t = 0; and Φ is an L-layer GNN parameterized by a graph shift operator S
and a collection of trainable, time-varying K-hop filter coefficients H(t) = {h(ℓ,t)

fgk : f, g ∈ [F ], k ∈
ZK , ℓ ∈ [L]}, t ∈ [0, T ].

3 Main Results

3.1 Infinite-Node Limits: Graphon Neural Differential Equations and Well-Posedness

To explore the infinite-node limiting structure of GNDEs, we introduce Graphon Neural Differential
Equations (Graphon-NDEs). Recalling that a graphon, as the limiting object of finite graphs, can be
viewed as a graph with a continuum of nodes over the unit interval, we define Graphon-NDEs in a
form similar to GNDEs (1), but tailored to operate on graphons rather than finite graphs. Specifically,
we formulate Graphon-NDEs as

∂

∂t
X(u, t) = Φ(W;X(u, t);H(t)),

X(u, 0) = Z(u),
(2)

where I := [0, 1], X(·, t) : I → R1×F is the graphon node feature function at time t and initialized
by an input node feature function Z at t = 0; and Φ is a Graphon-NN applying on X(·, t) through
graphon W and time-varying parameters H(t).

The continuum nature of both the node and time variables in Graphon-NDEs necessitates careful
technical treatment to establish their well-posedness (i.e., the existence and uniqueness of solu-
tions). We prove that the temporal continuity of the filter evolution and the non-amplifying Lips-
chitz property of the activation function (see Assumptions AS0 and AS1 below) suffice to guarantee
well-posedness.

• AS0. The convolutional filters evolves continuously in time, i.e., h(ℓ,t)
fgk is a continuous

function about t ∈ [0, T ], for each f, g ∈ [F ], ℓ ∈ [L], k ∈ ZK .
• AS1. The activation function σ is normalized Lipschitz, i.e., |σ(x)− σ(y)| ≤ |x − y|, for

all x, y ∈ R; and σ(0) = 0.

Theorem 3.1 (Well-posedness, proof in Appendix A.3). Suppose that AS0 and AS1 hold. If
W ∈ L∞(I2) and Z ∈ L∞(I;R1×F ), then for any T > 0, there exists a unique solution
X ∈ C1

(
[0, T ];L∞(I;R1×F )

)
to the Graphon-NDE (2).

The well-posedness result established in Theorem 3.1 paves the way for the subsequent conver-
gence analysis of GNDE solutions to the Graphon-NDE solution as the sequence of structurally
similar graphs converges to a graphon. Theorem 3.1 presents that the unique solution X of the
Graphon-NDE is uniformly bounded, which immediately implies that X is square integrable, i.e.,
X ∈ C

(
[0, T ];L2(I;R1×F )

)
. Our forthcoming convergence results and rate estimates for GNDE

solutions will be formulated in this L2-based function space.

3.2 Trajectory-Wise Convergence

We proceed to study the convergence of GNDEs to Graphon-NDEs in terms of their solution tra-
jectories. Let {Gn} be a sequence of graphs with adjacency matrices {WGn

}. Let the GSO SGn

be defined as the adjacency matrix WGn
normalized by 1/|V (Gn)|, i.e., SGn

:= WGn
/|V (Gn)|.

Recalling (1), we formulate a sequence of GNDEs as
d

dt
XGn

(t) = Φ(SGn
;XGn

(t);H(t)),

XGn
(0) = ZGn

∈ R|V (Gn)|×F ,

(3)
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where ZGn is the initial node feature matrix for graph Gn. Below we establish the trajectory-wise
convergence of GNDE solutions to Graphon-NDE solutions.
Theorem 3.2 (Trajectory-wise convergence, proof in Appendix A.5). Suppose that AS0 and AS1
hold, and let W ∈ L∞(I2) and Z ∈ L∞(I;R1×F ). Let X and XGn denote the solutions of Graphon-
NDE (2) and GNDE (3), respectively. If {(Gn,ZGn)} converges to (W,Z) (cf. Definition 1), then
for any T > 0, there exists a sequence {πn} of permutations such that

lim
n→∞

∥X − Xπn(Gn)∥C([0,T ];L2(I;R1×F )) = 0,

where Xπn(Gn) denotes the induced graphon feature function of Xπn(Gn).

Discussion. The norm in the function space C([0, T ];L2(I;R1×F )) (cf. Appendix A.2) involves
taking the supremum over t ∈ [0, T ]. Consequently, the convergence we establish is uniform in
time; that is, as n → ∞, the approximation error diminishes uniformly along the entire trajectory,
which consists of infinitely many intermediate states. In contrast, the convergence results in the
literature for GNNs with finitely many layers [Ruiz et al., 2020, Keriven et al., 2020, Maskey et al.,
2023] establish convergence only at the discrete set of layer outputs as the graph size grows. The
trajectory-wise convergence we prove for GNDEs is therefore fundamentally stronger. Moreover, we
remark that the established trajectory-wise convergence relies on Grönwall-type inequalities from
dynamical systems and stability theory, which are tools not required in the existing GNN literatures.

The convergence property established in Theorem 3.2 suggests that GNDEs exhibit stability on
large-scale, structurally similar graphs and are robust to perturbations in the graph structure or node
features. It hinges on the temporal continuity of convolutional filters and Lipschitz continuity for the
activation function. The latter assumption aligns with recent empirical studies of GNNs [Dasoulas
et al., 2021, Arghal et al., 2022], which demonstrate that enhanced Lipschitz continuity in GNNs
improves robustness, generalization, and performance on large-scale tasks. Moreover, Theorem 3.2
rigorously characterizes the function space C([0, T ];L2(I;R1×F )) in which GNDEs can approxi-
mate in the continuum regime. This complements recent advancements in the study of GNN limits
and their expressive capabilities [Keriven et al., 2021, Keriven and Vaiter, 2023].

