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Over the past 15 years, mechanochemistry has developed into
a powerful tool for the synthesis of molecules and materials
while avoiding the consumption of bulk solvents. With tailored
instruments and well-understood milling/grinding techniques,
experimentalists are now tackling synthetic problems of
increasing complexity, such as implementing the use of a
catalyst to enable specific chemical pathways and control re-
action selectivity. This Opinion provides a snapshot of the
current state of affairs in the field, highlighting recent examples
that employ metal-based catalysts under mechanochemical
conditions, as well as the context and specific features of the
underlying methods.
Addresses
1 Department of Chemistry, McGill University, Montreal, Canada
2 Department of Chemistry and Biochemistry, Concordia University,
Montreal, Canada
3 FRQNT Centre for Green Chemistry and Catalysis, Montreal, Canada

Corresponding authors: Fri�s�ci�c, Tomislav (tomislav.friscic@mcgill.ca);
Ottenwaelder, Xavier (dr.x@concordia.ca)
Current Opinion in Green and Sustainable Chemistry 2021,
32:100524

This review comes from a themed issue on Metals 2021

Edited by Dmitry Valyaev

Available online 5 June 2021

For complete overview of the section, please refer the article
collection - Metals 2021

https://doi.org/10.1016/j.cogsc.2021.100524

2452-2236/© 2021 Elsevier B.V. All rights reserved.
Introduction
Mechanochemistry, that is, enabling chemical trans-
formations by mechanical force [1], has become the
cornerstone of solvent-free synthesis, providing a gen-
eral, readily optimized, scalable methodology to prepare
molecules and materials without using bulk solvents.
Reactions performed by grinding, milling, or other types
of agitation (e.g. acoustic mixing [2], extrusion [3]) have
been applied to a wide range of domains from molecular
chemistry: organic [4e8], biomolecular [9e12] and

organometallic [13,14]; to materials chemistry: inor-
ganic materials [15,16], metal-organic frameworks
[17,18], nanoparticles [19,20] and carbon-based mate-
rials [21,22]. Mechanochemical transformations by
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milling are often promoted by small quantities of liquids
(liquid-assisted grinding, LAG), salts (ion- and liquid-
assisted grinding, ILAG), and/or polymers (polymer-
assisted grinding, POLAG), providing routes to opti-
mize and/or direct reactivity [23].

Particularly exciting developments have emerged in
catalysis. Mechanochemistry being perfectly adapted to
poorly soluble substances, it opens previously uncon-
ceivable approaches to catalysis using either insoluble
substrates (e.g. biomass or synthetic polymers, metal

carbides [24,25]) or employing plain raw metals [26] or
minerals [27] as catalysts. This Opinion article high-
lights the most recent and captivating advances and
opportunities in mechanochemistry using metal cata-
lysts [28,29], and discusses the similarities of metal
catalysis to other areas of mechanochemistry.
Context: brief overview of transition metal-
catalyzed mechanochemical
transformations
Metal-mediated transformations in a solvent-free envi-
ronment have been known since at least the 1980s,
when Toda et al. synthesized 2,20-binaphthols (BINOLs,
up to 95% yields) by gentle heating (50 �C) of pre-
ground mixtures of 2-naphthols with iron(III) salts
[30]. An early example of a metal-catalyzed milling re-

action was a palladium-catalyzed Heck-type coupling of
aryl halides with protected aminoacrylates, with 13e
88% yields within 60 min [31]. The ability to improve
metal-catalyzed mechanochemical transformations by
small amounts of a liquid was demonstrated by the Braga
group who performed the SuzukieMiyaura coupling of
1,10-ferrocenediboronic acid and 4-bromopyridine by
kneading with a small amount of methanol, resulting in
up to 57% isolated yield [32]. Today, metal-catalyzed
mechanochemistry is a wide area, with many popular
transformations adapted to the solvent-free environ-

ment, including ruthenium-catalyzed olefin metathesis
[33], SuzukieMiyaura [22], Heck [34], Buchwalde
Hartwig [35], Sonogashira coupling [36] rhodium- and
gold-catalyzed CeH activation [37], and many more
[28,29] (Figure 1).
New opportunities for catalysis
Milling assembly as catalyst
One of the most captivating new opportunities that
mechanochemistry offers to catalysis is the use of
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Selected examples of popular transition metal-catalyzed reactions adapted to mechanochemical reaction environment. (a) Ruthenium-catalyzed olefin
metathesis [33]. (b) Palladium-catalyzed Buchwald–Hartwig coupling [35]. (c & d) Gold- and rhodium-catalyzed indole alkynylation [37].

