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ABSTRACT

Process reward models (PRMs) are a cornerstone of test-time scaling (TTS), designed to
verify and select the best responses from large language models (LLMs). However, this
promise is challenged by recent benchmarks where simple majority voting, which ignores
PRM signals, occasionally outperforms standard PRM-based selection. This raises a crit-
ical question: How can we effectively utilize verification signals from PRMs for TTS? To
address this, we start by developing a theoretical framework for optimally combining sig-
nals from both the LLM and the PRM. Our framework reveals that the optimal strategy is
a weighted aggregation of responses, a strategy whose effectiveness hinges on estimating
weights that capture the complex interplay between the models. Based on our theoretical
results, we empirically show that these optimal weighting functions differ significantly
across LLM-PRM pairs and, notably, often assign substantial negative weights. Motivated
by these insights, we propose efficient pre-computation methods to calibrate these weight-
ing functions. Extensive experiments across 5 LLMs and 7 PRMs demonstrate that our
calibration method significantly boosts the TTS efficiency, surpassing the performance of
vanilla weighted majority voting while using only 21.3% of the computation. Ultimately,
our work demonstrates that investing in a more intelligent aggregation strategy can be a
more convincing path to performance gains than simply scaling test-time computation.

1 INTRODUCTION

The pursuit of advanced reasoning in Large Language Models (LLMs) has largely been driven by scaling up
model size and training data (Ouyang et al., 2022). While effective, this approach entails prohibitive compu-
tational costs (Snell et al., 2025). An increasingly popular alternative is Test-Time Scaling (TTS)(Liu et al.,
2025; Madaan et al., 2023), a paradigm that enhances the performance of a fixed LLM by allocating more
computational resources at inference time. A prominent TTS strategy involves generating a multitude of
candidate solutions and then selecting the most promising one. This ”generate-and-select” framework relies
heavily on the quality of the selection mechanism, which is tasked with identifying the correct response from
a pool of diverse, model-generated outputs. The central challenge, therefore, lies in designing a selection
strategy that can effectively harness the collective evidence from multiple generated responses to maximize
final performance.

To address this selection problem, a common approach is to employ a Process Reward Model (PRM) (Light-
man et al., 2024; Li & Li, 2025; Zheng et al., 2024), a sophisticated verifier trained on human feedback
to score the quality of reasoning steps. The standard protocol, Best-of-N (BoN), simply selects the answer
from the single response that receives the highest PRM score. Intuitively, this should leverage the detailed,
step-by-step evaluation capabilities of the PRM. However, this intuition is challenged by a surprising and
counter-intuitive empirical reality: on recent benchmarks (Zhang et al., 2025b), the far simpler method of
majority voting (Wang et al., 2023), which completely ignores the expensive PRM and relies solely on the
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consensus of the LLM’s own generations, can outperform PRM-guided BoN. This paradox suggests a fun-
damental misalignment in how we utilize verifier signals. If a powerful, costly-to-train PRM can be bested
by a simple vote count, it implies we are failing to properly integrate its nuanced feedback.

In this work, we dive into the interactions between LLMs and PRMs to find better aggregation of signals
from both models for more efficient TTS. We begin by formalizing the task of aggregating responses as a
Maximum a Posteriori (MAP) estimation problem, revealing that the optimal aggregation strategy is not to
simply pick the best-scoring response, but to perform a weighted majority vote. Interestingly, the optimal
weight for each response is a function of two distinct components: a term derived from the PRM’s score,
reflecting the quality of the reasoning, and a term derived from the LLM’s own reliability. This formulation
provides a principled framework for unifying the evidence from both the generator and the verifier.

To understand the practical implications of this theoretical result, we conduct an empirical analysis to char-
acterize the optimal weighting function, uncovering two critical insights. First, the shape of the optimal
function is highly dependent on the specific LLM-PRM pair, indicating that a one-size-fits-all approach is
inherently suboptimal. Second, we find that optimal functions consistently assign negative weights to re-
sponses with low PRM scores. This reveals a key deficiency in existing methods (Wang et al., 2024): they
fail to leverage the negative evidence provided by a low-quality response. A response judged to be poor by
the PRM should not simply be ignored; it should actively count against its proposed answer.

Motivated by these insights, we introduce simple yet effective calibration methods to learn approximations
of these optimal weighting functions from a small, one-time pre-computed dataset. We propose both non-
parametric and parametric approaches that explicitly capture the model-specific nature of the weights and
incorporate the mechanism of penalizing low-quality responses. Extensive experiments across 5 different
LLMs and 7 PRMs on the MATH (Hendrycks et al., 2021) datasets demonstrate the superiority of our
approach. Our calibrated weighted voting method consistently outperforms baselines, including standard
BoN and vanilla weighted voting. Notably, it achieves higher accuracy than these methods while using
approximately 37.1% and 21.3% of the test-time computation, demonstrating a significant improvement in
TTS efficiency. In summary, our contributions are:

• We develop a theoretical framework for optimally aggregating LLM generations and PRM scores, demon-
strating that the solution is a weighted majority vote combining signals from both models.