3.3 Convergence Rates

In this section, we use graphons as generative models to construct convergent graph sequences:
weighted graphs sampled from Lipschitz-continuous graphons and unweighted graphs sampled from
{0, 1}-valued (discontinuous) graphons. We further refine our convergence theorem by deriving
explicit convergence rates for each case.

3.3.1 Weighted Graphs

Let W : I2 → I be a graphon and Z ∈ L∞(I;R1×F ) be a graphon feature function. For each n ∈ N,
we partition the unit interval I into n sub-intervals by defining ui := (i− 1)/n and Ii := [ui, ui+1)
for i ∈ [n]. We define a graph Gn of n nodes as Gn := ⟨[n], [n]× [n],WGn⟩, where we generate the
weighted adjacency matrix WGn

∈ Rn×n by direct sampling on the graphon W over the mesh grid
as

[WGn
]ij := W(ui, uj), i, j ∈ [n]. (4)

The corresponding node feature matrix ZGn ∈ Rn×F of graph Gn is generated by sampling on the
graphon feature function Z as

[ZGn ]i,: := Z(ui), i ∈ [n]. (5)

This weighted graph model is particularly well-suited for applications requiring fully connected
network structures, such as dense communication networks and recommendation systems [Barrat
et al., 2004, Newman, 2004, Aggarwal, 2016]. In these settings, the graphons are typically assumed
to be Lipschitz continuous, reflecting the fact that interactions between entities (e.g., users, devices,
or items) evolve gradually and predictably. We summarize the assumptions below.

• AS2. The graphon W is A1-Lipschitz, that is, |W(u2, v2)− W(u1, v1)| ≤ A1(|u2 − u1|+
|v2 − v1|), for all v1, v2, u1, u2 ∈ I .

• AS3. The initial graphon feature function Z = [Zf : f ∈ [F ]] ∈ L∞(I;R1×F ) is A2-
Lipschitz, that is, for each f ∈ [F ], |Zf (u2)− Zf (u1)| ≤ A2|u2 − u1|, for all u1, u2 ∈ I .
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Theorem 3.3 (Rates for weighted graphs, proof in Appendix A.6). Suppose that AS0-AS3 hold. Let
the adjacency matrices and node feature matrices of graphs {Gn} be generated according to (4) and
(5), respectively. Let T ∈ R+. Let X be the solution of Graphon-NDE (2) and XGn be the induced
graphon function of the solution XGn

of GNDE (3). Then it holds that

∥X − XGn∥C([0,T ];L2(I;R1×F )) ≤
C

n
, (6)

where C is constant independent of n with explicit formula provided in equation (32). As a result,
for any n1, n2 ∈ N, it holds that

∥XGn1
− XGn2

∥C([0,T ];L2(I;R1×F )) ≤ C

(
1

n1
+

1

n2

)
. (7)

Discussion. We remark that Theorem 3.3 establishes an O(1/n) convergence rate for weighted
graphs sampled from Lipschitz-continuous graphons. This rate is known to be optimal for approx-
imating Lipschitz-continuous functions [Schumaker, 2007]. Furthermore, the rate for GNDEs we
obtain is trajectory-wise (i.e., uniform-in-time), which is strictly stronger than the linear convergence
rates established for discrete-layer GNNs [Maskey et al., 2023, Krishnagopal and Ruiz, 2023].

3.3.2 Unweighted Graphs

Let W : I2 → {0, 1} be a binary-valued graphon and Z ∈ L∞(I;R1×F ) be a graphon feature
function. We denote by W+ the support set of function W, that is W+ := {(u, v) : W(u, v) = 1}.
For each n ∈ N, we construct an unweighted graph Gn as Gn := ⟨[n], E(Gn),WGn

⟩, where the edge
set E(Gn) is defined by E(Gn) := {(i, j) ∈ [n] × [n] : (Ii × Ij) ∩ W+ ̸= ∅}, and the adjacency
matrix WGn is defined as

[WGn ]ij :=

{
1, if (i, j) ∈ E(Gn),

0, otherwise,
(8)

where [WGn
]ij represents the binary connectivity between nodes i and j of the graph Gn. The

corresponding node feature matrix ZGn for graph Gn is generated, from a Lipschitz continuous
graphon feature function Z, as

[ZGn
]i,: :=

1

|Ii|

∫
Ii

Z(u) du, i ∈ [n]. (9)

This model is for generating network structures with binary relations, which are prevalent in social
networks, citation graphs, and biological networks [Jeong et al., 2000, Milo et al., 2002, Girvan and
Newman, 2002, Leskovec et al., 2009, Easley and Kleinberg, 2010].

The discontinuity of graphons prevents AS2 from being satisfied. To tackle this issue, we introduce
a new metric—the upper box-counting dimension [Falconer, 2014] for the boundary ∂W+, where
W+ is the support of the graphon W. We review the definition of upper box-counting dimension as
follows. Let Ω be any non-empty bounded subset of R2 and let Nδ(Ω) be the number of δ-mesh
cubes that intersect Ω. The upper box-counting dimensions of Ω is defined as

dimBΩ := lim
δ→0

logNδ(Ω)

− log δ
. (10)

