
How to Enhance Causal Discrimination of Utterances:
A Case on Affective Reasoning

Hang Chen and Xinyu Yang and Jing Luo
Xi’an Jiaotong University

{albert2123,luojingl}@stu.xjtu.edu.cn
yxyphd@mail.xjtu.edu.cn

Wenjing Zhu
Du Xiao Man Inc.

zhuwenjing02@duxiaoman.com

Abstract

Our investigation into the Affective Reason-
ing in Conversation (ARC) task highlights the
challenge of causal discrimination. Almost all
existing models, including large language mod-
els (LLMs), excel at capturing semantic correla-
tions within utterance embeddings but fall short
in determining the specific causal relationships.
To overcome this limitation, we propose the in-
corporation of i.i.d. noise terms into the conver-
sation process, thereby constructing a structural
causal model (SCM). It explores how distinct
causal relationships of fitted embeddings can be
discerned through independent conditions. To
facilitate the implementation of deep learning,
we introduce the cogn frameworks to handle un-
structured conversation data, and employ an au-
toencoder architecture to regard the unobserv-
able noise as learnable “implicit causes.” More-
over, we curate a synthetic dataset that includes
i.i.d. noise. Through comprehensive experi-
ments, we validate the effectiveness and inter-
pretability of our approach. Our code is avail-
able in https://github.com/Zodiark-ch/
mater-of-our-EMNLP2023-paper.

1 Introduction

Nowadays, numerous conversation recognition
tasks (such as Emotion Recognition in Conversa-
tion (ERC) task (Pereira et al., 2023; Thakur et al.,
2023), Intent Recognition (IR) task (Ye et al., 2023;
Ni, 2023) and Dialogue Act Recognition (DAR)
task (Arora et al., 2023)) have shown promising
performance in specialized supervised and unsu-
pervised methods. Considering the RoBERTa pre-
trained model (Liu et al., 2019) as the examples,
“My eyelids are fighting” and “I want to sleep,”
which have similar semantics but different tokens
can be well fitted within embeddings. (i.e., these
two embeddings exhibit a strong resemblance via
certain metrics such as cosine similarity.)

However, when it comes to the relationship be-
tween two utterances, denoted as A and B, wherein

their embeddings can be fitted, various possible
relationships exist: A acts as the cause of B
(A → B), A acts as the outcome of B (A ← B),
or more complex, A and B are both influenced by
a common cause (A← C → B), and so on. Partic-
ularly in reasoning tasks (Uymaz and Metin, 2022;
Feng et al., 2022), it is crucial for these methods
to transcend the mere fitting of embeddings and
possess the capacity to discriminate diverse causal
relationships. (i.e., the ability of causal discrimi-
nation) (Bao et al., 2022; Shirai et al., 2023).

To specifically investigate the causal discrimi-
nation capability of existing methods in conversa-
tion, we narrow down our research to a particular
task: Affective Reasoning in Conversation (ARC),
which has included Emotion-Cause Pair Extraction
(ECPE) Xia and Ding (2019) and Emotion-Cause
Span Recognition (ECSR) Poria et al. (2021).

We begin with conducting tests to evaluate the
causal discrimination of existing methods includ-
ing the large language models (LLMs) (Kasneci
et al., 2023). One typical evaluation involves the
causal reversal test: for emotion-cause utterance
pairs with true labels (A, B) representing a causal
relationship of B → A, we scrutinize the predic-
tions generated by the existing methods using both
positive pairs (A, B) and negative pairs (B, A).
The results reveal that all the examined methods
performed similarly across the two sample types.
As we are concerned, they lacked causal discrim-
inability. (Details are shown in Section 2.3)

In order to discriminate different causal relation-
ships between two similar embeddings, we con-
struct the dialogue process as a Structural Causal
Model (SCM). Many endeavors (Cheng et al.,
2022; Nogueira et al., 2022) supporting that i.i.d.
noise of SCM could facilitate the discrimination
of causal relationships when fitting two variables.
Under the presence of noise, each utterance is not
only explicitly influenced by the other utterances
but also implicitly influenced by the i.i.d. exoge-
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nous noise. Consequently, this framework ensures
that two fitted embeddings result in diverse causal
relationships, which are determined by correspond-
ing independent conditions between the residual
terms and embeddings. For simplicity, we refer to
other utterances as explicit causes and exogenous
noise as implicit causes.

Furthermore, to enable the learnability of such
causal discrimination within embeddings, we pro-
pose a common skeleton, named centering one
graph node (cogn) skeleton for each utterance de-
rived from some broadly accepted prior hypothe-
ses. It can address the challenges arising from
variable-length and unstructured dialogue samples.
Subsequently, we develop an autoencoder archi-
tecture to learn the unobservable implicit causes.
Specifically, we consider the implicit causes as la-
tent variables and utilize a graph attention network
(GAT) (Veličković et al., 2017) to encode its repre-
sentation. Additionally, the decoder leverages the
inverse matrix of the causal strength, ensuring an
accurate retrieval of the causal relationships.

Finally, we conduct extensive experimental eval-
uations: 1) our approach significantly outperforms
existing methods including prominent LLMs (GPT-
3.5 and GPT-4) in two affective reasoning tasks
(ECPE and ECSR) and one emotion recognition
task (ERC), demonstrating its effectiveness in affec-
tive reasoning. 2) our method exhibits a significant
reduction in false predictions for negative samples
across three causal discrimination scenarios. 3) we
curate a synthetic dataset with implicit causes to
visualize the latent variable in our implementation.

Our contribution is four-fold:

• We formulated the dialogue process as an
SCM and analyzed the causal relationships
represented by different independent condi-
tions.

• We devised the cogn skeleton to address the
problems of variable-length and unstructured
dialogue samples.

• We adopted an autoencoder architecture to
overcome the unobservability of implicit
causes and make it learnable.

• We constructed a synthetic dataset with im-
plicit causes and conducted extensive evalua-
tions of our proposed method.

2 Related Works and Challenges

2.1 Task Definition
For notational consistency, we use the following ter-
minology. The target utterance Ut is the tth utter-
ances of a conversation D = (U1, U2, U3, . . . , UN )
where N is the maximum number of utterances
in this conversation and 0 < t ⩽ N . The emo-
tion label Emot denotes the emotion type of Ut.
The emotion-cause pair (ECP) is a pair (Ut, Ui),
where Ui is the ith utterance of this conversation.
In the ECP, Ut represents the emotion utterance and
Ui is the corresponding cause utterance. Moreover,
the cause label Ct,i denotes the cause span type of
the ECP (Ut, Ui).

Thus, in a given text, ERC is the task of identi-
fying all Emot. Moreover, ECPE aims to extract
a set of ECPs and ECSR aims to identify all Ct,i.