• We empirically characterize the optimal weighting function, revealing its model-dependent nature and,
interestingly, the importance of assigning negative weights to low-quality responses.

• We propose practical calibration methods to learn these weighting functions, enabling efficient and effec-
tive test-time scaling.

• Through extensive experiments, we show that our calibrated aggregation strategy significantly improves
TTS efficiency, achieving superior performance with substantially less computational overhead.

2 RELATED WORK

Test-Time Scaling. The pursuit of improved model performance without retraining has led to the paradigm
of Test-Time Scaling (TTS), which allocates more computational resources at inference time Zhang et al.
(2025a). A dominant strategy within TTS is the ”generate-and-select” framework, often formalized as Best-
of-N (BoN) sampling, where N candidate solutions are generated and a selection mechanism chooses the
best one Ichihara et al. (2025). A foundational method in this area is Self-Consistency (SC), which samples
multiple diverse reasoning paths and selecting the final answer via a simple majority vote Wang et al. (2023).
The intuition is that an answer derived from multiple independent lines of thought is more likely to be correct.
While effective, SC’s primary drawback is its high computational cost. This has motivated more efficient
variations, such as Confidence-Informed Self-Consistency (CISC), which introduced a weighted majority
vote based on the model’s self-assessed confidence to reduce the required sample size (Taubenfeld et al.,
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2025). In parallel, other approaches use an external verifier, like a PRM, to select the single highest-scoring
candidate (Uesato et al., 2022). Our work builds on the idea of weighted voting, but instead of relying on
the LLM’s self-assessment, we derive weights from a principled theoretical framework that combines both
the LLM’s consensus signal and the external verifier’s scores.

Reward Modeling. A crucial component of many TTS strategies is an external verifier, or reward model
(RM), trained to score the quality of generated responses. An early, influential work by Cobbe et al. (2021)
demonstrated that training a dedicated verifier to select the best solution from many candidates could im-
prove performance on math word problems more effectively than fine-tuning the generator itself Uesato et al.
(2022). This spurred a distinction between two supervision strategies: Outcome Reward Models (ORMs),
which are trained on the correctness of the final answer, and Process Reward Models (PRMs), which are
trained on step-by-step human feedback. An initial comparison by Uesato et al. (2022) found that ORMs
could achieve similar final-answer accuracy with less supervision, but PRMs were necessary to ensure the
faithfulness of the reasoning process (Zheng et al., 2024). Subsequent work by Lightman et al. (2024) solid-
ified the superiority of PRMs on more challenging tasks, establishing process supervision as a key technique
for building reliable verifiers, despite its high annotation cost (Wang et al., 2024). Our work focuses on how
to best leverage the signals from these powerful but expensive-to-train PRMs.

3 OPTIMAL RESPONSE AGGREGATION

In this section, we aim to explore the optimal aggregation strategy for signals from the LLM and PRM.
We start by formalizing this as a Maximum a Posteriori (MAP) estimation problem, and derive an optimal
aggregation strategy in Section 3.1. Then, in Section 3.2, we manage to estimate the quantities in the optimal
aggregation strategy empirically and offer a few critical insights on the optimal weighting strategy.

3.1 THEORETICAL ANALYSIS OF OPTIMAL RESPONSE AGGREGATION

Problem Setup. Let M be the LLM and V be the PRM (Verifier). For a single prompt, M generates an
ensemble of L responses, G = {g1, g2, . . . , gL}. Each response gi consists of a reasoning process ri and
a final answer si = f(ri). The PRM V evaluates each generation gi and produces a scalar score pi. Let
P = {p1, p2, . . . , pL} be the set of these scores. The set of unique candidate answers is A = {α1, . . . , αm}.
Our objective is to determine the most probable true answer α̂ given all available evidence.

We aim to find the answer αk that maximizes the posterior probability P (αk|G,P,M, V ). By Bayes’
theorem, and assuming a uniform prior over answers P (αk|M,V ), this is equivalent to maximizing the
likelihood of the evidence:

α̂ = argmax
αk∈A

P (G,P|αk,M, V ) (1)

We can decompose this likelihood into two factors: P (G,P|αk,M, V ) = P (P|G, αk, V ) × P (G|αk,M).
This reflects the causal process: the LLM M generates responses G, and then the Verifier V produces scores
P based on G. To make this tractable, we introduce two conditional independence assumptions:
Assumption 3.1 (Score and Generation Independence). The PRM score pi for a generation gi is condition-
ally independent of all other generations, given gi and the true answer αk. The LLM generations gi are
conditionally independent of each other, given the true answer αk.

