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Abstract 

Food and agriculture account for 26% of 

total global greenhouse gas (GHG) 

emissions, according to research from 

Project Drawdown. Consequently, our 

everyday food choices can significantly 

impact the fight against climate change. 

This study aims to empower consumers 

with the information needed to make 

environmentally responsible and 

nutritionally informed food choices. Due to 

the lack of transparency in proprietary 

recipe information on food products, 

assessing their emission impact is 

challenging. To address this, we employ an 

open-source model, LLaMA3, to 

approximate the recipes of various food 

products. We then create a comprehensive 

emissions database for these products. 

Additionally, we calculate a nutrition score 

for each product using the updated 

NutriScore system. By combining GHG 

emissions data with nutritional scores, we 

provide a holistic view that helps 

consumers make more sustainable and 

health-conscious decisions. 

1 Introduction 

Food Life Cycle Assessment (LCA) is an emerging 

area of research that involves evaluating the 

sustainability of the supply chain for food 

commodities. From a study conducted by Poore 

and Nemecek (2018), the total emissions generated 

by our food supply chains can measure up to ~13.7 

billion metric tons of carbon dioxide equivalents 

(CO2eq) contributing to 26% of total 

anthropogenic emissions. There has been an 

increased consumer awareness regarding the 

environmental impact of their food choices which 

has led to consumers preferring local or regional 

foods (Nemecek et al. (2016)) and looking for 

ecolabels, to guide their decision-making. 

However, Potter et al. (2021) argues that food 

selection based solely on nutrient profiling is 

insufficient; it is essential to consider the emissions 
associated with consumer-driven choices as well. 

Food profiling is an interesting problem but 
comes with its own limitations, especially for 

complex food items (complex foods are food items 
that contain more than one ingredient). Clark et al. 

(2022) studies some of these challenges such as 1) 

complex supply chain - each ingredient could be 

sourced from a different part of the world, and 

without a transparent supply chain, it’s difficult to 

calculate the emission of the ingredient accurately, 

2) proprietary information - companies do not 

share the proprietary information like  ingredients 

and their proportions which makes it difficult to 

calculate the total emission of each product.    

To overcome the challenges of proprietary 

recipes, our approach leverages open-source 

language models like LLaMA3 (Touvron et al. 

(2023)) to estimate recipe of various food products 

As depicted in Figure 1, we utilize “USDA Global 

Branded Food Products Database” (The U.S. 

Department of Agriculture (2019)) which contains 

detailed information on approximately 400,000 

store bought food products, along with their 

ingredients and nutrition labels. This data is 

integrated with the total emissions data and 

nutritional score for each product. The nutritional 

score is calculated by using the updated NutriScore 

metric (Sarda et al.). Although there are many 

alternate metrics as discussed by Drewnowski 

(2005), most of them are complex to calculate and 

require detailed prior knowledge, such as daily 
value for each nutrient. The resulting data, 

including each product's NutriScore and emission 

score, is stored in a query-able vector database, so 

when a user scans any product, related products 

with lower impact but more nutritional value would 

be retrieved from the database. 

Our main contribution through this paper is to 

1) showcase how LLMs can help bridge the gap 
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between the known and the unknown factors of the 

food system and 2) to develop an application that 

can help consumers make healthy and sustainable 

food choices. 

2 Literature Review 

Stylianou et al. (2021) discusses how consumers 

need to make dietary changes to have sustainable 

food systems. Most of the consumers make their 

food choices either based on the product’s price or 

its nutritional value since those are the only two 

pieces of information available on the packaging. 

Muzzioli et al. (2023) argues that a single 

perspective approach is not sustainable, and we 

need to consider the environmental impact of 

various food products. Having said that, calculating 

a life cycle assessment of a composite food is an 

arduous process as there is a lack of transparency 

in the food supply chain. 

Most of the previous studies focus on getting the 

impact score for basic food commodities like fruits. 

This is not very helpful as most of the products that 

a consumer buys are composite food items like 

canned foods or frozen foods, which are a 

combination of more than one item. Clark et al. 

(2022) developed an algorithm to populate the 

environmental impacts of food products by using 

publicly available information. But their 

methodology requires some datapoints with their 

respective food composition, to estimate 

proportions for rest of the products. In the US, this 

data is not required nor available and hence is a 

huge roadblock when it comes to calculating 

impact score.  