It is clear that dimB(Ω) ∈ [0, 2] for any non-empty bounded subset Ω of R2. As a simple example,
the straight line {(x, 0) : x ∈ [0, 1]} has an upper box-counting dimension of 1.
Theorem 3.4 (Rates for unweighted graphs, proof in Appendix A.6). Suppose that AS0, AS1 and
AS3 hold. Let W : I2 → {0, 1} be a graphon for unweighted graphs with b := dimB(∂W+) ∈
[1, 2). Let the adjacency matrices and node feature matrices of graphs {Gn} be generated according
to (8) and (9), respectively. Let T ∈ R+. Let X be the solution of Graphon-NDE (2) and XGn be
the induced graphon function of the solution XGn

of GNDE (3). Then for any ϵ ∈ (0, 2 − b), there
exists a positive integer Nϵ,W (depending on ϵ and W) such that when n > Nϵ,W, it holds that

∥X − XGn
∥C([0,T ];L2(I;R1×F )) ≤

C̃

n1− b+ϵ
2

, (11)
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where C̃ is a constant independent of n with explicit formula provided in equation (36). As a result,
for any n1, n2 > Nϵ,W, it holds that

∥XGn1
− XGn2

∥C([0,T ];L2(I;R1×F )) ≤ C̃

(
1

n
1− b+ϵ

2
1

+
1

n
1− b+ϵ

2
2

)
. (12)

Discussion. The ϵ > 0 in Theorem 3.4 is a pre-specified parameter that can be chosen arbitrarily
small, making the convergence rate in Theorem 3.4 almost O

(
1/n1−b/2

)
. In contrast to the rate

for weighted graphs established in Theorem 3.3, the rate for unweighted graphs relies on the com-
plexity of the boundary ∂W+, measured by its upper box-counting dimension b. The more intricate
∂W+ is, leading to the larger value of b, the poorer the convergence rate becomes. For boundaries
with box-counting dimension b = 1 (e.g., smooth curves or piecewise linear segments), conver-
gence is relatively fast at rate O(1/n0.5). For boundaries with greater fractal complexity, where
b ∈ (1, 2) (e.g., moderately irregular or self-similar structures such as the hexaflake), convergence
slows to O(1/nc) for some c ∈ (0, 0.5). We note that numerical experiments (see HSBM (hier-
archical stochastic block model) and hexaflake graphons in Figure 1) suggest that our theoretical
rate for unweighted graphs may be pessimistic, reflecting a worst-case scenario. Empirically, faster
convergence rates are observed. In addition, we find that the HSBM graphon appears to yield faster
convergence than the hexaflake, likely due to its smaller box-counting dimension. This observa-
tion is consistent with the trend indicated in Theorem 3.4, where a larger box-counting dimension
corresponds to a slower convergence rate.

We remark that the graphons for unweighted graphs are discontinuous and prior studies on GNNs
[Ruiz et al., 2021a,b, Morency and Leus, 2021, Maskey et al., 2023] lack convergence rates for this
case. In contrast, our result goes beyond GNNs and establishes trajectory-wise rates for GNDEs
over unweighted graphs, using a novel analysis based on the box-counting dimension.

3.4 Implications

Size transferability bounds. Estimates (7) and (12) provide quantitative bounds on how GNDE
solutions differ when defined over structurally similar graphs of different sizes (n1 and n2), assum-
ing shared convolutional filters. These bounds offer theoretical insight into the size transferability
of GNDEs, quantifying how solution trajectories remain consistent as the graph scales. In particu-
lar, they highlight the role of graph structure (e.g., graphon property) and model smoothness (e.g.,
convolutional filters and activation functions) in ensuring reliable transferability across graph sizes.
Our analysis implies that size transferability becomes more challenging for irregular graphs.

Two-scale convergence of discretized GNDEs. Discretized GNDEs can be obtained by applying
numerical solvers to GNDEs, resulting in novel constructions of GNNs with residual connections.
Despite their practical importance, no convergence analysis for these discretized GNDEs exists in the
current literatures. Our convergence results show that GNDE solutions over size-n graphs converge
uniformly in time to a Graphon-NDE solution with rate O(n−α), with α dependent on regularity
of graphons. To ensure that such convergence behavior carries over to discretized GNDEs used in
practice, we also need to control the numerical solver error. Specifically, if a solver with global error
O(hp) is used, then to preserve the overall convergence to the graphon limit, we need to require
hp ≪ n−α. This setup reflects a two-scale convergence: as both the graph size increases and the
time step decreases, the discretized numerical solutions of GNDEs will converge to the Graphon-
NDE solution. In practice, this informs the choice of solver: for smooth GNDEs, high-order explicit
methods (e.g., RK4) suffice, while stiff dynamics may call for implicit solvers to control long-term
error growth. This principle ensures that the discretized model remains consistent across graph sizes
and time resolutions.
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A Supplemental Materials: Theory

A.1 Graph Limits

In this section, we provide more details of graphons as graph limits and present the formal definition
for the convergence of a sequence of graph-feature pairs to a graphon-feature pair.

We begin with the concept of a sequence of graphs converging to a graphon in the sense of homo-
morphism density [Lovász, 2012]. A motif F is an arbitrary simple graph. A homomorphism from
a motif F to a simple unweighted graph G is an adjacency-preserving mapping ϕ : V (F) → V (G),
meaning (i, j) ∈ E(F) implies (ϕ(i), ϕ(j)) ∈ E(G), and the homomorphism number hom(F ,G)
refers to the total number of homomorphisms from F to G. The homomorphism density t(F ,G) is
defined as the ratio of hom(F ,G) and |V (G)||V (F)|, which represents the probability of a random
mapping ϕ : V (F) → V (G) being a homomorphism. The notion of homomorphism density can be
similarly extended to the case of G being weighted graphs [Lovász, 2012]

t(F ,G) = hom(F ,G)
|V (G)||V (F)| =

∑
ϕ

∏
(i,j)∈E(F) [WG ]ϕ(i)ϕ(j)

|V (G)||V (F)| . (13)

The homomorphism density from a motif to a graphon is generalized via integrals. We define the
homomorphism density from a motif F to a graphon W, denoted by t(F ,W), as

t(F ,W) :=

∫
I|V (F)|

∏
(i,j)∈E(F)

W(ui, uj)
∏

i∈V (F)

dui. (14)

We say that a sequence of graphs {Gn} converges to the graphon W in the sense of homomorphism
density if, for any motif F , it holds that

lim
n→∞

t(F ,Gn) = t(F ,W).
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In the sense of homomorphism density, every graphon is a limit object of some convergent graph
sequence, and conversely, every convergent graph sequence converges to a unique graphon [Lovász,
2012]. Thus, a graphon represents a family of graphs that approximate a same underlying structure,
even if their sizes differ. By categorizing graphs into such “graphon families”, graphons allow for
easier and more structured analysis of graph sequences, providing a robust framework for studying
large-scale networks.