P (P|G, αk, V ) =

L∏
i=1

P (pi|gi, αk, V ), P (G|αk,M) =

L∏
i=1

P (gi|αk,M)

With these assumptions, the log-likelihood becomes a sum over individual responses: LL(αk) =∑L
i=1 logP (pi|gi, αk, V ) +

∑L
i=1 logP (gi|αk,M). We hypothesize that under the condition αk, a gen-
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Figure 1: The PRM score distributions and optimal weighing functions on 6 combinations of LLM-PRM
pairs. Left y-axis: the probability density of the PRM scores. Right y-axis: the optimal weights w∗(p)
learned via KDE for different LLM-PRM pairs. Note their model-dependent nature and the presence of
negative weights for low PRM scores.

eration gi with answer si = αk is correct (ci = 1), and incorrect (ci = 0) otherwise. The term P (gi|αk,M)
is simplified to P (si|αk,M), where we assume a simple probability model for the LLM: it produces the
correct answer with probability qM and any specific incorrect answer with probability (1− qM )/(m− 1).
Theorem 3.2 (Optimal Aggregation Score). Under the assumptions above, maximizing the log-likelihood is
equivalent to maximizing the score:

Score(αk) =
∑

i:si=αk

wi, where wi = log
P (pi|ci = 1, V )

P (pi|ci = 0, V )︸ ︷︷ ︸
PRM Signal Term

+ log
qM · (m− 1)

1− qM︸ ︷︷ ︸
LLM Signal Term

Proof. The full derivation is in Appendix A. The key insight is that the log-likelihood can be rearranged
into a sum of weights for responses voting for αk, plus terms that are constant with respect to αk and can be
dropped from the argmax. The weight wi for each vote combines signals from two sources: the PRM’s score
(via the likelihood ratio of the score pi occurring for correct vs. incorrect reasoning) and the LLM’s intrinsic
reliability (via the term involving qM ), also referred to as question difficulty (Snell et al., 2025).

3.2 EMPIRICAL ANALYSIS OF THE OPTIMAL WEIGHTING FUNCTION

Instantiating the optimal weights. To instantiate the optimal weight wi from Theorem 3.2, we perform a
per-question estimation using the ground-truth labels for the specific set of L responses generated for that
question. To estimate the PRM Signal term, we apply a separate Kernel Density Estimation (KDE) on the
logit space for each individual question to estimate the score distributions P (p|c, V ) on the specific question.
For details of our KDE estimation in the logit space, please refer to Section 4.1. To estimate the LLM Signal
term, we simply set qM to be the true accuracy of the L responses for that specific question.

Characterizing the optimal weighting function. Taking the PRM’s ability to distinguish correct and
wrong answers into account, this optimal aggregator provides a much tighter performance upper bound than

4
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Pass@N, demonstrating the potential of our framework, as shown in Figure 2. More importantly, analyzing
the structure of the learned weighting function w∗(p) (Figure 1) reveals two critical insights:

• Weighting functions are highly model-dependent. The shape of the optimal function varies dramatically
depending on the specific LLM and PRM being used. A simple, fixed function (e.g., using the PRM score
directly as a weight) is unlikely to be optimal across different model pairs. This underscores the necessity
of a calibration procedure tailored to the specific models in use.

• Presence of negative weights. An interesting and consistent finding is that low PRM scores are mapped
to negative weights. This implies that a response deemed incorrect by the PRM provides strong evidence
against its proposed answer, and repetition of low-quality responses does not add to the likelihood of their
answer being correct. Standard methods like Best-of-N, which only consider the top-scoring candidate, or
majority voting, which ignores scores entirely, fail to leverage this powerful negative signal. An effective
aggregation strategy must penalize answers supported by low-quality reasoning.

These findings motivate the need for a practical method that can approximate these complex, non-linear,
and often negative weighting functions without requiring ground-truth labels at test time. We address this
challenge in the following section.

4 PRACTICAL CALIBRATION METHODS

The optimal analysis confirmed the need for a calibrated, model-specific weighting function. We now in-
troduce practical methods to learn these functions using a one-time, pre-computed calibration set Dcal =
{(r1, p1, c1), ..., (rn, pn, cn)}. Once a weighting function w(p) is learned, the final answer is selected by a
weighted vote: α̂ = argmaxαk∈A

∑
i:si=αk

w(pi).