2.2 Affective Reasoning in Conversation
Chen et al. (2018) introduced the pioneering work
on ERC due to the growing availability of public
conversational data. Building upon this, Xia and
Ding (2019) further advanced the field by propos-
ing the ECPE that jointly identifies both emotions
and their corresponding causes. Moreover, Poria
et al. (2021) has extended ECPE into conversations
and proposed a novel ECSR task, specifically de-
signed to identify ECP spans within conversation
contexts. More recently, increasing works have
indicated the crucial role played by accurate in-
ference models in facilitating complex reasoning
within these tasks, such as the assumption about
interlocutors (Zhang et al., 2019; Lian et al., 2021;
Shen et al., 2021) and context (Ghosal et al., 2019;
Shen et al., 2022; Chen et al., 2023).

2.3 Challenge of Affective Reasoning
We examined the performance of a range of meth-
ods for addressing affective reasoning in conver-
sations, including both unsupervised approaches
(large language models (LLMs), BERT-based pre-
trained models) and supervised approaches (task-
related approaches).

Overall, all the methods demonstrated a lack of
discriminability on two types of challenges:

• Samples where emotional utterances and
causal utterances are interchanged. For a di-
alogue instance, if the ECP is (U1, U2) (U2

is the cause of U1), the prediction results ob-
tained by the existing methods tend to include
both (U1, U2) and (U2, U1).



Methods Challenge 1 Challenge 2
(Ua,Ub) (Ub,Ua) (Ua,Ub) (Ub,Uc) (Ua,Uc)

GPT-3.5 112 102 108 114 109
GPT-4 127 114 111 105 103

RoBERTa 95 97 94 91 83
RoBERTa+ 97 91 105 101 106
RANK-CP 142 125 147 129 131
ECPE-2D 151 153 142 138 146

EGAT 166 154 157 139 148

Table 1: For the two challenges mentioned in Sec-
tion 2.3, we conducted tests on a subset of 200 samples
from the RECCON dataset. We recorded the number of
samples identified by above methods. In the second row
of Challenge 1, we showed the count of samples where
these methods extracted the negative pairs in reverse
cause order. Similarly, in the third row of Challenge 2,
we showed the count of samples where these methods
extracted negative indirect pairs.

• Samples with indirect connections. For exam-
ple, if the ECPs in a conversation are (U1, U2)
and (U2, U3), the prediction results obtained
by the methods often include an additional
pair (U1, U3).

We evaluated the performance of existing methods
on these two challenges, and the detailed results
are shown in Table 1. All evaluated methods ex-
tracted a nearly equal number of negative samples
as positive samples. Considering their performance
in broad research domains, both unsupervised and
supervised methods could demonstrate a desirable
fitting ability to capture the semantic similarity be-
tween two utterances. This often apparently results
in satisfactory performance in most tasks. How-
ever, when it comes to more specific causal re-
lationships within semantically similar sentences
(such as reasoning tasks), they may not exhibit
the same level of “intelligence” and output some
“pseudo-correlation”.

In the area of causal discovery, Causal Markov
and Faithfulness Assumptions (Spirtes et al., 2000;
Colombo et al., 2012; Ogarrio et al., 2016), provide
insights into capturing more specific causal rela-
tionships in the situation of the above challenges.
Considering two similar variables: A and B that
can be fitted, the independence tests enable the de-
termination of specific causal relationships, such
as “A → B,” “B → A,” or “A → L → B”.
More recently, the Structural Causal Model (SCM)
(Shimizu et al., 2006; Shimizu and Bollen, 2014;
Sanchez-Romero et al., 2019) built upon the inde-
pendent noise assumptions has emerged as an effec-
tive approach to the limitation of Markov equiva-
lence classes in distinguishing causal relationships.

[U1]It's my bad for 

not calling.
[Sad]

[U2]Don't bother 

coming home.
[Angry]

[U3]You're going 

to kick me out?
[Surprized]

[U4]Exactly. 
[Angry]

 [U5]I won't have 

to listen to you.
[Angry]

[E1]Implicit 

cause

[E3]Implicit 

cause

[E5]Implicit

cause

[E2]Implicit 

cause

[E4]Implicit

cause

i.e., Another speaker came 

home late and forgot to call. 

i.e., This speaker wanted his 

rules to be respected but it 

is broken now. 

U1

U1 = E1

U2 = α12U1 + E2

U3 = α23U2 + E3

U4 = α34U3 + α24U2 + E4

U5 = α35U3 + α45U4 + E5

U2

U3

U4
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E3

E4
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Figure 1: The conversation case with five utterances.
In the SCM, we assume that each utterance Ui has a
corresponding implicit cause Ei, and has several explicit
causes. i.e., U4 has an implicit cause E4 and two explicit
causes U3 and U2. In the lower part of the figure, SCM
adopts Ut =

∑
αitUi+Et to denote these relationships

and formalize the conversation as a DAG.

The noise terms (also called exogenous variables)
for each variable, enables methods such as Indepen-
dent Component Analysis (ICA) to identify more
comprehensive causal relationships between the
two fitted variables.

3 Methodology

In this section, we begin by outlining incorporat-
ing i.i.d. noise terms into a dialogue model to
construct an SCM in Section 3.1, demonstrating
independent residual allowing for the identification
of more specific causal relations within pairs of fit-
ted utterances. Next, to mitigate conflicts between
SCM models and dialogue data, we designed cogn
skeletons with six instantiations in Section 3.2. Fi-
nally, we propose a deep learning implementation
to tackle the issue of noise being unknown in dia-
logue data in Section 3.3.

3.1 Structural Causal Model

In order to imbue causal discriminability into the
fitting process of two relevant utterances, we al-
gebraically construct the conversation model as a
Structural Causal Model (SCM).

Definition 1: An SCM of a dialogue is a 3 tu-
ple ⟨U,E,F⟩, where U is the set of utterances
U = {Ui}Ni=1, E is the set of exogenous noises
E = {Ei}Ni=1 corresponding to each Ui, N is



the number of utterances. Note that each Ei

is independent in the SCM. Structural equations
F = {fi}Ni=1 are functions that determine U with
Ui = fi(relUi) + Ei, where relUt denotes a set of
utterances that point to the Ut.

Definition 1 establishes the construction of a
novel computational model for dialogue process,
as exemplified in Figure 1. In such a computa-
tional model, each utterance is endogenous and
influenced by an independent exogenous variable.
For simplicity, we refer to the variable U as the
explicit causes and the variable E as the implicit
causes. The independence of the implicit causes
makes the residual terms meaningful during the
fitting of any two utterances.

Definition 2: The relationship of two utterances
X and Y in a dialogue is causal discriminable,
from the independent conditions:

• ΣX ⊥⊥ Y,ΣY ⊥̸⊥ X ⇒ Y → X

• ΣX ⊥̸⊥ Y,ΣY ⊥⊥ X ⇒ X → Y

• ΣX ⊥̸⊥ Y,ΣY ⊥̸⊥ X ⇒ L→ X,L→ Y

• ΣX ⊥⊥ Y,ΣY ⊥⊥ X ⇒ X → L, Y → L

where Σ represents the residual terms in fitting
process. (The proof is shown in Appendix A.)