In the following, we review the relation of convergence in homomorphism density and cut norm.
The cut norm of a graphon W is defined by

∥W∥□ := sup
S,S′⊆I

∣∣∣∣∫
S×S′

W(x, y) dx dy

∣∣∣∣ , (15)

where the supremum is taken over all subsets S and S′ of I . The cut norm measures the maximum
discrepancy in the graphon over any pair of subsets. Let G be a graph with adjacency matrix WG ∈
R|V (G)|×|V (G)|. We recall that the induced graphon WG is defined by

WG(u, v) :=
∑

i,j∈[|V (G)|]

[WG ]ijχIi(u)χIj (v), u, v ∈ I. (16)

The following result from Lovász [2012] states that the convergence of graphs in terms of homomor-
phism density implies convergence in the cut norm of induced graphons, up to some permutations.
Lemma A.1. Let {Gn} be a sequence of graphs with adjacency matrices {WGn}. Suppose that
{Gn} converges to a graphon W in the sense of homomorphism density. Then, there exists a sequence
{πn} of permutations such that limn→∞ ∥Wπn(Gn) − W∥□ = 0.

Given a sequence {Gn} of graphs converging to a graphon W in the sense of homomorphism density,
we introduce a set of the permutation sequences {πn} such that the permuted induced graphons
Wπn(Gn) converge under the cut norm to the graphon W, that is,

P :=
{
{πn} : lim

n→∞
∥Wπn(Gn) − W∥□ = 0

}
. (17)

It is clear that the set P is not empty due to Lemma A.1.

To formulate the definition of graph-feature pairs converging to graphon-feature pair, we need the
convergence of induced graphon feature functions. For a graph G with node feature matrix ZG ∈
R|V (G)|×F , we recall that the induced graphon feature function ZG : I → R1×F is defined by

ZG(u) :=
∑

i∈[|V (G)|]

[ZG ]i,:χIi(u), u ∈ I. (18)

We adopt the following definition of graph-feature pairs converging to a graphon-feature pair, intro-
duced in Ruiz et al. [2021a].
Definition 1. Let {Gn} be a sequence of graphs with adjacency matrices {WGn

} and graph
node feature matrices {ZGn}. Suppose that {Gn} converges to a graphon W in the sense of
homomorphism density. Let Z ∈ L2(I;R1×F ) be a graphon feature function. We say that
{(Gn,ZGn)} converges to (W,Z) if there exists a sequence of permutations {πn} ∈ P such that
limn→∞ ∥Zπn(Gn) − Z∥L2(I;R1×F ) = 0, where the set P is defined by (17).

A.2 Function Spaces

The function space Lp(I;R1×F ) consists of all Lp-integrable vector valued functions mapping I to
R1×F , where p ∈ [1,∞] and F denotes the number of features. The norm in Lp(I;R1×F ) is defined
by ∥Z∥Lp(I;R1×F ) := (

∑
f∈[F ] ∥Zf∥2Lp(I))

1/2 for Z = [Zf : f ∈ [F ]]. By
∫
I
Z(u)du we denote the

entry-wise integral
[∫

I
Zf (u)du : f ∈ [F ]

]
. Let Ω be a subset of R+ and p ∈ [1,∞], the Banach

space C(Ω;Lp(I;R1×F )) is composed of vector-valued functions X = [Xf : f ∈ [F ]] : I × Ω →
R1×F satisfying that for each t ∈ Ω, X(·, t) ∈ Lp(I;R1×F ); for each u ∈ I and f ∈ [F ], Xf (u, ·)
is continuous on Ω; and with finite norm ∥X∥C(Ω;Lp(I;R1×F )) := supt∈Ω ∥X(·, t)∥Lp(I;R1×F ). By
C1(Ω;Lp(I;R1×F )) we denote a subspace of C(Ω;Lp(I;R1×F )), in which the vector-valued func-
tion X = [Xf : f ∈ [F ]] satisfies that for each f ∈ [F ] and u ∈ I , Xf (u, ·) is continuously
differentiable.
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A.3 Proof of Theorem 3.1

Prior to the detailed proof of Theorem 3.1, we present several useful observations. Under the as-
sumption AS0, for T > 0, we define a constant

hT := sup
t∈[0,T ]

max
f,g∈[F ],ℓ∈[L],k∈ZK

∣∣∣h(ℓ,t)
fgk

∣∣∣ . (19)

Lemma A.2. Let T > 0 and X ∈ C([0, T ];L∞(I;R1×F )). Suppose that AS0 and AS1 hold. Then,
for p ∈ [1,∞], ℓ ∈ [L] and t ∈ [0, T ], it holds that∥∥∥X(ℓ,t)

∥∥∥
Lp(I;R1×F )

≤ FKhT

∥∥∥X(ℓ−1,t)
∥∥∥
Lp(I;R1×F )

,

where hT is defined in (19).

