
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

OPTIMAL AGGREGATION OF LLM AND PRM SIGNALS FOR
EFFICIENT TEST-TIME SCALING

Anonymous authors
Paper under double-blind review

ABSTRACT

Process reward models (PRMs) are a cornerstone of test-time scaling (TTS), designed to
verify and select the best responses from large language models (LLMs). However, this
promise is challenged by recent benchmarks where simple majority voting, which ignores
PRM signals, occasionally outperforms standard PRM-based selection. This raises a crit-
ical question: How can we effectively utilize verification signals from PRMs for TTS? To
address this, we start by developing a theoretical framework for optimally combining sig-
nals from both the LLM and the PRM. Our framework reveals that the optimal strategy is
a weighted aggregation of responses, a strategy whose effectiveness hinges on estimating
weights that capture the complex interplay between the models. Based on our theoretical
results, we empirically show that these optimal weighting functions differ significantly
across LLM-PRM pairs and, notably, often assign substantial negative weights. Motivated
by these insights, we propose efficient pre-computation methods to calibrate these weight-
ing functions. Extensive experiments across 5 LLMs and 7 PRMs demonstrate that our
calibration method significantly boosts the TTS efficiency, surpassing the performance of
vanilla weighted majority voting while using only 21.3% of the computation. Ultimately,
our work demonstrates that investing in a more intelligent aggregation strategy can be a
more convincing path to performance gains than simply scaling test-time computation.

1 INTRODUCTION

The pursuit of advanced reasoning in Large Language Models (LLMs) has largely been driven by scaling up
model size and training data (Ouyang et al., 2022). While effective, this approach entails prohibitive compu-
tational costs (Snell et al., 2025). An increasingly popular alternative is Test-Time Scaling (TTS)(Liu et al.,
2025; Madaan et al., 2023), a paradigm that enhances the performance of a fixed LLM by allocating more
computational resources at inference time. A prominent TTS strategy involves generating a multitude of
candidate solutions and then selecting the most promising one. This ”generate-and-select” framework relies
heavily on the quality of the selection mechanism, which is tasked with identifying the correct response from
a pool of diverse, model-generated outputs. The central challenge, therefore, lies in designing a selection
strategy that can effectively harness the collective evidence from multiple generated responses to maximize
final performance.

To address this selection problem, a common approach is to employ a Process Reward Model (PRM) (Light-
man et al., 2024; Li & Li, 2025; Zheng et al., 2024), a sophisticated verifier trained on human feedback
to score the quality of reasoning steps. The standard protocol, Best-of-N (BoN), simply selects the answer
from the single response that receives the highest PRM score. Intuitively, this should leverage the detailed,
step-by-step evaluation capabilities of the PRM. However, this intuition is challenged by a surprising and
counter-intuitive empirical reality: on recent benchmarks (Zhang et al., 2025b), the far simpler method of
majority voting (Wang et al., 2023), which completely ignores the expensive PRM and relies solely on the

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

consensus of the LLM’s own generations, can outperform PRM-guided BoN. This paradox suggests a fun-
damental misalignment in how we utilize verifier signals. If a powerful, costly-to-train PRM can be bested
by a simple vote count, it implies we are failing to properly integrate its nuanced feedback.

In this work, we dive into the interactions between LLMs and PRMs to find better aggregation of signals
from both models for more efficient TTS. We begin by formalizing the task of aggregating responses as a
Maximum a Posteriori (MAP) estimation problem, revealing that the optimal aggregation strategy is not to
simply pick the best-scoring response, but to perform a weighted majority vote. Interestingly, the optimal
weight for each response is a function of two distinct components: a term derived from the PRM’s score,
reflecting the quality of the reasoning, and a term derived from the LLM’s own reliability. This formulation
provides a principled framework for unifying the evidence from both the generator and the verifier.

To understand the practical implications of this theoretical result, we conduct an empirical analysis to char-
acterize the optimal weighting function, uncovering two critical insights. First, the shape of the optimal
function is highly dependent on the specific LLM-PRM pair, indicating that a one-size-fits-all approach is
inherently suboptimal. Second, we find that optimal functions consistently assign negative weights to re-
sponses with low PRM scores. This reveals a key deficiency in existing methods (Wang et al., 2024): they
fail to leverage the negative evidence provided by a low-quality response. A response judged to be poor by
the PRM should not simply be ignored; it should actively count against its proposed answer.

Motivated by these insights, we introduce simple yet effective calibration methods to learn approximations
of these optimal weighting functions from a small, one-time pre-computed dataset. We propose both non-
parametric and parametric approaches that explicitly capture the model-specific nature of the weights and
incorporate the mechanism of penalizing low-quality responses. Extensive experiments across 5 different
LLMs and 7 PRMs on the MATH (Hendrycks et al., 2021) datasets demonstrate the superiority of our
approach. Our calibrated weighted voting method consistently outperforms baselines, including standard
BoN and vanilla weighted voting. Notably, it achieves higher accuracy than these methods while using
approximately 37.1% and 21.3% of the test-time computation, demonstrating a significant improvement in
TTS efficiency. In summary, our contributions are:

• We develop a theoretical framework for optimally aggregating LLM generations and PRM scores, demon-
strating that the solution is a weighted majority vote combining signals from both models.

• We empirically characterize the optimal weighting function, revealing its model-dependent nature and,
interestingly, the importance of assigning negative weights to low-quality responses.

• We propose practical calibration methods to learn these weighting functions, enabling efficient and effec-
tive test-time scaling.

• Through extensive experiments, we show that our calibrated aggregation strategy significantly improves
TTS efficiency, achieving superior performance with substantially less computational overhead.

