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ABSTRACT

Reasoning about a model’s accuracy on a test sample from its confidence is a
central problem in machine learning, being connected to important applications
such as uncertainty representation, model selection, and exploration. While these
connections have been well-studied in the i.i.d. settings, distribution shifts pose
significant challenges to the traditional methods. Therefore, model calibration
and model selection remain challenging in the unsupervised domain adaptation
problem–a scenario where the goal is to perform well in a distribution shifted
domain without labels. In this work, we tackle difficulties coming from distribution
shifts by developing a novel importance weighted group accuracy estimator. Specif-
ically, we formulate an optimization problem for finding an importance weight that
leads to an accurate group accuracy estimation in the distribution shifted domain
with theoretical analyses. Extensive experiments show the effectiveness of group
accuracy estimation on model calibration and model selection. Our results em-
phasize the significance of group accuracy estimation for addressing challenges
in unsupervised domain adaptation, as an orthogonal improvement direction with
improving transferability of accuracy.

1 INTRODUCTION

In this work, we consider a classification problem in unsupervised domain adaptation (UDA). UDA
aims to transfer knowledge from a source domain with ample labeled data to enhance the performance
in a target domain where labeled data is unavailable. In UDA, the source and target domains have
different data generating distributions, so the core challenge is to transfer knowledge contained in
the labeled dataset in the source domain to the target domain under the distribution shifts. Over the
decades, significant improvements in the transferability from source to target domains have been
made, resulting in areas like domain alignment (Ben-David et al., 2010; Ganin et al., 2016; Long
et al., 2018; Zhang et al., 2019) and self-training (Chen et al., 2020; Cai et al., 2021; Liu et al., 2021).

Improving calibration performance, which is about matching predictions regarding a random event to
the long-term occurrence of the event (Dawid, 1982), is of central interest in the machine learning
community due to its significance to safe and trustworthy deployment of machine learning models in
critical real-world decision-making systems (Lee and See, 2004; Amodei et al., 2016). In independent
and identically distributed (i.i.d.) settings, calibration performance has been significantly improved
by various approaches (Guo et al., 2017; Gal and Ghahramani, 2016; Lakshminarayanan et al., 2017).
However, producing well-calibrated predictions in UDA remains challenging due to the distribution
shifts. Specifically, Wang et al. (2020) show the discernible compromise in calibration performance as
an offset against the enhancement of target accuracy. A further observation reveals that state-of-the-art
calibrated classifiers in the i.i.d. settings begin to generate unreliable uncertainty representation in the
face of distributional shifts (Ovadia et al., 2019). As such, enhancing the calibration performance in
UDA requires carefully addressing the impacts of the distribution shifts.

Moreover, the model selection task in UDA remains challenging due to the scarcity of labeled target
domain data that are required to evaluate model performance. In the i.i.d. settings, a standard
approach for model selection is a cross-validation method—constructing a hold-out dataset for
selecting the model that yields the best performance on the hold-out dataset. While cross-validation
provides favorable statistical guarantees (Stone, 1977; Kohavi et al., 1995), such guarantees falter
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Figure 1: In Figure 1(a), a shaded area for the IW-based estimator represents possible estimations
from IWs in the confidence interval. Figure 1(b) illustrates both ideal and failure cases of IW-
GAE with nine data points (red diamonds) from three groups (gray boxes). Group 1 is desirable
for model calibration where the group accuracy estimation (a blue rectangle) well represents the
individual expected accuracies of samples in the group. Conversely, group accuracy estimation could
inaccurately represent the individual accuracies in the group due to a high variance of accuracies
within the group (group 2) and a high bias of the estimator (group 3).

in the presence of the distribution shifts due to the violation of the i.i.d. assumption. In practice,
it has also been observed that performances of machine learning models measured in one domain
have significant discrepancy to their performances in another distribution shifted domain (Hendrycks
and Dietterich, 2019; Ovadia et al., 2019; Recht et al., 2019). Therefore, applying model selection
techniques in the i.i.d. settings to the labeled source domain is suboptimal in the target domain.

This paper proposes importance weighted group accuracy estimation (IW-GAE) that simul-
taneously addresses these critical aspects in UDA from a new perspective of predicting a group
accuracy. We partition predictions into a set of groups and then estimate the group accuracy–the
average accuracy of predictions in a group–by importance weighting. When the group accuracy
estimate accurately represents the expected accuracy of a model for individual samples in the group
(e.g., group 1 in Figure 1(b)), using the group accuracy estimate as prediction confidence induces a
well-calibrated classifier. When the average of the group accuracy estimates matches the expected
accuracy (e.g., two dotted lines in Figure 1(b) are close to each other), the average group accuracy
becomes a good model selection criterion. In this work, we formulate a novel optimization problem
for finding importance weights (IWs) that induce a group accuracy estimator satisfying these ideal
properties under the distribution shifts. Specifically, we define two estimators for the group accuracy
in the source domain, where only one of them depends on the IW. Then, we find the IW that makes
the two estimators close to each other by solving the optimization problem (cf. reducing opt error in
Figure 1(a)). Through a theoretical analysis and several experiments, we show that the optimization
process results in an accurate group accuracy estimator for the target domain (cf. small quantity of
interest in Figure 1(a)), thereby improving model calibration and model selection performances.

Our contributions can be summarized as follows: 1) We propose a novel optimization problem
for IW estimation that can directly reduce an error of the quantity of interests in UDA with a
theoretical analysis; 2) We show when and why considering group accuracy, instead of the accuracy
for individual samples, is statistically favorable based on the bias-variance decomposition analysis,
which can simultaneously benefit model calibration and model selection; 3) On average, IW-GAE
improves state-of-the-art by 26% in the model calibration task and 14% in the model selection task.

2 RELATED WORK

Model calibration in UDA Although post-hoc calibration methods Guo et al. (2017) and Bayesian
methods (Gal and Ghahramani, 2016; Lakshminarayanan et al., 2017; Sensoy et al., 2018) have
been achieving impressive calibration performances in the i.i.d. setting, it has been shown that most
of the calibration improvement methods fall short under distribution shifts (Ovadia et al., 2019)
(see Appendix B.1 for more discussion). While handling model calibration problems under general
distribution shifts is challenging, the availability of unlabelled samples in the distribution shifted
target domain relaxes the difficulty in UDA. In particular, unlabeled samples in the target domain
enable an IW formulation for the quantity of interests in the shifted domain. Therefore, the post-doc
calibration methods (e.g., Guo et al. (2017)) can be applied by reweighting calibration measures such
as the expected calibration error (Wang et al., 2020) and the Brier score (Park et al., 2020) in the
source dataset with an IW. However, estimating the IW brings another difficulty of high-dimensional
density estimation. In this work, instead of concentrating on obtaining accurate importance weighted
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calibration measures for matching the maximum softmax output to the expected accuracy, we aim to
directly estimate the accuracy in the distribution shifted target domain.

Model selection in UDA A standard procedure for model selection in the i.i.d. settings is the cross-
validation, which enjoys statistical guarantees about bias and variance of model performance (Stone,
1977; Kohavi et al., 1995; Efron and Tibshirani, 1997). However, in UDA, the distribution shifts
violate assumptions for the statistical guarantees. Furthermore, in practice, the accuracy measured in
one domain is significantly changed in the face of natural/adversarial distribution shifts (Goodfellow
et al., 2015; Hendrycks and Dietterich, 2019; Ovadia et al., 2019). To tackle the distribution shift
problem, importance weighted cross validation (Sugiyama et al., 2007) applies importance sampling
for obtaining an unbiased estimate of model performance in the distribution shifted target domain.
Further, recent work in UDA controls variance of the importance-weighted cross validation with a
control variate (You et al., 2019). These methods aim to accurately estimate the IW and then use an
IW formula for the expected accuracy estimation. In this work, our method concerns the accuracy
estimation error in the target domain during the process of IW estimation, which can potentially
induce an IW estimation error but resulting in an accurate accuracy estimator.

3 BACKGROUND

Notation and problem setup Let X ⊆ Rr and Y = [K] := {1, 2, · · · ,K} be input and label
spaces. Let Ŷ : X → [K] be the prediction function of a model and Y (x) is a (conditional) K-
dimensional categorical random variable related to a label at X = x. When there is no ambiguity,
we represent Y (x) and Ŷ (x) as Y and Ŷ for brevity. We are given a labeled source dataset DS =

{(x(S)
i , y

(S)
i )}N(S)

i=1 sampled from pSXY
and an unlabeled target dataset DT = {x(T )

i }N
(T )

i=1 sampled
from pTX

where pSXY
is a joint data generating distribution of the source domain and pTX

is a
marginal data generating distribution of the target domain. We also denote Ep[·] as the population
expectation and Êp[·] as its empirical counterpart. For pSXY

and pTXY
, we consider a covariate shift

without a concept shift; i.e., pSX
(x) ̸= pTX

(x) but pSY |X (y|x) = pTY |X (y|x) for all x ∈ X . For
the rest of the paper, we use the same notation for marginal and joint distributions when there is no
ambiguity; that is, EpS

[u1(X)] = EpSX
[u1(X)] and EpS

[u2(X,Y )] = EpSXY
[u2(X,Y )]. However,

we use the explicit notation for the conditional distribution as pSY |X and pTY |X to avoid confusion.

In this work, we consider an IW estimation problem for improving model calibration and model
selection in UDA. Importance weighting can address many problems in UDA due to its statisti-
cal exactness for dealing with two different probability distributions under the absolute continuity
condition (Horvitz and Thompson, 1952; Sugiyama et al., 2007) that is often assumed in the liter-
ature. Specifically, for densities pS and pT , a quantity of interest u(·, ·) in pT can be computed by
EpT

[u(X,Y )] = EpS
[w∗(X)u(X,Y )] where w∗(x) := pT (x)

pS(x) is the IW of x. We next review two
main approaches for the IW estimation, which circumvent the challenges of directly estimating the
IW, or the densities pS and pT , in a high-dimensional space.