4.1 NON-PARAMETRIC WEIGHTING FUNCTIONS

One of the most straightforward ways towards the optimal aggregation strategy is to directly estimate the
unknown quantities in the optimal weighting function 3.2, i.e., PRM score distributions P (p|c = 1, V ),
P (p|c = 0, V ), and LLM reliability qM .

Estimating PRM score distribution. To capture the nuances of the PRM score distribution on different
LLM and PRM combinations, we apply the Kernel Density Estimation (KDE). Compared to other estimation
methods, such as histogram estimation or parametric estimations, KDEs are smooth, continuous, and more
flexible. However, while the PRM score is within the probability space between 0 and 1, KDEs are not
bounded, spilling probability density outside this range. Consequently, we first convert the scores from the
probability space to the logit space with the logit function logit(p) = log( p

1−p ). Then, we perform KDE of
the scores within the logit space. Specifically, the PRM score distribution is estimated as:

f̂c(p) =
1

|Dc| · h
∑
i∈Dc

K

(
logit(p)− logit(pi)

h

)
(2)

where Dc = {i|ci = c} separates responses within the calibration set Dcal according to their correctness ci.
K and h are the kernel and bandwidth of KDE.

Estimating LLM reliability. To estimate qM at test time without labels, we first train a simple binned
probability calibrator g(·) on the PRM scores from the calibration set. During inference, we calculate the
calibrated probability for each of the L generated responses Dtest = {(r′1, p′1), ..., (r′L, p′L)} to the test
question and approximate qM as their average, i.e., q̂M = 1

|Dtest|
∑

i∈Dtest
g(p′i).

Given the estimations above, according to Equation 3.2, we have the estimated weighting function:

wKDE(p) = log(f̂1(p))− log(f̂0(p)) + log(q̂M ) + log(m− 1)− log(1− q̂M )

5
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This KDE is the practical counterpart to the optimal estimator, where the PRM score distribution is also
estimated on Dtest with additional access to the correctness of test responses c′i.

4.2 PARAMETRIC WEIGHTING FUNCTIONS

As an alternative, we explore simpler parametric forms for w(p), optimizing parameters on the calibration
set via grid search. These methods are guided by our insight about the importance of a zero-crossing point,
controlled by the parameter b. This parameter acts as a threshold, making the weight positive for scores
above it and negative for scores below, directly implementing the penalization of low-quality responses.

Logit Weighting. Inspired by the log-ratio form in our theorem, we model the weight as:

wlogit(p) = logit(p)− logit(b)

Linear Weighting. As a simpler baseline, we model the weight as:

wlinear(p) = p− b

During grid search, the parameter b is searched within the range [0, 1] and [−1, 1] for Logit Weighted Voting
(Logit WV) and Linear Weighted Voting (Linear WV), respectively.

5 EXPERIMENTS

In this section, we first conduct a comprehensive evaluation of the scaling methods across 35 combinations
of LLM and PRM in Section 5.2. Then we dive into the principles of the proposed methods in Section 5.3.

5.1 EXPERIMENTAL SETUP

Models. To capture the complexities of signal aggregation in practice, we use 5 LLMs across 3 model series
(Mistral-7B (Wang et al., 2024), Qwen2.5-1.5B/7B (Yang et al., 2024), DeepSeek-1.5B/7B (DeepSeek-AI,
2025)) and 7 PRMs based on Qwen (Qwen2.5-PRM800K (Song et al., 2025), Qwen2.5-PRM-7B (Zhang
et al., 2025b), Skywork-PRM-1.5/7B (He et al., 2024)) , Llama (Llama3.1-8B-PRM-Mistral/DeepSeek
(Xiong et al., 2024)), and Mistral (math-shepherd-7b-prm (Wang et al., 2024)) series. During generation,
we set the top-p and temperature configuration to 0.9 and 0.7, respectively.

Data. To simulate the scenarios where the reliability of the LLM signals varies, we evaluate performance
on task with various difficulties, the MATH training set (MATH) and test set (MATH500) (Hendrycks et al.,
2021). For the MATH dataset, we randomly sample 1k out of 7.5k samples as the calibration set and the rest
as the test set. For MATH500, we randomly sample 100 out of 500 samples as the calibration set and the rest
as the test set. For the MATH500 dataset, we sample 112 responses from each LLM for each question. For
the MATH dataset, we sample 32 responses from each LLM for each question, due to its large size. Then,
these collected responses are scored by each of the 7 PRMs. As such, we ensure all the scaling methods are
using identical responses and PRM scores for fair comparison.

Baselines. We compare our calibrated weighted voting against several methods:

• Majority Vote: The answer with the most votes is selected, ignoring PRM scores. This is the standard
self-consistency approach. α̂ = argmaxαk∈A

∑L
i=1 I(si = αk).