Proof. Note that the updating rule of Graphon-NN gives

X(ℓ,t)
f = σ

(
F∑

g=1

K−1∑
k=0

h
(ℓ,t)
fgk T

k
WX(ℓ−1,t)

g

)
, f ∈ [F ], ℓ ∈ [L], t ∈ [0, T ].

It follows that∥∥∥X(ℓ,t)
f

∥∥∥
Lp(I)

≤ hT

(
K−1∑
k=0

∥TW∥kLp(I)→Lp(I)

)∥∥∥∥∥
F∑

g=1

X(ℓ−1,t)
g

∥∥∥∥∥
Lp(I)

≤ hTK
√
F
∥∥∥X(ℓ−1,t)

∥∥∥
Lp(I;R1×F )

,

in which the first inequality is due to AS0, AS1 and triangle inequality; the second is according to
the fact of ∥TW∥Lp(I)→Lp(I) ≤ ∥W∥L∞(I2) ≤ 1 and the norm defined in Lp(I;R1×F ). The desired

result immediately follows by rewriting the norm of X(ℓ,t).

Proposition A.3. Suppose that AS0 and AS1 hold. Let T > 0 and X, X̃ ∈ C([0, T ];L∞(I;R1×F )).
Then for all t ∈ [0, T ], it holds that∥∥∥Φ(W;X(·, t);H(t))− Φ(W; X̃(·, t);H(t))

∥∥∥
L∞(I;R1×F )

≤ (FKhT )
L
∥∥∥X(·, t)− X̃(·, t)

∥∥∥
L∞(I;R1×F )

.

Proof. According to the normalized Lipschitz continuity of activation function σ, similarly to the
proof of Lemma A.2 with p = ∞, we have∥∥∥∥X(ℓ,t) − X̃

(ℓ,t)
∥∥∥∥
L∞(I;R1×F )

≤ FKhT

∥∥∥∥X(ℓ−1,t) − X̃
(ℓ−1,t)

∥∥∥∥
L∞(I;R1×F )

. (20)

Recall the notations X(·, t) = X(0,t), Φ(W;X(·, t);H(t)) = X(L,t) (similar for X̃). The desired result
follows from recursively applying (20).

Proof of Theorem 3.1. The proof is based on the Banach contraction mapping principle. Let T > 0
be arbitrary but fixed, and 0 < τ < 1

2(FKhT )L
. We define a subspace SZ of C([0, τ ];L∞(I;R1×F )),

associated with τ , by
SZ :=

{
X : X ∈ C([0, τ ];L∞(I;R1×F )),X(·, 0) = Z

}
.

Moreover, we define an integral operator K : SZ → SZ by

[KX](u, t) := Z(u) +

∫ t

0

Φ(W;X(u, s);H(s))ds. (21)

It follows that we can rewrite the initial value problem (2) as the fixed point equation X = KX. We
show below that the operator K is a contraction. For any X, X̃ ∈ SZ, according to the definition of
norm in C([0, τ ];L∞(I;R1×F )), we have

∥KX −KX̃∥SZ
= sup

t∈[0,τ ]

∥KX(·, t)−KX̃(·, t)∥L∞(I;R1×F )

= sup
t∈[0,τ ]

∥∥∥∥∫ t

0

Φ(W;X(·, s);H(s))− Φ(W; X̃(·, s);H(s))ds

∥∥∥∥
L∞(I;R1×F )

≤ τ sup
t∈[0,τ ]

∥∥∥Φ(W;X(·, t);H(t))− Φ(W; X̃(·, t);H(t))
∥∥∥
L∞(I;R1×F )

. (22)
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It follows from Lemma A.3 that∥∥∥Φ(W;X(·, t);H(t))− Φ(W; X̃(·, t);H(t))
∥∥∥
L∞(I;R1×F )

≤ (FKhT )
L∥X(·, t)−X̃(·, t)∥L∞(I;R1×F ).

By substituting the above estimate into (22), we obtain that

∥KX −KX̃∥SZ
≤ τ(FKhT )

L sup
t∈[0,τ ]

∥X(·, t)− X̃(·, t)∥L∞(I;R1×F )

= τ(FKhT )
L∥X − X̃∥SZ

≤ 1

2
∥X − X̃∥SZ

where the last inequality follows from the definition of τ . Therefore, the operator K is a contrac-
tion. By the Banach contraction mapping principle, there exists a unique solution X̂ ∈ SZ of the
initial value problem (2). Taking X̂(τ) as the initial condition, we repeat the argument to extend
the solution to [0, 2τ ]. In such a way, we can keep doing until the solution extends to [0, T ], and
get a unique solution X ∈ C([0, T ];L∞(I;R1×F )). According to AS0 and AS1, it follows that
Φ(W;X(u, ·);H(·)) is continuous, that is, the integrand in (21) is continuous. Therefore, by funda-
mental theorem of calculus, we see that KX is continuously differentiable about the second variable
t. As KX = X, we conclude that X ∈ C1([0, T ];L∞(I;R1×F )). This completes the proof.

A.4 Stability Analysis of Graphon-NDEs

To lay a foundation for the subsequent proofs of the convergence result (Theorem 3.2) and also the
convergence rate results (Theorems 3.3 and 3.4), this section focuses on the stability analysis of
Graphon-NDEs. We proceed with several technical lemmas.
Lemma A.4. Let T1 and T2 be two bounded linear operators on L2(I). Let k be a given positive
integer. If ∥T1∥L2(I)→L2(I) ≤ 1 and ∥T2∥L2(I)→L2(I) ≤ 1, then

∥∥T k
1 − T k

2

∥∥
L2(I)→L2(I)

≤ k∥T1 −
T2∥L2(I)→L2(I).