Estimating IW by discriminative learning Bickel et al. (2007) formulate the IW estimation into
a discriminative learning problem by applying the Bayes’ rule, which is more sample efficient
(Ng and Jordan, 2001; Tu, 2007; Long and Servedio, 2006). Specifically, with a discriminative
model that classifies source and target samples, the IW can be computed as w∗(x) = pT (x)

pS(x) =
ν(x|d=1)
ν(x|d=0) =

P (d=0)
P (d=1)

P (d=1|x)
P (d=0|x) where ν is a distribution over (x, d) ∈ (X ×{0, 1}) and d is a Bernoulli

random variable indicating whether x belongs to the target domain or not. For the IW estimation,
P (d = 0)/P (d = 1) can be estimated by counting sample sizes of DS and DT . Also, to estimate
P (d = 1|x)/P (d = 0|x), a logistic regression can be trained by assigning a domain index of zero to
xS ∈ DS and one to xT ∈ DT , and maximizing log-likelihood with respect to domain datasets.

Estimating confidence interval of importance weight Recently, nonparametric estimation of the
IW is proposed in the context of generating a probably approximately correct (PAC) prediction set
(Park et al., 2022). In this approach, X is partitioned into B number of bins (X = ∪Bi=1Bi) with

I(B) : X → [B] such that Bi = {x ∈ X |I(B)(x) = i}, i ∈ [B]. (1)

Under the partitions, the binned probabilities p̄S(x) = p̄S
I(B)(x)

with p̄Sj
=
∫
Bj

pS(x)dx and
p̄T (x) = p̄T

I(B)(x)
with p̄Tj

=
∫
Bj

pT (x)dx are defined. Then, the confidence intervals (CIs) of the
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IW in Bj can be obtained by applying the Clopper–Pearson CI (Clopper and Pearson, 1934) to the
binned probabilities pSj and pTj for j ∈ [B] (Park et al., 2022). Specifically, for δ̄ := δ/2B, the
following inequality holds with probability at least 1− δ:

[
¯
θ(n

(T )
j ;N(T ),δ̄)−G]+

θ̄(n
(S)
j ;N(S),δ̄)+G

≤ w∗
j :=

p̄Tj

p̄Sj
≤ θ̄(n

(T )
j ;N(T ),δ̄)+G

[
¯
θ(n

(S)
j ;N(S),δ̄)−G]+

(2)

where θ̄(k;m, δ) := inf{θ ∈ [0, 1]|F (k;m, θ) ≤ δ} and
¯
θ(k;m, δ) := sup{θ ∈ [0, 1]|F (k;m, θ) ≥

δ} with F being the cumulative distribution function of the binomial distribution and G ∈ R+ is
a constant that satisfies

∫
Bj
|pS(x) − pS(x

′)|dx′ ≤ G and
∫
Bj
|pT (x) − pT (x

′)|dx′ ≤ G for all
x ∈ Bj and j ∈ [B]. For the rest of the paper, we refer to {w∗

i }i∈B as binned IWs. Also, we let

Φj :=

[
[
¯
θ(n

(T )
j ;N(T ),δ̄)−G]+

θ̄(n
(S)
j ;N(S),δ̄)+G

,
θ̄(n

(T )
j ;N(T ),δ̄)+G

[
¯
θ(n

(S)
j ;N(S),δ̄)−G]+

]
be the CI of w∗

i .

4 IMPORTANCE WEIGHTED GROUP ACCURACY ESTIMATION

In this section, we propose IW-GAE that estimates the group accuracy in the target domain for
addressing model calibration and selection tasks in UDA. Specifically, we construct M groups
denoted by {Gi}i∈[M ] and then estimate the average accuracy of each group in the target domain with
IW. To this end, we define the target group accuracy of a group Gn with the true IW w∗ as

αT (Gn;w∗) := EpS

[
w∗(X)1(Y = Ŷ )|X ∈ Gn

]
P (XS∈Gn)
P (XT∈Gn)

(3)

where XS and XT are random variables having densities pS and pT , respectively. It is
called the group accuracy because EpS

[
w∗(X)1(Y = Ŷ )|X ∈ Gn

]
P (XS∈Gn)
P (XT∈Gn)

=
∫
x∈X 1(Y =

Ŷ )pT (x)1(x∈Gn)
P (XT∈Gn)

dx = EpT

[
1(Y (X) = Ŷ (X))|X ∈ Gn

]
. We denote α̂T (Gn;w∗) to be the expecta-

tion with respect to the empirical measure. We also define the source group accuracy as

αS(Gn;w∗) := EpT

[
1(Y (X)=Ŷ (X))

w∗(X) |X ∈ Gn
]

P (XT∈Gn)
P (XS∈Gn)

. (4)

Once we obtain an IW estimation ŵ : X → R+ and a group assignment I(g) : X → [M ] with
methods described in Section 4.2, IW-GAE can estimate the group accuracy, denoted as α̂T (Gi; ŵ),
that can be used to simultaneously solve model calibration and model selection tasks with attractive
properties. Specifically, for model calibration, previous approaches (Park et al., 2020; Wang et al.,
2020) depend on a temperature scaling method (Guo et al., 2017) that does not provide theoretical
guarantees about the calibration error. In contrast, IW-GAE uses α̂T (GI(g)(x); ŵ) as an estimate of
confidence for a test sample x ∼ pT . Therefore, due to the guarantees about the group accuracy
estimation error (cf. Proposition 4.2 and (5)), IW-GAE enjoys a bounded calibration error. For
model selection, IW-GAE uses average group accuracy ÊpT

[α̂T (GI(g)(X); ŵ)] computed with DT

as a model selection criterion. While the previous approaches (Sugiyama et al., 2007; You et al.,
2019) also aim to estimate the model accuracy in the target domain, IW-GAE considers an additional
regularization encouraging accurate group accuracy estimation for each group.

4.1 MOTIVATION FOR ESTIMATING THE GROUP ACCURACY

First, we motivate the idea of predicting group accuracy, instead of an expected accuracy for each
sample. Suppose we are given samples D := {(xi, yi)}Nn

i=1 ∈ Gn and a classifier f . Let β(xi) :=
EY |X=xi

[1(Y (xi) = f(xi))] be an expected accuracy of f at xi, which is our goal to estimate. Then,
due to realization of a single label at each point, the observed accuracy β̂(xi) := 1(yi = f(xi))
is a random sample from the Bernoulli distribution with parameter β(xi) that has a variance of
σ2
xi

= β(xi)(1 − β(xi)). Note that this holds when xi ̸= xj for i ̸= j, which is the case for most
machine learning scenarios. Under this setting, we show the sufficient condition that the maximum
likelihood estimator (MLE) of the group accuracy outperforms the MLE of the individual accuracy.

Proposition 4.1. Let β̂(id) and β̂(gr) be MLEs of individual and group accuracies. Then, β̂(gr)

has a lower expected mean-squared error than β̂(id) if 1
4 (maxx′∈Gn β(x′)−minx′∈Gn β(x′))

2 ≤
Nn−1
Nn

σ̄2 = Nn−1
N2

n

∑Nn

i=1 β(xi)(1− β(xi)) where σ̄2 = 1
Nn

∑Nn

i=1 σ
2
xi

.
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Figure 2: Illustration of correlations between ϵopt(w
†(n)) and the source and target group accuracy

estimation errors. Each point corresponds to an IW and the values are measured on the OfficeHome
dataset (720 IWs in total). See Appendix E.7 for more detailed discussions and analyses.

The proof is based on bias-variance decomposition and the Popoviciu’s inequality (Popoviciu,
1965), which is given in Appendix A. While σ̄2 is fixed, we can reduce the term maxx∈Gn β(x)−
minx∈Gn β(x) through a careful group construction that we discuss in Section 4.2. We also note
that the sufficient condition tends to be loose (e.g. maxx∈Gn

β(x) − minx∈Gn
β(x) ≤ 0.8 when

1
Nn

∑Nn

i=1 β(xi) = 0.8; cf. Figure A1). This means that the group accuracy estimator is statistically
more favorable than the individual accuracy estimator in various cases.

4.2 IMPORTANCE WEIGHT ESTIMATION AND GROUP CONSTRUCTION

Our goal is to obtain IW ŵ that leads to αT (Gn;w∗) ≈ αT (Gn; ŵ) for n ∈ [M ]. The proposed
method is based on a CI estimation method developed for producing the PAC prediction set discussed
in Section 3 (Park et al., 2022)1. Specifically, given the CI of binned IWs {Φi}i∈B in (2), our
goal is to find binned IWs {wi ∈ Φi}i∈[B] that give an accurate group accuracy estimation. We let
w̃(x) := wI(B)(x) be the induced IW estimation from binned IWs where I(B) is the partition in (1).

Our idea for accurately estimating the “target” group accuracy with IW estimator w̃ is to define two
estimators for the “source” group accuracy defined in (4), with one estimator dependent on a target
accuracy estimate, and to encourage the two estimators to agree with each other. This approach can
be validated because the target accuracy estimation error of w̃ can be upper bounded by its source
accuracy estimation error; that is,

|αT (Gn;w∗)− αT (Gn; w̃)| = |EpT

[
w̃(X)

(
1

w∗(X) −
1

w̃(X)

)
1(Y = Ŷ )|X ∈ Gn

]
|P (XS∈Gn)
P (XT∈Gn)

≤ w̃(ub)
n · |αS(Gn;w∗)− αS(Gn; w̃)|

(
P (XT∈Gn)
P (XS∈Gn)

)2
(5)

where w̃
(ub)
n = maxx∈Supp(pT (·|X∈Gn)) w̃(x), αS(Gn; w̃) is obtained by replacing w∗ with w̃ in (4),

and the bound is tight when w̃(x) = w̃
(ub)
n for all x ∈ Supp(pT (·|X ∈ Gn)). Under a loose bound

or large values of w̃(ub)
n and P (XT ∈ Gn)/P (XS ∈ Gn) in (5), reducing |αS(Gn;w∗)− αS(Gn; w̃)|

may not effectively reduce |αT (Gn;w∗) − αT (Gn; w̃)|. In our empirical verification with 720
different IWs (Figure 2(a)), we observe that an IW that has small |αS(Gn;w∗)− αS(Gn; w̃)| highly
likely achieves lower |αT (Gn;w∗)− αT (Gn; w̃)| compared to others, which resolves potential issues
associated with the loose bound or large values of w̃(ub)

n and P (XT ∈ Gn)/P (XS ∈ Gn).
To develop the first estimator, note that we can reliably approximate the source group accuracy with
DS by Monte-Carlo estimation with the error of O(1/

√
|Gn(DS)|) where Gn(DS) := {(xk, yk) ∈

DS : xk ∈ Gn}; we denote the Monte-Carlo estimate as α̂(MC)
S (Gn) = ÊpS

[1(Y = Ŷ )|X ∈ Gn].