• Best-of-N (BoN): The answer from the single response with the highest PRM score is chosen. α̂ = si∗
where i∗ = argmaxi pi.

• Vanilla Weighted Vote: A weighted vote where the raw, uncalibrated PRM score pi is used as the weight.
α̂ = argmaxαk∈A

∑
i:si=αk

pi.
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Figure 2: The performance of various scaling methods averaged across all LLM and PRM combinations.
The computation efficiency improvement of the Logit WV compared to the best-performing baseline, Vanilla
WV, is marked in red. Left: On the MATH dataset. Right: On the MATH500 dataset.

We also report two theoretical bounds: Pass@N, which considers a problem solved if at least one response
is correct, and Optimal as discussed in Section 3.2.

5.2 MAIN RESULTS

Weighting function calibration significantly boosts TTS efficiency. We evaluate the effectiveness of the
proposed weighting function calibration methods by performing calibration for each LLM and PRM pair
before scaling test-time compute. As shown in Figure 2, calibrating before scaling significantly boosts the
efficiency. In particular, on the MATH and MATH500 datasets, the logit-based calibration method surpasses
the performance of vanilla weighting voting methods with approximately 37.1% and 21.3% of compute on
average across 35 LLM-PRM pairs.

For detailed results on LLM-PRM pairs, we show the performance of various scaling methods in Table 1.
We can see that calibration methods consistently outperform baseline scaling methods across LLMs and
PRMs. Generally, Logit Weighted Voting performs the best in most cases. In particular, on the Llama3.1-
Mistral-8B PRM, Logit WV outperforms the best-performing baseline method, Vanilla WV, by 3 points of
accuracy (61.2 v.s. 58.2) on average across 5 LLMs, which would otherwise take an exponential amount of
test-time compute to achieve. This strongly supports our claim of calibrating the weighting function before
expensive TTS. Please refer to Appendix B for more detailed results.

5.3 EMPIRICAL ANALYSIS

Are negative weights necessary in utilizing the PRM signals? To further verify our insight that negative
weights are necessary for better utilization of the PRM signals, we show the grid search result on the offset
parameter b of Logit WV and Linear WV, where, in both cases, its value suggests the zero-crossing point,
assigning negative weights to responses whose PRM score is lower than b. As shown in Figure 3, for
both weighting functions, the optimal offset b is consistently larger than zero across all LLMs, proving the
necessity of negative weights in efficient TTS. Furthermore, the zero-crossing points are different for each
LLM, but are generally consistent for the same LLM using different weighting functions (Linear and Logit),
demonstrating the PRM’s varying capability in distinguishing positive and negative responses from different
LLMs. This further supports our claim to take the unique interactions between the models into account, i.e.,
calibration, for efficient TTS.

What’s the remaining gap and challenges towards the optimal weighting function? To answer this
question, we compare our dataset-wise estimation of the PRM score weighting function log( f1(p)f0(p)

) with the

7
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Table 1: Accuracy of TTS methods at sample size 32. The best method for each case is in bold.

PRM Method Mistral-7B Qwen2.5-1.5B Qwen2.5-7B DeepSeek-1.5B DeepSeek-7B Average
Qwen- PRM800K- 7B Optimal 53.9 64.2 70.5 57.4 57.1 60.6

BoN 47.6 56.7 64.0 43.1 45.2 51.3
MV 49.1 60.0 66.6 51.8 51.3 55.8
Vanilla WV 50.6 61.0 66.4 51.5 51.2 56.1

KDE WV 50.1 60.6 66.8 51.8 51.6 56.2
Linear WV 51.1 61.0 66.4 51.7 51.3 56.3
Logit WV 49.7 61.1 66.4 51.7 51.3 56.0

Qwen- PRM- 7B Optimal 56.8 67.7 74.5 66.4 63.6 65.8

BoN 51.8 62.3 69.3 61.0 59.6 60.8
MV 49.1 60.0 66.6 51.8 51.3 55.8
Vanilla WV 52.4 62.4 69.0 57.7 56.6 59.6

KDE WV 50.7 61.6 68.6 55.1 56.3 58.5
Linear WV 52.4 62.4 68.4 61.8 62.4 61.5
Logit WV 52.3 63.1 69.5 62.8 63.1 62.1

Llama3.1- Mistral- 8B Optimal 57.1 65.6 73.4 64.3 62.2 64.5

BoN 52.4 57.3 67.3 55.2 53.7 57.2
MV 49.1 60.0 66.6 51.8 51.3 55.8
Vanilla WV 51.8 61.7 68.3 54.7 54.4 58.2