2 Metals
elementary metals as catalysts, removing the need for
specially designed, often costly and/or sensitive organo-
metallic complexes employed in homogeneous catalysis

[68]. This was demonstrated by the Mack group, who
conducted a Sonogashira coupling using a copper-based
milling assembly (copper jar and milling media) instead
of the conventional copper(I) co-catalyst (Figure 2a) [36].
The concept of the milling assembly as catalyst was
expanded to other processes, for example, ligand- and
solvent-free SuzukieMiyaura reactions developed by the
Borchardt group using palladium balls (Figure 2b) [26].

Bulk metals as catalysts
A simplemechanochemical route to silver-catalyzed olefin
cyclopropanation was described by the Mack group, by
introducing a thin foil of silver metal into a stainless steel

milling jar [38]. This strategy was expanded into a
chemoselective strategy for alkyne cyclopropenation
versus alkene cyclopropanation controlled by the nature of
the metal foil (Figure 2e) [39]. Specifically, milling in the
presence of a silver foil was selective for alkyne cyclo-
propenation while using a copper foil was selective for
alkene cyclopropanation, even in mixtures or within the
same substrate when the double and triple bonds are not
conjugated. The reaction was also applicable to terminal
acetylenes,which are otherwise known todeactivate silver
catalysts in solution. The silver foil methodology was also

combined with palladium-catalyzed Sonogashira coupling
in a one-pot strategy to synthesize cyclopropenes from
phenyl diazoacetate, 1-hexyne, iodobenzene, and palla-
dium catalyst [39].

Base metal activation as substrate
Mechanochemical activation of a base metal was used
by the Browne group [40] for in situ generation of
Current Opinion in Green and Sustainable Chemistry 2021, 32:100524
organozinc reagents, by milling zinc with organo-
halides, in that way avoiding the need for inert atmo-
sphere or dry solvents. The resulting organozinc

derivatives were then used as effective substrates in
palladium-catalyzed Negishi coupling in a two-step
one-pot milling process using aryl chlorides (2 exam-
ples), bromides (32 examples) or iodides (4 examples),
or in a one-pot telescoping milling reaction using aryl
bromides (3 examples).

In situ formation of catalytically active metal
complexes
Another route to simplify catalytic reactions is by in situ
assembly of the catalyst from an inexpensive metal salt or
a metal itself. An example of such a two-step process was
demonstrated by Hernández et al. in a two-step procedure
involving the mechanosynthesis of a Cp*-rhodium(III)
catalyst (Cp* = pentamethylcyclopentadienyl ligand)
directly from hydrated RhCl3, followed by Rh-catalyzed
CeH activation by ball milling [41]. Catalysts for
SuzukieMiyaura couplings were synthesized by Do et al.
directly from palladium metal by combining mechano-
chemical oxidative halogenation with ligand exchange,
providing a simple route for the direct recycling of labo-
ratory waste palladium catalysts [42].

Minerals as precatalysts
Examples of nonconventional, inexpensive catalyst
choices enabled by mechanochemistry are copper- and
vanadium-containing minerals covellite and

vanadinite, respectively, which were used by the Bolm
group to catalyze intermolecular and intramolecular
CeC bond formation through milling atom-
transfer radical cyclization (ATRC) or oxidative
coupling [27].
www.sciencedirect.com
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Figure 2
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Illustration of new opportunities in mechanochemical metal-catalyzed reactions, including the use of milling media as catalysts, and catalysis activated
by the piezoelectric effect. (a) Sonogashira coupling in a copper milling assembly [36]. (b) Suzuki–Miyaura coupling with palladium balls [26]. (c) Atom-
transfer radical cyclization by mechanochemically enabled piezoelectric redox chemistry (BaTiO3) [44]. (d) Arylation and borylation of diazonium salts
by piezoelectric mechanoredox chemistry (BaTiO3) [43]. (e) Selective alkyne cyclopropenation (silver foil) and alkene cyclopropenation (copper foil)
[39].

