
EQuARX: Efficient Quantized AllReduce in XLA
for Distributed Machine Learning Acceleration

Ibrahim Ahmed, Clemens Schaefer, Gil Tabak, Denis Vnukov, Zenong Zhang, Felix chern, Anatoliy Yevtushenko, Andy Davis
{ibahmed, cjsschaefer, tabakg, vnukov, zenong, fchern, anatoliyy, andydavis}@google.com

Google

Abstract—While Large Language Models (LLMs) have become
highly influential, their enormous scale presents significant de-
ployment challenges. Efficiently serving these models typically
requires distributing them across numerous accelerator devices,
which introduces substantial performance overhead from inter-
device communication (collectives). While model quantization
has been widely adopted to reduce the memory and compute
requirements of LLM weights and activations with minimal
quality impact, applying quantization directly to collectives
like AllReduce is inherently difficult due to the inter-device
summation involved, which can lead to numerical instability
or significant error accumulation. In this work, we present a
native dynamic block-wise efficient quantized AllReduce within
the XLA compiler for TPUs (EQuARX). By using TPU-friendly
quantization and deep pipelining of communication and compute,
EQuARX with int8 precision achieves a 1.8× speedup over
baseline BF16 AllReduce across various network topologies.
Furthermore, EQuARX accelerates the prefill stage of Gemma
3 27B by 1.25× and Gemma 3 12B by 1.1×, respectively, with
small to negligible impact on quality.

I. INTRODUCTION

Large Language Models (LLMs) have demonstrated re-
markable capabilities, driving significant advancements across
diverse fields such as natural language understanding, gen-
eration, translation, and reasoning [2], [28]. Their success
has fueled a trend towards models of ever-increasing scale,
often following predictable scaling laws [19]. Training and
serving these LLMs frequently exceeds the memory and
compute capacity of a single accelerator device. Consequently,
distributing the model (sharding) across clusters of many
interconnected devices such as GPUs and TPUs has become
standard practice for both training and inference [23], [28] to
meet a target latency. While distribution allows the model to
fit in memory and reduces latency, it introduces inter-device
communication.

Different sharding strategies, such as model, pipeline, or
data parallelism, introduce different kinds of collectives be-
tween the devices [10], [26], [27]. A ubiquitous and of-
ten performance-critical example is the AllReduce collective.
AllReduce is fundamental for averaging calculated gradients
across data-parallel workers during training [7], and it is
also used to aggregate partial results when model parallelism
sharding is used in both training and inference [26]. Although
the communication overhead from AllReduce impacts perfor-
mance in both scenarios, its effect is often more problematic
during the serving/inference. Unlike in training, where the

AllReduce for gradient synchronization can sometimes be
effectively overlapped with backward pass computation [22],
AllReduce operations within model-parallel inference work-
loads frequently reside directly on the execution critical
path [23]. Consequently, devices are forced to stall while
waiting for these AllReduce operations to complete, which
directly reduces per-device compute efficiency.

The importance of collective performance has driven hard-
ware vendors to build high-bandwidth chip-to-chip network
fabrics, such as Google’s Inter-Chip Interconnect (ICI) for
TPUs [17] and NVIDIA’s NVLink/NVSwitch for GPUs [20].
Maximizing the benefit of these fast networks also requires in-
telligent software strategies that utilize the available bandwidth
efficiently. One software-based optimization that has shown
tremendous promise across machine learning (ML) workloads
is quantization. Numerous studies have successfully applied
quantization to model weights and activation. These efforts
resulted in significant reductions in memory footprint and
computational demands, often while maintaining high model
quality and task performance across various domains [6],
[11]. While naively quantizing tensors before performing an
AllReduce would reduce the amount of data sent through the
network, it can easily lead to numerical overflow if interme-
diate sums exceed the range of the low-precision format, or
cause the accumulation of unacceptable error across the many
participants, thereby degrading the model quality.

