
Specifying Goals to Deep Neural Networks with Answer Set Programming

Primary Keywords: Learning

Abstract
Recently, methods such as DeepCubeA have used deep re-
inforcement learning to learn domain-specific heuristic func-
tions in a largely domain-independent fashion. However, such
methods either assume a predetermined goal or assume that
goals will be given as fully-specified states. Therefore, spec-5

ifying a set of goal states is not possible for learned heuristic
functions while, on the other hand, the Planning Domain Def-
inition Language (PDDL) allows for the specification of goal
states using ground atoms in first-order logic. To address this
issue, we introduce a method of training a heuristic function10

that estimates the distance between a given state and a set
of goal states represented as a set of ground atoms in first-
order logic. Furthermore, to allow for more expressive goal
specification, we introduce techniques for specifying goals
as answer set programs and using answer set solvers to dis-15

cover sets of ground atoms that meet the specified goals. In
our experiments with the Rubik’s cube, sliding tile puzzles,
and Sokoban, we show that we can specify and reach differ-
ent goals without any need to re-train the heuristic function.

Introduction20

Deep reinforcement learning algorithms (Sutton and Barto
2018), such as DeepCubeA (McAleer et al. 2019;
Agostinelli et al. 2019) and Retro* (Chen et al. 2020), have
successfully trained deep neural networks (DNNs) (Schmid-
huber 2015) to be informative heuristic functions. Com-25

bined with search methods such as A* search (Hart, Nils-
son, and Raphael 1968), Q* search (Agostinelli et al. 2021),
or Monte Carlo Tree Search (Kocsis and Szepesvári 2006),
these learned heuristic functions can solve puzzles, perform
retrosynthesis, as well as for compile quantum algorithms30

(Zhang et al. 2020). However, these DNNs do not generalize
across goals where, in this context, a goal is a set of states in
the state space that are considered goal states. Instead, these
DNNs are either trained for a pre-determined goal or use
methods such as hindsight experience replay (Andrychowicz35

et al. 2017) to generalize across pairs of start and goal states.
As a result, specifying a goal to a DNN requires either train-
ing a DNN for that specific goal or obtaining the heuristic
values for some representative set of goal states and taking
the minimum heuristic value. This computationally burden-40

some process significantly reduces the practicality of DNNs
for solving planning problems with dynamic goals. Further-
more, if one can only describe properties that a goal state

should or should not have, but does not know what states
actually meet this criteria, obtaining a representative set of 45

goal states is not possible.

To train DNNs to estimate the distance between a state
and a set of goal states, we introduce DeepCubeAg , a deep
reinforcement learning and search method that builds on
DeepCubeA (McAleer et al. 2019; Agostinelli et al. 2019) 50

and hindsight experience replay (Andrychowicz et al. 2017)
to learn heuristic functions that generalize across states and
sets of goal states. Training data in the form of pairs of states
and goals is obtained by starting from a given start state and
taking a random walk to obtain a goal state. Given a pro- 55

cess to convert a state to a set of ground atoms that repre-
sents what holds true in that state, we convert the obtained
goal state to a set of ground atoms and then obtain a set of
goal states by taking a subset of the set of ground atoms. We
then train a heuristic function with deep approximate value 60

iteration (DAVI) (Bertsekas and Tsitsiklis 1996; Agostinelli
et al. 2019) to map states and sets of goal states to an esti-
mated cost-to-go. When solving problem instances, we use
the trained heuristic function with a batched version of A*
search. We evaluate this approach on the Rubik’s cube, 15- 65

puzzle, 24-puzzle, and Sokoban (Dor and Zwick 1999) and
results show that DeepCubeAg is able to find solutions for
the vast majority of test instances and does so better than
the domain-independent fast downward planner (Helmert
2006). 70

To allow for expressive goal specification, we build on
the fact that goals are represented as sets of ground atoms.
Therefore, to specify a goal, any specification language that
can be translated to a set of ground atoms can be used. We
choose answer set programming (ASP) (Brewka, Eiter, and 75

Truszczyński 2011), a form of first-order logic program-
ming, as the specification language because one can obtain
stable models (Gelfond and Lifschitz 1988), also known as
answer sets, for a given specification (answer set program)
where each stable model is a set of ground atoms. Results 80

show that diverse goals can be specified with simple answer
set programs and reached using the learned heuristic func-
tion and search. An overview of our approach is described
in Figure 1.



Preliminaries85

Our method builds on the DeepCubeA algorithm
(Agostinelli et al. 2019) that was used to train a DNN
as a heuristic function using deep approximate value
iteration (Puterman and Shin 1978; Bertsekas and Tsitsiklis
1996). This heuristic function was then used in a batched90

version of weighted A* search (Pohl 1970) to solve puzzles
such as the Rubik’s cube and Sokoban. For specifying
goals, we use ASP. In this section, we will describe the
background of deep approximate value iteration as well as
the background of ASP. We also describe the basics of the95

Rubik’s cube.

Deep Approximate Value Iteration
In the context of deterministic, finite-horizon, shortest path
problems, approximate value iteration is a reinforcement
learning (Sutton and Barto 2018) algorithm to learn a func-100

tion, h, that maps a state s to the estimated cost-to-go. The
optimal heuristic function, h∗, returns the cost of a short-
est path. The value iteration algorithm (Puterman and Shin
1978) takes a given h and updates it to h′ according to Equa-
tion 1105

h′(s) = min
a

(ga(s, s′) + h(s′)) (1)

where ga(s, s′) is the cost to transition from s to state s′
using action a and s′ is the state resulting from taking action
a in state s.