1However, we want to emphasize that IW-GAE can be applied to any valid CI estimators (cf. Appendix B.2).
In addition, we show that IW-GAE outperforms state-of-the-art methods even a naive CI estimator that sets
minimum and maximum values of binned IWs as CIs in Appendix E.5.
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Based on (4), we define a second estimator for αS(Gi;w∗), as a function of binned IWs {wi}i∈[B],
by assuming EpTY |x

[1(Y (x) = Ŷ (x))] = α̂T (Gn; {wi}i∈[B]) for all x ∈ Gn:

α̂
(IW )
S (Gn; {wi}i∈[B]) :=

P̂ (XT∈Gn)

P̂ (XS∈Gn)
· ÊpT

[
α̂T (Gn;{wi}i∈[B])

w̃(X) |X ∈ Gn
]

= ÊpT
[ 1
w̃(X) |X ∈ Gn]ÊpS

[1(Y = Ŷ )w̃(X)|X ∈ Gn] (6)

where α̂T (Gn; {wi}i∈[B]) is an empirical estimate of the target accuracy with {wi}i∈[B] in (3),
P̂ (XT ∈ Gn) := ÊpT

[1(X ∈ Gn)], and P̂ (XS ∈ Gn) := ÊpS
[1(X ∈ Gn)].

We aim to formulate an optimization problem to choose binned IWs from CIs such that
min{wi∈Φi}i∈[B]

(α̂
(IW )
S (Gn; {wi}i∈[B])− α̂

(MC)
S (Gn))2. However, note that α̂(IW )

S (Gn; {wi}i∈[B])
in (6) is non-convex with respect to wi’s (see Appendix A.2 for the derivation), which is in general not
effectively solvable with optimization methods (Jain et al., 2017). Therefore, we introduce a relaxed
reformulation of (6) by separating binned IWs for source and target, which introduces coordinatewise
convexity. Specifically, we redefine the estimator in (6) as

α̂
(IW )
S (Gn; {w(S)

i , w
(T )
i }i∈[B]) := ÊpT

[
1

w̃(T )(X)
|X ∈ Gn

]
ÊpS

[
1(Y = Ŷ )w̃(S)(X)|X ∈ Gn

]
(7)

where w̃(S)(X) := w
(S)

I(B)(X)
and w̃(T )(X) := w

(T )

I(B)(X)
. Then, we encourage agreements of w(S)

i

and w
(T )
i for i ∈ [B] through constraints. Specifically, for each group Gn, we find binned IWs

w†(n) ∈ R2B
+ by solving the following optimization:

w†(n) ∈ argmin
{w(S)

i ,w
(T )
i }i∈[B]

(
α̂
(MC)
S (Gn)− α̂

(IW )
S (Gn; {w(S)

i , w
(T )
i }i∈[B])

)2
(8)

s.t. w
(S)
i ∈ Φi, for i ∈ [B] (9)

w
(T )
i ∈ Φi, for i ∈ [B] (10)

∥ w(T )
i − w

(S)
i ∥22≤ δ(tol) for i ∈ [B] (11)∣∣∣ÊpS

[w̃(S)(X)|X ∈ Gn]− P̂ (XT∈Gn)

P̂ (XS∈Gn)

∣∣∣ ≤ δ(prob) (12)∣∣∣ÊpT
[1/w̃(T )(X)|X ∈ Gn]− P̂ (XS∈Gn)

P̂ (XT∈Gn)

∣∣∣ ≤ δ(prob) (13)

where δ(tol) and δ(prob) are small constants. Box constraints (9) and (10) ensure that the obtained
solution is in the CI, which bounds the estimation error of w

(S)
i and w

(T )
i by |Φi|. This can

also bound the target group accuracy estimation error as |αT (Gn;w∗) − αT (Gn; {w(S)
i }i∈B)| ≤

maxb∈[B] |Φb|P (XS ∈ Gn)/P (XT ∈ Gn). Constraint (11) corresponds to the relaxation for
removing non-convexity of the original objective, and setting δ(tol) = 0 recovers the original
objective. Constraints (12) and (13) are based on the equalities that the true IW w∗(·) satisfies:
EpS

[w∗(X)|X ∈ Gn] = P (XT∈Gn)
P (XS∈Gn)

and EpT
[1/w∗(X)|X ∈ Gn] = P (XS∈Gn)

P (XT∈Gn)
.

Since the above optimization problem is a constrained nonlinear optimization problem with box con-
straints, we solve it through sequential least square programming (Kraft, 1988). Note that the objective
(8) is convex with respect to a block (w

(S)
1 , w

(S)
2 , · · · , w(S)

B ) and a block (w
(T )
1 , w

(T )
2 , · · · , w(T )

B ),
but not jointly convex. Therefore, using a quasi-Newton method can guarantee only convergence
to a local optimum (Nocedal and Wright, 1999). Nevertheless, due to constraints (12) and (13), the
asymptotic convergence (w†(n))i → w∗

i and (w†(n))i+B → w∗
i as N (S) →∞ and N (T ) →∞ can

be trivially guaranteed because |Φi| → 0 for i ∈ [B] (Thulin, 2014).

The above optimization problem can be thought of as aiming to estimate the truncated IW w(x|X ∈
Gn) := pT (x|X∈Gn)

pS(x|X∈Gn)
for each Gn that can induce an accurate source group accuracy estimator.

However, the objective in (8) does not measure the source group accuracy estimation error. In the
following proposition, we show that the above optimization minimizes the upper bound of the source
group accuracy estimation error, thereby the target group accuracy estimation error due to (5).
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Proposition 4.2 (Upper bound of source group accuracy estimation error). Let w†(n) be a so-
lution to the optimization problem for Gn defined in (8)-(13) with δ(tol) = 0 and δ(prob) = 0.

Let ϵopt(w†(n)) :=
(
α̂
(MC)
S (Gn)− α̂

(IW )
S (Gn;w†(n))

)2
be the objective value. For δ̃ > 0, the

following inequality holds with probability at least 1− δ̃:

|αS(Gn;w∗)− αS(Gn;w†(n))| ≤ ϵopt(w
†(n)) + ϵstat + |α(IW )

S (Gn;w†(n))− αS(Gn;w†(n))|
(14)

≤ ϵopt(w
†(n)) + ϵstat + IdentBias(w†(n);Gn) (15)

where IdentBias(w†(n);Gn) = P (XT∈Gn)
2P (XS∈Gn)

(EpT
[(1(Y (X) = Ŷ (X))−αT (Gn;w∗))2

∣∣X ∈ Gn] +
1

¯
w†(n)2

) and ϵstat ∈ O(log(1/δ̃))/
√
|Gn(DS)|) for

¯
w†(n) := mini∈[2B]{w†

i (n)}.

The proof is based on the Cauchy-Schwarz inequality, which is provided in Appendix A. The bound
in (14) is tight when values of αS(Gn;w∗), α̂

(MC)
S (Gn), α̂(IW )

S (Gn;w†(n)), α(IW )
S (Gn;w†(n)), and

αS(Gn;w†(n)) are monotonic. Proposition 4.2 shows that we can reduce the source accuracy
estimation error by reducing ϵopt(w

†(n)) by solving the optimization problem. However, a large value
of ϵstat + |α(IW )

S (Gn;w†(n))− αS(Gn;w†(n))| or a looseness of (14) could significantly decrease
the effectiveness of IW-GAE. In this regard, we analyze the relationships between ϵopt(w

†(n)) and
two group accuracy estimation errors in Figures 2(b) and 2(c). In the empirical analyses, it turns out
that reducing ϵopt(w

†(n)) can effectively reduce the group accuracy estimation in both source and
target domains, which advocates the direction of IW-GAE.

For designining the group assignment function I(g), we note that IdentBias(w†(n);Gn) can be
reduced by decreasing the variance of the correctness within the group (cf. Proposition A.1). Thus, we
group examples by the maximum value of the softmax output as in Guo et al. (2017) based on strong
empirical evidence that the maximum value of the softmax output is highly correlated with accuracy
in UDA (Wang et al., 2020). In addition, we introduce a learnable temperature scale parameter for
target samples for adjusting the sharpness of the softmax output for target predictions inspired by
results that an overall scale of the maximum value of the softmax output significantly varies from one
domain to another (Yu et al., 2022). Specifically, groups in the source and target domains are defined
as Gn(DS) := {xi ∈ D|n−1

M ≤ (ϕ(g(xi)))j ≤ n
M , j ∈ m(xi)} and G(t)n (DT ) := {xi ∈ DT |n−1

M ≤
(ϕ(g(xi)/t))j ≤ n

M , j ∈ m(xi)} for n ∈ [M ] where g : X → RK is the logit function of a neural
network, ϕ is the K-dimensional softmax function, and m(xi) := argmaxk∈[K] (ϕ(g(xi)))k.

We note that introducing the temperature scaling parameter results in the nested optimization of
mint∈T

{
optimization problem in (8)-(13) with Gn(DS) and G(t)n (DT )

}
(see Appendix C.1 for the

complete optimization form and Algorithm 1 for pseudocode). Based on the facts that a group
separation is not sensitive to small changes in the temperature and the inner optimization is not
smooth with respect to t, we use a discrete set for T := {t1, t2, · · · , tn}. We note that the inner
optimization problem is readily solvable, so the discrete optimization can be performed without much
additional computational overhead.

Finally, for tightening the upper bounds in (5) and (15), we bound the maximum and minimum values
of an IW estimation by w(ub) and w(lb), which is a common technique in IW-based estimations
(Wang et al., 2020; Park et al., 2022). We note that bounding an IW estimation value only affects the
estimator, which does not affect any theoretical guarantee based on properties of true IWs such as
Proposition 4.2 and inequalities in (5) and (15). However, we remark that bounding an IW estimation
may increase ϵopt(w

†(n)) due to reduced search space, i.e., w(S)
i ∈ Φi ∩ [w(lb), w(ub)] in (9) and

w
(T )
i ∈ Φi ∩ [w(lb), w(ub)] in (10), although we observe that it works effectively in practice.

5 EXPERIMENTS

We evaluate IW-GAE on model calibration and selection tasks. Since both tasks are based on UDA
classification tasks, we first provide the common setup and task-specific setup such as the baselines
and evaluation metrics in the corresponding sections. For all experiments in this section, we evaluate
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our method on the popular Office-Home (Venkateswara et al., 2017) dataset, which contains around
15,000 images of 65 categories from four domains (Art, Clipart, Product, Real-World).