To reduce the overhead of AllReduce while maintaining
model accuracy, we designed a highly efficient quantized
AllReduce optimized for TPUs. Our quantized AllReduce
includes a dynamic block-wise quantization/dequantization
scheme performed concurrently with the reduction operations
within the AllReduce collective. This approach significantly
mitigates the quantization-induced errors that impact naive
methods. Both quantization/dequantization and the collective
algorithms were co-designed to extract maximum performance
from the TPU compute units and the ICI network. We have
implemented our efficient quantized AllReduce (EQuARX)
as a native operation within the XLA compiler framework,
making it seamlessly accessible to users through high-level
interfaces like JAX. Our evaluations demonstrate the effec-
tiveness of this design: EQuARX successfully hides most of
the computational overhead associated with quantization and
dequantization, achieving approximately 90% of the theoreti-
cal speedup expected from halving the volume of transmitted

1

data. We show that integrating EQuARX in Gemma 3 results
in speeding up the prefill stage of the 27B model by 1.25X
and the 12B model by 1.1X, with small to negligible accuracy
drops.

II. RELATED WORK AND BACKGROUND

The need for software-level solutions to accelerate commu-
nication in distributed machine learning workloads has been
recognized over the last few years. For example, ZeRO++ [29]
introduced several communication reduction techniques using
quantization, including block-wise int8 quantization for all-
gathers. For gradient averaging, they only need to perform a
reduce-scatter (due to their chosen sharding strategy). They
proposed decomposing it into an all-to-all collective followed
by a local reduction. This decomposition allowed them to
quantize gradients before the all-to-all and dequantize the
output of the all-to-all before performing the local reduction.
Unfortunately, implementing a reduce-scatter as an all-to-all
followed by a local reduction results in underutilizing the
network bandwidth significantly as opposed to the ring/bucket-
based [12] algorithms which are proven to be bandwidth opti-
mal [3] on torus topologies. Building on ZeRO++, QSDP [21]
supports weight and gradient quantization; it uses random-
ized rounding for gradients and ‘random shifts‘ so that the
resulting weight estimate is unbiased. More recently, the work
in SDP4Bit [13] compresses weight differences instead of
weights directly, and uses a 2-level hierarchical scheme with
different precision (and a Hadamard transform) for gradient
compression.

gZCCL [9] developed a framework that supports
compression-aware collectives. Their proposed algorithm
uses recursive doubling with many optimizations to improve
GPU utilization during compression. Most of the optimizations
in gZZCL are specific to GPU hardware, GPU topology and
programming model. In this work, we focus on TPUs, which
have a different architecture and network topology.

TPUs [15] are custom machine learning (ML) acceleration
chips built by Google that are widely adopted for training
and inference of ML workloads. At its heart, the TPU has a
powerful systolic array matrix multiplication unit [18]. TPUs
use 2D vector registers and perform general computations on
a vector processing unit (VPU) that operates on 2D operands
of shape 8x128. TPUs are connected together through a high-
speed inter-chip interconnect to form a 2-D or 3-D mesh or
torus topologies (e.g. 2x2 or 4x4x4) [17].

III. EFFICIENT QUANTIZED ALLREDUCE IN XLA

AllReduce can be executed as a reduce-scatter followed by
an all-gather while still ensuring optimal network bandwidth
utilization [3]. Since all-gather is a communication-only col-
lective it is simpler to quantize. In this Section, we will focus
on the different optimizations we designed to ensure that we
can efficiently quantize the reduce-scatter stage.

Fig. 1 shows the three steps of a ring-based reduce-scatter
algorithm on 4 TPUs forming a 1X4 torus. Initially, each TPU
divides its input tensor (e.g. A) into 4 shards (A∗). At the first

 0 1 2 3

A0+B0+C0+D0

A0

A1

A2

A3

B1

B2

B3

C0

C2

C3

D0

D1

D3

A0

A1

A2+D2

B1

B2

A3+B3

C2

C3

D0

D3

A0

A1+C1+D1

B0

C1

D2

B0+C0

C1+D1

B1

A2+B2+D2

C2

A3+B3+C3 D3

B0+C0+D0

A1+B1+C1+D1 A2+B2+C2+D2 A3+B3+C3+D3

S0

S1

S2

S3

Fig. 1: Three iterations of a ring-based reduce-scatter algo-
rithm on 4 TPUs.