Our method uses LLaMA3 70b instead of 

GPT4, since it is currently the best open-source 

model, meticulously trained on large amount of 

internet data. This extensive training enables 

LLaMA3 to generate accurate food proportions by 

utilizing its comprehensive prior knowledge. We 

also use these models to source the greenhouse gas 

emission (in kg CO2eq) of various ingredients, 

rather than fetching the data manually. 

3 Method 

This section outlines the data collection process to 

calculate emission and nutritional scores. To 

standardize the process, both metrics are 

calculated on 100gm of any product, which makes 

it easier to compare products. 

3.1 Emissions Data 

To collect the emission data, the first step is to 

collect the proportion of each ingredient. This is 

done by prompting LLaMA3 to generate an 

approximate percentage of each ingredient 

present in a product. Figure 2 illustrates a sample 
prompt and the corresponding response generated 

by LLaMA3. To validate these results, we used 

ChatGPT (Brown et al. (2020)), which has the 

Figure 1: Data collected from USDA is used to generate the NutriScore and Emission score for each food 

product. This is stored in a query-able vector database. 

Nutri Score 

(-1 to 13)

Popping corn =  40%

Sunflower Oil = 20%

Salt = 5 %

Artificial Flavor = 5%

Citric Acid = 1%

LlaMA generated 

proportions

Emissions Score for 

100gm): 

(40*0.008) + (20 * 

0.003) = 0.38 kg CO2

Product Description: 

Popcorn

Vector Database

Product Description: Butter 

Popcorn, 

Emissions Score = 0.5 kg 

CO2

Nutri Score = 4

Similar Products:

Popcorn, Emissions 

Score 0.38 kg CO2

Nutri Score = 3
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capability to reference real-time data, and used the 

same prompt to generate a response. The Root 

Mean Square Error (RMSE) score between the 

ingredient proportions generated by LLaMA3 and 

ChatGPT is shown in Table 1 under LLaMA 

generated proportions. We only take into account 

the ingredients which had proportion > 5% to 

calculate the total Emission Score of the product. 

Using this method, recipes for 30,000 products 

were collected, with ~30,000 different 

ingredients. The biggest challenge in this process 

is bucketing similar ingredients together, since 

one ingredient can be written in several ways. To 

overcome this, ingredients were lemmatized and 

then bucketed together based on Levenstein 

distance.  The outcome of the bucketed list was 

still not comprehensive as ingredients like apricot 

and dried apricot were not part of the same group. 

A list of 4000 ingredients (after bucketing) was 

passed through LLaMA3, to get a final list of 200 

unique ingredients. 

The next step is to collect emissions data for 

each of these ingredients. The main source for the 

ingredient level emissions data was “Our World 

in Data” (Ritchie et al. (2022)), which provides 

emissions data for 250 food items.  To estimate the 

emissions for all the other ingredients that are not 

covered in the above dataset, we prompt LLaMA3 

to generate approximate emission (which includes 

transportation, packaging, and production). For 

accurate assessment of the emission, one needs to 

consider the LCA for each ingredient, but that 

data is not easily available. We test the accuracy 

of the model’s generated emission score with data 

collected from the internet, and the RMSE score 

is reported in Table 1 under GHG Score from 

LLaMa3. 
To calculate the final emission score for 

100gm of a product, a weighted sum is calculated 

for each ingredient and its emission score, as 

shown in eq 1. Here 𝑝𝑗 is the proportion, and 𝑒𝑗 is 

the emission (of 1gm of the ingredient) for 

ingredient j where j ∈ Ζ. 

 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒 = ∑ 𝑝𝑗 ∗  𝑒𝑗 
𝑛
𝑗  (1) 

3.2 Nutritional Value 

The nutritional value of a food product can be 

determined by using the nutrition label on the 

packaging. The USDA Food database provides 

nutrition label information for each of the 

products. This database contains 477 unique 

nutrients such as Protein, Fiber, Total Sugar, Fats, 

various Vitamins and Minerals etc.  

For this study, we employ the NutriScore 

metric system, which assigns a numerical score 
between -15 to 40 to profile foods based on their 

nutritional quality. These scores can be 

categorized into 5 buckets: A (<= -1), B (0 to 2), 

C (3 to 10), D (11 to 18), and E (19 to 40). 

NutriScore is calculated based on the quantity of 

various nutrients present in a product. It gives 

negatives score for nutrients that should be 

consumed in less quantity such as fat, saturated 

fat, sugar, and sodium and awards positive scores 

for beneficial components like protein, fibers and 

fruits and vegetables. Although the score has its 

limitations, like it only considers limited 

nutrients, or it does not factor in if the food is ultra 

processed, it is still overall a simple way to 

calculate the health benefit for a food product. 