In the tabular setting, value iteration has been shown
to converge to h∗. However, for domains with large state110

spaces, such as the Rubik’s cube, we do not have enough
memory, or time, to do tabular value iteration. Therefore,
we represent h with a parameterized function hφ with pa-
rameters φ. The parameters of the function are trained to
minimize the loss function in Equation 2115

L(φ) = (min
a
ga(s, s′) + hφ−(s′)− hφ(s))2 (2)

where φ− are parameters of a target function that remains
fixed for a certain number of training iterations and is period-
ically updated to φ. This has been shown to make the train-
ing process more stable because the target remains station-
ary for extended periods of time (Mnih et al. 2015). When120

hφ is a deep neural network, this approach is referred to as
deep approximate value iteration (DAVI).

Answer Set Programming
Answer set programming (ASP) (Brewka, Eiter, and
Truszczyński 2011) is a form of logic programming that is125

built on the stable model semantics (Gelfond and Lifschitz
1988) which describes when a set of ground atoms, M , is
a stable model, also known as an answer set, of a program,
Π. Program Π is restricted to be a set of rules in first-order
logic of the form:130

A← B1, ..., Bm,¬C1, ...,¬Cn (3)

whereA,Bi, andCi are atoms in first-order logic.A is in the
“head”, or the consequent, and Bi and Ci are in the “body”,

or the antecedent. In this notation, ¬ represents negation, a
comma represents conjunction, and ← represents implica-
tion. Since all literals in the body are connected with con- 135

junction, the body is true if and only if all literals in the body
are true. Since the head has just has one atom, the head is
true if and only if A is true. Since the head and the body are
connected by implication, the entire logical sentence is true
if and only if one of the two following conditions are met: 1) 140

the body is false; 2) the body is true and the head is true. If
there are no literals in the body (also known as “facts”), then
semantics dictate that the body is always true; therefore, the
head must also always be true. If there are no atoms in the
head (also known as “headless” rules), then semantics dic- 145

tate that the head is always false; therefore, the body must
also always be false. In practice, headless rules are used as
constraints and are implicitly represented with a literal,A, in
the head and a literal, ¬A, in the body that is in conjunction
with the rest of the body literals. Therefore, headless rules 150

are actually rules with negation in the body.

To determine if M is a stable model of Π, we first must
consider the grounded program of Π, which we will de-
note Πg . To obtain Πg , for all rules, R, in Π, every possi-
ble grounded version of R, Rg , is obtained and added to Πg . 155

A ground rule, Rg , is obtained from a rule, R, by substi-
tuting all variables in R for a ground term appearing in Π.
If there are no rules in Πg with negation, then there is one
unique minimal stable model of Πg (Van Emden and Kowal-
ski 1976; Gelfond and Lifschitz 1988) which corresponds to 160

all atoms that are derivable from Πg . An atom is derivable if
it is in the head of a rule with a body that is true. If there are
rules with negation in Πg , then we can check if a given set of
ground atoms, M , is a stable model of Πg by first comput-
ing the reduct (Marek and Truszczyński 1999) of Πg with 165

respect to M , which we will denote ΠM
g . ΠM

g is obtained
by starting with Πg and deleting all rules that have a nega-
tive literal, ¬Ci, in the body if Ci is in M and then delet-
ing all negative literals in the body of the remaining rules.
ΠM
g is now a negation free program, which means that it 170

has one unique minimal stable model. If this stable model of
ΠM
g is equivalent to M , then M is a stable model of Π. It

should be noted that Π can have multiple stable models if it
contains negation. Furthermore, some ASP solvers, such as
clingo (Gebser et al. 2022, 2014), allow for the use of dis- 175

junction, which can result in more than one stable model,
even if negation is not present.

In ASP, choice rules may also be employed. Choice rules
have a conjunction of literals in the body and a set of ground
atoms in the head. If the body is true, then zero or more 180

ground atoms in the head may be added to the stable model.
For example for the following choice rule, if the body is
true, then no ground atoms in the head may be added, one
of the ground atoms in the head may be added, or both of
the ground atoms in the head may be added (‘:-’ indicates 185

implication):

{a1(c,d); a2(d,c)} :- B_1, B_2, B_3



The Rubik’s Cube
The Rubik’s cube is a three dimensional cube where each
face of the cube consists of a 3 x 3 grid of stickers, which 54190

stickers in total. Each sticker can be one of six colors: white,
yellow, orange, red, blue, or green. These stickers combine
where the faces intersect to form cubelets, where center
cubelets have 1 sticker, edge cubelets have 2 stickers, and
corner cubelets have 3 stickers. There are 6 center cubelets,195

12 edge cubelets, and 8 corner cubelets. While the canonical
goal state for the Rubik’s cube is one where all stickers on
each face have the same color, there are many other patterns
that interest the Rubik’s cube community (Ferenc 2013).