Send A2+D2
Recv C1+D1

Dq Add D1 Qp1

Send A2,0+D2,0
Recv C1,0+D1,0

Qp2

Send A1+C1+D1
Recv B0+C0+D0

Send A2,1+D2,1
Recv C1,1+D1,1

Send A1,0+C1,0+D1,0
Recv B0,0+C0,0+D0,0

Dq,
Add D1,0,

Qp1

Dq,
Add D1,1,

Qp1

Qp2 Qp2

Baseline

Pipelined Send A1,1+C1,1+D1,1
Recv B0,1+C0,1+D0,1 Pipelining

speedup

Fig. 2: Baseline and pipelined execution timeline of a single
iteration of quantized reduce-scatter.

step, each TPU sends a shard to its neighbor. In the remaining
steps, each TPU sums the received shard with its local counter
part and then sends the partial result to its neighbor. After N-1
steps (where N is the number of TPUs in the ring), each TPU
would have a shard of the final output as shown in Fig. 1.

A. Deep Pipelining

To accelerate the all-reduce collective, we want to reduce
the amount of data sent between devices by quantizing the data
to a lower precision (e.g. int8 while the original tensor uses
BF16). Since each step of the reduce-scatter involves an addi-
tion, we cannot simply quantize the input tensor and perform
all additions in the lower precision without accumulating large
errors and risking overflows. Instead, we quantize the shard,
send the quantized shard and the corresponding metadata (i.e.
scale factors), dequantize the received shard (Dq) to higher
precision (e.g. FP32), and perform the addition. These steps
are repeated for the N-1 iterations of the quantized reduce-
scatter. While these steps allow us to safely reduce the data
sent through the network, it introduces more compute that
could result in under utilizing the network bandwidth.

Fig. 2 shows the baseline and our deeply pipelined execution
time of a single iteration of the quantized reduce-scatter
algorithm. We distinctively divide the quantization step into
two phases as we need to iterate through the shard twice to
quantize it. In the first iteration (Qp1), we calculate metadata,
and in the second iteration (Qp2) we use this metadata to
scale the data. As can be seen from Fig. 2, the overhead
introduced by quantization and dequantization results in large
bubbles during which the network is idle. To reduce the
overhead of these bubbles, we divide each shard into u

2

A0

A1

A2

A3

512

512

128

64

8
Max(Abs(.))

8x128 scaling
factors for A0

Fig. 3: 1024 scale factors for each shard of tensor A (i.e. one
scale per 64 entries).

microshards and pipeline the communication and compute of
the different microshards when possible. In this example, u
is two (where Ai,j is the jth microshard of the ith shard of
A) and we are able to start dequantizing the first microshard
while receiving the second microshard. We ensure that at
each reduce-scatter iteration we first send the metadata before
sending any microshards, which allows us to immediately start
the dequantization process. Moreover, since there is no data
dependency between the dequantization, addition and the first
quantization phase (Qp1) of different microshards, we pipeline
all these operations together. However, to get the shard-wide
metadata (e.g. maximum absolute value in a shard) we cannot
start the second quantization phase (Qp2) without completing
the first phase of all microshards. As depicted in the figure,
this deep pipelining allows us to significantly reduce the
quantization overhead significantly and increase the network
bandwidth utilization.

B. Block-wise VPU-friendly Quantization

To quantize data in a tensor from a higher precision repre-
sentation (e.g. BF16) to a lower precision (e.g. int8), we need
to calculate some metadata to capture the range of the original
data. For symmetric/scale quantization [30], we perform a
maximum reduction to to determine the appropriate scale fac-
tor. Instead of calculating a single scale factor for each shard,
we calculate 1024 (8x128) scale factors for each shard. We
picked 8x128 to match the native 2D register vectors used by
the TPU. This change enables us to only use the TPU’s VPU
to perform the absolute and max operations across different
8x128 chunks of the input shard to identify the scale factors
without needing any expensive reshapes or data transformation
(to perform the reduction within a 8x128 chunk). Fig. 3 shows
how we calculate the scale factors of a shard (A0) from a
tensor with shape (512, 512). We divide the shard into 64
8x128 chunks and we reduce the 64 chunks into a single chunk
through an absolute and maximum operations. This VPU-
friendly quantization not only accelerates the calculation of the
scale factors, but it also results in a higher-quality quantization
as we are now performing a block-wise quantization with a
block size of 64 in this example.