Example 1: A 4-utterance dialogue SCM D =
{{U1, U2, U3, U4}, {E1, E2, E3, E4}, {a, b, c}}
with the true relationships are U1 = E1,
U2 = aU1 +E2, U3 = bU1 +E3, U4 = cU3 +E4.
The fitting of U2 with U3 and U4 yield
U2 = a

bU3 + 0U4 + ΣU2 , while the fitting of U3

with U2 and U4 yield U3 = b
aU2 + 1

cU4 + ΣU3 .
Additionally, the fitting of U4 with U2 and U3 lead
to U4 = 0U2 + cU3 +ΣU4 .

In Example 1, it is observed that any two utter-
ances can be fitted together as they are mutually
dependent. However, causal discriminability can
be employed to differentiate their distinct causal
structures. For instance, the residual term ΣU3 is
not independent of U4, while ΣU4 is independent
of U3, indicating that U3 is a cause of U4. Further-
more, the residual term ΣU3 is not independent of
ΣU2 , and ΣU2 is not independent of U3, implying
the presence of common cause (U1) between U2

and U3.

3.2 Causal Skeleton Estimation

Establishing a skeleton is the first step in causal
discovery, as different skeletons provide distinct

learning strategies for recovering the relationships
between variables. However, utterances differ
from the variables that causal discovery often
uses. Specifically, each conversation has a dif-
ferent amount (N ) of utterances, and different
inter-utterances relationships related to the context.
Hence, it is intractable to build a general causal
skeleton with fixed nodes and edges to describe all
conversation samples.

Fortunately, several published GNN-based ap-
proaches (Shen et al., 2021; Ishiwatari et al., 2021;
Ghosal et al., 2019; Lian et al., 2021; Zhang et al.,
2019) in ERC have proposed and verified a com-
mon hypothesis to settle down this issue. The Hy-
potheses are elaborated on in Appendix B.
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Figure 2: Six cogn skeletons from a conversation case
with 12 utterances. We adopted the 7-th utterance as
the target utterance (Red). Orange nodes denote the
utterances of the same speaker as the target utterance,
and blue ones denote those belonging to other speakers.
Arrow represents the information propagated from one
utterance to another, and the bi-way arrow represents
the influence-agnostic relationship. The black dash box
represents the slide windows.

Figure 2 showcases the design of six cogn skele-
tons, derived from the latest works that have em-
ployed one or more of these hypotheses. The statis-
tic and specific algorithms are also shown in Ap-
pendix B. Note that we only conduct experiments
for II-VI because our structure is hard to apply
with the recurrent-based skeleton.

3.3 Approach Implementation
From a given causal skeleton, a linear SCM can be
equivalently represented as:

Ut =
∑
i∈relt

αi,tUi + Et (1)

where relt denotes a set of utterances that point to
the Ut (7-th utterance) in Figure 2, Et represents
the exogenous variable towards the variable Ut in
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Figure 3: Processing of our approaches, with a six-utterances conversation case as the input. Causal skeleton
indicates which utterances (nodes) are used for aggregation. For each layer ℓ, we collect representations Hℓ for all
utterances where each row represents one utterance. Causal Encoder yields the implicit causes Eℓ, the input for
Decoder learning the causal representation. In all matrices, light gray nodes represent the masked part.

SCM, as well as the implicit cause towards the ut-
terance Ut in conversation. Furthermore, we denote
the word embedding of U by H = h1, h2, . . . , hN ,
and the relationships between utterances in rows
can also be written as: H = ATH + E, where
Ai,t ̸= 0 stands for a directed edge from Ui to Ut

in SCM. Thus we can define the Graph G = (V, E)
with adjacency matrix Ai,i = 0 for all i.

However, in this equation, only H is known.
The unknown variable A is typically the target of
inference, while the unknown variable E represents
exogenous variables that implicitly influence each
utterance, such as the speaker’s memory, experi-
ences, or desires. (Krych-Appelbaum et al., 2007;
Sidera et al., 2018) These factors are typically miss-
ing in existing conversation resources. Therefore,
determining A based on completely unknown E is
another problem we aim to address.

Hence, we treat AT as an autoregression matrix
of the G, and then E can be yielded by an auto-
encoder model. The whole process reads:

E = f((I −AT )H) (2)

Ĥ = g((I −AT )−1E) (3)

where f(·) and g(·) represent the encoder and
decoder neural networks respectively. Encoder
aims to generate an implicit cause E, and De-
coder devotes to yielding a causal representation
Ĥ . From Equation 1, causal representation Ĥt rea-
sons about the fusion relations of heterogeneous
explicit causes

∑
i∈relt Hi and implicit cause Et.

The details of this process are shown in Figure 3.
Encoder. We use the graph attention mecha-

nism to learn the adjacency matrix A and con-
struct a hierarchical GNN to instantiate the f(·).

ℓ = 1, 2, . . . , L− 1 represents the layer of GNN.
Thus, for each utterance at the ℓ-th layer, the Aℓ

i,t

computed by attention mechanism is a weighted
combination of hℓt for each directly related utter-
ance Ui(i ∈ relt):

Aℓ
i,t =

LeakyReLU(eℓi,t)∑
j∈relt LeakyReLU(eℓj,t)

(4)

eℓi,t =
−→
h iW

ℓ
i(row) + (

−→
h tW

ℓ
t(col))

T (5)

where W ℓ
row ∈ RN×1 and W ℓ

col ∈ RN×1 are the
learnable parameters in the graph attention. More-
over, the GNN aggregates the information from the
neighbor utterances as following:

Hℓ+1 = eLU((I − (Aℓ)T )HℓW ℓ) (6)

where W ℓ stands for parameters in the correspond-
ing layer. From the final layer of the evaluation pro-
cess, by extracting AL−1 computed in Equation 4,
the marginal or conditional “distribution” of H is
obtained, showing how to discover Causal Graph G
from D. Besides, by extracting HL in Equation 6,
we can obtain the independent embedding for the
implicit causes E = MLP (HL).

Decoder. We utilize the A and E computed
from Encoder to generate the causal representation
Ĥ . With a fixed adjacency matrix A, the GNN
aggregates the information of implicit causes from
neighbor nodes as follows:

Êℓ+1 = eLU((I − (AL)T )−1EℓM ℓ) (7)

where M ℓ is parameters in the corresponding layer.
As the same architecture as the encoder, Ĥ =



MLP (EL). Additionally, the plug-in RNN is in-
tegrated with GNN to address the appetite of Hy-
pothesis 6:

Êℓ+1 = GRU ℓ(Êℓ, pℓ) (8)

where pℓ is the state of GRU model, with p com-
puted by self-attention proposed by Thost and Chen
(2021).