Methods200

Learning Heuristic Functions for Goals
To learn a function that estimates the distance between a
state, s, and a goal, G, we must explicitly add the speci-
fied goal as an input to the heuristic function. Therefore, the
heuristic function now becomes h(s,G), that represents the205

cost to go from s to a closest state in G when taking action
a. We assume a function G(s) that converts states to a set of
ground atoms and some process to convert G to a represen-
tation suitable for the DNN. To train the DNN, we must first
have the ability to sample state and goal pairs. From these210

pairs, we can then train the DNN using DAVI.
To sample state and goal pairs, the agent starts at a ran-

domly generated state, s0. The agent then takes t actions,
where t is drawn from a random uniform distribution be-
tween 0 and a given number T . Each action is sampled ac-215

cording to a random uniform distribution1. The last observed
state, st, is then selected to create a goal, G, by first obtaining
G(st). Since any G(st) that is a superset of a goal, G, also
represents a goal, we can simply randomly remove atoms
from G(st) to create G such that G ⊆ G(st) and; therefore,220

st is a member of the set of goal states. The loss for the
DNN is computed according to Equation 4. The parameters
of the target network, φ−, are periodically updated to φ. This
training procedure is outline in Figure 1.

L(φ) = (min
a
ga(s, s′) + hφ−(s′,G)− hφ(s,G))2 (4)

Specifying Goals with Answer Set Programming225

A logic program Π used to specify a goal contains back-
ground knowledge, B, which is a set of rules that describes
relevant domain knowledge, a goal specification, H , which
is a set of rules with the atom goal in the head, a head-
less rule, :- not goal, that ensures goal must be true230

in all stable models, and a choice rule with an empty body
that contains the set of all possible ground atoms, K, that
can be used to represent a set of states. Given a stable model
M of Π, the subset of M in K, MK , represents a set of
states. When obtaining a stable model, we would like to find235

a minimal MK to ensure the stable model is as general as
possible. By minimal, we mean that removing atoms from

1Future work could use intrinsic motivation (Barto et al. 2004)
to encourage the exploration of diverse states.

MK will result in goal no longer being true. To accom-
plish this, for an MK obtained from an answer set solver,
we pick a ground atom, a, in MK and remove it. We check 240

if goal can still be true for MK \ {a}. If so, we set MK to
MK \ {a} and repeat this process. If not, we choose another
atom to remove. If we cannot remove any atoms and ensure
goal is also true, then we terminate.

We will now formally define what a goal state and goal 245

model is and how this relates to negation as failure.

Definition 0.1 (Goal state). Given a program Π, a state, s,
is a goal state if and only if G(s) is a subset of some stable
model of Π.

Definition 0.2 (Goal model). Given a program Π, a set of 250

ground atoms, M , is a goal model if and only if M is a
stable model of Π and for every state, s, such that G(s) is a
superset of MK , s is a goal state.

If M is indeed a goal model, then MK represents a set
of goal states. However, it is not the case that all stable 255

models of Π are goal models since, in general, logic pro-
grams in ASP can exhibit non-monotonic behavior due to
the closed world assumption. That is, a logic program is
non-monotonic if some atoms that were previously derived
can be retracted by adding new knowledge. To handle this, 260

we will combine sampling and iteratively looking for larger
models in an attempt to reduce the number of stable mod-
els that are not goal models. We will use the clingo (Gebser
et al. 2014, 2022) ASP software package to specify goals.

Reaching Goals 265

Given a DNN trained to estimate the distance between a state
and a goal, where a goal is represented as a set of ground
atoms, as well as a specification in the form of a logic pro-
gram, Π, we can now describe how goals are reached. We
first start by finding a stable model M of Π. Since M is not 270

guaranteed to be a goal model, it is possible that the terminal
state along some path toM is not a goal state. Therefore, we
will use the DNN with A* search to find one or more paths to
M . If we find a terminal state that is a goal state, then we can
return the path to that state. If we do not find any terminal 275

state, then the stable model may represent a set of unreach-
able states (see the Future Work Section) and we sample a
new stable model. Otherwise, if no terminal states are goal
states, we will refine M by searching for a stable model that
contains a strict superset of MK . This corresponds to find- 280

ing a new stable model, M ′, where M ′K represents a subset
of the states represented by MK . To accomplish this, each
atom in MK is added to Π as a fact and a new stable model,
M ′, is found with the constraint that the size ofM ′K must be
bigger than MK . This process is outlined in Algorithm 1. 285

Similar to previous work (Agostinelli et al. 2019, 2021),
to take advantage of the parallelism of graphics processing
units (GPUs), we do a batched version of A* search that
removes multiple nodes from the priority queue at each iter-
ation. 290



Algorithm 1: Reaching a Specified Goal

Input: Program Π, DNN hφ, start state s0, number of it-
erations N
for i in range(0, N) do

Sample stable model M of Π
while M is not None do
sg = A*Search(s0, M , hφ)
if sg is not None andG(sg) is a subset of some stable
model of Π then

return sg
else if sg is None then

Sample a new stable model M of Π
else

Find M ′ such that M ′ is a stable model of Π and
MK ⊂M ′K
M = M ′

end if
end while

end for
return failure

DNN

𝑠! 𝑠"𝑎! 𝑎" … 𝑠#

State to ground atoms
To DNN representation

𝒢ℎ$(𝑠!, 𝒢)

Specification 
Language

Human Input

Specification to 
ground atoms

Reinforcement 
Learning Update

𝐺(𝑠#)

Subsample

Training steps

Both

Specification steps

Figure 1: The figure outlines our training and goal specifica-
tion procedure.