To better control the block size (independently from the
shard size), we introduce a second layer of data division.
Each shard is first divided into m minishards, and then each
minishard is divided into the u microshards. We calculate
the 8x128 scale factors across a single minishard. Thus, the
number of entries reduced over for a single scaling factor is
entirely determined by m. In the example shown in Fig. 3 the

B0

Q D
q +

C0

Q D
q +

D0

Q D
q +

A0

Fig. 4: Full-loop adder chain to calculate shard 0 result.

D0

Q D
q +

A0

C0

Q D
q +

B0

Q D
q +

Fig. 5: Semi-loop adder chain to calculate shard 0 result.

block-size would be 64
m . This allows us to tune m to optimize

for the quality of the quantization, and tune both m and u
to optimize for performance. Increasing m and u reduce the
bubble time shown in Fig 2. However, increasing m results in
more metadata going through the network.

C. Full-loop vs Semi-loop Ring

We implemented two variants of the ring-based reduce-
scatter algorithm: full-loop and semi-loop. Fig. 1 describes the
full-loop variant. As shown in Fig. 4, one potential problem
with this variant is that it results in many (N-1 for a ring with
N devices) steps of quantization and dequantization, which
could increase the accumulated error.

The semi-loop variant utilizes both directions of the ring and
it only performs N/2 iterations. Fig. 5 shows the more balanced
adder tree generated by the semi-loop variant to calculate shard
0 result. In this example, in the first iteration device 3 sends
its 0th shard to device 0 and at the same time device 2 sends
its 0th shard to device 1. Both recipient devices perform a
dequantization and addition. In the second iteration, device
1 sends the partial result to device 0 that performs the final
dequantization and addition to get the final result. While the
semi-loop variant does result in a more balanced adder tree
and has fewer hops, it is not as bandwidth efficient as running
two full-loop variants in opposite direction. The lower bound
of the bandwidth component of the reduce-scatter time of the
full-loop variant is (N−1)D

2NB , while it is D
2B for the semi-loop

variant. Where N is the number of devices forming the ring,
D is the number of bytes of the input, B is the per-direction
bandwidth in bytes/sec. We added support for both to allow
users to pick the variant that better suits their use case.

D. All-gather

To fully quantize the all-reduce, EQuARX also supports
quantizing the all-gather that comes after the reduce-scatter
stage. When quantizing the all-gather stage, we add an extra
quantize and dequantize pair to the adder chains shown in
Fig. 4 and Fig. 5. We implemented EQuARX such that users

3

0 2 4 6 8 10 12 14 16
Tensor Size (MiB)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

No
rm

al
ize

d
Al

lR
ed

uc
e

Ti
m

e

AllReduce Execution Time vs. Tensor Size (2x2 Topology)
Baseline BF16 AllReduce
int8 EQuARX

Fig. 6: Speedup of Full-loop EQuARX across different tensor
sizes.

10 3 10 2 10 1

Mean Sqaured Error Relative to BF16 basline

1.0

1.2

1.4

1.6

1.8

Sp
ee

du
p

Re
la

tiv
e

to
 B

F1
6

ba
sli

ne

Speedup vs. Error Tradeoff for AllReduce Quantization Methods (4x2 Topology)

Naive FP8
Full-loop EQuARX
Full-loop EQuARX RS only
Full-loop EQuARX AG only
Semi-loop EQuARX
Semi-loop EQuARX RS only
Semi-loop EQuARX AG only
Pareto Front

Fig. 7: Speedup vs error of EQuARX (with a block size of
64) relative to a BF16 baseline on a 4x2 topology on a tensor
of shape (4096, 4096) with values sampled from N (0, 1).

can select whether to quantize the reduce-scatter (RS) stage,
the all-gather (AG) stage or both. Quantizing both gives the
best performance but potentially introduces more error than
quantizing just a single stage.