3.4 Optimization
In our approach, Ĥ and H acts identically under
the linear SCM model. Similarly, Ĥ should be
aligned with H in emotion dimensions under the
non-linear SCM model. In short, we adopt an
auxiliary loss measuring the Kullback-Leibler (KL)
divergence (Joyce, 2011) of Ĥ and H mapped into
the exact emotion dimensions. Moreover, implicit
causes E is one of the crucial influence factors on
Ĥ , so that the loss aims to impose the constraint
that Ĥ is the embedding of our need to ensure
generating correct E.

LossKL =
∑
t

∑
e∈Emot

pe(Ût) log
pe(Ût)

pe(Ut)
(9)

where e is any emotion type in Emot, pe denotes
the probability labeled with emotion e. In the
whole process of ARC tasks, we followed (Wei
et al., 2020; Poria et al., 2021) to add several losses
of ECPE and ECSR respectively.

Furthermore, we would like to explain the differ-
ence between our approach and Variational Auto-
Encoder (VAE) (Kingma and Welling, 2014). The
output of the encoder in VAE is qϕ(Z). With this
estimation of q̂ϕ(Z), we can measure the variation
ξ(qϕ(Z)) (also called ∇ϕELBO(q̂ϕ(Z))) to ob-
tain the approximation estimation of ELBO(q). In
contrast, our output is E, a fixed matrix rather than
a distribution. In other words, the VAE depends
on the prior distribution over the latent variables,
whereas our approach has a dependency on the con-
sistency of H and Ĥ , which is non-sampling and
non-distributive.

4 Experiments

In this section, we conduct extensive experiments
to answer the 3 research questions:

RQ1: How effective is our method in affective
reasoning tasks?

RQ2: How do we justify the causal discrim-
inability of our method?

RQ3: How do we gauge the difference between
the latent variable E and designed implicit causes?

Dataset conversations tasks
Train Val Test ERC ECPE ECSR

DailyDialog 11118 1000 1000
√

− −
MELD 1038 114 280

√
− −

EmoryNLP 713 99 85
√

− −
IEMOCAP 100 20 31

√
− −

RECCON-DD 833 47 225 −
√ √

RECCON-IE − − 16 −
√ √

Synthetic data 833 47 225 −
√ √

Table 2: The statistics of seven datasets

4.1 Datasets, Implementation and Baselines
We use six real datasets for three affective reason-
ing tasks and one synthetic dataset for justifying E
in our model. The statistics of them are shown in
Table 2. Appendix C depicts the detailed introduc-
tions of each dataset.

We adopt the consistent benchmarks of the
SOTA methods in three tasks, including the pre-
training language model, hyper-parameters, t-tests,
and metrics. The implementation details are shown
in Appendix D.

According to the hypotheses of these baselines,
for each cogn skeleton, we choose one recent
SOTA work: II: DialogXL (Shen et al., 2022). III:
EGAT (Chen et al., 2023). IV: RGAT (Ishiwatari
et al., 2021). V: DECN (Lian et al., 2021). VI:
DAG-ERC (Shen et al., 2021).

4.2 Overall Performance (RQ1)
Table 3 reports the results of ECPE and ECSR, with
p <0.01 in the t-test, where the best improvement
and best performance both concentrate on VI. With
the visualization of Appendix F, we infer that the
upper triangular adjacency matrix of DAG-ERC,
not restricted by the backpropagation, benefits from
Hypothesis 6. Moreover, II lags farthest behind in
the ECPE while achieving the second best in the
ECSR, showing that the reliance on a hypothesis is
not equal in different tasks. Furthermore, without
Hypotheses 1 and 6, III, IV, and V are far from the
best performance since Hypothesis 1 has the maxi-
mum identifying space, and Hypothesis 6 supplies
the highest number of information passing. Finally,
it is worth noting that three skeleton-agnostic base-
lines and unsupervised methods perform poorly in
the RECCON-IE dataset, indicating that our mod-
els have stronger representation learning capabili-
ties as well as highlighting the continued research
value of affective reasoning tasks.

We further conducted six sets of ablation experi-
ments to study the effects of different modules. In
Table 4, we summarized results under the following
cases: replacing LossKL with BCE loss function



Skt model ECPE in RECCON ECSR in RECCON
DD(±σ10) IE DD(±σ10) IE

− GPT-3.5 38.13 39.55 10.49 5.36
GPT-4 46.29 49.32 16.81 18.39

RoBERTa 53.91±1.5 38.77 31.52±0.8 20.16
RoBERTa+ 54.62±1.1 38.26 33.28±0.7 26.37
RANK-CP† 63.51±2.1 41.56 26.57±0.8 18.99
ECPE-2D† 64.35±1.7 47.42 34.41±0.1 22.03

II DialogXL† 61.92±1.7 50.31 35.79±0.5 21.78
+Ours 64.74±1.6 51.23 34.63±0.2 27.92

III EGAT 68.05±1.5 53.43 29.68±0.7 16.42
+Ours 69.16±1.2 53.81 30.5±0.2 18.55

IV RGAT† 69.02±1.9 52.48 30.39±0.4 17.49
+Ours 70.12±2.1 53.93 30.24±0.5 19.31

V DECN† 68.32±1.5 51.73 30.7±0.9 18.47
+Ours 68.84±1.7 53.89 31.88±0.2 20.13

VI DAG-ERC† 70.36±1.5 55.7 40.12±0.7 24.89
+Ours 73.17±1.1 56.67 42.14±0.1 30.41

Table 3: Overall performance in ECPE and ECSR tasks.
We additionally compare four unsupervised approaches
and two baselines not belonging to any skeleton: RANK-
CP (Wei et al., 2020), ECPE-2D (Ding et al., 2020).
The RoBERTa+ represents the large RoBERTa version
(1024 dimensions). The DD and IE are two subsets (see
Appendix C).

Model Categories
II III IV V VI

Ours 64.74 69.16 70.12 68.84 73.17
BCE ↓0.62 ↓0.04 ↓0.15 ↓0.16 ↓0.29

w/o LossKL ↓2.18 ↓1.95 ↓2.42 ↓1.33 ↓1.58
w/o Decoder ↓3.59 ↓2.79 ↓2.11 ↓2.83 ↓4.14
w/o Hypo 6 − − − − ↓1.59
w/o Hypo 5 − − − ↓2.34 ↓1.88
w/o Hypo 4 − ↓3.67 ↓2.72 ↓3.15 ↓4.19

Table 4: Ablation results

(BCE); removing the LossKL (w/o LossKL); re-
placing Decoder module with a Linear layer (w/o
Decoder); removing the RNN module (w/o Hypo
6); adding the edges from successors to predeces-
sors (w/o Hypo 5); reducing the speaker types to
one (w/o Hypo 4).