Experiments
Representation and Training
To specify a set of states for the Rubik’s cube, we use a pred-
icate, at_idx, of arity 2, that holds when a given color is
at a given index. For example, at_idx(red,12) holds if295

a red sticker is at index 12 on the Rubik’s cube. To repre-
sent a set of these ground atoms to the DNN, we first use
a vector of length 54 to represent each sticker. We then set
colors values of 0 through 5 based on the at_idx predi-
cate. Unspecified indices in the vector are set to 6. We then300

use a one-hot representation of this vector as the input to the
DNN.

To specify a set of states for the sliding tile puzzles, we
use a predicate at_idx, of arity 3, that holds when a given
tile is at a given x and y coordinate. To representation given305

to the DNN is a one-hot vector of tiles where there is a spe-

cial tile for those whose position is unspecified. To specify
a set of states for Sokoban, we use the predicates agent,
box, and wall of arity 3, which holds true if a given agent,
box, or wall is at a given x and y coordinate. The representa- 310

tion given to the DNN is three binary matrices that represent
the locations of the specified agent, boxes, and walls.

The architecture of the DNN and the optimization proce-
dure is the same as that described in Agostinelli et al. (2019),
with the exception that the parameters of the target network 315

are updated based on a test set instead of a training loss.
Specifically, we generate a test set on which we periodically
test the greedy policy and an update is done when the num-
ber of states solved by the greedy policy increases. To ran-
domly generate start states for the Rubik’s cube, for each 320

state, we start from the canonical goal state and randomly
take between 100 and 200 actions. To generate start states
for the sliding tile puzzle, we create random permutations
and check for validity with parity. To generate start states for
Sokoban, we start from a provided 900,000 training states 325

(DeepMind 2018) and take a random walk with a length be-
tween 0 and 30. We set the maximum number of actions to
take from the start state to generate goal states, T , to 30, for
the Rubik’s cube and 1,000 for the 15-puzzle, 24-puzzle, and
Sokoban. We train and test using two NVIDIA Tesla V100 330

GPUs and 48 2.4 GHz Intel Xeon Platinum CPUs. Training
is done with a batch size of 10,000 for 2 million iterations
the Rubik’s cube and 15-puzzle, four million iterations for
the 24-puzzle, and one million iterations for Sokoban.

Specifying Goals with Sets of Ground Atoms 335

To test the ability of DeepCubeAg to reach specified goals,
we use the test states from Agostinelli et al. (2019), which
contains 1,000 randomly generated states for the Rubik’s
cube, 500 randomly generated states for the 15-puzzle
and 24-puzzle, and 1,000 randomly generated states for 340

Sokoban. We use pattern databases (Culberson and Scha-
effer 1998) to validate the cost of a shortest path. For the
Rubik’s cube, we use a pattern database that takes advan-
tage of domain-specific mathematical group properties of
the Rubik’s cube (Rokicki 2016, 2010). We are using the 345

12 atomic actions for the Rubik’s cube, so the maximum
cost-to-go is 26. For the sliding tile puzzles, we use additive
pattern database heuristics described in (Felner, Korf, and
Hanan 2004).

For the test states for Rubik’s cube and sliding tile puz- 350

zles, the goal is always the same. Therefore, we randomly
generate 500 pairs of start and goal states by generating
start states and taking a random walk with 1,000 to 10,000
steps, and using a random subset of the ground atoms ob-
tained from the final state in the random walk to represent 355

the goal. We compare DeepCubeAg to DeepCubeA, and the
fast downward planning system (Helmert 2006) with the
goal count heuristic, fast forward heuristic, and the causal
graph heuristic. The PDDL domain files used can be found
in the Supplementary Material. 360

For all test examples, we give each solver 200 seconds
to solve them. DeepCubeAg is implemented in Python and
uses two NVIDIA Tesla V100 GPUs for computing the
heuristic function and a single 2.4 GHz Intel Xeon Platinum



(a) Cross (b) X (c) Cup (d) Spot

Figure 2: Examples of patterns that are combined to create
goals.

CPUs, otherwise. Batch A* search is performed with a batch365

size of 10,000 for the Rubik’s cube, 1,000 for the sliding tile
puzzles, and 100 for Sokoban. Results are shown in Table
1. The results show that DeepCubeAg consistently outper-
forms the fast downward planning system in terms of the
percentage of states that are solved. DeepCubeAg solves ei-370

ther 100% of states or close to 100% of states. In the sin-
gle domain where the fast downward planner solved 100%
of test cases, Sokoban, DeepCubeAg also solved 100% of
test cases while also finding shorter paths. In cases such as
the Rubik’s cube and 24-puzzle for the canonical goal states,375

DeepCubeAg solves 100% of test states while the fast down-
ward planner solves between 0% and 1.1%.