Lemma A.5 (Stability of Graphon-NNs). Let T > 0, X, X̃ ∈ C([0, T ];L∞(I;R1×F )), and
graphons W, W̃. If AS0 and AS1 hold, then for any t ∈ [0, T ], it holds that∥∥∥Φ(W̃; X̃(·, t);H(t)

)
− Φ (W;X(·, t);H(t))

∥∥∥
L2(I;R1×F )

≤ (FKhT )
L

(∥∥∥X̃(·, t)− X(·, t)
∥∥∥
L2(I;R1×F )

+ LK
∥∥TW̃ − TW

∥∥
L2(I)→L2(I)

∥X∥C([0,T ];L2(I;R1×F ))

)
.

Proof. Recall that for f ∈ [F ], ℓ ∈ [L], t ∈ [0, T ], the updating rule of Graphon-NN gives

X(ℓ,t)
f = σ

(
F∑

g=1

K−1∑
k=0

h
(ℓ,t)
fgk T

k
WX(ℓ−1,t)

g

)
, X̃

(ℓ,t)

f = σ

(
F∑

g=1

K−1∑
k=0

h
(ℓ,t)
fgk T

k
W̃

X̃
(ℓ−1,t)

g

)
.

Then by the triangle inequality and similar argument as in the proof of Lemma A.2, we obtain∥∥∥∥X̃
(ℓ,t)

f − X(ℓ,t)
f

∥∥∥∥
L2(I)

≤
√
FKhT

∥∥∥∥X̃
(ℓ−1,t)

− X(ℓ−1,t)

∥∥∥∥
L2(I;R1×F )

+
√
FhT

(
K−1∑
k=0

∥∥∥T k
W̃
− T k

W

∥∥∥
L2(I)→L2(I)

)∥∥∥X(ℓ−1,t)
∥∥∥
L2(I;R1×F )

.

It follows from Lemma A.4 that
K−1∑
k=0

∥∥∥T k
W̃
− T k

W

∥∥∥
L2(I)→L2(I)

≤ K2
∥∥TW̃ − TW

∥∥
L2(I)→L2(I)

.

Therefore,∥∥∥∥X̃
(ℓ,t)

− X(ℓ,t)

∥∥∥∥
L2(I;R1×F )

≤FKhT

∥∥∥∥X̃
(ℓ−1,t)

− X(ℓ−1,t)

∥∥∥∥
L2(I;R1×F )

+ FK2hT

∥∥TW̃ − TW
∥∥
L2(I)→L2(I)

∥∥∥X(ℓ−1,t)
∥∥∥
L2(I;R1×F )

.
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Then a recursion argument gives∥∥∥∥X̃
(L,t)

− X(L,t)

∥∥∥∥
L2(I;R1×F )

≤ (FKhT )
L

∥∥∥∥X̃
(0,t)

− X(0,t)

∥∥∥∥
L2(I;R1×F )

+ FK2hT

∥∥TW̃ − TW
∥∥
L2(I)→L2(I)

L−1∑
ℓ=0

(FKhT )
L−1−ℓ

∥∥∥X(ℓ,t)
∥∥∥
L2(I;R1×F )

.

Note that by Lemma A.2, we have
∥∥∥X(ℓ,t)

∥∥∥
L2(I;R1×F )

≤ (FKhT )
ℓ
∥∥∥X(0,t)

∥∥∥
L2(I;R1×F )

. Hence,∥∥∥∥X̃
(L,t)

− X(L,t)

∥∥∥∥
L2(I;R1×F )

≤ (FKhT )
L

∥∥∥∥X̃
(0,t)

− X(0,t)

∥∥∥∥
L2(I;R1×F )

+ LK (FKhT )
L ∥∥TW̃ − TW

∥∥
L2(I)→L2(I)

∥∥∥X(0,t)
∥∥∥
L2(I;R1×F )

.

Note that X(0,t) = X(·, t), X(L,t) = Φ(W;X(·, t);H(t)) (similar for X̃) and norm
∥X∥C([0,T ];L2(R1×F )) is defined as the supremum of ∥X(·, t)∥L2(I;R1×F ) about t ∈ [0, T ]. There-
fore, the above inequality implies the desired result.

The following result is a special case of Perov [1959] (also see Theorem 21 in Dragomir [2003]).

Lemma A.6 (Generalized Grönwall’s inequality). Let a, b and c be non-negative constants. Let u(t)

be a non-negative function that satisfies the integral inequality u(t) ≤ c+
∫ t

0

(
au(s) + bu

1
2 (s)

)
ds,

then we have u(t) ≤
(
c

1
2 exp(at/2) + exp(at/2)−1

a b
)2

.

Now given a sequence of graphons {Wn} and (bounded) input feature functions {Zn}, we consider
the following Graphon-NDEs

∂

∂t
Xn(u, t) = Φ(Wn;Xn(u, t);H(t)),

Xn(u, 0) = Zn(u).
(23)

We note that Theorem 3.1 guarantees the existence and uniqueness of the solution Xn of (23). We
establish in the following that the error between solutions of (2) and (23) is bounded above by a
linear combination of the initial feature error and graphon error.

Theorem A.7 (Stability of Graphon-NDEs). Suppose that AS0 and AS1 hold. Let X and Xn denote
the solutions of (2) and (23), respectively. Then it holds that

∥Xn − X∥C([0,T ];L2(I;R1×F )) ≤ P∥Zn − Z∥L2(I;R1×F ) +Q∥TWn
− TW∥L2(I)→L2(I), (24)

where
P := exp

(
T (FKhT )

L
)
, Q := (P − 1)LK ∥X∥C([0,T ];L2(I;R1×F )) . (25)

Proof. Denote ∆ = Xn − X. Taking the difference between (23) and (2), we have

∂

∂t
∆(u, t) = Φ(Wn;Xn(u, t);H(t))− Φ(W;X(u, t);H(t)),

∆(u, 0) = Zn(u)− Z(u).