As shown in Table 4, BCEloss performs simi-
larly to LossKL; thus, we empirically demonstrate
that our auxiliary loss is essentially different from
LossKL in VAE. The F1 score decreases heavily
without auxiliary loss or decoder, these two are
necessary ingredients for building complete pro-
cessing to learn the causal representation via E.
Besides, Hypotheses 4, 5, and 6 are all critical
but removing Hypothesis 4 leads to the highlight
degradation in 3 skeletons. This result corrobo-
rates the theory of Lian et al. (2021) and Shen et al.
(2021), who state that speaker identity is the strong
inductive bias in conversation. Finally, it is ex-
pected to see that skeleton with Hypotheses 4, 5,
and 6 should be the closest to perfection while the
DAG-ERC+Ours indeed achieves the SOTA.

Methods Reversal Chain Common Cause
Pos Neg Pos Neg Pos Neg

GPT-3.5 45.9 41.2 43.4 44.7 41.6 36.4
GPT-4 49.3 46.2 48.9 43.7 47.7 48.1

RoBERTa 53.9 52 56.4 53.1 59.3 56.7
RoBERTa+ 56.7 54.9 58.7 56.1 52.6 54.6
RANK-CP 61.7 62.5 63.4 61.5 65.9 63.7
ECPE-2D 63.9 62.8 64.6 61.3 63.3 61.9
DialogXL 64.8 60.8 61.9 63.8 65 66.1

EGAT 68.7 64.3 68.8 64.8 66.2 64.3
RGAT 69.4 61.7 68.9 66.4 68.3 68.5
DECN 66.7 62.4 70.5 64.3 69.2 66.1

DAG-ERC 71.5 68.2 72.4 64.2 69.3 66.1
Ours 76.2 46.1 73.8 41.9 77.2 48.6

Table 5: Results of causal discriminability. The calcu-
lation results = count of predicted results that matched
the samples / total number of samples ∗100. The three
causal models are: Reversal Model: Positive samples
(i, j) and negative samples (j, i); Chain Model: Posi-
tive samples (i, k) and (k, j), and negative samples (i,
j); Common Cause Model: Positive samples (k, i) and
(k, j), and negative samples (i, j) or (j, i). The met-
ric “Pos” represents the percentage of positive samples,
indicating the extraction capability. Higher Pos sam-
ples imply a better extraction capability. The metric
“Neg” represents the percentage of negative samples.
A smaller difference between Pos and Neg indicates a
weaker causal discriminability.

Furthermore, Appendix E reports the results of
ERC task and sensitivity experiments to analyze
how our model performs in different L and k.

4.3 Relationship analysis (RQ2)

We are also concerned about the causal discrim-
inability for similar utterances. Table 5 demon-
strates that in all three different causal models, none
of the methods were able to distinguish between
negative and positive samples. Because both neg-
ative and positive samples can be fit within these
three causal models, solely from an embedding
similarity perspective. However, our method signif-
icantly decreases the percentage of negative sam-
ples indicating the effectiveness of incorporating
implicit cause noise to enhance causal discrimina-
tive ability.

Additionally, we show the adjacent matrices
of our model and current SOTA methods in Ap-
pendix F. which indicates that our model can more
freely explore the relationship between different ut-
terances via adjacent matrices shifting rather than
being limited to a fixed structure (e.g., attention
module).



(a) without noise (b) with noise

Figure 4: Visualization of E (upper subfigures) and
implicit causes (lower subfigures) with colors in the
simulated datasets. The gray cluster means padding ut-
terances in each dialogue, the blue cluster corresponds
to the non-emotion utterances, and the red cluster corre-
sponds to emotion utterances.

4.4 Implicit Causes Study (RQ3)

The latent variable E is intended to represent the
mentioned implicit causes. Therefore, the global
distribution of the latent variable E should be ap-
proximately equal to the one of implicit causes.
Although human evaluation labels are better for
proving reasonable performance, it is intractable to
annotate implicit causes due to their unobservabil-
ity. We thus trained our model in a synthetic dataset
given a set of fixed i.i.d. implicit causes to observe
how the E is similar to the ground truth implicit
causes distributions. Figure 4 (a-b) shows the pro-
jection of E and implicit causes, respectively, using
t-SNE (Knyazev et al., 2019). We observe that E
and implicit causes are both similarly clustered into
three parts through the distribution properties. E is
consistent with the implicit causes in the samples
with or without noise indicating that E successfully
learns the implicit causes.

Moreover, in Appendix G, we first prove the
approximate emotion consistency between utter-
ance Ut and its implicit causes when Ut and Ui in
the emotion-cause pair (Ut, Ui) do not belong to
the same emotion category. Then, we demonstrate
through the ERC task that by replacing Ĥ with
E, the emotion consistency provided by implicit
causes is preserved.

4.5 Limitations

In our model, our method can distinguish between
Ui → Uj and Ui ← Uk → Uj . However, our
method is unable to distinguish between Ui → Uj

and Ui ← L → Uj , where L represents a un-
observed variable, called common causes or con-

founders. In Tables 3, 7, and 8, skeletons II, III,
and IV generally lag far behind V and VI. This
unsatisfactory performance of these skeletons in-
dicates that excessive adding-edge leads to serious
confounders.

Therefore, we proposed a theoretical design for
testifying the existing of latent confounders:

Confounding between Non-adjacent Nodes:
Consider two utterances Ui and Uj being non-
adjacent utterances. Let Pa be the union of the
parents of Ui and Uj : Pa = Ui ∪ Uj . If we per-
form an intervention on Pa (i.e., do(Pa = pa)),
we thus have Ui ⊥⊥ Uj if and only if there is a
latent confounder L such that Ui ← L→ Uj .

Confounding between Adjacent Nodes: Con-
sider two utterances Ui and Uj being adjacent utter-
ances: Ui → Uj . If there are no latent confounders,
we have P (Uj |Ui) = P (Uj |do(Ui = ui)).

Indeed, implementing intervention operations
on conversation data poses a significant challenge.
Therefore, in our new work, we have proposed gen-
eral intervention writing: do(X) := Pa(X) = ∅
where Pa(X) denotes the parent set. Moreover,
the most significant obstacle to further research is
the lack of a high-quality dataset with complete
causal relationship labels. Hence, we have con-
structed a simulated dialogue dataset via GPT-4
and plan to make it open soon.

5 Conclusion

The results of testing prevalent approaches on the
ARC task have demonstrated that almost all ap-
proaches are unable to determine the specific causal
relationship that leads to the association of two
well-fitted embeddings. In order to enhance the
causal discrimination of existing methods, we con-
structed a SCM with i.i.d. noise terms, and ana-
lyzed the independent conditions that can identify
the causal relationships between two fitted utter-
ances. Moreover, we proposed the cogn framework
to address the unstructured nature of conversation
data, designed an autoencoder implementation to
make implicit cause learnable, and created a syn-
thetic dataset with noise labels for comprehensive
experimental evaluation. While our method still
has some limitations, such as confounders and the
inability to scale to all methods, we hope that our
theory, design, and model can provide valuable in-
sights for the broader exploration of this problem
to demonstrate that our work is de facto need for
identifying causal relationships.
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A Proof of Definition 2

Let X and Y be two variables in an SCM, with
their respective noise terms denoted as EX and
EY (where EX and EY are mutually independent).
Let X̂ and Ŷ represent the fitted values of X and
Y w.r.t. each other: X̂ = λY and Ŷ = 1

λX .
The residual terms between the fitted values and
the true values are denoted as ΣX = X − X̂ and
ΣY = Y − Ŷ . The true strength of Y → X is k.