Specifying Goals with Answer Set Programming
Rubik’s Cube We define colors, cubelets, and what color
stickers the cubelets have. We also define directions (clock-380

wise, counterclockwise, and opposite), faces, their colors
(the same as the center cubelet), and their relation to one an-
other (for example, the blue face is a clockwise turn away
from the orange face with respect to the white face). We
also describe what it means for a cubelet to have a sticker385

on a face as well as for a cubelet to be “in place” (all col-
ors matching the center cubelet). We add constraints to the
program to prune stable models that represent impossible
states. These constraints include saying that different stick-
ers from the same cubelet cannot be on the same face or390

opposite faces as well as saying that a cubelet cannot have a
sticker on more than one face. The complete answer set pro-
gram defining this is shown in the Supplementary Material.

To test our method, we draw from Ferenc (2013) to come
up with goals that combine different Rubik’s cube patterns395

shown in Figure 2. We also test our method with the canon-
ical solved state for the Rubik’s cube where all faces have a
uniform color. Given the background knowledge, many pat-
terns only require a few lines of code, as shown in the Sup-
plementary Material. Note that the training procedure is not400

told of these patterns and is not aware that these patterns will
be used for testing.

(a) Example 1 (b) Example 2

Figure 3: Reached goal of having a cross on all 6 faces where
the center cubelet and cross are the same color.

(a) Example 1 (b) Example 2

Figure 4: Reached goal of having cups on red, green, blue,
and orange faces.

(a) Example 1 (b) Example 2

Figure 5: Reached goal of having a cup adjacent to a spot.

(a) Example 1 (b) Example 2

Figure 6: Reached goal of having two checkerboards on op-
posite faces with all of the other faces the same.

In addition to the canonical goal, we specify four other
goals: (1) all faces have a cross where the cross is the same
color as the center piece; (2) the red, green, blue, and orange 405

faces have a cup on them (3) there is a spot adjacent to a
cup with the opening of the cup facing the spot; (4) there are
two checkerboard patterns (a cross combined with an X) on
opposite faces and all other faces have uniform color.

Given a logic program, we use clingo to find stable mod- 410

els. We sample 100 randomly generated start states and use
batch weighted A* search to find a path from these start
states to a goal state. We use a batch size of 10,000 and a
weight of 0.6 when doing batch weighted A* search. Each
randomly generated start state is a given a budget of 50 iter- 415

ations. If a goal is not found in that time, then a new stable
model is generated. Visualizations of reached goals for the
four non-canonical goals are shown in Figures 3, 4, 5, and 6.
A table summarizing the time it takes to find stable models,
solve all 100 start states, as well as the average path cost is 420

shown in Table 2.

Sokoban We also test our method on the Sokoban do-
main. This domain presents a unique challenge because the
start state determines the ground atoms that will be present
in a goal state. In particular, in the Sokoban domain, the 425

walls cannot be modified; therefore, the specification of a
goal must also take this into account. To address this, we
add the location of the walls to the specification. The given
background knowledge includes the dimensions of the grid,
the relations of coordinates in terms of up, down, left, and 430

right, what it means for a box to be immovable, what it
means for a box to be at the edge of the grid, as well as



Puzzle Solver Len % Solved % Opt Nodes Secs Nodes/Sec

RC (canon)

PDBs+ 20.67 100.00% 100.0% 2.05E+06 2.20 1.79E+06
DeepCubeA 21.50 100.00% 60.3% 6.62E+06 24.22 2.90E+05
DeepCubeAg 23.00 100.00% 17.80% 2.76E+06 51.08 5.40E+04
FastDown (GC) - 0.00% 0.0% - - -
FastDown (FF) - 0.00% 0.0% - - -
FastDown (CG) - 0.00% 0.0% - - -

RC (rand)

DeepCubeAg 15.44 97.60% - 1.92E+06 34.32 5.07E+04
FastDown (GC) 7.18 32.80% - 2.67E+06 13.79 1.41E+05
FastDown (FF) 6.49 31.20% - 4.87E+05 13.83 2.93E+04
FastDown (CG) 7.85 33.80% - 1.12E+06 11.62 5.81E+04

15-P (canon)

PDBs 52.02 100.00% 100.0% 3.22E+04 0.002 1.45E+07
DeepCubeA 52.03 100.00% 99.4% 3.85E+06 10.28 3.93E+05
DeepCubeAg 52.02 100.00% 100.0% 1.81E+05 2.65 6.81E+04
FastDown (GC) 36.75 0.80% 0.80% 9.05E+07 102.11 8.66E+05
FastDown (FF) 52.75 80.80% 24.80% 2.92E+06 42.11 6.93E+04
FastDown (CG) 41.95 4.40% 1.20% 2.00E+07 80.58 2.47E+05

15-P (rand)

DeepCubeAg 33.98 100.00% - 1.11E+05 2.39 6.07E+04
FastDown (GC) 14.92 38.00% - 1.61E+07 18.77 5.46E+05
FastDown (FF) 32.66 89.20% - 1.24E+06 17.39 5.65E+04
FastDown (CG) 20.45 51.20% - 3.90E+06 21.41 1.20E+05

24-P (canon)

PDBs 89.41 100.00% 100.00% 8.19E+10 4239.54 1.91E+07
DeepCubeA 89.49 100.00% 96.98% 6.44E+06 19.33 3.34E+05
DeepCubeAg 90.52 100.00% 55.44% 3.38E+05 6.08 6.36E+04
FastDown (GC) - 0.00% 0.00% - - -
FastDown (FF) 81.00 1.01% 0.40% 2.68E+06 89.84 2.91E+04
FastDown (CG) - 0.00% 0.00% - - -