IV. MICROBENCHMARKS

EQuARX supports three data types for quantization: int8,
FP8 (E4M3) and FP8 (E5M2), and it uses symmetric quan-
tization. In this section, we will show results for int8 only.
All results presented here are running on TPU v5e. Fig. 6
shows the normalized execution time of a BF16 baseline
AllReduce and our full-loop int8 EQuARX with RS and AG
stages quantized across different tensor sizes. For tensor sizes
less than 2 MiB, both EQuARX and baseline AllReduce have
similar performance as the execution time is dominated by
the hop latency between TPUs and not the bandwidth of the
links. For larger tensors, our int8 EQuARX execution time is
∼55% of the baseline BF16 AllReduce. This execution time
is only 10% longer than the ideal execution time that would
have been achieved by a 2X compression of the transferred
data (no quantization and no metadata overhead). This result
highlights that the optimizations implemented in EQuARX
significantly reduce the overhead associated with quantization
and dequantization of the partial results.

A. EQuARX Speedup vs Error Trade-off

As explained earlier EQuARX supports different knobs that
provide different performance vs error trade-offs. The first
knob is whether to use full-loop or semi-loop EQuARX, and
the second knob selects which stages of the AllReduce to
quantize: reduce-scatter (RS) only, all-gather (AG) only, or
both stages. To show an example of this trade-off we executed
a baseline BF16 AllReduce on a tensor of shape (4096, 4096)
running on a 4x2 TPU topology. For the sake of this test, we
populated the tensor with a standard normal distribution (mean
of 0 and a variance of 1). We also execute all the 6 flavors
of our int8 EQuARX on the same input tensor. In addition to
EQuARX, we also execute a naive FP8 (E5M2) AllReduce
where we convert the BF16 input tensor to FP8 and then
perform an AllReduce on the converted tensor (no quantization
or scaling involved). We use this naive FP8 AllReduce as an
estimate to the roofline performance improvement achieved
by reducing the data traversing the network. The naive FP8
AllReduce is a roofline as it halves the data sent through
the networks without adding any quantization/dequantization
compute and it does not include the overhead of transferring
the metadata associated with dynamic quantization.

Fig. 7 shows the speedup of the our different EQuARX
flavors and the mean squared error (MSE) relative to the
BF16 baseline. First observation is that while the naive FP8
AllReduce achieves 1.9X speedup, it results in a significant
MSE of 0.13. While not shown here a naive FP8 could easily
overflow resulting in corrupting the AllReduce completely.
Our fastest EQuARX flavor results in a 1.8X speedup with
only 0.0014 MSE (two orders of magnitude lower than the
naive FP8 version while achieving 95% of the speedup).

As expected, the semi-loop EQuARX results in lower error
compared to the full-loop EQuARX but at the expense of
a reduced speedup. Semi-loop EQuARX (with both stages
quantized) results in a 1.6X speedup with a lower MSE of
0.001. The EQuARX flavors with the lowest MSE are the
ones that only quantize the AG stage; the full-loop EQuARX
with only quantizing the AG stage results in a 1.3X speedup
with the smallest MSE of 0.0003. These different knobs are
exposed to users or automatic quantization tools to be able to
squeeze the most performance while maintaining the end-to-
end accuracy of the model within the acceptable range.

V. EXPERIMENTS WITH GEMMA 3
To demonstrate EQuARX in a representative workload, we

measure the performance and quality impact of EQuARX on
serving Gemma 3 12B and 27B models running on TPU
v5e, and using BF16 weights. The 27B model uses 16-way
model parallelism on a 4x4 topology, while the 12B model
uses 4-way model parallelism on a 2x2 topology. For both
models, there are two AllReduce operations per layer due to
the chosen sharding strategy. For LLM serving, there are two
distinct stages: prefill and decode. Prefill processes the entire
input context in a single iteration to primarily initialize KV
caches and then the decode stage autoregressively generates
one token per iteration (using the KV caches generated by the

4

TABLE I: Quality and prefill latency of Gemma 3 12B and 27B model. Performance benefits are most pronounced on the
larger topology, where EQuARX offers up to 1.28× prefill latency speedup over baseline AllReduce with a prefill sequence
length of 2048.

12B Base 12B Full-loop 12B Semi-loop 27B Base 27B Full-loop 27B Semi-loop

Benchmark Examples Metric Acc. % Acc. % Diff. Acc. % Diff. Acc. % Acc. % Diff. Acc. % Diff.