Hence, if the SCM only contains two variables
writing:

Y = EY (10)

X = kY + EX (11)

The residual terms could write:

ΣX = X − λ(
1

k
(X − EX)) (12)

ΣY = Y − 1

λ
(ky + EX) (13)

Then, if the true causal relationship is from Y to X ,
λ = k. ΣX does not contain the term of EY while
ΣY contains the term of EX . We could obtain the
independence of residual terms writting:

ΣX = λEX ⊥⊥ Y (14)

ΣY =
1

λ
EX ⊥̸⊥ X (15)

and vice versa. Therefore, we could obtain the
independence condition:

• ΣX ⊥⊥ Y,ΣY ⊥̸⊥ X ⇒ Y → X

• ΣX ⊥̸⊥ Y,ΣY ⊥⊥ X ⇒ X → Y

Furthermore, there may exist a set of independence:
ΣX ⊥̸⊥ Y , ΣY ⊥̸⊥ X . We would like to assume
that there is a latent variable L, for this situation,
constructing two relationships L→ X and L→ Y .
Then we obtain: ΣL ⊥̸⊥ X , ΣL ⊥̸⊥ Y . By utilizing
the transitivity of conditional independence, we can
establish X ⊥̸⊥ Y , and finally acheive the situation
ΣX ⊥̸⊥ Y , ΣY ⊥̸⊥ X . We likewise assume a latent
variable L establishing X → L and Y → L for the
opposite situation where ΣX ⊥⊥ Y , ΣY ⊥⊥ X , and
X , Y are two isolated variables in SCM. From the
above independence conditions, we could obtain:
ΣL ⊥⊥ X , ΣL ⊥⊥ Y . Due to the graph structure
of SCM, we could obtain: ΣX ⊥⊥ Y,ΣY ⊥⊥ X ⇒
X ⊥⊥ Y . Considering the residual terms, we finally
obtain: X ⊥̸⊥ ΣX and X ⊥⊥ Y ⇒ ΣX ⊥⊥ Y and
Y ⊥̸⊥ ΣY and Y ⊥⊥ X ⇒ ΣY ⊥⊥ X .

Hence, we could obtain additional two indepen-
dence conditions:

• ΣX ⊥̸⊥ Y,ΣY ⊥̸⊥ X ⇒ L→ X,L→ Y

• ΣX ⊥⊥ Y,ΣY ⊥⊥ X ⇒ X → L, Y → L

Based on the independence conditions of 2-
variables SCM, we could extend it to the general
SCM including more than 2 variables. Given any
two variables in a SCM, we could testify to the
independence condition and finally orientate via
the whole SCM.

B Hypotheses and Algorithms for
Skeletons

Hypothesis 0. ∀Ui ∈ D, it has the same causal
skeleton as other utterances.

By regarding Hypothesis 0 as the prior knowl-
edge, a common causal skeleton containing a tar-
get variable and a fixed number of related vari-
ables can reason about the relations between the
target utterance and other considered utterances.
We denote this skeleton of Ut by S(Ut). There are
∀Ui, Uj ∈ D, S(Ui) = S(Uj).

Additionally, there are some other empirical hy-
potheses from the above approaches. These hy-
potheses can be divided into two categories: one is
about the “order” of utterances (Hypotheses 1, 2,
3), and the other is about intermingling dynamics
among the interlocutors (Hypotheses 4, 5, 6).

Hypothesis 1. (Majumder et al., 2019) Under
the sequential order, the target utterance receives
information only from the previous utterance.

https://sites.google.com/view/affcon18
https://sites.google.com/view/affcon18
https://sites.google.com/view/affcon18


Category Hypothesis Original work
I 1 Majumder et al. (2019)
II 2 Veličković et al. (2017)
III 2,4 Chen et al. (2023)
IV 3, 4 Ghosal et al. (2019)
V 3(k = 1), 4, 5 Lian et al. (2021)
VI 3, 4, 5, 6 Shen et al. (2021)

Table 6: Statistics of 6 cogn skeletons. We detailed the
hypotheses each cogn skeleton adopted and the original
works from which we designed them.

Hypothesis 2. (Wei et al., 2020) Under the graph
order, the target utterance receives information
from all other utterances.

Hypothesis 3. (Ghosal et al., 2019) Under the
local graph order, target utterance receives local
information from k surround utterances.

Hypothesis 4. (Zhang et al., 2019) The influ-
ence between two utterances can be discriminated
by whether the two utterances belong to the same
speaker identity.

Hypothesis 5. (Lian et al., 2021) Target utter-
ance only receives information from the predeces-
sor utterances.

Hypothesis 6. (Shen et al., 2021) Between two
utterances both related to the target utterance,
there is also information passing, often dubbed
as a partial order.

A cogn skeleton is denoted by H = (V, E ,M).
The V = U1, U2, U3, ..., UN represents a set
of utterances in a conversation, and the edge
(i, j,mi,j) ∈ E denotes the influence from Ui to
Uj , where mi,j ∈ M is the type of the edge de-
pending on whether Ui and Uj belong to one and
the same speaker. ThusM = 0, 1, where 1 for that
they are the same speaker and 0 for different. Then
we denote the speaker type of Ui by a function
p(Ui). At last, we show the process of building 6
cogn skeletons in Algorithms 1− 6.

Algorithm 1: Buliding I cogn skeleton
Input: D, p(·), k
Output: H = (V, E)

1 V ← U1, U2, U3, ..., UN

2 E ← ∅
3 forall i ∈ 2, 3, . . . , N − 1 do
4 E ← E ∪ (i, i+ 1)

5 returnH = (V, E)

Finally, in Figure 5, we show the adjacency ma-
trix of each cogn skeleton by inputting a binary al-
ternating conversation case with 6 utterances. But

Algorithm 2: Buliding II cogn skeleton
Input: D, p(·), k
Output: H = (V, E)

1 V ← U1, U2, U3, ..., UN

2 E ← ∅
3 forall i ∈ 2, 3, . . . , N do
4 forall j ∈ 2, 3, . . . , N do
5 if i! = j then
6 E ← E ∪ (j, i)

7 else
8 Continue

9 returnH = (V, E)

Algorithm 3: Buliding III cogn skeleton
Input: D, p(·), k
Output: H = (V, E ,M)

1 V ← U1, U2, U3, ..., UN

2 E ← ∅
3 M← 0, 1
4 forall i ∈ 2, 3, . . . , N do
5 forall j ∈ 2, 3, . . . , N do
6 if p(Uj) = p(Ui) and i! = j then
7 E ← E ∪ (j, i, 1)

8 else if p(Uj)! = p(Ui) and i! = j
then

9 E ← E ∪ (j, i, 0)

10 else
11 Continue

12 returnH = (V, E ,M)
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Figure 5: Adjacency matrices towards 6 cogn skeletons when k = 2. (i, j) ̸= None represents that Ui is influenced
by Uj .