It follows that

1

2

d

dt
∥∆(·, t)∥2L2(I;R1×F ) =

∣∣∣∣∫
I

∂∆(u, t)

∂t
(∆(u, t))

⊤
du

∣∣∣∣
=

∣∣∣∣∫
I

(Φ (Wn;Xn(u, t);H(t))− Φ(W;X(u, t);H(t))) (∆(u, t))
⊤
du

∣∣∣∣
≤ ∥Φ(Wn;Xn(·, t);H(t))− Φ(W;X(·, t);H(t))∥L2(I;R1×F ) ∥∆(·, t)∥L2(I;R1×F ).
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According to Lemma A.5, we have

∥Φ(Wn;Xn(·, t);H(t))− Φ(W;X(·, t);H(t))∥L2(I;R1×F )

≤ (FKhT )
L︸ ︷︷ ︸

denoted by a/2

∥∆(·, t)∥L2(I;R1×F ) + LK (FKhT )
L ∥TWn

− TW∥L2(I)→L2(I) ∥X∥C([0,T ];L2(I;R1×F ))︸ ︷︷ ︸
denoted by b/2

.

Let δ(t) := ∥∆(·, t)∥2L2(I;R1×F ). Then the above estimates lead to

d

dt
δ(t) ≤ aδ(t) + b

√
δ(t),

δ(0) = ∥Zn − Z∥2L2(I;R1×F ) .

Let s ∈ [0, T ] be arbitrary but fixed. We integrate above [0, s] about the variable t, and get

δ(s) ≤ δ(0) +

∫ s

0

(
aδ(t) + b

√
δ(t)

)
dt.

We then apply the generalized Grönwall’s inequality (Lemma A.6), and get

δ(s) ≤
(√

δ(0)exp(as/2) +
exp(as/2)− 1

a
b

)2

.

By noting s ≤ T and plugging definitions of a, b and δ into the above inequality, we obtain

∥∆(·, s)∥L2(I;R1×F ) ≤ P ∥Zn − Z∥L2(I;R1×F ) +Q ∥TWn
− TW∥L2(I)→L2(I) ,

with P and Q defined in (25). Since s is arbitrary in [0, T ], we take the supremum about s
over [0, T ] for the above inequality, and immediately get (24) by recalling the norm defined in
C([0, T ];L2(I;R1×F )).

A.5 Proof of Theorem 3.2

Proof of Theorem 3.2. By the assumption of {(Gn,ZGn
)} converging to (W,Z) in the sense of Def-

inition 1, there exists a sequence {πn} of permutations such that

lim
n→∞

∥Wπn(Gn) − W∥□ = 0, lim
n→∞

∥Zπn(Gn) − Z∥L2(I;R1×F ) = 0. (26)

We denote Wn := Wπn(Gn) and Zn := Zπn(Gn). It is known (Lemma E.6. in Janson [2010]) that
limn→∞ ∥Wn − W∥□ = 0 if and only if limn→∞ ∥TWn

− TW∥L2(I)→L2(I) = 0. Therefore, (26)
implies

lim
n→∞

∥TWn
− TW∥L2(I)→L2(I) = 0, lim

n→∞
∥Zn − Z∥L2(I;R1×F ) = 0. (27)

Then the desired result immediately follows from Theorem A.7.

A.6 Proof of Theorems 3.3 and 3.4

Proof of Theorem 3.3. Recall that ui := (i− 1)/n, Ii := [ui, ui+1), for each i ∈ [n]. According to
definition Wn of (16) with (4), we have

∥W − Wn∥2L2(I2) =
∑

i,j∈[n]

∫
Ii×Ij

|W(u, v)− W(ui, uj)|2 dudv.

According to AS2, we obtain that

∥W − Wn∥2L2(I2) ≤ A2
1

∑
i,j∈[n]

∫
Ii×Ij

(|u− ui|+ |v − uj |)2 dudv. (28)

For each i, j ∈ [n], direct computation gives
∫
Ii×Ij

(|u− ui|+ |v − uj |)2 dudv = 7
6n4 , which

combining with (28) gives

∥W − Wn∥2L2(I2) ≤ A2
1

7

6n2
. (29)
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Denote Z = [Zf : f ∈ [F ]] and Zn = [(Zn)f : f ∈ [F ]]. According to definition Zn of (18) with
(5), we have

∥Z− Zn∥2L2(I;R1×F ) =
∑
f∈[F ]

∥Zf − (Zn)f∥2L2(I) =
∑
f∈[F ]

∑
j∈[n]

∫
Ij

|Zf (u)− Zf (uj)|2du. (30)

It follows from AS3 that for each f ∈ [F ] and j ∈ [n],∫
Ij

|Zf (u)− Zf (uj)|2du ≤ A2
2

∫
Ij

(u− uj)
2du =

A2
2

3

1

n3
.

Therefore, from (30), we get

∥Z− Zn∥2L2(I;R1×F ) ≤
A2

2F

3

1

n2
. (31)

Recall we have established in Theorem A.7 that

∥Xn − X∥C([0,T ];L2(I;R1×F )) ≤ P∥Zn − Z∥L2(I;R1×F ) +Q∥TWn
− TW∥L2(I)→L2(I),

which combining with estimates (29) and (31) and the fact of

∥TWn
− TW∥L2(I)→L2(I) ≤ ∥Wn − W∥L2(I2) ,

further implies

∥Xn − X∥C([0,T ];L2(I;R1×F )) ≤ PA2

√
F

3

1

n
+QA1

√
7

6

1

n
≤ C

n
,

where C is defined by

C := exp
(
T (FKhT )

L
)(

A2

√
F

3
+ LK ∥X∥C([0,T ];L2(I;R1×F )) A1

√
7

6

)
. (32)

This completes the proof of (6). The estimate (7) can be immediately obtained from (6) and the
triangle inequality.