KDE WV 51.6 61.6 67.5 55.1 57.1 58.6
Linear WV 53.1 62.2 68.2 60.1 60.3 60.8
Logit WV 53.7 62.4 69.0 60.1 60.7 61.2

Llama3.1- DS- 8B Optimal 56.4 65.7 73.0 64.2 62.0 64.2

BoN 49.7 58.6 67.5 57.6 55.7 57.8
MV 49.1 60.0 66.6 51.8 51.3 55.8
Vanilla WV 52.4 61.2 68.6 54.8 55.4 58.5

KDE WV 50.3 60.7 67.5 54.0 53.8 57.3
Linear WV 52.8 61.1 68.6 59.1 58.8 60.1
Logit WV 52.7 61.1 68.8 60.0 59.6 60.4

Skywork- PRM- 1.5B Optimal 55.9 72.0 74.1 66.0 68.3 67.3

BoN 52.2 68.9 71.4 62.2 65.2 64.0
MV 49.1 64.4 66.6 51.8 55.8 57.5
Vanilla WV 52.7 68.2 70.5 58.3 60.6 62.1

KDE WV 51.7 66.3 69.8 57.3 59.3 60.9
Linear WV 53.5 68.8 70.8 64.6 64.7 64.5
Logit WV 53.6 69.1 70.8 64.4 64.8 64.6

optimal per-question estimation on several questions. As shown in the left subplot of Figure 4, while our
estimation captures the dataset-wise PRM score weighting function, the optimal weighting function for each
individual question varies largely, suggesting a global scoring function is still suboptimal. We also examine
how accurate our estimation of the LLM reliability term qM is with Mean Absolute Error. As shown in the
right subplot of Figure 4, while compared to a fixed global LLM reliability, using calibrated PRM scores
to estimate this term effectively reduces the error, the error for most PRMs is still larger than 0.2, which
is far from negligible. This also explains the relatively low performance of KDE WV compared to the
parametric counterparts. In conclusion, accurately estimating either the PRM or the LLM part of the weight
requires nuanced estimation for individual questions, explaining why the non-parametric KDE estimation
underperforms the parametric ones. We find such per-question estimation inherently difficult in our attempts
to learn a meta model to predict per-question weighting functions, which struggles to fit and generalize.

How does calibration set size affect the performance? We rearrange the split of the MATH dataset to
reserve 5k questions as the test, and the rest as the pool of calibration data. As shown in the right subplot

8
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Figure 3: Left and Middle: The grid search result of the offset parameter b for both Logit WV and Linear
WV, where the optimal value is marked with vertical lines. The consistently positive optimal value across
LLMs demonstrates the necessity of negative weights. Right: The performance of the calibration methods
when we scale the calibration set size. The performance can be further improved with larger calibration sets.
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Figure 4: Left:The comparison of the dataset-wise estimated PRM score weighting function and the per-
question estimated optimal PRM score weighting function. A large variance among questions can be seen.
Right: The mean absolute error of estimated q̂M compared to the true qM .

of Figure 3, while the validation set used in the main experiments is relative small, the performances of the
calibration methods can be further enhanced if we scale the calibration set size to calibrate the weighting
function better.

6 CONCLUSION

We address the suboptimal use of Process Reward Models (PRMs) in Test-Time Scaling (TTS). Through
a theoretical MAP framework, we show that the optimal aggregation strategy is a weighted majority vote
combining signals from both the LLM and PRM. Empirically, we find these optimal weights are model-
dependent and, critically, assign large negative values to penalize low-quality responses—a powerful signal
neglected by standard methods. We propose simple calibration methods to learn these functions. Our cal-
ibrated weighted voting boosts TTS efficiency, achieving superior accuracy over baselines like Best-of-N
with approximately 37.1% and 21.3% computational cost. This work demonstrates that intelligent aggrega-
tion is a more efficient path to performance gains than simply scaling test-time compute.
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A PROOFS

A.1 DERIVATION OF THEOREM 3.2

Our objective is to find the answer α̂ that maximizes the posterior probability P (αk|G,P,M, V ). Assuming
a uniform prior over answers, this is equivalent to maximizing the log-likelihood, LL(αk). From the main
text, the log-likelihood under Assumption 3.1 is:

LL(αk) =

L∑
i=1

logP (pi|gi, αk, V ) +

L∑
i=1

logP (gi|αk,M) (3)

Let ci ∈ {0, 1} be a binary variable indicating whether generation gi is correct (ci = 1) or incorrect (ci =
0). Under the hypothesis that the true answer is αk, the correctness of gi is determined by its answer si.
Specifically, ci = 1 if si = αk, and ci = 0 if si ̸= αk.

We can now analyze the two components of the log-likelihood separately.