Given that the nutritional value of each product 

is already stored in the database, we can directly 

apply the NutriScore algorithm to compute the 

final nutrition score for each product. 

3.3 Vector Embedding 

Vector embedding is a way to represent data in  

latent space, such that similar data points are closer 

to each other. The vector database can query and 

retrieve similar products quickly and allows the 

flexibility of filtering on metadata. We generate the 

vector embeddings of the food descriptions using a 

basic sentence-transformer model (all-MiniLM-

L6-v2), introduced by Reimers and Gurevych 

(2019).  

These embeddings are then stored in a vector 

database. As explained by Han et al. (2023), a 

vector database is used to store and retrieve high-

dimensional vector embedding of unstructured data 

quickly and accurately. ChromaDB, along with 

their respective NutriScore and Emission Scores. 

The final data that goes in the vector data base is, 

 

Figure 2: Example of a prompt given as input to 

LLaMA model. 
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∑ {𝑠𝑖 , 𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎: {𝑛𝑖 ,   𝑒𝑖}}𝑖=𝑛  ; where s is the 

description, e is the Emission Score, and n is the 

NutriScore for a food item.   

4 Results 

To the best of our knowledge, no comprehensive 

dataset exists that store both the emissions impact 

and nutritional score of composite foods. 

Therefore, to evaluate our methodology, we 

picked simple examples where comparative 

emissions of various food products would be 

common knowledge and manually labelled them 

as correct or incorrect. For instance, a pepperoni 

pizza will have a higher emission score than a 

veggie pizza, since vegetables have a smaller 

environmental impact than pepperoni. 

 Figure 3 shows the 10 most commonly 

occurring ingredients for products with low 

emission score (10th percentile) and high nutrition 

score (10th percentile, low NutriScore is better). On 

the other hand, Figure 4 shows 10 commonly 

occurring ingredients for products with high 

emission score (90th percentile) and low nutrition 

score (90th percentile, high NutriScore is not good). 

From these figures one can understand that plant-

based food like vegetables and fruits usually have 

low environmental impact and are high in 

nutritional value, whereas meat based or dairy 

products have very high environmental impact. 

 

 

 

 

 

 

 

5 Conclusion 

This study presents a methodology to estimate 

the environmental and nutritional impacts of food 

products using open-source large language models, 

due to the absence or lack of availability of 

comprehensive datasets in this domain. 

Recognizing the significant role of the food and 

agriculture sector in global greenhouse gas 

emissions, our approach equips consumers with the 

necessary information to make sustainable and 

health-conscious choices. 

This study focuses on the GHG emissions of a 

product, although there are other aspects that need 

to be considered. In the future we will focus on 

augmenting the data with more environmental 

factors such as water usage, land usage, effect on 

biodiversity etc. 

This paper is particularly focused on driving 

decisions based on the impacts and nutrition, but 

most of us choose food products based on their  

price. Incorporating the price point with the impact  

scores can make a true impact when it comes to 

consumers’ choices. 

References 

Ahn, Chiyoung, and Chung Gun Lee. “Effect of 

NUTRI-SCORE Labeling on Sales of Food Items in 

Stores at Sports and Non-Sports 

Facilities.” Preventive Medicine Reports, vol. 29, 

21 July 2022, p. 101919, 

pubmed.ncbi.nlm.nih.gov/35911572/, 

https://doi.org/10.1016/j.pmedr.2022.101919. 

Task Metric Score 

GHG Score from 

LLaMa3 

RMSE 5.44 

LLaMA3 generated 

proportions 

RMSE 6.38 

Table 1:  Metrics 

 

 

Figure 3: most commonly occurring ingredients 

for products with low emission score and low 

NutriScore 

Figure 4: most commonly occurring ingredients 

for products with high emission score and high 

NutriScore 

https://doi.org/10.1016/j.pmedr.2022.101919


   

 

5 

 
 

Brown, Tom B., et al. “Language Models Are Few-Shot 

Learners.” Arxiv.org, vol. 4, 28 May 2020, 

arxiv.org/abs/2005.14165. 

Clark, Michael, et al. “Estimating the Environmental 

Impacts of 57,000 Food Products.” Proceedings of 

the National Academy of Sciences, vol. 119, no. 33, 

8 Aug. 2022, 

www.pnas.org/doi/10.1073/pnas.2120584119, 

https://doi.org/10.1073/pnas.2120584119. 