2 RELATED WORK

Test-Time Scaling. The pursuit of improved model performance without retraining has led to the paradigm
of Test-Time Scaling (TTS), which allocates more computational resources at inference time Zhang et al.
(2025a). A dominant strategy within TTS is the ”generate-and-select” framework, often formalized as Best-
of-N (BoN) sampling, where N candidate solutions are generated and a selection mechanism chooses the
best one Ichihara et al. (2025). A foundational method in this area is Self-Consistency (SC), which samples
multiple diverse reasoning paths and selecting the final answer via a simple majority vote Wang et al. (2023).
The intuition is that an answer derived from multiple independent lines of thought is more likely to be correct.
While effective, SC’s primary drawback is its high computational cost. This has motivated more efficient
variations, such as Confidence-Informed Self-Consistency (CISC), which introduced a weighted majority
vote based on the model’s self-assessed confidence to reduce the required sample size (Taubenfeld et al.,

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

2025). In parallel, other approaches use an external verifier, like a PRM, to select the single highest-scoring
candidate (Uesato et al., 2022). Our work builds on the idea of weighted voting, but instead of relying on
the LLM’s self-assessment, we derive weights from a principled theoretical framework that combines both
the LLM’s consensus signal and the external verifier’s scores.

Reward Modeling. A crucial component of many TTS strategies is an external verifier, or reward model
(RM), trained to score the quality of generated responses. An early, influential work by Cobbe et al. (2021)
demonstrated that training a dedicated verifier to select the best solution from many candidates could im-
prove performance on math word problems more effectively than fine-tuning the generator itself Uesato et al.
(2022). This spurred a distinction between two supervision strategies: Outcome Reward Models (ORMs),
which are trained on the correctness of the final answer, and Process Reward Models (PRMs), which are
trained on step-by-step human feedback. An initial comparison by Uesato et al. (2022) found that ORMs
could achieve similar final-answer accuracy with less supervision, but PRMs were necessary to ensure the
faithfulness of the reasoning process (Zheng et al., 2024). Subsequent work by Lightman et al. (2024) solid-
ified the superiority of PRMs on more challenging tasks, establishing process supervision as a key technique
for building reliable verifiers, despite its high annotation cost (Wang et al., 2024). Our work focuses on how
to best leverage the signals from these powerful but expensive-to-train PRMs.

3 OPTIMAL RESPONSE AGGREGATION

In this section, we aim to explore the optimal aggregation strategy for signals from the LLM and PRM.
We start by formalizing this as a Maximum a Posteriori (MAP) estimation problem, and derive an optimal
aggregation strategy in Section 3.1. Then, in Section 3.2, we manage to estimate the quantities in the optimal
aggregation strategy empirically and offer a few critical insights on the optimal weighting strategy.

3.1 THEORETICAL ANALYSIS OF OPTIMAL RESPONSE AGGREGATION

Problem Setup. Let M be the LLM and V be the PRM (Verifier). For a single prompt, M generates an
ensemble of L responses, G = {g1, g2, . . . , gL}. Each response gi consists of a reasoning process ri and
a final answer si = f(ri). The PRM V evaluates each generation gi and produces a scalar score pi. Let
P = {p1, p2, . . . , pL} be the set of these scores. The set of unique candidate answers is A = {α1, . . . , αm}.
Our objective is to determine the most probable true answer α̂ given all available evidence.

We aim to find the answer αk that maximizes the posterior probability P (αk|G,P,M, V). By Bayes’
theorem, and assuming a uniform prior over answers P (αk|M,V), this is equivalent to maximizing the
likelihood of the evidence:

α̂ = argmax
αk∈A

P (G,P|αk,M, V) (1)

We can decompose this likelihood into two factors: P (G,P|αk,M, V) = P (P|G, αk, V) × P (G|αk,M).
This reflects the causal process: the LLM M generates responses G, and then the Verifier V produces scores
P based on G. To make this tractable, we introduce two conditional independence assumptions:
Assumption 3.1 (Score and Generation Independence). The PRM score pi for a generation gi is condition-
ally independent of all other generations, given gi and the true answer αk. The LLM generations gi are
conditionally independent of each other, given the true answer αk.

P (P|G, αk, V) =

L∏
i=1

P (pi|gi, αk, V), P (G|αk,M) =

L∏
i=1

P (gi|αk,M)

With these assumptions, the log-likelihood becomes a sum over individual responses: LL(αk) =∑L
i=1 logP (pi|gi, αk, V) +

∑L
i=1 logP (gi|αk,M). We hypothesize that under the condition αk, a gen-

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

0

2

4

6

8

10

D
en

si
ty

Q
w

en
-P

R
M

-7
B

Mistral-7B Qwen2.5-7B DeepSeek-1.5B
Correct Answers
Incorrect Answers
Optimal Weighing Function

0.00 0.25 0.50 0.75 1.00
PRM Score

0

2

4

6

8

10

D
en

si
ty

Sk
yw

or
k-

PR
M

-7
B

0.00 0.25 0.50 0.75 1.00
PRM Score

0.00 0.25 0.50 0.75 1.00
PRM Score

5

0

5

10

W
eight

5

0

5

10

W
eight

Figure 1: The PRM score distributions and optimal weighing functions on 6 combinations of LLM-PRM
pairs. Left y-axis: the probability density of the PRM scores. Right y-axis: the optimal weights w∗(p)
learned via KDE for different LLM-PRM pairs. Note their model-dependent nature and the presence of
negative weights for low PRM scores.

eration gi with answer si = αk is correct (ci = 1), and incorrect (ci = 0) otherwise. The term P (gi|αk,M)
is simplified to P (si|αk,M), where we assume a simple probability model for the LLM: it produces the
correct answer with probability qM and any specific incorrect answer with probability (1− qM)/(m− 1).
Theorem 3.2 (Optimal Aggregation Score). Under the assumptions above, maximizing the log-likelihood is
equivalent to maximizing the score:

Score(αk) =
∑

i:si=αk

wi, where wi = log
P (pi|ci = 1, V)

P (pi|ci = 0, V)︸ ︷︷ ︸
PRM Signal Term

+ log
qM · (m− 1)

1− qM︸ ︷︷ ︸
LLM Signal Term

Proof. The full derivation is in Appendix A. The key insight is that the log-likelihood can be rearranged
into a sum of weights for responses voting for αk, plus terms that are constant with respect to αk and can be
dropped from the argmax. The weight wi for each vote combines signals from two sources: the PRM’s score
(via the likelihood ratio of the score pi occurring for correct vs. incorrect reasoning) and the LLM’s intrinsic
reliability (via the term involving qM), also referred to as question difficulty (Snell et al., 2025).