MBPP [1] 500 3-shot 70.60 67.80 −2.80 69.20 −1.40 72.80 71.40 −1.40 71.40 −1.40
HumanEval [4] 164 pass@1 78.66 78.66 0.00 79.27 +0.61 83.54 82.93 −0.61 82.93 −0.61
Boolq [5] 3270 0-shot 87.40 87.49 +0.09 87.40 0.00 87.89 87.89 0.00 87.89 0.00
HellaSwag [31] 10042 10-shot 81.41 80.93 −0.48 81.36 −0.05 83.26 81.46 −1.80 81.46 −1.80
TriviaQA [16] 7993 5-shot 70.35 70.42 +0.07 70.40 +0.05 79.46 79.44 −0.02 79.46 0.00
Winogrande [25] 1267 5-shot 74.19 74.43 +0.24 74.27 +0.08 75.77 75.77 0.00 75.77 0.00
AGIEval [32] 2340 3-5-shot 57.64 58.80 +1.16 58.07 +0.43 67.44 64.86 −2.58 65.08 −2.36
MMLU [8] 14042 5-shot 72.00 71.96 −0.04 71.92 −0.08 77.47 77.12 −0.35 77.14 −0.33
GPQA [24] 448 5-shot 30.36 29.02 −1.34 31.03 +0.67 34.60 37.95 +3.35 34.15 −0.45
MedQA [14] 500 5-shot 68.00 65.40 −2.60 65.60 −2.40 75.20 73.40 −1.80 75.40 +0.20

Prefill Length Lat. (ms) Lat. (ms) Speedup Lat. (ms) Speedup Lat. (ms) Lat. (ms) Speedup Lat. (ms) Speedup

2048 116.17 105.67 1.10× 109.87 1.06× 111.44 88.06 1.27× 87.24 1.28×
4096 243.94 221.93 1.10× 230.37 1.06× 242.57 197.3 1.23× 194.87 1.25×
8192 604.12 555.23 1.09× 572.5 1.06× 550.36 456.68 1.21× 452.97 1.22×

prefill stage). As a result, the input to the AllReduce in the
decode stage is much smaller than that of the prefill and so
the AllReduce of the decode stage is mostly latency bound.
Since EQuARX is beneficial for AllReduce with large inputs,
we apply it only to the AllReduce of the prefill stage.

Table I shows the accuracy achieved across 10 different
tasks for both models when using a baseline BF16 Allreduce,
a full-loop EQuARX and a semi-loop EQuARX. The table
also shows the prefill latency. EQuARX results in small to
negligible accuracy drop across all tasks. For the 12B model,
full-loop EQuARX results in a 1.1X speedup, while the semi-
loop version results in a 1.06X speedup across a range of
prefill lengths. For the 27B model, the semi-loop variant results
in a 1.28X speedup for the 2048 prefill length. Since the
AllReduce executed in the 27B runs on 16 devices the semi-
loop and full-loop EQuARX perform similarly (unlike the 12B
case).

While the largest percentage drops were found in MBPP and
MedQA, these results were not statistically significant (using
p=0.05) due to the relatively small number of examples in
these dataset (both 500). While none of the 12B deviations
were found to be statistically significant, for 27B the Hel-
laSwag and AGIEval were (N=10042 and 2340, respectively).
We also generally saw improvements using the semi-loop
instead of the full-loop algorithm.

VI. CONCLUSION

In this paper we introduced EQuARX to accelerate dis-
tributed machine learning workloads by speeding up AllRe-
duce operations. EQuARX is native to XLA and supports a
wide range of network topologies; it uses a dynamic block-
wise quantization scheme to reduce the accumulated error
throughout the collective and avoid risks of overflow. By
co-designing EQuARX with TPU architecture in mind, we
were able to minimize the overhead associated with quantiza-
tion/dequantization. We applied EQuARX to Gemma 3 models
where it yielded 1.27× performance improvement to the prefill
stage with small to negligible quality impact.

REFERENCES

[1] J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan,
E. Jiang, C. Cai, M. Terry, Q. Le et al., “Program synthesis with large
language models,” arXiv preprint arXiv:2108.07732, 2021.

[2] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” in Pro-
ceedings of the 34th International Conference on Neural Information
Processing Systems, ser. NIPS ’20. Red Hook, NY, USA: Curran
Associates Inc., 2020.