Metal-catalyzed mechanochemistry Effaty et al. 3
Piezoelectric catalysis
A recent and exciting mechanochemical opportunity to

develop novel catalytic systems is based on single-
electron transfer processes activated by piezoelectric
effect e charge separation in a material under me-
chanical impact [43]. Specifically, Kubota et al. have
shown that ball milling in presence of piezoelectric
ceramic BaTiO3 enabled regioselective and gram-scale
Figure 3
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CeH arylation of furans, pyrroles, and thiophenes
(Figure 2d). This mechanochemically enabled piezo-
electric redox strategy was expanded by Bolm et al. to
ATRC using BaTiO3 along with a copper(II) co-catalyst
(Figure 2c) [44], and by Kubota, Ito et al. for aromatic
CeH trifluoromethylations [45]. Although not directly
metal-catalyzed, piezoelectric catalysis with BaTiO3 is
an example of a mechanochemistry-specific catalytic
t
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nochemically enabled selective Suzuki–Miyaura coupling monoarylation
oupling to form urea-amides [56]. (c) Altered aldehyde-amine-alkyne (A3)
ical nickel-catalyzed tetramerization of terminal alkynes, contrasting so-
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4 Metals
process, analogous to photoredox catalysis, but
harnessing mechanical energy to accelerate chemical
transformations.
Specific features of metal-catalyzed
mechanosynthesis
Isolation of reaction intermediates
Mechanochemical methods are amenable to directly
observe reactive intermediates, and sometimes even
isolate them. Initially demonstrated in metal-free re-
actions, such as the Katritzky thiourea synthesis or the
Knoevenagel condensation [46,47], this possibility was
recently established in metal-catalyzed mechanochem-

istry by the Ito group, who reported simple synthesis
and solid-state isolation of organopalladium halides,
known as intermediates in SuzukieMiyaura- or Heck-
type coupling reactions [48].

Stoichiometric control
A hallmark of mechanochemical reactions of molecular
solids is the highly improved control of reaction stoi-
chiometry compared with analogous solution processes.
The ability to selectively mono-functionalize bifunc-
tional reactants by mechanochemistry was demon-
strated in cocrystal synthesis by Karki et al. [49], and in
organic synthesis by �Strukil et al. in click coupling of
anilines and thiocyanates [50] and by Stolle et al. in
oxidative bromination of mesitylene [51]. This
improved stoichiometric control by mechanochemistry
over solution conditions was recently extended to
SuzukieMiyaura coupling of symmetrical o-, m- or p-
dibromobenzenes with a wide range or arylboronic acids
[52]. Milling in approximate 1:1 stoichiometry provided
a mono-arylated product reliably and selectively,
enabling subsequent two-step synthesis of non-
symmetrical diarylated products (Figure 3a). The
selectivity for the monoarylated product, which excee-
ded that seen in solution, was explained by in situ crys-

tallization: the conversion of the initially liquid
dibromobenzenes into the solid monoarylated product,
which reduces molecular mobility.

Liquid-assisted methods
Addition of small quantities of a liquid (LAG) is a well-
established method to control and optimize milling re-
actions. The exact mechanism through which liquid
addition controls mechanochemical reactivity remains
unknown, with only a handful of mechanistic studies
available [23]. A significant advance towards rational
design of LAG reactions was made by Ito et al., who
discovered that catalytic amounts of olefins, such as 1,5-

cyclooctadiene, were highly efficient in promoting
SuzukieMiyaura and BuchwaldeHartwig reactions by
milling [53,54]. The olefin liquid additive was proposed
to act via labile coordination to the palladium catalyst,
which would prevent catalyst aggregation and maintain
turnover efficiency.
Current Opinion in Green and Sustainable Chemistry 2021, 32:100524
New and modified metal-catalyzed
transformations
Mechanochemistry provides an opportunity to achieve
difficult catalytic reactivity, or reactivity that is strik-
ingly different or even unobserved in solution. A new
catalytic transformation, first discovered via mechano-
chemistry, was the copper-catalyzed CeN coupling of
sulfonamides with carbodiimides [55]. This reaction
worked with a range of arylsulfonamides and carbodii-
mides, achieving yields of 95% or more within hours. By
contrast, the analogous solution transformations either
did not take place or provided conversions below 10%
after several days. The reactivity was adaptable to

combinations of amides or imides with isocyanates,
providing a simple, room-temperature route to urea-
amides, including the insecticide Triflumuron
(Figure 3b) [56]. This amide-isocyanate coupling was
also difficult to reproduce in solution, even at temper-
atures >100 �C.

Modification of reaction selectivity by mechanochem-
istry was noted by Hernández et al., for the copper(I)-
catalyzed A3 coupling of aldehydes, alkynes and
amines. Specifically, the use of solvent-free procedures

enabled the use of calcium carbide (CaC2) as the alkyne
source, selectively yielding 1,4-diamino-2-butynes, in
contrast to solution-based approaches that mainly yiel-
ded propargylamines (Figure 3c) [25].