3.2 EMPIRICAL ANALYSIS OF THE OPTIMAL WEIGHTING FUNCTION

Instantiating the optimal weights. To instantiate the optimal weight wi from Theorem 3.2, we perform a
per-question estimation using the ground-truth labels for the specific set of L responses generated for that
question. To estimate the PRM Signal term, we apply a separate Kernel Density Estimation (KDE) on the
logit space for each individual question to estimate the score distributions P (p|c, V) on the specific question.
For details of our KDE estimation in the logit space, please refer to Section 4.1. To estimate the LLM Signal
term, we simply set qM to be the true accuracy of the L responses for that specific question.

Characterizing the optimal weighting function. Taking the PRM’s ability to distinguish correct and
wrong answers into account, this optimal aggregator provides a much tighter performance upper bound than

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

Pass@N, demonstrating the potential of our framework, as shown in Figure 2. More importantly, analyzing
the structure of the learned weighting function w∗(p) (Figure 1) reveals two critical insights:

• Weighting functions are highly model-dependent. The shape of the optimal function varies dramatically
depending on the specific LLM and PRM being used. A simple, fixed function (e.g., using the PRM score
directly as a weight) is unlikely to be optimal across different model pairs. This underscores the necessity
of a calibration procedure tailored to the specific models in use.

• Presence of negative weights. An interesting and consistent finding is that low PRM scores are mapped
to negative weights. This implies that a response deemed incorrect by the PRM provides strong evidence
against its proposed answer, and repetition of low-quality responses does not add to the likelihood of their
answer being correct. Standard methods like Best-of-N, which only consider the top-scoring candidate, or
majority voting, which ignores scores entirely, fail to leverage this powerful negative signal. An effective
aggregation strategy must penalize answers supported by low-quality reasoning.

These findings motivate the need for a practical method that can approximate these complex, non-linear,
and often negative weighting functions without requiring ground-truth labels at test time. We address this
challenge in the following section.

4 PRACTICAL CALIBRATION METHODS

The optimal analysis confirmed the need for a calibrated, model-specific weighting function. We now in-
troduce practical methods to learn these functions using a one-time, pre-computed calibration set Dcal =
{(r1, p1, c1), ..., (rn, pn, cn)}. Once a weighting function w(p) is learned, the final answer is selected by a
weighted vote: α̂ = argmaxαk∈A

∑
i:si=αk

w(pi).

4.1 NON-PARAMETRIC WEIGHTING FUNCTIONS

One of the most straightforward ways towards the optimal aggregation strategy is to directly estimate the
unknown quantities in the optimal weighting function 3.2, i.e., PRM score distributions P (p|c = 1, V),
P (p|c = 0, V), and LLM reliability qM .

Estimating PRM score distribution. To capture the nuances of the PRM score distribution on different
LLM and PRM combinations, we apply the Kernel Density Estimation (KDE). Compared to other estimation
methods, such as histogram estimation or parametric estimations, KDEs are smooth, continuous, and more
flexible. However, while the PRM score is within the probability space between 0 and 1, KDEs are not
bounded, spilling probability density outside this range. Consequently, we first convert the scores from the
probability space to the logit space with the logit function logit(p) = log(p

1−p). Then, we perform KDE of
the scores within the logit space. Specifically, the PRM score distribution is estimated as:

f̂c(p) =
1

|Dc| · h
∑
i∈Dc

K

(
logit(p)− logit(pi)

h

)
(2)

where Dc = {i|ci = c} separates responses within the calibration set Dcal according to their correctness ci.
K and h are the kernel and bandwidth of KDE.

Estimating LLM reliability. To estimate qM at test time without labels, we first train a simple binned
probability calibrator g(·) on the PRM scores from the calibration set. During inference, we calculate the
calibrated probability for each of the L generated responses Dtest = {(r′1, p′1), ..., (r′L, p′L)} to the test
question and approximate qM as their average, i.e., q̂M = 1

|Dtest|
∑

i∈Dtest
g(p′i).

Given the estimations above, according to Equation 3.2, we have the estimated weighting function:

wKDE(p) = log(f̂1(p))− log(f̂0(p)) + log(q̂M) + log(m− 1)− log(1− q̂M)

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

This KDE is the practical counterpart to the optimal estimator, where the PRM score distribution is also
estimated on Dtest with additional access to the correctness of test responses c′i.

4.2 PARAMETRIC WEIGHTING FUNCTIONS

As an alternative, we explore simpler parametric forms for w(p), optimizing parameters on the calibration
set via grid search. These methods are guided by our insight about the importance of a zero-crossing point,
controlled by the parameter b. This parameter acts as a threshold, making the weight positive for scores
above it and negative for scores below, directly implementing the penalization of low-quality responses.

Logit Weighting. Inspired by the log-ratio form in our theorem, we model the weight as:

wlogit(p) = logit(p)− logit(b)

Linear Weighting. As a simpler baseline, we model the weight as:

wlinear(p) = p− b

During grid search, the parameter b is searched within the range [0, 1] and [−1, 1] for Logit Weighted Voting
(Logit WV) and Linear Weighted Voting (Linear WV), respectively.