24-P (rand)

DeepCubeAg 66.29 99.40% - 2.49E+05 8.55 5.85E+04
FastDown (GC) 9.86 10.00% - 9.54E+06 11.88 4.27E+05
FastDown (FF) 26.35 26.00% - 5.99E+05 19.57 2.41E+04
FastDown (CG) 13.75 12.60% - 1.42E+06 14.42 6.85E+04

Sokoban

DeepCubeA 32.88 100.00% - 5.01E+03 2.71 1.84E+03
DeepCubeAg 32.06 100.00% - 1.77E+04 0.67 2.60E+04
FastDown (GC) 31.94 99.80% - 3.17E+06 5.93 5.85E+05
FastDown (FF) 33.15 100.00% - 2.92E+04 0.32 7.49E+04
FastDown (CG) 33.12 100.00% - 4.43E+04 0.51 7.25E+04

Table 1: Comparison of DeepCubeAg with optimal solvers based on pattern databases (PDBs) that exploit domain-specific
information and the domain-independent fast downward planning system with the goal count (GC) heuristic, fast forward
heuristic (FF), and causal graph (CG) heuristic. Comparisons are along the dimension of solution length, percentage of instances
solved, percentage of optimal solutions, number of nodes generated, time taken to solve the problem (in seconds), and number of
nodes generated per second. For the Rubik’s cube and sliding tile puzzles, experiments are done on canonical goal states (canon)
and randomly generated goals (rand). For testing DeepCubeA on Sokoban, we report numbers obtained from the DeepCubeA
GitHub repository2.

basic constraints that state that two objects cannot share the
same location. The predicates agent(X,Y), box(X,Y),
and wall(X,Y) hold if an agent, box, or wall is at coordi-435

nates (X,Y). We investigate the following goals: (1) all boxes
are immovable; (2) all boxes form a larger box; (3) the four
boxes occupy the four corners next to the agent. Visualiza-
tions of reached goals are shown in Figures 7, 8, and 9. The
answer set program for Sokoban is shown in the Supplemen-440

tary Material.
(a) Example 1 (b) Example 2

Figure 7: Reached goal where all boxes are immoveable.



Table 2: The time it takes to find stable models for each goal,
the time it takes to find a path to the goal from 100 start
states, and the average path cost.

Stable Model
Time (secs)

Solve Time
(secs)

Path Cost

Canon 0.33 625.62 23.82
Cross6 0.35 218.45 11.50
Cup4 11.17 1622.39 24.44
CupSpot 123.04 291.25 14.7
Checkers 0.44 602.03 24.00

(a) Example 1 (b) Example 2

Figure 8: Reached goal where all boxes form a larger box.

(a) Example 1 (b) Example 2

Figure 9: Reached goal where four boxes are at the four cor-
ners of the agent.

Discussion
To illustrate the power of specifying a set of states as a goal
instead of pre-determined states, we note that the Cross6
goal contains the canonical goal state in the set of states that445

it represents. However, finding the canonical goal state takes
about three times as long and has a path cost that is about
twice as long when compared to the Cross6 goal. This in-
dicates that this method has the potential to allow us to dis-
cover more efficient plans as well as to discover new knowl-450

edge by achieving unanticipated goal states that even hu-
mans have not yet considered. For example, in a domain
such as chemical synthesis, this could allow practitioners to
discover new synthesis routes as well as learn more about
chemistry by examining the properties of the unanticipated455

molecules that meet their specifications.
When examining solve time and path cost in Table 2, the

Cross6 goal takes the least amount of time and has the short-
est average path cost. The CupSpot goal is also comparable
along these same metrics. This could be because Cross6 and460

CupSpot need to consider fewer stickers than other goals.
However, the Cup4 goal takes the longest to reach out of all

the goals even though it also needs to consider fewer stick-
ers than both the canonical goal and the Checkers goal. One
indication of the cause of this is that A* search frequently 465

went over its budget of 50 iterations for the Cup4 goal. This
could be because some of the stable models actually repre-
sent sets of states that are not reachable. We discuss ways to
overcome this in the Future Work Section.

When examining the time it takes to find stable models 470

in Table 2, the CupSpot goal takes the longest out of all the
goals. This could be due to having many constraints to con-
sider when finding the stable models. However, dealing with
the constraints when solving for the stable models could lead
to faster solve times as fewer stable models will represent 475

unreachable goals. It could also be the case that certain con-
straints could be expressed in a more concise manner.

Related Work
Action Schema Networks (ASNets) (Toyer et al. 2020) are
neural networks that exploit the structure of the PDDL lan- 480

gauge to learn a policy that generalizes across problem in-
stances. However, ASNets are trained using imitation learn-
ing, which assumes a solver that can solve moderately dif-
ficult problems. On the other hand, we use reinforcement
learning, which does not require that existence of any solver 485

to learn. Furthermore, ASNets does not support arbitrary
goal formulae. However, our approach of obtaining stable
models from logic programs could be extended to descrip-
tions of goals in PDDL and to ASNets. Furthermore, in the
Future Work Section, we discuss ways goals can be repre- 490

sented with logic, itself, without having to solve for stable
models.