Part 1: The PRM Signal Term

The first sum can be split based on whether a generation’s answer si matches the candidate answer αk:

L∑
i=1

logP (pi|gi, αk, V ) =
∑

i:si=αk

logP (pi|gi, ci = 1, V ) +
∑

i:si ̸=αk

logP (pi|gi, ci = 0, V ) (4)

To isolate the terms relevant to the maximization over αk, we rewrite the second sum by noting that∑
i:si ̸=αk

(·) =
∑L

i=1(·)−
∑

i:si=αk
(·):

=
∑

i:si=αk

logP (pi|gi, ci = 1, V ) +

L∑
i=1

logP (pi|gi, ci = 0, V )−
∑

i:si=αk

logP (pi|gi, ci = 0, V )

=
∑

i:si=αk

(logP (pi|gi, ci = 1, V )− logP (pi|gi, ci = 0, V )) +

L∑
i=1

logP (pi|gi, ci = 0, V ) (5)

The second term,
∑L

i=1 logP (pi|gi, ci = 0, V ), is a sum over all L generations. Since this term does not
depend on the choice of the candidate answer αk, it is a constant with respect to our maximization problem
and can be dropped. This leaves us with the αk-dependent part of the PRM signal:

PRM Term(αk) =
∑

i:si=αk

log
P (pi|gi, ci = 1, V )

P (pi|gi, ci = 0, V )
(6)

Part 2: The LLM Signal Term

Next, we analyze the LLM term, simplifying P (gi|αk,M) to P (si|αk,M). We use the model’s probabili-
ties: P (si = αk|αk,M) = qM and, for any sj ̸= αk, P (sj |αk,M) = (1 − qM )/(m − 1). Let Nk be the
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count of generations where the answer is αk, i.e., Nk = |{i|si = αk}|.
L∑

i=1

logP (si|αk,M) =
∑

i:si=αk

logP (si = αk|αk,M) +
∑

i:si ̸=αk

logP (si ̸= αk|αk,M)

= Nk log qM + (L−Nk) log
1− qM
m− 1

= Nk log qM + L log
1− qM
m− 1

−Nk log
1− qM
m− 1

= Nk

(
log qM − log

1− qM
m− 1

)
+ L log

1− qM
m− 1

(7)

Similar to the PRM term, the second part, L log 1−qM
m−1 , does not depend on the specific candidate answer αk

(as qM , L,m are fixed for a given question) and can be dropped from the objective function. The remaining
term is:

LLM Term(αk) = Nk log
qM · (m− 1)

1− qM
=

∑
i:si=αk

log
qM · (m− 1)

1− qM
(8)

Part 3: Combining the Terms

Maximizing LL(αk) is equivalent to maximizing the sum of the αk-dependent terms we derived. Let this
new objective function be Score(αk):

Score(αk) = PRM Term(αk) + LLM Term(αk)

=
∑

i:si=αk

log
P (pi|ci = 1, V )

P (pi|ci = 0, V )
+

∑
i:si=αk

log
qM · (m− 1)

1− qM

=
∑

i:si=αk

(
log

P (pi|ci = 1, V )

P (pi|ci = 0, V )
+ log

qM · (m− 1)

1− qM

)
(9)

This is a weighted majority vote, where the final score for an answer αk is the sum of weights wi for all
generations gi that produced that answer. The weight for each generation is:

wi = log
P (pi|ci = 1, V )

P (pi|ci = 0, V )︸ ︷︷ ︸
PRM Signal Term

+ log
qM · (m− 1)

1− qM︸ ︷︷ ︸
LLM Signal Term

This completes the proof.

B ADDITIONAL EXPERIMENT RESULTS

B.1 DETAILED RESULTS ON THE MATH500 DATASET

We show the detailed results on each LLM-PRM pair on the MATH500 dataset in Table 2.

C LIMITATIONS AND FUTURE WORK

Limitations. Our work, while demonstrating significant gains, has several limitations. First, our theoret-
ical framework relies on conditional independence assumptions which are simplifications of the complex

13
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Table 2: Accuracy of Aggregation Methods at Sample Size n=112

PRM Method Mistral-7B Qwen2.5-1.5B Qwen2.5-7B DeepSeek-1.5B DeepSeek-7B Average
Qwen- PRM800K- 7B Optimal 37.3 68.0 69.7 58.3 62.7 59.2

BoN 33.0 57.0 62.0 40.3 49.0 48.3
MV 29.3 61.3 66.0 52.7 57.0 53.3
Vanilla WV 31.7 63.7 65.7 53.0 56.7 54.1

KDE WV 30.0 62.0 66.0 53.0 57.0 53.6
Linear WV 34.3 63.7 66.3 52.7 57.0 54.8
Logit WV 32.0 63.3 66.3 52.7 56.7 54.2