Algorithm 4: Buliding IV cogn skeleton
Input: D, p(·), k
Output: H = (V, E ,M)

1 V ← U1, U2, U3, ..., UN

2 E ← ∅
3 M← 0, 1
4 forall i ∈ 2, 3, . . . , N do
5 forall j ∈ 2, 3, . . . , N do
6 if p(Uj) = p(Ui) and

0 < |i− j| < k then
7 E ← E ∪ (j, i, 1)

8 else if p(Uj)! = p(Ui) and
0 < |i− j| < k then

9 E ← E ∪ (j, i, 0)

10 else
11 Continue

12 returnH = (V, E ,M)

Algorithm 5: Buliding V cogn skeleton
Input: D, p(·), k
Output: H = (V, E ,M)

1 V ← U1, U2, U3, ..., UN

2 E ← ∅
3 M← 0, 1
4 forall i ∈ 2, 3, . . . , N do
5 γ ← i− 1
6 if p(Uγ) = p(Ui) then
7 E ← E ∪ (γ, i, 1)

8 else
9 E ← E ∪ (γ, i, 0)

10 γ ← γ − 1

11 returnH = (V, E ,M)

Algorithm 6: Buliding VI cogn skeleton
Input: D, p(·), k
Output: H = (V, E ,M)

1 V ← U1, U2, U3, ..., UN

2 E ← ∅
3 M← 0, 1
4 forall i ∈ 2, 3, . . . , N do
5 c← 0
6 γ ← i− 1
7 while γ > 0 and c < k do
8 if p(Uγ) = p(Ui) then
9 E ← E ∪ (γ, i, 1)

10 c← c+ 1

11 else
12 E ← E ∪ (γ, i, 0)

13 γ ← γ − 1

14 returnH = (V, E ,M)

note that adjacency can not indicate all the dif-
ferences among these skeletons, for example, Hy-
pothesis 6 takes effect when the model learns the
relationship based on the VI skeleton.

C Datasets

DailyDialog (Li et al., 2017): A Human-written
dialogs dataset with 7 emotion labels (neutral, hap-
piness, surprise, sadness, anger, disgust, and fear).
We follow Shen et al. (2021) to regard utterance
turns as speaker turns.

MELD (Poria et al., 2019): A multimodel ERC
dataset with 7 emotion labels as the same as Daily-
Dialog.

EmoryNLP (Zahiri and Choi, 2018): A TV
show scripts dataset with 7 emotion labels (neu-
tral, sad, mad, scared, powerful, peaceful, joyful).

IEMOCAP (Busso et al., 2008): A multimodel
ERC dataset with 9 emotion labels (neutral, happy,
sad, angry, frustrated, excited, surprised, disap-
pointed, and fear). However, models in ERC field



are often evaluated on samples with first six emo-
tions due to the too few samples of latter three
emotions. 20 dialogues for validation set is follow-
ing Shen et al. (2021).

RECCON (Poria et al., 2021): The first dataset
for emotion cause recognition of conversation in-
cluding RECCON-DD and RECCON-IE (a sub-
set emulating an out-of-distribution generalization
test). RECCON-DD includes 5380 labeled ECPs
and 5 cause spans (no-context, inter-personal, self-
contagion, hybrid, and latent).

Synthetic dataset: We create a synthetic dataset
by following the benchmark of the causal discovery
field (Agrawal et al., 2021; Squires et al., 2022). To
minimize sample bias, we did not randomly draw
causal graphs as samples. Inversely, the number
of samples in the synthetic dataset and the number
of utterances and labels per sample are restricted
to be consistent with RECCON. We use Causal
Additive Models (CAMs), Specifically SCM struc-
ture for our datasets. As shown in Algorithm 7,
first, we assume that each i.i.d. implicit causes
E ∼ ∥50N (1, 1) if it is an emotion utterance in the
original dataset, and E ∼ ∥50N (−1, 1) if it is not.
Then, we update each utterance via speaker turns S:
if there is an emotion-cause pair (Ui, Uj) ∈ L, then
Ui = αj,iUj + Ei (αj,i ∼ Unifrom([0.7, 1])),
and for those pairs without emotion-cause label,
αj,i ∼ Unifrom([0, 0.3]). Finally, we randomly
select a noise ξ ∼ Unifrom([−0.25, 0.25]) for
each utterance Ui = Ui + ξi.

D Implementation Details

In the word embedding, we adopt the affect-based
pre-trained features1 proposed by Shen et al. (2021)
for all baselines and models.

Although there are different pre-trained mod-
els in these skeleton baselines, the SOTA work
DAG-ERC and EGAT have investigated their per-
formances in a consistent pre-trained model. There-
fore, for a fair and direct comparison, we continue
this benchmark using the pre-trained embedding
published by DAG-ERC for three tasks.

In the hyper-parameters, we follow the setting
of Shen et al. (2021) in the ERC task. Moreover,
in the ECPE and ECSR, the learning rate is set to
3e-5, batch size is set to 32, and epoch is set to 60.
Further in our approach, we set L to 1, and implicit
cause size is set to 192, hidden size of GNN is set

1https://drive.google.com/file/d/1R5K_
2PlZ3p3RFQ1Ycgmo3TgxvYBzptQG/view?usp=sharing

Algorithm 7: Creating Non-noise Syn-
thetic dataset
Input: D, S, L
Output: SCMD

1 forall i ∈ 2, 3, . . . , S do
2 if Emotion(Ui) then
3 Ei ∼ ∥50N (1, 1)

4 else
5 Ei ∼ ∥50N (−1, 1)
6 Ui ← Ei

7 forall i ∈ 1, 2, 3, . . . , S do
8 forall j ∈ 1, 2, . . . , i do
9 if (Ui, Uj) ∈ L then

10 Ui = αj,iUj + Ei(αj,i ∼
Unifrom([0.7, 1]))

11 else
12 Ui = αj,iUj + Ei(αj,i ∼

Unifrom([0, 0.3]))

13 SCMD ← U1, U2, . . . , US return SCMD

to 300, and dropout rate is 0.3.
Meanwhile, because there is only one training

dataset for ECPE and ECSR, we evaluated our
method ten times with different data splits by fol-
lowing Chen et al. (2023) and then performed
paired sample t-test on the experimental results.