A base model is required for implementing the baseline methods and IW-GAE, which serve as the
test objectives for the model calibration and selection tasks. We consider maximum mean discrepancy
(MDD; (Zhang et al., 2019)) with ResNet-50 (He et al., 2016) as the backbone neural network,
which is the most popular high-performing UDA method. MDD aims to learn domain invariant
representation while learning a classification task in the source domain. In implementation, we use
the popular open source project Transfer Learning Library (Jiang et al., 2020). We use the default
hyperparameters in all experiments. Further details are explained in Appendix D.

IW estimation is required for implementing baseline methods and construct bins for estimating the
CI of the IW. We adopt a linear logistic regression model on top of the neural network’s representation
as the discriminative learning-based estimation, following Wang et al. (2020). Specifically, it first
upsamples from one domain to make |DS | = |DT |, and then it labels samples with the domain index:
{(h(x), 1)|x ∈ DT } and {(h(x), 0)|x ∈ DS} where h is the feature map of the neural network.
Then, logistic regression is trained with a quasi-Newton method until convergence.

5.1 MODEL CALIBRATION PERFORMANCE

Setup & Metric In this experiment, our goal is to match the confidence of a prediction to its expected
accuracy in the target domain. Following the standard (Guo et al., 2017; Park et al., 2020; Wang
et al., 2020), we use expected calibration error (ECE) on the test dataset as a measure of calibration
performance. The ECE measures the average absolute difference between the confidence and accuracy
of binned groups, which is defined as ECE(DT ) =

∑m
n=1

|Gn|
|DT | |Âcc(Gn(DT ))− ˆConf(Gn(DT ))|

where Âcc(Gn(DT )) is the average accuracy in Gn(DT ) and ˆConf(Gn(DT )) is the average confidence
in Gn(DT ). We use M = 15 following the standard value (Guo et al., 2017; Wang et al., 2020).

Baselines We consider the following five different baselines: The vanilla method uses a maximum
value of the softmax output as the confidence of the prediction. We also consider temperature
scaling-based methods that adjust the temperature parameter by maximizing the following calibration
measures: Temperature scaling (TS) (Guo et al., 2017): the log-likelihood on the source validation
dataset; IW temperature scaling (IW-TS): the log-likelihood on the importance weighted source
validation dataset; Calibrated prediction with covariate shift (CPCS): the Brier score (Brier, 1950) on
the importance weighted source validation dataset; TransCal (Wang et al., 2020): the ECE on the
importance weighted source validation dataset with a bias and variance reduction technique. These
methods also use a maximum value of the (temperature-scaled) softmax output as the confidence.

Results As shown in Table 1, IW-GAE achieves the best average ECEs across different base models.
For individual domains, IW-GAE achieves the best ECE among 11 out of the 12 cases. We note that
IW-Mid, which selects the middle point in the CI as IW estimation and originates herein as a simple
replacement of a classic IW estimation technique (Bickel et al., 2007) by a recently proposed CI
estimator (Park et al., 2022), is a strong baseline, outperforming other baselines. IW-GAE improves
this strong baseline for every case. This shows that the process of reducing ϵopt(w

†(n)) reduces
the group accuracy estimation error in the target domain, which is consistent with the result in
Proposition 4.2. Finally, we show that the effectiveness of IW-GAE can be generalized to large-scale
datasets (VisDa-2017 and DomainNet) in Appendix E.1 and different base models (conditional
adversarial domain adaptation (Long et al., 2018) and maximum classifier discrepancy (Saito et al.,
2018)) in E.2, outperforming state-of-the-art performances by 21%, 31%, 2%, and 5% respectively.

5.2 MODEL SELECTION

Setup & Metric In this experiment, we perform model selection for choosing the best hyperparameter.
To this end, we repeat training the MDD method by changing its key hyperparameter of margin
coefficient from 1 to 8 (the default value is 4). After training several models under different values of
the margin coefficient, we choose one model based on a model selection criterion. For evaluation, we
compare the test target accuracy of the chosen model under different model selection methods.

Baselines We consider three baselines that evaluate the model’s performance in terms of the following
criterion: Vanilla: the minimum classification error on the source validation dataset; Importance
weighted cross validation (IWCV) (Sugiyama et al., 2007): the minimum importance-weighted
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Task Method Ar-Cl Ar-Pr Ar-Rw Cl-Ar Cl-Pr Cl-Rw Pr-Ar Pr-Cl Pr-Rw Rw-Ar Rw-Cl Rw-Pr Avg
Model Vanilla 40.61 25.62 15.56 33.83 25.34 24.75 33.45 38.62 16.76 23.37 36.51 14.01 27.37
calibration TS 35.86 22.84 10.60 28.24 20.74 20.06 32.47 37.20 14.89 18.36 34.62 12.28 24.01

CPCS 22.93 22.07 10.19 26.88 18.36 14.05 28.28 29.20 12.06 15.76 26.54 11.14 19.79
IW-TS 32.63 22.90 11.27 28.05 19.65 18.67 30.77 38.46 15.10 17.69 32.20 11.77 23.26
TransCal 33.57 20.27 8.88 26.36 18.81 18.42 27.35 29.86 10.48 16.17 29.90 10.00 20.84
IW-Mid 23.25 31.62 12.99 17.15 18.71 9.23 27.75 30.35 9.02 13.64 26.32 10.60 19.22
IW-GAE 12.78 4.70 12.93 7.52 4.42 4.11 9.50 17.49 8.40 7.62 9.52 8.14 8.93
Oracle 10.45 10.72 6.47 8.10 7.62 6.55 11.88 9.39 5.93 7.54 10.72 5.70 8.42

Model Vanilla 53.31 70.96 77.44 59.70 65.17 69.96 57.07 50.95 74.75 68.81 57.11 80.13 65.45
selection IWCV 53.24 69.61 72.50 59.70 65.17 67.50 57.07 55.21 74.75 68.81 58.51 80.13 65.18

DEV 53.31 70.72 77.44 59.79 67.99 69.96 57.07 52.50 77.12 70.50 53.38 82.27 66.00
IW-Mid 54.13 69.27 78.47 61.48 68.03 71.06 59.99 55.21 78.79 70.50 57.11 83.10 67.26
IW-GAE 54.34 70.96 78.47 61.48 69.93 71.06 62.79 55.21 78.79 70.50 58.51 83.31 67.95
Lower bound 52.51 69.27 72.50 59.70 65.17 67.50 57.07 50.95 74.75 68.81 50.90 80.13 64.10
Oracle 54.34 70.96 78.47 61.48 69.93 71.06 62.79 55.21 78.79 71.32 58.51 83.31 68.01

Table 1: Model calibration and selection benchmark results of MDD with ResNet-50 on Office-Home.
We repeat experiments for ten times and report the average value. For the model calibration, the
numbers indicate the mean ECE with boldface for the minimum mean ECE. For the model selection,
the numbers indicate the mean test accuracy of selected model with boldface for the maximum mean
test accuracy. For the model calibration task, Oracle is obtained by applying TS with labeled test
samples in the target domain. For the model selection task, lower bound and Oracle indicate the
accuracy of the models with the worst and best test accuracy, respectively.

classification error on the source validation dataset; Deep embedded validation (DEV)) (You et al.,
2019): the minimum deep embedded validation risk on the source validation dataset.

Results Table 1 shows that model selection with IW-GAE achieves the best average accuracy,
improving state-of-the-art by 18% in terms of the relative scale of lower and upper bounds of
accuracy. Specifically, IW-GAE achieves the best performance in all cases. We also note that IW-Mid
performs the model selection task surprisingly well. This means that, on average, the true IW could
be located near the middle point of the CI, while the exact location varies from one group to another.
Note that plain IWCV does not improve the vanilla method on average, which could be due to the
inaccurate estimation of the IW by the discriminative learning-based approach. In this sense, IW-GAE
has an advantage of depending less on the performance of the IW estimator since the estimated
value is used to construct bins for the CI, and then the exact value is found by solving the separate
optimization problem. We also remark that our experimental results reveal dangers of the current
practice of using the vanilla method or IWCV in model selection in UDA. Finally, in Appendix E.3,
we show that IW-GAE effectively solves another model selection task of choosing the best checkpoint,
outperforming state-of-the-art performance by 9%.

5.3 QUALITATIVE EVALUATION, ABLATION STUDY, AND SENSITIVITY ANALYSIS

In Appendix E.4, we qualitatively evaluate IW-GAE by visually comparing the group accuracy
estimation and the average group accuracy, which shows an accurate estimation ability of IW-GAE. In
Appendix E.5, we show that the group construction criterion and nested optimization with temperature
scaling developed in Section 4.2 work effectively for IW-GAE. In Appendix E.6, a sensitivity analysis
shows that IW-GAE consistently performs well even under large changes in the number of bins B
and the number of accuracy groups M .

6 CONCLUSION

In this work, we formulate an optimization problem to choose IW estimation from its CI for accurately
estimating group accuracy. Specifically, we define a Monte-Carlo estimator and an IW-based estimator
of group accuracy in the source domain and find the IW that makes the two estimators close to each
other. Solving the optimization problem not only reduces the source group accuracy estimation error
but also leads to an accurate group accuracy estimation in the target domain. We show that our
method achieves state-of-the-art performances in both model calibration and selection tasks in UDA
across a wide range of benchmark problems. We believe that the impressive performance gains by
our method show a promising future direction of research, which is orthogonal to improving the
transferability of accuracy–the main focus in the UDA literature. Finally, we note that all IW-based
methods (CPCS, IW-TS, TransCal, IW-GAE) fail to improve the standard method in the i.i.d. scenario
in our experiments with pre-trained large-language models (XLM-R (Conneau et al., 2019) and GPT-2
(Solaiman et al., 2019)). We conjecture that these models are less subject to the distribution shifts
due to massive amounts of training data that may include the target domain datasets, so applying the
methods in the i.i.d. setting can work effectively. In this regard, we leave the following important
research questions: “Are IW-based methods less effective, or even detrimental, under mild distribution
shifts?” and “Can we develop methods that work well under all levels of distribution shifts?”
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A PROOF OF CLAIMS

A.1 PROOF OF PROPOSITION 4.1

Proof. The proof consists of three parts: 1) decomposition of the expected mean-square error of an
estimator g(x); 2) deriving MLEs of individual and group accuracies; 3) constructing a sufficient
condition.