5 EXPERIMENTS

In this section, we first conduct a comprehensive evaluation of the scaling methods across 35 combinations
of LLM and PRM in Section 5.2. Then we dive into the principles of the proposed methods in Section 5.3.

5.1 EXPERIMENTAL SETUP

Models. To capture the complexities of signal aggregation in practice, we use 5 LLMs across 3 model series
(Mistral-7B (Wang et al., 2024), Qwen2.5-1.5B/7B (Yang et al., 2024), DeepSeek-1.5B/7B (DeepSeek-AI,
2025)) and 7 PRMs based on Qwen (Qwen2.5-PRM800K (Song et al., 2025), Qwen2.5-PRM-7B (Zhang
et al., 2025b), Skywork-PRM-1.5/7B (He et al., 2024)) , Llama (Llama3.1-8B-PRM-Mistral/DeepSeek
(Xiong et al., 2024)), and Mistral (math-shepherd-7b-prm (Wang et al., 2024)) series. During generation,
we set the top-p and temperature configuration to 0.9 and 0.7, respectively.

Data. To simulate the scenarios where the reliability of the LLM signals varies, we evaluate performance
on task with various difficulties, the MATH training set (MATH) and test set (MATH500) (Hendrycks et al.,
2021). For the MATH dataset, we randomly sample 1k out of 7.5k samples as the calibration set and the rest
as the test set. For MATH500, we randomly sample 100 out of 500 samples as the calibration set and the rest
as the test set. For the MATH500 dataset, we sample 112 responses from each LLM for each question. For
the MATH dataset, we sample 32 responses from each LLM for each question, due to its large size. Then,
these collected responses are scored by each of the 7 PRMs. As such, we ensure all the scaling methods are
using identical responses and PRM scores for fair comparison.

Baselines. We compare our calibrated weighted voting against several methods:

• Majority Vote: The answer with the most votes is selected, ignoring PRM scores. This is the standard
self-consistency approach. α̂ = argmaxαk∈A

∑L
i=1 I(si = αk).

• Best-of-N (BoN): The answer from the single response with the highest PRM score is chosen. α̂ = si∗
where i∗ = argmaxi pi.

• Vanilla Weighted Vote: A weighted vote where the raw, uncalibrated PRM score pi is used as the weight.
α̂ = argmaxαk∈A

∑
i:si=αk

pi.

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

20 21 22 23 24 25

Sample Size (n)

0.50

0.55

0.60

0.65

A
cc

ur
ac

y
37.1% Compute

Scaling Method
Pass@N
Optimal
MV
BoN

Vanilla WV
KDE WV
Linear WV
Logit WV

20 21 22 23 24 25 26

Sample Size (n)

0.45

0.50

0.55

0.60

A
cc

ur
ac

y

21.3% Compute

Scaling Method
Pass@N
Optimal
MV
BoN

Vanilla WV
KDE WV
Linear WV
Logit WV

Figure 2: The performance of various scaling methods averaged across all LLM and PRM combinations.
The computation efficiency improvement of the Logit WV compared to the best-performing baseline, Vanilla
WV, is marked in red. Left: On the MATH dataset. Right: On the MATH500 dataset.

We also report two theoretical bounds: Pass@N, which considers a problem solved if at least one response
is correct, and Optimal as discussed in Section 3.2.

5.2 MAIN RESULTS

Weighting function calibration significantly boosts TTS efficiency. We evaluate the effectiveness of the
proposed weighting function calibration methods by performing calibration for each LLM and PRM pair
before scaling test-time compute. As shown in Figure 2, calibrating before scaling significantly boosts the
efficiency. In particular, on the MATH and MATH500 datasets, the logit-based calibration method surpasses
the performance of vanilla weighting voting methods with approximately 37.1% and 21.3% of compute on
average across 35 LLM-PRM pairs.

For detailed results on LLM-PRM pairs, we show the performance of various scaling methods in Table 1.
We can see that calibration methods consistently outperform baseline scaling methods across LLMs and
PRMs. Generally, Logit Weighted Voting performs the best in most cases. In particular, on the Llama3.1-
Mistral-8B PRM, Logit WV outperforms the best-performing baseline method, Vanilla WV, by 3 points of
accuracy (61.2 v.s. 58.2) on average across 5 LLMs, which would otherwise take an exponential amount of
test-time compute to achieve. This strongly supports our claim of calibrating the weighting function before
expensive TTS. Please refer to Appendix B for more detailed results.

5.3 EMPIRICAL ANALYSIS

Are negative weights necessary in utilizing the PRM signals? To further verify our insight that negative
weights are necessary for better utilization of the PRM signals, we show the grid search result on the offset
parameter b of Logit WV and Linear WV, where, in both cases, its value suggests the zero-crossing point,
assigning negative weights to responses whose PRM score is lower than b. As shown in Figure 3, for
both weighting functions, the optimal offset b is consistently larger than zero across all LLMs, proving the
necessity of negative weights in efficient TTS. Furthermore, the zero-crossing points are different for each
LLM, but are generally consistent for the same LLM using different weighting functions (Linear and Logit),
demonstrating the PRM’s varying capability in distinguishing positive and negative responses from different
LLMs. This further supports our claim to take the unique interactions between the models into account, i.e.,
calibration, for efficient TTS.

What’s the remaining gap and challenges towards the optimal weighting function? To answer this
question, we compare our dataset-wise estimation of the PRM score weighting function log(f1(p)f0(p)

) with the

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

Table 1: Accuracy of TTS methods at sample size 32. The best method for each case is in bold.