Finally, we adopted downstream task modules
consistent with the SOTA baselines: Wei et al.
(2020) in ECPE and ECSR, and Shen et al.
(2021)for the ERC task.

For evaluation metrics, we follow Shen et al.
(2021) towards ERC, Xia and Ding (2019) to-
wards ECPE, and Poria et al. (2021) towards ECSR.
Specifically, we adopt the macro F1 score in ECPE
and ECSR tasks, micro F1 score for DailyDialog,
and macro F1 score for the other three datasets in
ERC task.

E Other Experiments in Affective
Reasoning

In Table 7, our approach performs better than the
corresponding baseline under all skeletons in four
datasets. Hence, using a causal auto-encoder to
find the implicit causes benefits this task. Besides,
our approach improves significantly under skele-
tons II, III, and IV. From Figure 2, these three
skeletons have more relevant nodes than others,
so there are more redundant edges to be corrected

https://drive.google.com/file/d/1R5K_2PlZ3p3RFQ1Ycgmo3TgxvYBzptQG/view?usp=sharing
https://drive.google.com/file/d/1R5K_2PlZ3p3RFQ1Ycgmo3TgxvYBzptQG/view?usp=sharing


Skt Model DailyDialog MELD EmoryNLP IEMOCAP

II DialogXL 54.93 62.41 34.73 65.94
Ours 59.51 63.62 39.16 66.47

III EGAT† 59.23 63.51 38.77 66.76
Ours 59.68 63.71 39.62 68.18

IV RGAT 54.31 60.91 34.42 65.22
Ours 59.65 63.69 39.22 67.65

V DECN† 59.08 63.78 39.44 67.41
Ours 59.28 63.91 40.11 67.61

VI DAG-ERC 59.33 63.65 39.02 68.03
Ours 59.53 63.81 39.54 69.17

Table 7: Overall performance in ERC task. † denotes
the results implemented in this paper. The better scores
in the same skeleton are in bold, and the best of all
skeletons is in red.

Figure 6: Further layers L and related node number K
with VI skeleton model in ECPE task.

by our approach, which is demonstrated again in
Appendix E. In contrast, V and VI achieve the
best results in MELD, EmoryNLP, and IEMOCAP
datasets, which indicates that Hypothesis 5 is more
probably a strong inductive bias that conversation
enjoys.

Then, we investigate how the number of layers
and the variants of causal skeletons would affect
the performance of our approach. So we further
conducted several contrasts with k up to 5 and L up
to 6, as shown in Figure 6. One observation is that
the best performance occurs at either k = 1, 2, or
3, which indicates that k ⩾ 4 offers no advantage
and even leads to confounding. Moreover, L = 1
achieves the best performance under all k values.
In other words, one layer is sufficient to yield the
most effective implicit causes.

F Visualization of Causal Graph

In the Figure 7 to 11, we showed the Visualization
of the adjacency matrix (I − AT )−1. When the
auxiliary loss LossKL achieves the lower bound,
(I −AT )−1 represents the relationship matrix be-
tween utterances and implicit causes.

In the ECPE task, we extracted 10 samples from
test sets in different folds. To facilitate compari-
son and contrasting, we selected five 7-utterances
cases and five 8-utterances cases. The IDs are as

Skt DailyDialog MELD EmoryNLP IEMOCAP
II 51.48 (↓8.03) 58.41 (↓5.21) 34.97 (↓4.19) 59.71 (↓6.76)
III 54.37 (↓5.31) 58.19 (↓5.52) 36.55 (↓3.07) 63.42 (↓4.76)
IV 55.62 (↓4.03) 57.22 (↓6.47) 36.91 (↓2.31) 62.34 (↓5.31)
V 54.62 (↓4.66) 58.19 (↓5.72) 35.49 (↓4.62) 63.13 (↓4.48)
VI 53.27 (↓6.26) 58.39 (↓5.42) 34.98 (↓4.56) 65.18 (↓3.99)

Table 8: Overall performance of implicit causes E in
ERC task.

following:
7-utterances cases: 110, 170, 224, 372, 500.
8-utterances cases: 62, 74, 104, 177, 584.
To obtain the non-negative value, we adopted

the T = sigmoid(·)− 0.05 to process the original
tensors (I − AT )−1 outputted from the encoder.
We follow a common practice: set the threshold
as 0.05 to delete some unimportant edges. And
to highlight which implicit cause contributes the
each utterance best, we adopted the sofmax(·) to
process columns afterward and labeled the block
with value > 0.

It is excepted that: (i) when skeletons construct
overage edges, our model is able to degrade the
influences of some negligible utterances by delet-
ing the corresponding edges from their implicit
causes. (ii) when skeletons construct insufficient
edges, our model can add some edges to obtain
more information.

G Proof of emotion consistency of implicit
causes and utterances

We would like to explain why implicit causes and
utterances are consistent in emotion from both
theory and euqation, in the condition where emo-
tional utterance and cause utterance possess differ-
ent emotion types.

We define the implicit causes as the unobserv-
able emotional desire and the utterances as the ob-
servable emotional expression. This definition is
proposed in Ong et al. (2019, 2015), which also
argues that emotional expression is affected by de-
sires and event outcomes. Moreover, for emotion
utterances that are not influenced by explicit cause
factors, the source of their emotions should origi-
nate from implicit causes. The desire and the ex-
pression generally belong to the same emotion be-
cause the outcomes often have little effect on emo-
tional expression. Our paper can also deduce this
conclusion from the SCM (Equation 1). Consider-
ing there is a linear map f(·) from representation
space to emotion space. Then we can obtain the



following:

f((I −A)U) = f(E) (16)

(I −A)f(U) = f(E) (17)

f(U) = W T f(E) (18)

Note that W = (I−A) and Ai,i = 0. So in W , the
value of the elements on the diagonal is constant
at 1 and is a constant maximum of each column.
Naturally, f(E) is an approximate estimate of f(U)
especially Ut and Ui in the ECP (Ut, Ui) do not
belong to the same emotion category, which is why
we think implicit causes are reasonable when the
F1 score of Table 6 is high.

Therefore, we test the F1 scores in ERC task by
replacing Ĥ with E from a consensus that implicit
causes should be aligned with utterances in the
emotion types.

In Table 8, we reported the overall results of E
in ERC task. Note that we only examine the sam-
ple of ECP with different emotion types. Among
five skeletons and four datasets, almost all results
achieve 90% scores of corresponding performances
of Ĥ , which indicates that E is practically aligned
with Ĥ in the affective dimension.
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Figure 7: Causal Graph cases of DialogXL and Ours (CAE II).
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Figure 8: Causal Graph cases of EGAT and Ours (CAE III).
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Figure 9: Causal Graph cases of RGAT and Ours (CAE IV).
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Figure 10: Causal Graph cases of DECN and Ours (CAE V).
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Figure 11: Causal Graph cases of DAG-ERC and Ours (CAE VI).