1) Bias-variance decomposition of the expected mean-square error The expected mean-square
error of an estimator g(x) for β(x) at xi ∈ Gn with respect to the realization of a label yi ∼ Y |x can
be decomposed by

ED[(β̂(xi)− g(xi))
2] = V arD(g(xi;D)) + (BiasD(g(xi;D)))2 + σ2

xi
(16)

where V arD(g(xi;D)) := ED[(g(xi;D) − ED[g(xi;D)])2] is the variance of the estimator and
BiasD(g(xi;D)) := ED[g(xi;D)]− β(x) is the bias of the estimator.

2) MLEs of individual and group accuracy estimators For an individual accuracy estimator
β̂(id)(x;D) that predicts an accuracy for each sample x given D, an MLE estimator is β̂(id)(x) =

β̂(x). This estimator is unbiased because ED(β̂(id)(x;D)) = β(x) for each x ∈ Gn. Therefore, this
estimator has the average of expected errors

1

Nn

Nn∑
k=1

ED[(β̂(xk)− β̂(id)(xk;D))2] = σ̄2 + σ̄2 (17)

where σ̄2 := 1
Nn

∑Nn

i=1 σ
2
xi

.

For a group accuracy estimator β̂(gr)(x;D) that predicts the same group accuracy estimate for all
x ∈ Gn, an MLE estimator can be defined by β̂(gr)(x;D) = 1

Nn

∑Nn

i=1 β̂(xi), which is a biased

estimator because ED(β̂(gr)(x;D)) = 1
Nn

∑Nn

i=1 β(xi) for each x ∈ Gn. Therefore, this estimator
has the average of expected errors

1

Nn

Nn∑
k=1

ED[(β̂(xk)− β̂(gr)(xk))
2] =

1

Nn
σ̄2 +

1

Nn

Nn∑
k=1

(
1

Nn

Nn∑
i=1

β(xi)− β(xk)

)2

+ σ̄2 (18)

=
1

Nn
σ̄2 + V ar(β;D) + σ̄2 (19)

where V ar(β;D) is the variance of the accuracy in group Gn.

3) Sufficient condition Given (17) and (19), the Popoviciu’s inequality (Popoviciu, 1965) provides a
sufficient condition for the group accuracy estimator β̂(gr) to have a lower expected mean-squared
error than the individual accuracy estimator β̂(id) as follows:

V ar(β;D) ≤ 1

4

(
max
x′∈Gn

β(x′)− min
x′∈Gn

β(x′)

)2

≤ Nn − 1

Nn
σ̄2 =

Nn − 1

Nn

(
1

Nn

Nn∑
i=1

β(xi)(1− β(xi))

)
(20)

where the equality comes from σ̄2 = 1
Nn

∑Nn

i=1 σ
2
xi

with σ2
xi

is the variance of the Bernoulli distribu-
tion with a parameter β(xi).

A.2 NON-CONVEXITY OF THE OPTIMIZATION PROBLEM

Let Gn(DS) := {(xk, yk) ∈ DS : xk ∈ Gn} and Gn(DT ) := {xk ∈ DT : xk ∈ Gn} for n ∈ [M ].
By elementary algebra, we obtain the following

α̂
(IW )
S (Gn; {wi}i∈[B]) =

 1

|Gn(DT )|
∑

(x,y))∈Gn(DT )

1

w(x)

 1

|Gn(DS)|
∑

x∈Gn(DS)

1(y = Ŷ (x))w(x)


(21)

=

(
1

|Gn(DT )|

B∑
i=1

ai
wi

)(
1

|Gn(DS)|

B∑
i=1

biwi

)
(22)
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where ai = |Gn(DT ) ∩ Bi| and bi = |{(xk, yk) ∈ Gn(DS) ∩ Bi|yk = Ŷ (xk)}|. Therefore,
α̂
(IW )
S (Gn; {wi}i∈[B]) is non-convex with respect to wi for i ∈ [B].

A.3 PROOF OF PROPOSITION 4.2

Proof. By applying triangle inequalities, we get the following inequality:

|αS(Gn;w∗)−αS(Gn;w†(n))| ≤ |αS(Gn;w∗)−α̂(MC)
S (Gn)|+|α̂(MC)

S (Gn)−α̂(IW )
S (Gn;w†(n))|

+ |α̂(IW )
S (Gn;w†(n))− α

(IW )
S (Gn;w†(n))|+ |α(IW )

S (Gn;w†(n))− αS(Gn;w†(n))|. (23)

Note that the first and third terms in the right hand side are coming from the Monte-Carlo approx-
imation, so they can be bounded by O(log(1/δ̃)/|DS

n |) with probability at least 1 − δ̃ based on a
concentration inequality such as the Hoeffding’s inequality. Also, the second term is bounded by the
optimization error ϵopt(w†(n)). Therefore, it is enough to analyze the fourth term.

The fourth term is coming from the bias of ETY |X [1(Y (X) = Ŷ (X))] = α̂T (Gn;w†(n)), which we
refer to as the bias of the identical accuracy assumption. It can be bounded by

|α(IW )
S (Gn;w†(n))− αS(Gn;w†(n))| (24)

=
P (XT ∈ Gn)
P (XS ∈ Gn)

∣∣∣∣EpT

[
1(Y (X) = Ŷ (X))− α̂T (Gn;w†(n))

w†(n)(X)

∣∣X ∈ Gn] ∣∣∣∣ (25)

≤ P (XT ∈ Gn)
P (XS ∈ Gn)

(
EpT

[
(1(Y (X) = Ŷ (X))− α̂T (Gn;w†(n)))2

∣∣X ∈ Gn]EpT

[
1

w†(n)(X)2
∣∣X ∈ Gn])1/2

(26)

≤ P (XT ∈ Gn)
2P (XS ∈ Gn)

(
EpT

[
(1(Y (X) = Ŷ (X))− α̂T (Gn;w†(n)))2

∣∣X ∈ Gn]+ EpT

[
1

w†(n)(X)2
∣∣X ∈ Gn])

(27)

≤ P (XT ∈ Gn)
2P (XS ∈ Gn)

(
EpT

[
(1(Y = Ŷ )− αT (Gn;w∗))2

∣∣Gn]+ 1

¯
w†(n)2

)
(28)

where (26) holds due to the Cauchy-Schwarz inequality, (27) holds due to the AM-GM inequality,
and

¯
w†(n) := mini∈[2B]{w†

i (n)}.

A.4 FORMAL STATEMENT AND PROOF OF PROPOSITION A.1

Proposition A.1 (Bias-variance decomposition). Let α̂T (Gn) be an estimate for αT (Gn;w∗). Then,
the bias of the identical accuracy assumption is given by

IdentBias(w†(n);Gn) = P (XT∈Gn)
2P (XS∈Gn)

(
1

¯
w†(n)2

+Bias(α̂T (Gn))2 + V ar(1(Y = Ŷ )|Gn)
)

(29)

where Bias(α̂T (Gn)) := |αT (Gn;w∗)−α̂T (Gn)| is the bias of the estimate α̂T (Gn) and V ar(1(Y =

Ŷ )|Gn) := EpT

(
1(Y = Ŷ )− αT (Gn;w∗)

)2
is the variance of the correctness of predictions in Gn.

Proof. Based on the proof of Proposition 4.2, it is enough to decompose EpT
[(]1(Y (X) = Ŷ (X))−

α̂T (Gn)]2 as follows

EpT

(
1(Y (X) = Ŷ (X))− α̂T (Gn)

)2
(30)

= EpT

(
1(Y (X) = Ŷ (X))− αT (Gn;w∗) + αT (Gn;w∗)− α̂T (Gn)

)2
(31)

= EpT

[(
1(Y (X) = Ŷ (X))− αT (Gn;w∗)

)2
+ (αT (Gn;w∗)− α̂T (Gn))2

]
(32)

= EpT

(
1(Y (X) = Ŷ (X))− αT (Gn;w∗)

)2
+ (αT (Gn;w∗)− α̂T (Gn))2 (33)

where the equality (32) holds due to ETX
ETY |X [(1(Y (X) = Ŷ (X))− αT (Gn;w∗))(αT (Gn;w∗)−

α̂T (Gn))] = 0.
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Figure A1: The shaded area includes values of group accuracy disparity satisfying the sufficient
condition that the group accuracy estimator β̂(gr) outperforms the individual group accuracy estimator
β̂(id).

B DISCUSSIONS

B.1 MODEL CALIBRATION IN THE I.I.D. SETTINGS

In a classification problem, the maximum value of the softmax output is often considered as a
confidence of a neural network’s prediction. In Guo et al. (2017), it is shown that the modern
neural networks are poorly calibrated, tending to produce larger confidences than their accuracies.
Based on this observation, Guo et al. (2017) introduce a post-processing approach that adjusts a
temperature parameter of the softmax function for adjusting the overall confidence level. In Bayesian
approaches (such as Monte-Carlo dropout (Gal and Ghahramani, 2016; Gal et al., 2017), deep
ensemble (Lakshminarayanan et al., 2017; Rahaman et al., 2021), and a last-layer Bayesian approach
(Sensoy et al., 2018; Joo et al., 2020)), the confidence level adjustment is induced by posterior
inference and model averaging. While both post-hoc calibration methods and Bayesian methods have
been achieving impressive calibration performances in the i.i.d. setting (Maddox et al., 2019; Ovadia
et al., 2019; Ebrahimi et al., 2020), it has been shown that most of the calibration improvement
methods fall short under distribution shifts (Ovadia et al., 2019).

B.2 ON CHOICE OF NON-PARAMETRIC ESTIMATORS

Our concept of determining the IW from its CI can be applied to any other valid CI estimators. For
example, by analyzing a CI of the odds ratio of the logistic regression used as a domain classifier
(Bickel et al., 2007; Park et al., 2020; Salvador et al., 2021), a CI of the IW can be obtained. Then,
IW-GAE can be applied in the same way as developed in Section 4. As an extreme example, we
apply IW-GAE by setting minimum and maximum values of IWs as CIs in an ablation study (Table
A5). While IW-GAE outperforms strong baseline methods (CPCS and TransCal) even under this
naive CI estimation, we observe that its performance is reduced compared to the setting with a
sophisticated CI estimation discussed in Section 3. In this regard, advancements in IW estimation
or CI estimation would be beneficial for accurately estimating the group accuracy, thereby model
selection and uncertainty estimation. Therefore, we leave combining IW-GAE with advanced IW
estimation techniques as an important future direction of research.