[3] E. Chan, M. Heimlich, A. Purkayastha, and R. van de Geijn, “Collective
Communication: Theory, Practice, and Experience: Research Articles,”
Concurr. Comput.: Pract. Exper., vol. 19, no. 13, p. 1749–1783, Sep.
2007.

[4] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri,
G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan,
S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian,
C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis,
E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak,
J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse,
A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford,
M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew,
D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba, “Evaluating
large language models trained on code,” 2021.

[5] C. Clark, K. Lee, M.-W. Chang, T. Kwiatkowski, M. Collins, and
K. Toutanova, “Boolq: Exploring the surprising difficulty of natural
yes/no questions,” arXiv preprint arXiv:1905.10044, 2019.

[6] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
“A Survey of Quantization Methods for Efficient Neural Network
Inference,” 2021. [Online]. Available: https://arxiv.org/abs/2103.13630

[7] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He, “Accurate, Large Minibatch
SGD: Training ImageNet in 1 Hour,” 2018. [Online]. Available:
https://arxiv.org/abs/1706.02677

[8] D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and
J. Steinhardt, “Measuring massive multitask language understanding,”
arXiv preprint arXiv:2009.03300, 2020.

[9] J. Huang, S. Di, X. Yu, Y. Zhai, J. Liu, Y. Huang, K. Raffenetti, H. Zhou,
K. Zhao, X. Lu, Z. Chen, F. Cappello, Y. Guo, and R. Thakur, “gZCCL:
Compression-Accelerated Collective Communication Framework for
GPU Clusters,” in Proceedings of the 38th ACM International
Conference on Supercomputing, ser. ICS ’24. New York, NY, USA:
Association for Computing Machinery, 2024, p. 437–448. [Online].
Available: https://doi.org/10.1145/3650200.3656636

5

[10] Y. Huang, Y. Cheng, A. Bapna, O. Firat, M. X. Chen, D. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu, and Z. Chen, GPipe: Efficient Training of
Giant Neural Networks using Pipeline Parallelism. Red Hook, NY,
USA: Curran Associates Inc., 2019.

[11] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard,
H. Adam, and D. Kalenichenko, “Quantization and Training of
Neural Networks for Efficient Integer-Arithmetic-Only Inference,”
2017. [Online]. Available: https://arxiv.org/abs/1712.05877

[12] N. Jain and Y. Sabharwal, “Optimal Bucket Algorithms for Large MPI
Collectives on Torus Interconnects,” in Proceedings of the 24th ACM
International Conference on Supercomputing, ser. ICS ’10. New York,
NY, USA: Association for Computing Machinery, 2010, p. 27–36.
[Online]. Available: https://doi.org/10.1145/1810085.1810093

[13] J. Jia, C. Xie, H. Lu, D. Wang, H. Feng, C. Zhang, B. Sun, H. Lin,
Z. Zhang, X. Liu et al., “SDP4Bit: Toward 4-bit Communication
Quantization in Sharded Data Parallelism for LLM Training,” arXiv
preprint arXiv:2410.15526, 2024.

[14] D. Jin, E. Pan, N. Oufattole, W.-H. Weng, H. Fang, and P. Szolovits,
“What disease does this patient have? a large-scale open domain question
answering dataset from medical exams,” Applied Sciences, vol. 11,
no. 14, p. 6421, 2021.

[15] N. P. Joppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V.
Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho,
D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski,
A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-Datacenter
Performance Analysis of a Tensor Processing Unit,” SIGARCH Comput.
Archit. News, vol. 45, no. 2, p. 1–12, Jun. 2017. [Online]. Available:
https://doi.org/10.1145/3140659.3080246

[16] M. Joshi, E. Choi, D. S. Weld, and L. Zettlemoyer, “Triviaqa: A large
scale distantly supervised challenge dataset for reading comprehen-
sion,” in Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics. Vancouver, Canada: Association for
Computational Linguistics, July 2017.