Learning from partial interpretations (Fensel et al. 1995;
De Raedt 1997) is a setting in inductive logic programming
(Muggleton 1991; De Raedt 2008; Cropper and Dumančić 495

2022) where the training examples are not fully specified.
This setting has also been applied to learning answer set
programs from partial stable models (Law, Russo, and Broda
2014). This work has parallels with our work, except, instead
of learning an answer set program as in Law, Russo, and 500

Broda (2014), the specification is given in the form of an an-
swer set program. Furthermore, instead of being given par-
tial stable models as examples as in Law, Russo, and Broda
(2014), the goal specification produces partial stable models
that are then used by the DNN to reach the goal. 505

Research on training deep neural networks to generalize
over both states and goals has mainly focused on goals that
are represented by a single state. In reinforcement learn-
ing, Universal Value Function Approximators (Schaul et al.
2015) were proposed to learn a value function with an ad- 510

ditional input of a goal state. Hindsight Experience Replay
(Andrychowicz et al. 2017) built on this approach to learn
from failures by using states observed during an episode as
goal states, even if they were not the intended goal state.
This approach has enabled learning in sparse reward envi- 515

ronments, such as those involving object manipulation, and
has shown to generalize to goal states not seen during train-
ing. After training, one can then specify what the goal state
is, provided the practitioner has the ability to fully specify
a goal state. However, this approach becomes impractical in 520



cases where there are a diverse set of acceptable goal states
that the agent could possibly reach or where only high-level
qualities of a goal are known, but the low-level details are
not.

Future Work525

In this work, we investigated the Rubik’s cube, which is a
domain in which every state is reachable from every other
state. However, in domains such as Sokoban, this is not the
case. As a result, not all goals will be reachable from every
possible start state. In these cases, the training process could530

be augmented by mining for “negative” goals (Tian et al.
2021) that cannot be reached. The DNN should then give
a very high cost-to-go when a goal is not reachable from a
given start state. We can then sample stable models that are
below some threshold. This sampling procedure could also535

be imbued with a learned heuristic to guide the ASP solver
towards reachable stable models.

In addition to unreachable goals, one could specify goals
that only represent impossible states or have some stable
models that only represent impossible states. While con-540

straints could be manually added to the program to ensure
no such stable models are found, preventing all such oc-
currences may require sophisticated domain-specific knowl-
edge. Therefore, the AI system would ideally discover new
constraints. Given a stable model that is thought to only rep-545

resent impossible states, one could use inductive logic pro-
gramming techniques and a generality relationship, such as
entailment or theta subsumption (Plotkin 1972), to find the
most general specification that only represents impossible
states and add this to the background knowledge as a con-550

straint.
Our approach of using ground atoms to represent a goal

comes with the advantage of being agnostic to the specifi-
cation language as long as it can produce a set of ground
atoms. Therefore, in the case of using ASP as the specifica-555

tion language, changes can be made to the predicates or even
the ASP software used without having to re-train the DNN.
However, this comes with the computational cost of having
to solve for a set of ground atoms given a specification. One
could instead train the heuristic function to estimate the dis-560

tance between a state and a lifted specification that either im-
plicitly or explicitly contains variables. This could be done
for any kind of specification, such as first-order logic or even
natural language, given the ability to go from a state to a
specification representing a set of states of which that state565

is a member. One could obtain training examples by obtain-
ing a goal state and then searching for a first-order logic sen-
tence that represents a set of states of which that goal state is
a member. The downside to this approach is that any change
in the vocabulary of the specification may require re-training570

of the DNN. Furthermore, this approach may but more rep-
resentational burden on the DNN as it may need to implicitly
consider stable models of a given specification.

Conclusion
We have introduced DeepCubeAg , a deep reinforcement575

learning and search method that trains DNNs to estimate the

distance between a state and a set of goal states, where a set
of goal states is represented as a set of ground atoms. Goals
can be communicated to a DNN without the need to re-train
the DNN for that particular goal and without the need for the 580

DNN to see that particular goal during training. When com-
pared to other domain-independent planners, DeepCubeAg
consistently solved more test states and found shorter paths.

To allow for more expressive goal specification, we have
formalized a method for specifying goals using a specifica- 585

tion language that is accessible to humans. Furthermore, the
language used to specify goals only needs to be able to be
translated into a set of ground atoms, which makes the DNN
agnostic to the specification language. Using answer set pro-
gramming, one can easily specify properties that a goal state 590

should or should not have without having to specify any goal
state in particular. As a result, this method has the ability to
discover novel goals and; therefore, facilitate the discovery
of new knowledge.

References 595

Agostinelli, F.; McAleer, S.; Shmakov, A.; and Baldi, P.
2019. Solving the Rubik’s cube with deep reinforcement
learning and search. Nature Machine Intelligence, 1(8):
356–363.
Agostinelli, F.; Shmakov, A.; McAleer, S.; Fox, R.; and 600

Baldi, P. 2021. A* search without expansions: Learning
heuristic functions with deep Q-networks. arXiv preprint
arXiv:2102.04518.
Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong,
R.; Welinder, P.; McGrew, B.; Tobin, J.; Abbeel, O. P.; and 605

Zaremba, W. 2017. Hindsight experience replay. In Ad-
vances in Neural Information Processing Systems, 5048–
5058.
Barto, A. G.; Singh, S.; Chentanez, N.; et al. 2004. Intrinsi-
cally motivated learning of hierarchical collections of skills. 610