B.3 ON CHOICE OF THE NUMBER OF GROUPS

In this work, we estimate the group accuracy by grouping predictions based on the confidence
of the prediction. Therefore, a natural question to ask is how to select the number of groups. If
we use a small number of groups, then there would be high IdentBias(w†;Gn) because of the
large variance of prediction correctness within a group. In addition, reporting the same accuracy
estimate for a large number of predictions could be inaccurate in terms of representing uncertainty for
individual predictions. Conversely, if we use a large number of bins, there would be high Monte-Carlo
approximation errors, ϵstat. Therefore, it would result in a loose connection between the source
group accuracy estimation error and the objective in the optimization problem (cf. Proposition 4.2).
Therefore, it is important to choose a proper number of bins.
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C ADDITIONAL DETAILS

C.1 A NESTED OPTIMIZATION PROBLEM UNDER THE TEMPERATURE SCALING IN THE TARGET
DOMAIN

t† ∈ argmin
t∈T

M∑
n=1

(
α̂
(MC)
S (Gn)− α̂

(IW )
S (Gn;w†(n; t))

)2
(34)

where (35)

w†(n; t) ∈ argmin
{w(S)

i ,w
(T )
i }i∈[B]

(
α̂
(MC)
S (Gn)− α̂

(IW )
S (Gn; {w(S)

i , w
(T )
i }i∈[B])

)2
(36)

s.t. w
(S)
i ∈ Φi, for i ∈ [B] (37)

w
(T )
i ∈ Φi, for i ∈ [B] (38)

∥ w(T )
i − w

(S)
i ∥22≤ δ(tol) for i ∈ [B] (39)∣∣∣∣∣ÊpS

[w̃(S)(X)|X ∈ Gn]−
P̂ (XT ∈ G(t)n )

P̂ (XS ∈ Gn)

∣∣∣∣∣ ≤ δ(prob) (40)∣∣∣∣∣ÊpT
[1/w̃(T )(X)|X ∈ G(t)n ]− P̂ (XS ∈ Gn)

P̂ (XT ∈ G(t)n )

∣∣∣∣∣ ≤ δ(prob) (41)

In the above optimization problem, we note that the temperature scaling also changes the IW based
estimator by

α̂
(IW )
S (Gn; {w(S)

i , w
(T )
i }i∈[B]) = ÊpT

[
1

w̃(T )(X)

∣∣∣∣X ∈ G(t)n

]
ÊpS

[
1(Y = Ŷ )w̃(S)(X)

∣∣∣∣X ∈ Gn] .
(42)

C.2 ALGORITHM

In this section, we present pseudocodes of IW-GAE in Algorithm 1, evaluating calibration perfor-
mance of IW-GAE in Algorithm 2, model selection by IW-GAE in Algorithm 3.
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Algorithm 1 Pseudocode of IW-GAE

Input: Source dataset DS = {(x(S)
i , y

(S)
i )}N(S)

i=1 , Target dataset DT = {x(T )
i }N

(T )

i=1

Hyperparameters: The numbers of bins and groups (B and M ) level of CI δ̄, search space T
# Prepare a UDA model (Wang et al., 2020)
Partition DS into Dtr

S and Dval
S

Train a neural network g on (Dtr
S ,DT ) with any UDA method

Upsample Dtr
S or DT to make |Dtr

S | = |DT |
Compute F tr

S = {g(x)|x ∈ Dtr
S }, Fval

S = {g(x)|x ∈ Dval
S }, and FT = {g(x)|x ∈ DT }

Train a logistic regression model H that discriminates F tr
S and FT

# Obtain CIs of IWs (Park et al., 2022)
Gather IWsWS∪T = {(1−H(g(x)))/H(g(x)) : x ∈ Dval

S ∪ DT }
Compute quantiles q(i) = i/(B + 1)-th quantile ofWS∪T for i ∈ [B + 1]
Construct bins Bi = {x ∈ Dval

S ∪ DT : q(i) ≤ (1−H(g(x)))/H(g(x)) ≤ q(i+ 1)} for i ∈ [B]
Compute Φi using (2) for each i ∈ [B]
# IW-GAE
f† =∞
for t ∈ T do

Obtain w(n; t) by solving the optimization problem in (34)-(41) for n ∈ [M ]

if
∑M

n=1

(
α̂
(MC)
S (Gn)− α̂

(IW )
S (Gn;w(n; t))

)2
≤ f† then

f† =
∑M

n=1

(
α̂
(MC)
S (Gn)− α̂

(IW )
S (Gn;w(n; t))

)2
t† = t
w†(n) = w(n; t) for n ∈ [M ]

end if
end for
return (t†, w†(n))

Algorithm 2 Pseudocode of evaluating calibration performance of IW-GAE

Input: Labeled test dataset on the target domain Dtest
T = {(x(T,∗)

i , y
(T,∗)
i )}N(T,∗)

i=1 , target group
accuracy estimators of IW-GAE {α̂T (Gi;w†(i))}Mi=1, an optimal temperature t†, a neural network
logit function g
ECE(Dtest

T )← 0

Define a group ID function ID(x) = k if k
M ≤ ϕ(g(x)/t†) ≤ k+1

M
# ECE Measures
for m ∈ [M ] do

# The prediction confidence at x is computed by the estimated accuracy of the group that
contains x, not the maximum value of the softmax output at x

Gather samples in m-th confidence group G = {x ∈ Dtest
T : m

M ≤ α̂T (GID(x);w
†(ID(x))) ≤

m+1
M }

Compute average confidence ˆConf = 1
|G|
∑

x∈G α̂T (GID(x);w
†(ID(x)))

Compute average accuracy of G, and denote it as Âcc
Compute calibration error of m-th group confidence v = |Âcc− ˆConf|
ECE(Dtest

T )+ = |G|
|Dtest

T | · v
end for
return ECE(Dtest

T )
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Algorithm 3 Pseudocode of model selection by IW-GAE

Input: Unlabeled dataset on the target domain DT = {xT
i }N

T

i=1, target group accuracy estimators
of IW-GAE {α̂T (Gi;w†(i))}Mi=1, an optimal temperature t†, a set of neural network logit functions
{gi}Zi=1

Initialize f† = 0
for z ∈ [Z] do

Define a group ID function ID(x) = k if k
M ≤ ϕ(gz(x)/t

†) ≤ k+1
M

# Evaluate model
Compute the average target group accuracy f = 1

NT

∑NT

i=1 α̂T (GID(xT
i );w

†(ID(xT
i )))

if f ≥ f† then
f† = f
z∗ = z

end if
end for
return gz∗

D EXPERIMENTAL DETAILS

We follow the exact same training configurations as those used in the Transfer Learning Library, except
we separate 20% as the validation dataset from the source domain (in the original implementation,
validation is performed with the test dataset for Office-Home).

The configuration of training MDD for Office-Home is as follows: MDD is trained for 30 epochs with
SGD with momentum parameter 0.9 and weight decay of 0.0005. The learning rate is schedule by
α · (1+γ · t)−η where t is the iteration counter, α = 0.004, γ = 0.0002, η = 0.75, and the stochastic
gradient is computed with minibatch of 32 samples from the source domain and 32 samples from the
target domain. Also, it uses the margin coefficient of 4 as the MDD-specific hyperparamter. For the
model architecture, it uses ResNet-50 pre-trained on ImageNet (Russakovsky et al., 2015) with the
bottleneck dimension of 2,048.

IW-GAE specific details For CI estimation, we follow the same configuration with the original
method (Park et al., 2022). Specifically, we use constant G = 0.001, CI level δ̄ = 0.05, and the
number of bins B = 10. In addition, we use the maximum IW value w̃

(ub)
n = 6.0 and the minimum

IW value
¯
w†(n) = 1/6 for n ∈ [M ] for tightening the upper bounds in (5) and (15) (cf. Section 4.2).

In addition, for IW-GAE, we use the constraint relaxation constants δ(tol) = 0.1 and δ(prob) = 0.3.
We also use the number of accuracy group M = 10 and analyze the sensitivity for M in Appendix
E.6. For implementing sequential least square programming, we use the SciPy Library (Virtanen et al.,
2020) with tolerance 10−8 that is used to check a convergence condition (other optimizer-specific
values follow the default values in SciPy) and choose the middle points from CIs of binned IW as an
initial solution. For nested optimization, we set T := {0.85, 0.90, 0.95, 1.00, 1.05, 1.10}.

E ADDITIONAL EXPERIMENTS

E.1 LARGE-SCALE IMAGE CLASSIFICATION TASK

We perform an additional large-scale experiment with the VisDA-2017 (Peng et al., 2017) containing
around 280,000 images of 12 categories from two domains (real and synthetic images). For this
experiment, we use ResNet-101 with the bottleneck dimension of 1,024, following the default setting
in the Transfer Learning Library. All other configurations are the same as the training configuration
of the Office-Home dataset (cf. Appendix D). Figure A2 represents the result of the VisDa-2017
experiment, which shows that the IW-GAE achieves the best performance among all baselines.
Specifically, IW-GAE reduces the ECE of the state-of-the-art (TransCal) by 21%. We note that the
IW-Mid achieves a comparable performance with TransCal, unlike the OfficeHome experiment. This
result could be explained by an accurate CI estimation under a large number of samples. We leave
analyzing the impacts of the number of samples on the CI estimation and the performance of IW-GAE

18



Under review as a conference paper at ICLR 2024
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Figure A2: Large-scale model calibration benchmark result of MDD with ResNet-101 on VisDA
2017. The numbers indicates the mean ECE across ten repetitions with boldface for the minimum
mean ECE.

Method Cl-Pt Cl-Rw Cl-Sk Pt-Cl Pt-Rw Pt-Sk Rw-Cl Rw-Pt Rw-Sk Sk-Cl Sk-Pt Sk-Rw Avg
Vanilla 13.23 6.36 12.92 9.75 6.35 15.56 9.44 9.70 14.34 6.63 11.25 5.23 10.06
TS 12.95 5.95 13.32 6.40 3.90 11.07 8.64 10.49 16.08 3.17 5.58 13.09 9.22
CPCS 5.64 21.90 7.70 5.14 7.72 7.90 9.35 11.17 17.06 3.46 2.23 15.90 9.60
IW-TS 16.76 16.7 12.53 5.29 7.84 4.34 9.60 10.58 16.80 5.40 2.98 17.11 10.49
TransCal 18.51 29.63 20.92 23.02 31.83 17.58 27.88 28.83 20.31 31.66 23.06 31.46 25.39
IW-Mid 7.61 11.01 5.89 8.84 7.58 5.36 8.70 7.49 7.53 10.24 8.10 10.21 8.21
IW-GAE 6.06 8.15 5.38 7.45 3.89 3.94 7.01 5.58 6.73 6.80 6.82 8.00 6.32
Oracle 4.55 2.78 4.01 3.10 3.72 2.72 3.10 2.79 2.83 3.13 1.70 1.77 3.02
TransCal- 6.36 25.28 9.71 0.23 7.20 0.20 37.93 13.33 11.7 4.12 11.59 24.09 12.65

Table A1: Large-scale model calibration benchmark results of CDAN with ResNet-50 on DomainNet.
The numbers indicates the mean ECE across ten repetitions with boldface for the minimum mean
ECE. Cl, Pt, Rw, and Sk correspond to clipart, painting, real, and sketch, respectively.

as an important future direction of research, which could provide a strategy for choosing which CI
estimator to use under which condition.