[17] N. Jouppi, G. Kurian, S. Li, P. Ma, R. Nagarajan, L. Nai, N. Patil,
S. Subramanian, A. Swing, B. Towles, C. Young, X. Zhou, Z. Zhou, and
D. A. Patterson, “TPU v4: An Optically Reconfigurable Supercomputer
for Machine Learning with Hardware Support for Embeddings,” ser.
ISCA ’23. New York, NY, USA: Association for Computing Machinery,
2023. [Online]. Available: https://doi.org/10.1145/3579371.3589350

[18] N. P. Jouppi, D. H. Yoon, G. Kurian, S. Li, N. Patil, J. Laudon,
C. Young, and D. Patterson, “A domain-specific Supercomputer for
Training Deep Neural Networks,” Commun. ACM, vol. 63, no. 7, p.
67–78, Jun. 2020. [Online]. Available: https://doi.org/10.1145/3360307

[19] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess,
R. Child, S. Gray, A. Radford, J. Wu, and D. Amodei, “Scaling
Laws for Neural Language Models,” 2020. [Online]. Available:
https://arxiv.org/abs/2001.08361

[20] A. Li, S. L. Song, J. Chen, J. Li, X. Liu, N. R. Tallent, and K. J.
Barker, “Evaluating Modern GPU Interconnect: PCIe, NVLink, NV-
SLI, NVSwitch and GPUDirect,” IEEE Transactions on Parallel and
Distributed Systems, vol. 31, no. 1, pp. 94–110, 2020.

[21] I. Markov, A. Vladu, Q. Guo, and D. Alistarh, “Quantized Distributed
Training of Large Models with Convergence Guarantees,” in Interna-
tional Conference on Machine Learning. PMLR, 2023, pp. 24 020–
24 044.

[22] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur,
G. R. Ganger, P. B. Gibbons, and M. Zaharia, “PipeDream: Generalized
Pipeline Parallelism for DNN Training,” in Proceedings of the 27th
ACM Symposium on Operating Systems Principles, ser. SOSP ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
1–15. [Online]. Available: https://doi.org/10.1145/3341301.3359646

[23] R. Pope, S. Douglas, A. Chowdhery, J. Devlin, J. Bradbury,
A. Levskaya, J. Heek, K. Xiao, S. Agrawal, and J. Dean,
“Efficiently Scaling Transformer Inference,” 2022. [Online]. Available:
https://arxiv.org/abs/2211.05102

[24] D. Rein, B. L. Hou, A. C. Stickland, J. Petty, R. Y. Pang, J. Dirani,
J. Michael, and S. R. Bowman, “Gpqa: A graduate-level google-proof
q&a benchmark,” in First Conference on Language Modeling, 2024.

[25] K. Sakaguchi, R. L. Bras, C. Bhagavatula, and Y. Choi, “Winogrande:
An adversarial winograd schema challenge at scale,” Communications
of the ACM, vol. 64, no. 9, pp. 99–106, 2021.

[26] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper,
and B. Catanzaro, “Megatron-LM: Training Multi-Billion Parameter
Language Models Using Model Parallelism,” 2020. [Online]. Available:
https://arxiv.org/abs/1909.08053

[27] M. Snir, S. W. Otto, D. W. Walker, J. Dongarra, and S. Huss-Lederman,
MPI: The Complete Reference. Cambridge, MA, USA: MIT Press,
1995.

[28] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proceedings
of the 31st International Conference on Neural Information Processing
Systems, ser. NIPS’17. Red Hook, NY, USA: Curran Associates Inc.,
2017, p. 6000–6010.

[29] G. Wang, H. Qin, S. A. Jacobs, C. Holmes, S. Rajbhandari, O. Ruwase,
F. Yan, L. Yang, and Y. He, “Zero++: Extremely Efficient Col-
lective Communication for Giant Model Training,” arXiv preprint
arXiv:2306.10209, 2023.

[30] H. Wu, P. Judd, X. Zhang, M. Isaev, and P. Micikevicius, “Integer
Quantization for Deep Learning Inference: Principles and Empirical
evaluation,” arXiv preprint arXiv:2004.09602, 2020.

[31] R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi, “Hel-
laswag: Can a machine really finish your sentence?” arXiv preprint
arXiv:1905.07830, 2019.

[32] W. Zhong, R. Cui, Y. Guo, Y. Liang, S. Lu, Y. Wang, A. Saied, W. Chen,
and N. Duan, “Agieval: A human-centric benchmark for evaluating
foundation models,” arXiv preprint arXiv:2304.06364, 2023.

6