In Proceedings of the 3rd International Conference on De-
velopment and Learning, volume 112, 19. Citeseer.
Bertsekas, D. P.; and Tsitsiklis, J. N. 1996. Neuro-dynamic
programming. Athena Scientific. ISBN 1-886529-10-8.
Brewka, G.; Eiter, T.; and Truszczyński, M. 2011. Answer 615

set programming at a glance. Communications of the ACM,
54(12): 92–103.
Chen, B.; Li, C.; Dai, H.; and Song, L. 2020. Retro*: learn-
ing retrosynthetic planning with neural guided A* search.
In International Conference on Machine Learning, 1608– 620

1616. PMLR.
Cropper, A.; and Dumančić, S. 2022. Inductive logic pro-
gramming at 30: a new introduction. Journal of Artificial
Intelligence Research, 74: 765–850.
Culberson, J. C.; and Schaeffer, J. 1998. Pattern databases. 625

Computational Intelligence, 14(3): 318–334.
De Raedt, L. 1997. Logical settings for concept-learning.
Artificial Intelligence, 95(1): 187–201.
De Raedt, L. 2008. Logical and relational learning.
Springer Science & Business Media. 630

DeepMind. 2018. boxoban-levels. https://github.com/
deepmind/boxoban-levels/tree/master/unfiltered.



Dor, D.; and Zwick, U. 1999. SOKOBAN and other motion
planning problems. Computational Geometry, 13(4): 215–
228.635

Felner, A.; Korf, R. E.; and Hanan, S. 2004. Additive pat-
tern database heuristics. Journal of Artificial Intelligence
Research, 22: 279–318.
Fensel, D.; Zickwolff, M.; Wiese, M.; et al. 1995. Are sub-
stitutions the better examples? Learning complete sets of640

clauses with Frog. In Proceedings of the 5th International
Workshop on Inductive Logic Programming, 453–474. Cite-
seer.
Ferenc, D. 2013. Pretty Rubik´s Cube patterns with algo-
rithms. Accessed March 28, 2023. https://ruwix.com/the-645

rubiks-cube/rubiks-cube-patterns-algorithms/.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2014. Clingo= ASP+ control: Preliminary report. arXiv
preprint arXiv:1405.3694.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.650

2022. Answer set solving in practice. Springer Nature.
Gelfond, M.; and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In ICLP/SLP, volume 88,
1070–1080. Cambridge, MA.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-655

mal basis for the heuristic determination of minimum cost
paths. IEEE transactions on Systems Science and Cybernet-
ics, 4(2): 100–107.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research, 26: 191–246.660

Kocsis, L.; and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In European conference on machine learn-
ing, 282–293. Springer.
Law, M.; Russo, A.; and Broda, K. 2014. Inductive learning
of answer set programs. In Logics in Artificial Intelligence:665

14th European Conference, JELIA 2014, Funchal, Madeira,
Portugal, September 24-26, 2014. Proceedings 14, 311–325.
Springer.
Marek, V. W.; and Truszczyński, M. 1999. Stable models
and an alternative logic programming paradigm. The Logic670

Programming Paradigm: a 25-Year Perspective, 375–398.
McAleer, S.; Agostinelli, F.; Shmakov, A.; and Baldi, P.
2019. Solving the Rubik’s Cube with Approximate Policy
Iteration. In International Conference on Learning Repre-
sentations.675

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidje-
land, A. K.; Ostrovski, G.; et al. 2015. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533.680

Muggleton, S. 1991. Inductive logic programming. New
generation computing, 8: 295–318.
Plotkin, G. 1972. Automatic methods of inductive inference.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artificial intelligence, 1(3-4): 193–204.685

Puterman, M. L.; and Shin, M. C. 1978. Modified policy
iteration algorithms for discounted Markov decision prob-
lems. Management Science, 24(11): 1127–1137.

Rokicki, T. 2010. Twenty-Two Moves Suffice for Rubik’s
Cube®. The Mathematical Intelligencer, 32(1): 33–40. 690

Rokicki, T. 2016. cube20. https://github.com/rokicki/
cube20src.
Schaul, T.; Horgan, D.; Gregor, K.; and Silver, D. 2015. Uni-
versal value function approximators. In International Con-
ference on Machine Learning, 1312–1320. 695

Schmidhuber, J. 2015. Deep learning in neural networks:
An overview. Neural networks, 61: 85–117.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Tian, S.; Nair, S.; Ebert, F.; Dasari, S.; Eysenbach, B.; Finn, 700

C.; and Levine, S. 2021. Model-Based Visual Planning with
Self-Supervised Functional Distances. In International Con-
ference on Learning Representations.
Toyer, S.; Thiébaux, S.; Trevizan, F.; and Xie, L. 2020. As-
nets: Deep learning for generalised planning. Journal of Ar- 705

tificial Intelligence Research, 68: 1–68.
Van Emden, M. H.; and Kowalski, R. A. 1976. The seman-
tics of predicate logic as a programming language. Journal
of the ACM (JACM), 23(4): 733–742.
Zhang, Y.-H.; Zheng, P.-L.; Zhang, Y.; and Deng, D.-L. 710

2020. Topological Quantum Compiling with Reinforcement
Learning. Physical Review Letters, 125(17): 170501.