To enhance the robustness of the findings, we also perform another large-scale experiment with
DomainNet (Peng et al., 2019) containing around 570,000 images of 345 categories from 6 domains
(clipart, real, sketch, infograph, painting, quickdraw). We also follow the default setting in the
Transfer Learning Library, except replacing ResNet-101 by ResNet-50 due to the computational
budget. Also, we use only four domains (clipart, real, sketch, painting) as described in the Transfer
Learning Library. Table A1 presents the result of the DomainNet experiment, which shows that
IW-GAE achieves the best performance among all baselines, achieving 31% lower ECE than the
second best method (TS). Consistent to the finding in VisDA-2017 (Peng et al., 2017), IW-Mid
achieves an impressive performance, surpassing all baseline methods on average. Finally, we remark
that TransCal’s performance on DomainNet is significantly worse than its performance on other
datasets. We found that excluding a variance reduction term in TransCal (TransCal- in Table A1)
stabilizes its performance, but the performances are still lower than IW-GAE and other baselines (TS
and CPCS).

E.2 EXPERIMENTS WITH DIFFERENT BASE MODELS

In this section, we show the effectiveness of IW-GAE with two different base models. First, we
perform additional experiments with conditional domain adversarial network (CDAN; (Long et al.,
2018)) which is also a popular UDA method. As in the experiments with MDD, we use ResNet-50
as the backbone network and OfficeHome as the dataset. The learning rate schedule for CDAN is
α · (1 + γ · t)−η where t is the iteration counter, α = 0.01, γ = 0.001, and η = 0.75. The remaining
training configuration for CDAN is the same as the MDD training configuration except it uses the
bottleneck dimension of 256 and weight decay of 0.0005 (cf. Appendix D). As we can see from
Table A2, IW-GAE achieves the best performance among all considered methods, achieving the best
ECE in 8 out of the 12 cases as well as the lowest mean ECE. We note that TransCal achieves a
performance comparable to IW-GAE in this experiment, but considering the results in the other tasks,
IW-GAE is still an appealing method for performing the model calibration task.
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Method Ar-Cl Ar-Pr Ar-Rw Cl-Ar Cl-Pr Cl-Rw Pr-Ar Pr-Cl Pr-Rw Rw-Ar Rw-Cl Rw-Pr Avg
Vanilla 30.73 18.38 14.37 25.63 22.44 19.10 27.54 36.72 12.48 19.93 31.12 10.88 22.44
TS 29.68 19.40 14.40 22.15 19.97 16.88 28.82 38.03 12.99 20.46 31.91 11.83 22.21
CPCS 18.78 18.09 14.74 22.18 20.74 16.33 29.30 34.92 11.92 20.99 31.41 11.07 20.87
IW-TS 12.38 16.79 14.85 21.75 20.06 16.92 29.30 38.84 13.30 20.82 31.10 11.37 20.62
TransCal 7.94 14.05 12.91 7.82 9.25 10.23 9.37 12.60 14.29 9.92 9.76 17.51 11.30
IW-Mid 36.05 47.70 26.82 21.08 22.95 21.55 18.88 28.99 15.39 21.16 28.16 25.27 26.17
IW-GAE 13.98 29.82 9.44 6.55 5.59 10.16 5.29 13.47 11.01 11.12 7.26 9.84 11.13
Oracle 7.91 8.80 6.05 7.57 7.93 6.76 9.07 9.14 4.04 7.16 9.19 5.65 7.44

Table A2: Model calibration benchmark results of CDAN with ResNet-50 on Office-Home. The
numbers indicates the mean ECE across ten repetitions with boldface for the minimum mean ECE.

Method Ar-Cl Ar-Pr Ar-Rw Cl-Ar Cl-Pr Cl-Rw Pr-Ar Pr-Cl Pr-Rw Rw-Ar Rw-Cl Rw-Pr Avg
Vanilla 38.91 26.39 18.86 32.85 26.69 19.36 35.87 36.70 18.61 24.57 36.87 14.79 27.54
TS 31.84 22.55 13.49 26.16 20.10 10.72 33.98 31.91 15.59 21.62 31.59 12.46 22.67
CPCS 13.07 20.09 47.15 9.78 21.82 8.02 32.65 25.61 15.27 20.53 40.38 7.84 21.85
IW-TS 12.88 21.44 61.15 10.56 16.40 11.72 33.03 36.37 14.09 19.96 41.95 19.30 24.91
TransCal 19.23 15.09 6.55 17.91 11.60 3.91 22.98 15.81 6.11 13.77 21.40 4.02 13.2
IW-Mid 50.68 28.93 23.92 38.24 33.48 28.58 39.76 37.45 22.40 27.15 44.15 18.07 32.73
IW-GAE 22.21 10.68 2.38 15.96 9.30 3.53 23.54 22.73 6.37 11.78 20.75 1.63 12.57
Oracle 5.88 9.91 3.19 7.75 4.64 3.66 4.17 7.70 3.09 4.51 8.09 3.54 5.51

Table A3: Model calibration benchmark results of MCD with ResNet-50 on Office-Home. The
numbers indicates the mean ECE across ten repetitions with boldface for the minimum mean ECE.

We also perform additional experiments with maximum classifier discrepancy (MCD; (Saito et al.,
2018)). Following the previous experiments with MDD and CDAN, we use ResNet-50 as the
backbone network and OfficeHome as the dataset. The training configuration is the same as the MDD
training configuration except it uses the fixed learning rate of 0.001 with weight decay of 0.0005 and
bottleneck dimension of 1,024 (cf. Appendix D). Consistent to other benchmark results, IW-GAE
achieves the best performance among all methods (Table A3). Specifically, IW-GAE achieves the
best average model calibration performance, and its ECE is lowest in 7 out of 12 domains. Note
that IW-Mid’s performance with MCD is significantly lower compared to other benchmark results.
However, IW-GAE still significantly improves the performance, indicating that IW-GAE does not
strongly depends on accuracy of the CI estimation discussed in Section 3.

E.3 CHECKPOINT SELECTION

In this section, we perform the task of choosing the best checkpoint during training for examining
IW-GAE’s model selection performance. Specifically, we first train MDD on the OfficeHome dataset
for 30 epochs and save the checkpoint at the end of each epoch. Then, we choose the best checkpoint
based on IW-GAE and baselines described in Section 5.2. As shown in Table A4, the model selected
based on IW-GAE achieves the best average test accuracy, which is consistent with the results in
the hyperparameter selection task (cf. the model selection task in Table 1). Specifically, IW-GAE
improves the second-best method (IWCV) by 9% and achieves the best checkpoint selection for 3 out
of the 12 domains.

Method Ar-Cl Ar-Pr Ar-Rw Cl-Ar Cl-Pr Cl-Rw Pr-Ar Pr-Cl Pr-Rw Rw-Ar Rw-Cl Rw-Pr Avg
Vanilla 47.22 74.14 77.76 61.85 70.96 71.59 60.98 53.63 78.93 71.57 57.04 83.96 67.47
IWCV 54.46 74.22 72.27 61.48 70.49 70.62 61.30 51.13 78.37 72.94 58.43 84.00 67.48
DEV 54.04 73.94 78.16 61.52 63.19 70.7 60.43 53.63 78.93 71.57 58.62 83.89 67.39
IW-Mid 54.04 72.63 78.37 62.05 71.28 71.45 61.25 54.39 79.07 73.19 58.75 80.06 68.04
IW-GAE 54.32 73.98 78.51 61.96 71.25 71.70 61.10 54.30 78.91 73.22 58.70 83.86 68.48
Lower bound 41.90 64.88 72.27 52.00 58.48 62.13 53.52 38.33 70.92 63.41 44.81 75.83 58.21
Oracle 54.80 74.79 78.61 62.46 71.59 72.18 61.64 54.64 79.44 73.42 59.43 84.12 68.93

Table A4: Checkpoint selection benchmark results of MDD with ResNet-50 on Office-Home. The
numbers indicate the mean test accuracy of selected model across ten repetitions with boldface for
the maximum mean test accuracy.
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Figure A3: True group accuracy and estimated group accuracy of IW-GAE and IW-Mid under MDD.
The shaded areas represent possible group accuracy estimation with binned IWs in the CI. The title
of a figure represents “Source-Target.” For IW-Mid and IW-GAE, we clip the accuracy estimations
when they exceed 1, which can occur when the upper bound of CI is large. Also, the number of
groups in the figure is different for some domains because there can be a group that contains no target
samples (we set M = 10 for all cases).

E.4 QUALITATIVE EVALUATION OF IW-GAE

To qualitatively analyze IW-GAE, we also visualize reliability curves that compare the estimated
group accuracy with the average accuracy in Figure A3. We first note that IW-GAE tends to accurately
estimate the true group accuracy for most groups under different cases compared to IW-Mid. The
accurate group accuracy estimation behavior of IW-GAE explains the results that the IW-GAE
improves IW-Mid for most cases in the model calibration and selection tasks (cf. Table 1). For most
cases, true accuracy is in between the lower and upper IW estimators, albeit the interval length tends to
increase for high-confidence groups. This means that the CI of the IW based on the Clopper-Pearson
method successfully captures the IW in the CI. We also note that the true accuracy is close to the
lower IW estimator in the lower confidence group and the middle IW estimator in the high confidence
group. An observation that the true accuracy’s relative positions in CIs varies from one group to
another group motivates why an adaptive selection of binned IWs as ours is needed.