A striking example of a change in selectivity when
switching from solution to a mechanochemical envi-
ronment is the nickel-catalyzed oligomerization of ter-
minal acetylenes. In solution, catalysis by nickel(0)
species yielded benzene derivatives resulting from
[2þ 2þ 2] cyclotrimerization. Under mechanochemical

conditions using nickel milling balls, the reaction led to
efficient [2 þ 2 þ 2 þ 2] cyclotetramerization to pro-
duce mixtures of substituted cyclooctatetraenes, with
the metal catalyst being easily removed and recyclable
by a magnet (Figure 3d) [57].
Popular applications
Metal-catalyzed C–H functionalization using
mechanochemistry
Mechanochemical functionalization of CeH bonds is a
rapidly growing area. A number of mechanochemical
CeH functionalization strategies have been recently
described by Bolm et al., using iridium-, ruthenium-
and rhodium-based catalysts to modify sp2 carbons,
often quantitatively and chemoselectively
(Figure 4a,d) [37,58,59]. An early report of a dehy-

drogenative cross-coupling by mechanochemistry
appeared in 2016, using Pd(OAc)2 catalyst to form
biaryls by C(sp2)eH/C(sp2)eH coupling of aromatic
oximes or anilides with substituted benzenes
(Figure 4c). Optimization of reactions by LAG led to
improved yields and shorter reaction times compared
www.sciencedirect.com
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Figure 4
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Selected examples of metal-catalyzed mechanochemical C–H functionalization reactions. (a) Ruthenium-catalyzed hydroarylations of alkynes [59]. (b)
Direct arylation of indoles, selective for the C-2 position. (c) Arylation of aromatic oximes or anilides by C–H/C–H (sp2-sp2) coupling [60]. (d) Rhodium-
catalyzed C–H bond amidation with dioxazolones [57]. (e) Intermolecular C(sp3)–H amination using Du Bois’s Rh(II)-catalyst [62]. (f) Copper-catalyzed
enantioselective C(sp3)–H fluorination [63].

Metal-catalyzed mechanochemistry Effaty et al. 5
to solution approaches, with excellent chemo-
selectivity [60]. An approach for mechanochemical
regioselective arylation of indoles using a palladiu-
m(II) catalyst was reported by Das et al., with up to
99% isolated yields (37 examples, Figure 4b) [61].
Examples of reactions on sp3 centers are still rare,
however. One recent example is an intermolecular
C(sp3)eH amination using Du Bois’s RhII2(esp)2
catalyst in the presence of stoichiometric PhI(OAc)2
oxidant (25 examples, 40e95% yields, Figure 4e) [62].
Mechanochemical activation of C(sp3)eH center was

also reported by Wang et al., in copper-catalyzed fluo-
rination of b-ketoesters which was not only solvent-
free, but also highly enantioselective (Figure 4f) [63].

Medicinal mechanochemistry
An emergent mechanochemistry area of high academic
and industrial interest is medicinal mechanochemistry
[64], i.e. the use of mechanochemistry to reduce or
eliminate the need for bulk solvents in the synthesis and
discovery of pharmaceutical targets and materials mol-
ecules. The archetypal example of metal-catalyzed
synthesis of an active pharmaceutical ingredient is the
high-yield copper-catalyzed synthesis of antidiabetic
drugs tolbutamide, chlorpropamide, and glibenclamide

through copper-catalyzed coupling of sulfonamides and
isocyanates [65]. The synthesis was recently adapted to
an undergraduate teaching exercise, and scaled up using
planetary milling techniques, demonstrating the
simplicity and accessibility of mechanochemical catal-
ysis [66]. A recent contribution in this area is the LAG
SuzukieMiyaura synthesis of Fenbufen ethyl ester, a
nonsteroidal anti-inflammatory drug (NSAID, 91%
yield) by Su et al. [67].
www.sciencedirect.com C
Conclusions and outlook
This brief Opinion articles provided a snapshot of
transition-metal catalysis in organic synthesis by mech-
anochemistry, demonstrating that this area, which only
emerged only three decades ago, has now taken the

shape as a mainstream application. While a number of
well-known catalytic reactions have been successfully
transferred to the solvent-free ball milling environment,
there is a number of new opportunities for reaction and
catalyst design that are tailored for mechanochemical
conditions. Some of these new opportunities, notably
using raw metals and milling equipment itself as cata-
lysts, are now attracting the attention of a growing
number of research groups. With this in mind, it is easy
to perceive this area developing into a standalone sub-
discipline: metal-catalyzed mechanochemistry, with

opportunities distinct and broader than those of
solution-based catalysis.
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