PRM Method Mistral-7B Qwen2.5-1.5B Qwen2.5-7B DeepSeek-1.5B DeepSeek-7B Average
Qwen- PRM800K- 7B Optimal 53.9 64.2 70.5 57.4 57.1 60.6

BoN 47.6 56.7 64.0 43.1 45.2 51.3
MV 49.1 60.0 66.6 51.8 51.3 55.8
Vanilla WV 50.6 61.0 66.4 51.5 51.2 56.1

KDE WV 50.1 60.6 66.8 51.8 51.6 56.2
Linear WV 51.1 61.0 66.4 51.7 51.3 56.3
Logit WV 49.7 61.1 66.4 51.7 51.3 56.0

Qwen- PRM- 7B Optimal 56.8 67.7 74.5 66.4 63.6 65.8

BoN 51.8 62.3 69.3 61.0 59.6 60.8
MV 49.1 60.0 66.6 51.8 51.3 55.8
Vanilla WV 52.4 62.4 69.0 57.7 56.6 59.6

KDE WV 50.7 61.6 68.6 55.1 56.3 58.5
Linear WV 52.4 62.4 68.4 61.8 62.4 61.5
Logit WV 52.3 63.1 69.5 62.8 63.1 62.1

Llama3.1- Mistral- 8B Optimal 57.1 65.6 73.4 64.3 62.2 64.5

BoN 52.4 57.3 67.3 55.2 53.7 57.2
MV 49.1 60.0 66.6 51.8 51.3 55.8
Vanilla WV 51.8 61.7 68.3 54.7 54.4 58.2

KDE WV 51.6 61.6 67.5 55.1 57.1 58.6
Linear WV 53.1 62.2 68.2 60.1 60.3 60.8
Logit WV 53.7 62.4 69.0 60.1 60.7 61.2

Llama3.1- DS- 8B Optimal 56.4 65.7 73.0 64.2 62.0 64.2

BoN 49.7 58.6 67.5 57.6 55.7 57.8
MV 49.1 60.0 66.6 51.8 51.3 55.8
Vanilla WV 52.4 61.2 68.6 54.8 55.4 58.5

KDE WV 50.3 60.7 67.5 54.0 53.8 57.3
Linear WV 52.8 61.1 68.6 59.1 58.8 60.1
Logit WV 52.7 61.1 68.8 60.0 59.6 60.4

Skywork- PRM- 1.5B Optimal 55.9 72.0 74.1 66.0 68.3 67.3

BoN 52.2 68.9 71.4 62.2 65.2 64.0
MV 49.1 64.4 66.6 51.8 55.8 57.5
Vanilla WV 52.7 68.2 70.5 58.3 60.6 62.1

KDE WV 51.7 66.3 69.8 57.3 59.3 60.9
Linear WV 53.5 68.8 70.8 64.6 64.7 64.5
Logit WV 53.6 69.1 70.8 64.4 64.8 64.6

optimal per-question estimation on several questions. As shown in the left subplot of Figure 4, while our
estimation captures the dataset-wise PRM score weighting function, the optimal weighting function for each
individual question varies largely, suggesting a global scoring function is still suboptimal. We also examine
how accurate our estimation of the LLM reliability term qM is with Mean Absolute Error. As shown in the
right subplot of Figure 4, while compared to a fixed global LLM reliability, using calibrated PRM scores
to estimate this term effectively reduces the error, the error for most PRMs is still larger than 0.2, which
is far from negligible. This also explains the relatively low performance of KDE WV compared to the
parametric counterparts. In conclusion, accurately estimating either the PRM or the LLM part of the weight
requires nuanced estimation for individual questions, explaining why the non-parametric KDE estimation
underperforms the parametric ones. We find such per-question estimation inherently difficult in our attempts
to learn a meta model to predict per-question weighting functions, which struggles to fit and generalize.

How does calibration set size affect the performance? We rearrange the split of the MATH dataset to
reserve 5k questions as the test, and the rest as the pool of calibration data. As shown in the right subplot

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0
Logit Offset (b)

0.2

0.4

0.6

0.8
Va

lid
at

io
n

A
cc

ur
ac

y

LLM
Mistral-7B
Qwen2.5-1.5B
Qwen2.5-7B
DeepSeek-7B
DeepSeek-1.5B

1 0 1
Linear Offset (b)

0.2

0.4

0.6

0.8

Va
lid

at
io

n
A

cc
ur

ac
y

LLM
Mistral-7B
Qwen2.5-1.5B
Qwen2.5-7B
DeepSeek-7B
DeepSeek-1.5B

1000 2000
Calibration Set Size

0.60

0.61

0.62

Te
st

 A
cc

ur
ac

y
(a

t n
=3

2)

Method
KDE WV
Linear WV
Logit WV

Figure 3: Left and Middle: The grid search result of the offset parameter b for both Logit WV and Linear
WV, where the optimal value is marked with vertical lines. The consistently positive optimal value across
LLMs demonstrates the necessity of negative weights. Right: The performance of the calibration methods
when we scale the calibration set size. The performance can be further improved with larger calibration sets.

0.0 0.2 0.4 0.6 0.8 1.0
PRM Score

40

20

0

20

40

W
ei

gh
t

Dataset-wise
Per-question (Q 3)
Per-question (Q 9)
Per-question (Q 11)
Per-question (Q 19)
Per-question (Q 20)

5 10 15 20 25 30
Sample Size (n)

0.0

0.1

0.2

0.3

0.4

0.5
M

ea
n

A
bs

ol
ut

e
Er

ro
r

Estimator
Global
Qwen-PRM800K-7B
Qwen-PRM-7B
Llama3.1-Mistral-8B
Llama3.1-DS-8B
Skywork-PRM-7B
Skywork-PRM-1.5B
Shepherd-Mistral-7B

Figure 4: Left:The comparison of the dataset-wise estimated PRM score weighting function and the per-
question estimated optimal PRM score weighting function. A large variance among questions can be seen.
Right: The mean absolute error of estimated q̂M compared to the true qM .

of Figure 3, while the validation set used in the main experiments is relative small, the performances of the
calibration methods can be further enhanced if we scale the calibration set size to calibrate the weighting
function better.