Clark, Michael A, et al. “Multiple Health and 

Environmental Impacts of Foods.” Proceedings of 

the National Academy of Sciences, vol. 116, no. 46, 

28 Oct. 2019, p. 201906908, 

https://doi.org/10.1073/pnas.1906908116. 

Drewnowski, Adam. “Concept of a Nutritious Food: 

Toward a Nutrient Density Score.” The American 

Journal of Clinical Nutrition, vol. 82, no. 4, 1 Oct. 

2005, pp. 721–732, 

https://doi.org/10.1093/ajcn/82.4.721. Accessed 24 

May 2020. 

Han, Yikun, et al. “A Comprehensive Survey on Vector 

Database: Storage and Retrieval Technique, 

Challenge.” ArXiv.org, 18 Oct. 2023, 

arxiv.org/abs/2310.11703. 

Muzzioli, Luca, et al. “How Much Do Front-Of-Pack 

Labels Correlate with Food Environmental 

Impacts?” Nutrients, vol. 15, no. 5, 26 Feb. 2023, p. 

1176, https://doi.org/10.3390/nu15051176. 

Potter, Christina, et al. “The Effects of Environmental 

Sustainability Labels on Selection, Purchase, and 

Consumption of Food and Drink Products: A 

Systematic Review.” Environment and Behavior, 

vol. 53, no. 8, 20 Feb. 2021, p. 001391652199547, 

journals.sagepub.com/doi/full/10.1177/001391652

1995473, 

https://doi.org/10.1177/0013916521995473. 

Reimers, Nils, and Iryna Gurevych. “Sentence-BERT: 

Sentence Embeddings Using Siamese BERT-

Networks.” ArXiv:1908.10084 [Cs], 27 Aug. 2019, 

arxiv.org/abs/1908.10084. 

Ritchie, Hannah, et al. “Environmental Impacts of 

Food Production.” Our World in Data, 2022, 

ourworldindata.org/environmental-impacts-of-

food. 

Stylianou, Katerina S., et al. “Small Targeted Dietary 

Changes Can Yield Substantial Gains for Human 

Health and the Environment.” Nature Food, vol. 2, 

no. 8, 1 Aug. 2021, pp. 616–627, 

www.nature.com/articles/s43016-021-00343-4, 

https://doi.org/10.1038/s43016-021-00343-4. 

Touvron, Hugo, et al. “LLaMA: Open and Efficient 

Foundation Language Models.” ArXiv:2302.13971 

[Cs], 27 Feb. 2023, arxiv.org/abs/2302.13971. 

U.S. Department of Agriculture. “FoodData 

Central.” Usda.gov, 2019, fdc.nal.usda.gov/. 

Vidergar, Petra, et al. “A Survey of the Life Cycle 

Assessment of Food Supply Chains.” Journal of 

Cleaner Production, vol. 286, no. 0959-6526, 1 Mar. 

2021, p. 125506, 

https://doi.org/10.1016/j.jclepro.2020.125506. 

Poore, Joseph, and Thomas Nemecek. “Reducing 

Food’s Environmental Impacts through Producers 

and Consumers.” Science, vol. 360, no. 6392, 1 

June 2018, pp. 987–992, 

https://doi.org/10.1126/science.aaq0216. 

Nemecek, Thomas, et al. “Environmental Impacts of 

Food Consumption and Nutrition: Where Are We 

and What Is Next?” The International Journal of 

Life Cycle Assessment, vol. 21, no. 5, 2 Mar. 2016, 

pp. 607–620, 

link.springer.com/article/10.1007/s11367-016-

1071-3, https://doi.org/10.1007/s11367-016-1071-

3. 

Sarda, Barthélemy et al. “Complementarity between 

the Updated Version of the Front-of-Pack Nutrition 

Label Nutri-Score and the Food-Processing NOVA 

Classification.” Public Health Nutrition 27.1 

(2024): e63. Web. 

https://doi.org/10.1016/j.jclepro.2020.125506
https://doi.org/10.1126/science.aaq0216
https://doi.org/10.1007/s11367-016-1071-3
https://doi.org/10.1007/s11367-016-1071-3

	1 Introduction
	2 Literature Review
	3 Method
	3.1 Emissions Data
	3.2 Nutritional Value
	3.3 Vector Embedding

	4 Results
	5 Conclusion