Qwen- PRM- 7B Optimal 44.3 70.3 73.0 67.7 67.7 64.6

BoN 40.0 63.7 67.3 59.7 65.0 59.1
MV 29.3 61.3 66.0 52.7 57.0 53.3
Vanilla WV 35.3 64.0 67.3 57.7 62.3 57.3

KDE WV 34.3 63.7 67.0 56.3 62.3 56.7
Linear WV 36.0 64.0 68.0 63.3 65.7 59.4
Logit WV 38.0 64.0 68.3 63.3 65.3 59.8

Llama3.1- Mistral- 8B Optimal 44.0 65.3 69.3 63.0 66.0 61.5

BoN 32.7 50.0 59.7 49.3 55.3 49.4
MV 29.3 61.3 66.0 52.7 57.0 53.3
Vanilla WV 30.0 60.0 67.0 53.7 58.7 53.9

KDE WV 29.0 60.7 66.0 54.3 57.7 53.5
Linear WV 31.3 60.0 66.0 56.0 60.0 54.7
Logit WV 31.7 60.3 65.7 56.0 59.7 54.7

Llama3.1- DS- 8B Optimal 39.0 67.7 69.7 61.3 66.0 60.7

BoN 27.0 51.0 62.3 51.3 59.0 50.1
MV 29.3 61.3 66.0 52.7 57.0 53.3
Vanilla WV 30.0 59.3 66.3 55.3 60.0 54.2

KDE WV 28.7 61.3 66.0 55.3 59.7 54.2
Linear WV 29.3 61.0 66.3 55.7 62.0 54.9
Logit WV 29.3 59.7 66.3 57.7 61.3 54.9

Skywork- PRM- 1.5B Optimal 40.7 66.3 71.0 63.3 66.3 61.5

BoN 38.3 56.7 63.3 54.0 58.7 54.2
MV 29.3 61.3 66.0 52.7 57.0 53.3
Vanilla WV 35.7 61.7 68.3 58.0 60.3 56.8

KDE WV 32.7 61.3 67.3 55.7 58.0 55.0
Linear WV 38.3 61.3 68.0 60.7 61.7 58.0
Logit WV 37.7 61.7 66.0 61.0 61.3 57.5

dependencies between generated responses. Second, our proposed calibration methods learn a single, global
weighting function. As our analysis in Section 4.3 shows, the truly optimal function varies on a per-question
basis, and our attempts to learn a meta-model to predict these per-question functions were unsuccessful,
indicating this is a non-trivial challenge. Finally, while effective, our calibration methods require a small,
one-time labeled dataset, and our evaluation has been focused on the domain of mathematical reasoning.

Future Work. These limitations point to several promising avenues for future research. The primary chal-
lenge is to bridge the gap between global and per-question optimal weighting. Developing methods that
can adapt the weighting function at test time based on question-specific features or initial response char-
acteristics could yield further performance gains. Another direction is to explore the generalization of our
calibrated aggregation framework to other domains beyond mathematics and to other TTS paradigms, such
as sequential refinement or tree-of-thoughts search. Lastly, investigating semi-supervised or unsupervised
calibration techniques could reduce the reliance on labeled data, making the approach more accessible and
scalable.
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Ethics Statement. This research aims to improve the computational efficiency of large language models,
a goal with positive ethical implications. By achieving higher performance with less computational cost,
our methods can contribute to reducing the energy consumption and environmental impact associated with
deploying state-of-the-art AI systems. The datasets and models used in this work are standard, publicly
available benchmarks and open-source models widely used by the research community. Our work does
not involve human subjects, nor does it introduce new capabilities that would increase the risk of misuse
of language models. On the contrary, by developing a more nuanced understanding of how to verify and
aggregate machine-generated reasoning, this research could contribute to making LLMs more reliable and
less prone to generating confident but incorrect outputs. All authors have read and adhered to the ICLR Code
of Ethics.

Reproducibility Statement. We are committed to ensuring the reproducibility of our work. All LLMs and
PRMs used are publicly available models, and we provide details of these models in Section 5.1. The ex-
periments were conducted on the MATH dataset, a standard public benchmark. Our data splitting procedure
for calibration and testing is described in Section 5.1. The full theoretical derivation for Theorem 3.2 is
provided in Appendix A.1. Key implementation details for our proposed calibration methods, including the
KDE procedure and the grid search ranges for parametric models, are described in Section 4.

LLM Usage. We use LLMs to polish the writing of this paper, including identifying spelling, grammar
mistakes. All suggestions from the LLM are verified by the authors before being incorporated into the
paper.
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