6 CONCLUSION

We address the suboptimal use of Process Reward Models (PRMs) in Test-Time Scaling (TTS). Through
a theoretical MAP framework, we show that the optimal aggregation strategy is a weighted majority vote
combining signals from both the LLM and PRM. Empirically, we find these optimal weights are model-
dependent and, critically, assign large negative values to penalize low-quality responses—a powerful signal
neglected by standard methods. We propose simple calibration methods to learn these functions. Our cal-
ibrated weighted voting boosts TTS efficiency, achieving superior accuracy over baselines like Best-of-N
with approximately 37.1% and 21.3% computational cost. This work demonstrates that intelligent aggrega-
tion is a more efficient path to performance gains than simply scaling test-time compute.

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

REFERENCES

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Train-
ing verifiers to solve math word problems, 2021. URL https://arxiv.org/abs/2110.14168.
arXiv: 2110.14168 [cs.LG].

DeepSeek-AI. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning,
2025. URL https://arxiv.org/abs/2501.12948. eprint: 2501.12948.

Jujie He, Tianwen Wei, Rui Yan, Jiacai Liu, Chaojie Wang, Yimeng Gan, Shiwen Tu, Chris Yuhao Liu,
Liang Zeng, Xiaokun Wang, Boyang Wang, Yongcong Li, Fuxiang Zhang, Jiacheng Xu, Bo An, Yang
Liu, and Yahui Zhou. Skywork-o1 Open Series, November 2024. URL https://doi.org/10.
5281/zenodo.16998085. Version Number: 1.0.0.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. Measuring Mathematical Problem Solving With the MATH Dataset. NeurIPS, 2021.

Yuki Ichihara, Yuu Jinnai, Tetsuro Morimura, Kaito Ariu, Kenshi Abe, Mitsuki Sakamoto, and Eiji Uchibe.
Evaluation of Best-of-N Sampling Strategies for Language Model Alignment, February 2025. URL
http://arxiv.org/abs/2502.12668. arXiv:2502.12668 [cs].

Wendi Li and Yixuan Li. Process reward model with q-value rankings. In The thirteenth international
conference on learning representations, 2025. URL https://openreview.net/forum?id=
wQEdh2cgEk.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The twelfth interna-
tional conference on learning representations, 2024. URL https://openreview.net/forum?
id=v8L0pN6EOi.

Fan Liu, Wenshuo Chao, Naiqiang Tan, and Hao Liu. Bag of Tricks for Inference-time Computation of LLM
Reasoning, 2025. URL https://arxiv.org/abs/2502.07191. eprint: 2502.07191.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha
Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder, Katherine
Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-Refine: Iterative Refinement with
Self-Feedback, May 2023. URL http://arxiv.org/abs/2303.17651. arXiv:2303.17651 [cs].

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. Training
language models to follow instructions with human feedback. In Proceedings of the 36th international
conference on neural information processing systems, Nips ’22, Red Hook, NY, USA, 2022. Curran Asso-
ciates Inc. ISBN 978-1-71387-108-8. Number of pages: 15 Place: New Orleans, LA, USA tex.articleno:
2011.

Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling test-time compute optimally can
be more effective than scaling LLM parameters. In The thirteenth international conference on learning
representations, 2025. URL https://openreview.net/forum?id=4FWAwZtd2n.

Mingyang Song, Zhaochen Su, Xiaoye Qu, Jiawei Zhou, and Yu Cheng. PRMBench: A Fine-grained and
Challenging Benchmark for Process-Level Reward Models, 2025. URL https://arxiv.org/abs/
2501.03124. eprint: 2501.03124.

10

https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2501.12948
https://doi.org/10.5281/zenodo.16998085
https://doi.org/10.5281/zenodo.16998085
http://arxiv.org/abs/2502.12668
https://openreview.net/forum?id=wQEdh2cgEk
https://openreview.net/forum?id=wQEdh2cgEk
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://arxiv.org/abs/2502.07191
http://arxiv.org/abs/2303.17651
https://openreview.net/forum?id=4FWAwZtd2n
https://arxiv.org/abs/2501.03124
https://arxiv.org/abs/2501.03124

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

Amir Taubenfeld, Tom Sheffer, Eran Ofek, Amir Feder, Ariel Goldstein, Zorik Gekhman, and Gal Yona.
Confidence Improves Self-Consistency in LLMs. In Findings of the Association for Computational
Linguistics: ACL 2025, pp. 20090–20111, 2025. doi: 10.18653/v1/2025.findings-acl.1030. URL
http://arxiv.org/abs/2502.06233. arXiv:2502.06233 [cs].

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia Creswell,
Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and outcome-based feed-
back, 2022. URL https://arxiv.org/abs/2211.14275. arXiv: 2211.14275 [cs.LG].

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce LLMs step-by-step without human annotations. In Lun-Wei
Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd annual meeting of the asso-
ciation for computational linguistics (volume 1: Long papers), pp. 9426–9439, Bangkok, Thailand,
August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.510. URL
https://aclanthology.org/2024.acl-long.510/.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. In The
eleventh international conference on learning representations, 2023. URL https://openreview.
net/forum?id=1PL1NIMMrw.

Wei Xiong, Hanning Zhang, Nan Jiang, and Tong Zhang. An Implementation of Generative PRM, 2024.
URL https://github.com/RLHFlow/RLHF-Reward-Modeling. Publication Title: GitHub
repository.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong
Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu, Xingzhang Ren,
and Zhenru Zhang. Qwen2.5-Math Technical Report: Toward Mathematical Expert Model via Self-
Improvement. arXiv preprint arXiv:2409.12122, 2024.

Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang, Weixu Zhang, Wenyue Hua, Haolun Wu, Zhihan Guo,
Yufei Wang, Niklas Muennighoff, Irwin King, Xue Liu, and Chen Ma. A Survey on Test-Time Scaling
in Large Language Models: What, How, Where, and How Well?, May 2025a. URL http://arxiv.
org/abs/2503.24235. arXiv:2503.24235 [cs].

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu, Jingren
Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical reasoning,
2025b. URL https://arxiv.org/abs/2501.07301. arXiv: 2501.07301 [cs.CL].

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jingren
Zhou, and Junyang Lin. ProcessBench: Identifying process errors in mathematical reasoning, 2024. URL
https://arxiv.org/abs/2412.06559. arXiv: 2412.06559 [cs.AI].

11

http://arxiv.org/abs/2502.06233
https://arxiv.org/abs/2211.14275
https://aclanthology.org/2024.acl-long.510/
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://github.com/RLHFlow/RLHF-Reward-Modeling
http://arxiv.org/abs/2503.24235
http://arxiv.org/abs/2503.24235
https://arxiv.org/abs/2501.07301
https://arxiv.org/abs/2412.06559

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

A PROOFS

A.1 DERIVATION OF THEOREM 3.2

Our objective is to find the answer α̂ that maximizes the posterior probability P (αk|G,P,M, V). Assuming
a uniform prior over answers, this is equivalent to maximizing the log-likelihood, LL(αk). From the main
text, the log-likelihood under Assumption 3.1 is:

LL(αk) =

L∑
i=1

logP (pi|gi, αk, V) +

L∑
i=1

logP (gi|αk,M) (3)

Let ci ∈ {0, 1} be a binary variable indicating whether generation gi is correct (ci = 1) or incorrect (ci =
0). Under the hypothesis that the true answer is αk, the correctness of gi is determined by its answer si.
Specifically, ci = 1 if si = αk, and ci = 0 if si ̸= αk.

We can now analyze the two components of the log-likelihood separately.

Part 1: The PRM Signal Term

The first sum can be split based on whether a generation’s answer si matches the candidate answer αk:

L∑
i=1

logP (pi|gi, αk, V) =
∑

i:si=αk

logP (pi|gi, ci = 1, V) +
∑

i:si ̸=αk

logP (pi|gi, ci = 0, V) (4)

To isolate the terms relevant to the maximization over αk, we rewrite the second sum by noting that∑
i:si ̸=αk

(·) =
∑L

i=1(·)−
∑

i:si=αk
(·):

=
∑

i:si=αk

logP (pi|gi, ci = 1, V) +

L∑
i=1

logP (pi|gi, ci = 0, V)−
∑

i:si=αk

logP (pi|gi, ci = 0, V)

=
∑

i:si=αk

(logP (pi|gi, ci = 1, V)− logP (pi|gi, ci = 0, V)) +

L∑
i=1

logP (pi|gi, ci = 0, V) (5)

The second term,
∑L

i=1 logP (pi|gi, ci = 0, V), is a sum over all L generations. Since this term does not
depend on the choice of the candidate answer αk, it is a constant with respect to our maximization problem
and can be dropped. This leaves us with the αk-dependent part of the PRM signal:

PRM Term(αk) =
∑

i:si=αk

log
P (pi|gi, ci = 1, V)

P (pi|gi, ci = 0, V)
(6)

Part 2: The LLM Signal Term

Next, we analyze the LLM term, simplifying P (gi|αk,M) to P (si|αk,M). We use the model’s probabili-
ties: P (si = αk|αk,M) = qM and, for any sj ̸= αk, P (sj |αk,M) = (1 − qM)/(m − 1). Let Nk be the

12

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

count of generations where the answer is αk, i.e., Nk = |{i|si = αk}|.
L∑

i=1

logP (si|αk,M) =
∑

i:si=αk

logP (si = αk|αk,M) +
∑

i:si ̸=αk

logP (si ̸= αk|αk,M)

= Nk log qM + (L−Nk) log
1− qM
m− 1

= Nk log qM + L log
1− qM
m− 1

−Nk log
1− qM
m− 1

= Nk

(
log qM − log

1− qM
m− 1

)
+ L log

1− qM
m− 1

(7)

Similar to the PRM term, the second part, L log 1−qM
m−1 , does not depend on the specific candidate answer αk

(as qM , L,m are fixed for a given question) and can be dropped from the objective function. The remaining
term is:

LLM Term(αk) = Nk log
qM · (m− 1)

1− qM
=

∑
i:si=αk

log
qM · (m− 1)

1− qM
(8)

Part 3: Combining the Terms

Maximizing LL(αk) is equivalent to maximizing the sum of the αk-dependent terms we derived. Let this
new objective function be Score(αk):

Score(αk) = PRM Term(αk) + LLM Term(αk)

=
∑

i:si=αk

log
P (pi|ci = 1, V)

P (pi|ci = 0, V)
+

∑
i:si=αk

log
qM · (m− 1)

1− qM

=
∑

i:si=αk

(
log

P (pi|ci = 1, V)

P (pi|ci = 0, V)
+ log

qM · (m− 1)

1− qM

)
(9)

This is a weighted majority vote, where the final score for an answer αk is the sum of weights wi for all
generations gi that produced that answer. The weight for each generation is:

wi = log
P (pi|ci = 1, V)

P (pi|ci = 0, V)︸ ︷︷ ︸
PRM Signal Term

+ log
qM · (m− 1)

1− qM︸ ︷︷ ︸
LLM Signal Term

This completes the proof.

B ADDITIONAL EXPERIMENT RESULTS

B.1 DETAILED RESULTS ON THE MATH500 DATASET

We show the detailed results on each LLM-PRM pair on the MATH500 dataset in Table 2.