E.5 ABLATION STUDY

In this section, we perform an ablation study of our key design choices for group construction (cf.
Section 4.2). The first ablation study examines group construction based on the maximum value
of the softmax output by constructing a group function based on IW. The second ablation study
examines the effectiveness of our nested optimization with temperature scaling (cf. Section 4.2),
by excluding the outer optimization in the nested optimization; i.e., setting T = {1} in Appendix
C.1. Specifically, we repeat the model calibration experiment with MDD on four randomly selected
domains in the OfficeHome dataset (Ar-Pr, Pr-Cl, Rw-Cl, Rw-Pr).

Table A5 presents the results of the ablation study. First, note that the grouping by the maximum
value of softmax significantly impacts the performance of IW-GAE. If we assume the group accuracy
estimation ability of IW-GAE is not significantly reduced after changing the grouping function I(g),
the reduction in the performance could be due to a large variance of prediction accuracy within a
group (cf. the case of group 2 in Figure 1(b)). Specifically, the large value of V ar(1(Y = Ŷ )|Gn)
increases the IdentBias(w†(n);Gn), which can loosen the upper bound of the source group accuracy
estimation error in (15). Given its significant impact on the calibration performance, we want to
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Method Ar-Pr Pr-Cl Rw-Cl Rw-Pr Avg
Vanilla 40.61 38.62 36.51 14.01 32.44
CPCS 22.07 29.20 26.54 11.14 22.24
TransCal 20.27 29.86 29.90 10.00 22.51
IW-GAE w/ grouping by IW and w/o the nested optimization 15.07 36.02 35.01 5.23 22.83
IW-GAE w/ grouping by IW 14.18 34.67 35.08 5.30 22.31
IW-GAE w/o the nested optimization 11.43 16.57 9.38 5.91 10.82
IW-GAE w/o the CI estimation (Park et al., 2022) 11.00 29.73 24.44 2.09 16.82
IW-GAE 4.70 17.49 9.52 8.14 9.97

Table A5: An ablation study of key design choices of constructing a group by the maximum value of
the softmax and using nested optimization with temperature scaling on the target domain for IW-GAE.
“IW-GAE w/o the CI estimation (Park et al., 2022)” corresponds to the setting where Φi = [1/6, 6.0]
for i ∈ [M ]. We use MDD with ResNet-50 on Office-Home. The numbers indicate the mean ECE
across ten repetitions.

(a) (b)

Figure A4: Sensitivity analysis of IW-GAE with respect to the number of groups M and the number
of bins B (b) on four domains (Ar-Pr, Pr-Cl, Rw-Cl, Rw-Pr) in the OfficeHome dataset. Default
hyperparameters for M and B are 10, and we normalize the accuracy for each domain by its
performance under the default hyperparameters. Average represents the average relative accuracy for
each value of the hyperparameter and the shaded areas represent areas between the minimum and the
maximum relative accuracy over the 4 domains.

remark few challenging aspects of developing an ideal group function for future work. Specifically,
note that the core factor in IdentBias(w†(n);Gn) impacted by I(g) is V ar(1(Y = Ŷ )|Gn). This
term depends on the labeled information in the target domain, so it is hard to foretell changes in
IdentBias(w†(n);Gn) as we change I(g). Furthermore, even if we have a labeled dataset in the
target domain, finding the optimal I(g) that minimizes IdentBias(w†(n);Gn) is a combinatorial
optimization problem, which is one of the most challenging optimization problems.

Next, note that nested optimization results in improvement of the ECE on average but it is effective
only in four out of eight cases. This is surprising because the nested optimization problem is
guaranteed to reduce ϵopt(w

†(n)) as T contains the case that corresponds to the setting without the
nested optimization; 1 ∈ T . This motivates our further investigation of the relationship between
ϵopt(w

†(n)) and IdentBias(w†(n);Gn) in Appendix E.7. In a nutshell, we found the cases when
reducing ϵopt(w

†(n)) increases IdentBias(w†(n);Gn). Therefore, it can increase the upper bound
of a source group accuracy estimation error in (15). We also found a (weak) correlation between
ϵopt(w

†(n)) and IdentBias(w†(n);Gn), which can explain the average improvement by the nested
optimization problem. We present more details in Appendix E.7.

E.6 SENSITIVITY ANALYSIS

In this section, we conduct a sensitivity analysis with respect to our key hyperparameters of the
number of accuracy groups M and the number of bins B. As in the ablation study in Appendix E.5, we
perform the model calibration experiment with MDD on the four domains in the OfficeHome dataset
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Figure A5: The relationship between source and target group accuracy estimation errors.

(Ar-Pr, Pr-Cl, Rw-Cl, Rw-Pr). Figure A4 shows the sensitivity analysis results with hyperparameter
values M ∈ [4, 27] and B ∈ [4, 27] (the default value for both M and B is 10). Within the search
space, the average performances do not change more than 10%, which means that IW-GAE would
outperform state-of-the-art (cf. Table 1) also under such altered settings. Also, we can see that the
performance changes under different hyperparameter values are somewhat stable; the maximum and
minimum changes are within the range of 10% for most cases, even though a large variance in the
performances appears for extreme values such as M = 4, B = 4, and B = 27. The results show the
robustness of IW-GAE with respect to small changes in the key hyperparameter values.

E.7 ANALYSIS OF ϵopt(w
†(n)) AND IdentBias(w†(n);Gn) OF IW AND THEIR RELATION TO

SOURCE AND TARGET GROUP ACCURACY ESTIMATION ERRORS

In this section, we aim to answer the following question about the central idea of this work: “Does
solving the optimization problem in (8)-(13) result in an accurate target group accuracy estimator?”
Specifically, we analyze the relationship between the optimization error ϵopt(w†(n)), the bias of
the identical accuracy assumption IdentBias(w†(n);Gn), the source group accuracy estimation
error |αS(Gn;w∗)− αS(Gn;w†(n))|, and the target group accuracy estimation error |αT (Gn;w∗)−
αT (Gn;w†(n))| from the perspective of (5) and (15)2. To this end, we gather w†(n) obtained by
solving the optimization problem under all temperature parameters in the search space t ∈ T with
MDD on the OfficeHome dataset (720 IWs from 6 values of the temperature parameter, 12 cases,
and 10 groups). Then, by using the test dataset in the source and the target domains, we obtain the
following observations.

In (5), we show that |αT (Gn;w∗) − αT (Gn;w†(n))| is upper bounded by |αS(Gn;w∗) −
αS(Gn;w†(n))|. However, the inequality could be loose since the inequality is obtained by taking
the maximum over the IW values. Considering that the optimization problem is formulated for
finding w†(n) that achieves small |αS(Gn;w∗) − αS(Gn;w†(n))| (cf. Proposition 4.2), the loose
connection between the source and target group accuracy estimation errors can potentially enlighten
a fundamental difficulty to our approach. However, as we can see from Figure A5, it turns out that
|αS(Gn;w∗) − αS(Gn;w†(n))| is strongly correlated with |αT (Gn;w∗) − αT (Gn;w†(n))|. This
result validates our approach of reducing the source accuracy estimation error of the IW-based
estimator for obtaining an accurate group accuracy estimator in the target domain.

In (15), we show that |αS(Gn;w∗) − αS(Gn;w†(n))| ≤ ϵopt(w
†(n)) + ϵstat +

IdentBias(w†(n);Gn), which motivates us to solve the optimization problem for reducing
ϵopt(w

†(n)) (cf. Section 4.2) and to construct groups based on the maximum value of softmax
for reducing IdentBias(w†(n);Gn) (cf. Section 4.2). Again, if these terms are loosely connected
to |αS(Gn;w∗) − αS(Gn;w†(n))|, a fundamental difficulty arises for our approach. In this re-
gard, we analyze the relationship between ϵopt(w

†(n)), IdentBias(w†(n);Gn), and |αS(Gn;w∗)−
αS(Gn;w†(n))|. From Figure A6, we can see that both ϵopt(w

†(n)) and IdentBias(w†(n);Gn) are
strongly correlated to the source group accuracy estimation error. Combined with the observation in

2Technically speaking, the computed values in this experiment are the empirical expectation which can
contain a statistical error. However, since we have no access to the data generating distribution, we perform the
analysis as if these values are the population expectations.
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Figure A6: The relationship between between ϵopt(w
†(n)) and the source group accuracy estimation

error (left) and the relationship between IdentBias(w†(n);Gn) and the source group accuracy
estimation error (right).

Figure A7: The relationship between
ϵopt(w

†(n)) and the target group accu-
racy estimation error.

Figure A8: The relationship between
ϵopt(w

†(n)) and IdentBias(w†(n);Gn).

Figure A5, this observation explains the impressive performance gains by IW-GAE developed for
reducing ϵopt(w

†(n)) and IdentBias(w†(n);Gn).
Next, we analyze the efficacy of solving the optimization problem for obtaining an accurate tar-
get group accuracy estimator. To this end, we analyze the relationship between ϵopt(w

†(n)) and
|αT (Gn;w∗) − αT (Gn;w†(n))|. From Figure A7, ϵopt(w†(n)) is correlated with |αT (Gn;w∗) −
αT (Gn;w†(n))|, which explains the performance gains in the model calibration and selection tasks
by IW-GAE. However, the correlation is weaker than the cases analyzed in Figure A5 and Figure
A6. We conjecture that this is because ϵopt(w

†(n)) is connected to |αT (Gn;w∗)− αT (Gn;w†(n))|
through two inequalities (5) and (15), and this results in a somewhat loose connection between
ϵopt(w

†(n)) and |αT (Gn;w∗)− αT (Gn;w†(n))|.
In Figure A7, we also note that the optimization problem is subject to a non-identifiability issue that
the solutions with the same optimization error can have significantly different target group accuracy
estimation errors (e.g., points achieving the zero optimization error in Figure A7). We remark that
the non-identifiability issue motivates an important future direction of research that develops a more
sophisticated objective function and a regularization function that can distinguish estimators with
different target group accuracy estimation errors.

Finally, we analyze the relationship between ϵopt(w
†(n)) and IdentBias(w†(n);Gn) in Figure

A8. In general, we can see a weak correlation between ϵopt(w
†(n)) and IdentBias(w†(n);Gn).

This means that, in general, finding a better solution in terms of ϵopt(w†(n)) could also reduce
IdentBias(w†(n);Gn). However, there are many cases in which different IWs have the same
ϵopt(w

†(n)) but significantly different IdentBias(w†(n);Gn). Furthermore, reducing ϵopt(w
†(n))

increases IdentBias(w†(n);Gn) for some cases. This observation explains small performance gains
by the nested optimization problem as seen in the ablation study (cf. Appendix E.5).
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