Lemma A.8. Suppose that Ω ⊂ Rd and f ∈ L2(Ω). Let |Ω| be the volume of Ω. Then the
constant function h(u) := 1

|Ω|
∫
Ω
f(u)du, u ∈ Ω, is the best constant approximation of f , i.e.,

inf{∥f − c∥L2(Ω) : c ∈ R} = ∥f − h∥L2(Ω).

Proof of Theorem 3.4. We begin with estimating ∥W − Wn∥L2(I2). Recall that Nδ(∂W+) denotes
the number of δ-mesh cubes that intersect ∂W+. We set δ = 1/n. Recall that Wn is defined by (16)
with adjacency matrix generated by (8). It follows that

∥W − Wn∥2L2(I2) =

∫
I

|W(u, v)− Wn(u, v)|2dudv ≤ N1/n(∂W+)
1

n2
. (33)

According to definition (10) of upper box-counting dimension, for any ϵ ∈ (0, 2 − b), there exists

Nϵ,W ∈ N such that when n > Nϵ,W, logN1/n(∂W+)

− log(1/n) < b + ϵ. Therefore, N1/n(∂W+) ≤ nb+ϵ,
which combining with (33) yields

∥W − Wn∥L2(I2) ≤ n−(1− b+ϵ
2 ). (34)

We next estimate ∥Z − Zn∥L2(I;R1×F ). Recall that Zn is the induced graphon feature function
associated with the graph feature matrix generated in the way of (9). Let Z′

n be the induced graphon
feature function associated with the graph feature matrix generated in the way of (5). It has been

shown in the proof of Theorem 3.3 that, with assumption AS3, ∥Z − Z′
n∥L2(I;R1×F ) ≤ A2

√
F
3

1
n .

According to Lemma A.8, we know that ∥Z− Zn∥L2(I;R1×F ) ≤ ∥Z− Z′
n∥L2(I;R1×F ). Therefore,

∥Z− Zn∥L2(I;R1×F ) ≤ A2

√
F

3

1

n
. (35)
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With a similar argument in the proof of Theorem 3.3, by Theorem A.7 and estimates (34) and (35),
we have

∥Xn − X∥C([0,T ];L2(I;R1×F )) ≤ PA2

√
F

3

1

n
+Qn−(1− b+ϵ

2 ) ≤ C̃

n1− b+ϵ
2

,

where C̃ is defined by

C̃ := exp
(
T (FKhT )

L
)(

A2

√
F

3
+ LK ∥X∥C([0,T ];L2(I;R1×F ))

)
. (36)

This proves (11). The estimate (12) can be obtained from (11) and the triangle inequality.

B Supplemental Materials: Synthetic Numerical Experiments

Graphons. We utilize three distinct graphons for experimental verification. To explore the
weighted graph convergence behavior detailed in Theorem 3.3, we use the tent graphon

W(u, v) = 1− |u− v|, (37)

which is symmetric, continuous, and Lipschitz on the unit square and thus fulfills our desired con-
ditions. To explore the unweighted graph convergence behavior of Theorem 3.4, we use two {0, 1}-
valued graphons. First, to showcase multiscale community structure common in scientific applica-
tions, we consider the hierarchical stochastic block model (HSBM) graphon [Holland et al., 1983,
Crane and Dempsey, 2015], where the box-counting dimension of the support is 1 with a controllable
grid size parameter to increase the overall recursive complexity. Second, we consider the hexaflake
fractal, a Sierpiński n-gon–based construction that has been used in certain practical design appli-
cations [Choudhury and Matin, 2012], as a graphon with box-counting dimension of log(7)

log(3) or about
1.77. We illustrate these graphons in Figure 2.

Figure 2: Tent (left), HSBM (center), and Hexaflake (right) graphon visualizations.

Experiment setup. We use GNDEs parameterized with a two-layer GNN, based on the models of
[Poli et al., 2019], where both the feature and hidden dimensions are 1, sharing the same constant
filters with entries bounded in [−1, 1]. The initial conditions are random Fourier polynomials of
degree D = 10, defined by Z(u) :=

∑D
k=1 ak cos(2πku) + bk sin(2πku), where ak and bk are

independently sampled from a uniform distribution, creating diverse and smooth signals over graph
nodes. The subgraphs and their associated input features are obtained as in Section 3.3.1 for the tent
graphon and Section 3.3.2 for the HSBM and hexaflake graphons. We conduct 100 randomly ini-
tialized trials, each with random weight initialization for the associated model and random features.
We plot mean and standard deviation for the experiment results in Figure 3. All experiments were
performed locally on a single Nvidia A4000 GPU. Evaluation is relatively fast, with all experiments
completed over the course of a few hours.
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Figure 3: Tent (left), HSBM (center), and Hexaflake (right) graphon convergence with error bars
displayed.

Evaluation. To approximate the graphon solution X, we use a reference graph with Nlargest = 5000

nodes. We present the log-log convergence plot of maxt
∥Xn(t)−X5000(t)∥2

∥X5000(t)∥2
for number of nodes n

ranging from 550 to 1950 with a step size of 100. This approximates the maximal relative error over
all t ∈ [0, 1] of GNDE evolution, though t = 1 is the timepoint with maximal error in most runs. We
evolve GNDEs through the Dormand-Prince method of order 5 [Dormand and Prince, 1980]. We
plot the resulting curves in Figure 1.
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