C LIMITATIONS AND FUTURE WORK

Limitations. Our work, while demonstrating significant gains, has several limitations. First, our theoret-
ical framework relies on conditional independence assumptions which are simplifications of the complex

13

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

Table 2: Accuracy of Aggregation Methods at Sample Size n=112

PRM Method Mistral-7B Qwen2.5-1.5B Qwen2.5-7B DeepSeek-1.5B DeepSeek-7B Average
Qwen- PRM800K- 7B Optimal 37.3 68.0 69.7 58.3 62.7 59.2

BoN 33.0 57.0 62.0 40.3 49.0 48.3
MV 29.3 61.3 66.0 52.7 57.0 53.3
Vanilla WV 31.7 63.7 65.7 53.0 56.7 54.1

KDE WV 30.0 62.0 66.0 53.0 57.0 53.6
Linear WV 34.3 63.7 66.3 52.7 57.0 54.8
Logit WV 32.0 63.3 66.3 52.7 56.7 54.2

Qwen- PRM- 7B Optimal 44.3 70.3 73.0 67.7 67.7 64.6

BoN 40.0 63.7 67.3 59.7 65.0 59.1
MV 29.3 61.3 66.0 52.7 57.0 53.3
Vanilla WV 35.3 64.0 67.3 57.7 62.3 57.3

KDE WV 34.3 63.7 67.0 56.3 62.3 56.7
Linear WV 36.0 64.0 68.0 63.3 65.7 59.4
Logit WV 38.0 64.0 68.3 63.3 65.3 59.8

Llama3.1- Mistral- 8B Optimal 44.0 65.3 69.3 63.0 66.0 61.5

BoN 32.7 50.0 59.7 49.3 55.3 49.4
MV 29.3 61.3 66.0 52.7 57.0 53.3
Vanilla WV 30.0 60.0 67.0 53.7 58.7 53.9

KDE WV 29.0 60.7 66.0 54.3 57.7 53.5
Linear WV 31.3 60.0 66.0 56.0 60.0 54.7
Logit WV 31.7 60.3 65.7 56.0 59.7 54.7

Llama3.1- DS- 8B Optimal 39.0 67.7 69.7 61.3 66.0 60.7

BoN 27.0 51.0 62.3 51.3 59.0 50.1
MV 29.3 61.3 66.0 52.7 57.0 53.3
Vanilla WV 30.0 59.3 66.3 55.3 60.0 54.2

KDE WV 28.7 61.3 66.0 55.3 59.7 54.2
Linear WV 29.3 61.0 66.3 55.7 62.0 54.9
Logit WV 29.3 59.7 66.3 57.7 61.3 54.9

Skywork- PRM- 1.5B Optimal 40.7 66.3 71.0 63.3 66.3 61.5

BoN 38.3 56.7 63.3 54.0 58.7 54.2
MV 29.3 61.3 66.0 52.7 57.0 53.3
Vanilla WV 35.7 61.7 68.3 58.0 60.3 56.8

KDE WV 32.7 61.3 67.3 55.7 58.0 55.0
Linear WV 38.3 61.3 68.0 60.7 61.7 58.0
Logit WV 37.7 61.7 66.0 61.0 61.3 57.5

dependencies between generated responses. Second, our proposed calibration methods learn a single, global
weighting function. As our analysis in Section 4.3 shows, the truly optimal function varies on a per-question
basis, and our attempts to learn a meta-model to predict these per-question functions were unsuccessful,
indicating this is a non-trivial challenge. Finally, while effective, our calibration methods require a small,
one-time labeled dataset, and our evaluation has been focused on the domain of mathematical reasoning.

Future Work. These limitations point to several promising avenues for future research. The primary chal-
lenge is to bridge the gap between global and per-question optimal weighting. Developing methods that
can adapt the weighting function at test time based on question-specific features or initial response char-
acteristics could yield further performance gains. Another direction is to explore the generalization of our
calibrated aggregation framework to other domains beyond mathematics and to other TTS paradigms, such
as sequential refinement or tree-of-thoughts search. Lastly, investigating semi-supervised or unsupervised
calibration techniques could reduce the reliance on labeled data, making the approach more accessible and
scalable.

14

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

Ethics Statement. This research aims to improve the computational efficiency of large language models,
a goal with positive ethical implications. By achieving higher performance with less computational cost,
our methods can contribute to reducing the energy consumption and environmental impact associated with
deploying state-of-the-art AI systems. The datasets and models used in this work are standard, publicly
available benchmarks and open-source models widely used by the research community. Our work does
not involve human subjects, nor does it introduce new capabilities that would increase the risk of misuse
of language models. On the contrary, by developing a more nuanced understanding of how to verify and
aggregate machine-generated reasoning, this research could contribute to making LLMs more reliable and
less prone to generating confident but incorrect outputs. All authors have read and adhered to the ICLR Code
of Ethics.

Reproducibility Statement. We are committed to ensuring the reproducibility of our work. All LLMs and
PRMs used are publicly available models, and we provide details of these models in Section 5.1. The ex-
periments were conducted on the MATH dataset, a standard public benchmark. Our data splitting procedure
for calibration and testing is described in Section 5.1. The full theoretical derivation for Theorem 3.2 is
provided in Appendix A.1. Key implementation details for our proposed calibration methods, including the
KDE procedure and the grid search ranges for parametric models, are described in Section 4.

LLM Usage. We use LLMs to polish the writing of this paper, including identifying spelling, grammar
mistakes. All suggestions from the LLM are verified by the authors before being incorporated into the
paper.

15

	Introduction
	Related work
	Optimal Response Aggregation
	Theoretical Analysis of Optimal Response Aggregation
	Empirical Analysis of the Optimal Weighting Function

	Practical Calibration Methods
	Non-parametric Weighting functions
	Parametric Weighting Functions

	Experiments
	Experimental Setup
	Main Results
	Empirical analysis

	Conclusion
	Proofs
	Derivation of Theorem 3.2

	Additional experiment results
	Detailed results on the MATH500 dataset

	Limitations and Future Work

