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Abstract
We propose a margin-based loss for tuning joint vision-

language models so that their gradient-based explanations
are consistent with region-level annotations provided by
humans for relatively smaller grounding datasets. We re-
fer to this objective as Attention Mask Consistency (AMC)
and demonstrate that it produces superior visual ground-
ing results than previous methods that rely on using vision-
language models to score the outputs of object detectors.
Particularly, a model trained with AMC on top of standard
vision-language modeling objectives obtains a state-of-the-
art accuracy of 86.49% in the Flickr30k visual grounding
benchmark, an absolute improvement of 5.38% when com-
pared to the best previous model trained under the same
level of supervision. Our approach also performs exceed-
ingly well on established benchmarks for referring expres-
sion comprehension where it obtains 80.34% accuracy in
the easy test of RefCOCO+, and 64.55% in the difficult split.
AMC is effective, easy to implement, and is general as it can
be adopted by any vision-language model, and can use any
type of region annotations.

1. Introduction

Vision-language pretraining using images paired with
captions has led to models that can transfer well to an ar-
ray of tasks such as visual question answering, image-text
retrieval and visual commonsense reasoning [6,18,22]. Re-
markably, some of these models are also able to perform vi-
sual grounding by relying on gradient-based explanations.
While Vision-Language Models (VLMs) take advantage of
the vast amounts of images and text that can be found on
the web, carefully curated data with grounding annotations
in the form of boxes, regions, or segments is consider-
ably more limited. Our work aims to improve the ground-
ing or localization capabilities of vision-language models
further by tuning them under a training objective that en-
courages their gradient-based explanations to be consistent
with human-provided region-based annotations from visu-
ally grounded data when those are available.
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Figure 1. Gradient-based methods can generate heatmaps that ex-
plain the match between images and text for a Vision-language
model (VLM). Our work aims to improve their ability to produce
visual groundings by directly optimizing their gradient-based ex-
planations so that they are consistent with human annotations pro-
vided for a reduced set of images.

Vision-language transformers extend the success of
masked language modeling (MLM) to multi-modal prob-
lems. In vision-language transformers, objectives such
as image-text matching (ITM), and image-text contrastive
losses (ITC) are used in addition to MLM to exploit com-
monalities between images and text [6, 17, 18, 22]. We fur-
ther extend these objectives to include our proposed Atten-
tion Mask Consistency (AMC) objective. Our formulation
is based on the observation that gradient-based explanation
maps obtained using methods such as GradCAM [30], can
be used to explain the image-text matching of a VLM. Our
AMC objective explicitly optimizes these explanations dur-
ing training so that they are consistent with region annota-
tions. Figure 1 illustrates an example input image and text



an empty street

GradCAM (∇y)
ϕv

ϕt

y

ϕf M :
ℒamc

V :

T : { }{ }
maximize minimize

Figure 2. Overview of our method. Among other objectives, standard vision-language models are trained to produce a matching score
y given an input image-text pair (V, T ). For inputs containing an extra level of supervision in the form of region annotations (e.g. a
triplet (V, T,M)), where M is a binary mask indicating the regions annotated by a human, we optimize the GradCAM [30] gradient-based
explanations of the model so that the produced explanations are consistent with region annotations using Lamc by maximizing the energy
in the heatmap that falls inside the region annotation and minimizing what falls outside. We accomplish this through soft margin losses as
described in Sec. 3.2.

pair along with a gradient-based explanation obtained from
a VLM model, a region annotation provided by a human,
and an improved gradient-based explanation after the VLM
model was tuned under our proposed objective.

Our work builds particularly upon the ALBEF
model [17] which incorporates a vision-language model
architecture based on transformers [36] and has already
demonstrated off-the-shelf grounding capabilities using
GradCAM. Gradient-based explanations in the form of
heatmaps have been used extensively to explain the areas
of the input images that most impact an output value of
a model. In our formulation we actively leverage these
heatmaps by designing a loss function that encourages most
of the energy in the heatmaps to fall within the areas of the
input image that most align with human provided region
annotations. Figure 2 shows a detailed overview of our
method and objective function. Given an input image and
text pair, our goal is to maximize a soft margin between
the energy of the heatmap inside the region annotation and
the energy of the heatmap outside the region annotation.
A soft-margin is important since typical human region
annotations in the form of boxes do not exactly outline
objects of different shapes, and in many cases models
should still be able to ground an input text with multiple
regions across the image.

We compare AMC extensively against other methods
that use the same level of supervision but instead use an
object detector such as Faster-RCNN [10, 11, 17, 23]. Our
method obtains state-of-the-art pointing game accuracy on
both Flickr30k and RefCOCO+. Our contributions can be
summarized as follows: (1) We introduce a new training
objective, AMC, which is effective, simple to implement
and can handle multiple types of region annotations, (2) We

show that AMC can improve the grounding capabilities of
an existing vision-language model – ALBEF, and (3) the
resulting model is state-of-the-art in two benchmarks for
phrase grounding and referring expression comprehension.

2. Related Work

Vision-Language Representation Learning. Followed
by the success of pretraining methods in NLP such as
BERT [8], many transformer-based image-text models have
been proposed to leverage benefits of pretraining on large-
scale unlabeled image-text pairs [13, 18, 20]. While earlier
pretraining methods rely on an object detector to divide an
image into input tokens, some recent works, such as AL-
BEF [17], use an end-to-end vision transformer [9]. These
pretrained models can then be finetuned to obtain impres-
sive performance in a wide variety of vision-language tasks,
such as image-text retrieval, visual question answering, and
visual commonsense reasoning. While these models can
perform some visual grounding by running them on the out-
puts of an object detector or using gradient-based explana-
tions, they are not trained to take advantage of grounded
data. Our AMC objective provides this additional capabil-
ity by leveraging gradient-based explanations that can be
easily obtained for a large variety deep learning models.

Gradient-based Localization. Localizing the most dis-
criminative areas of an image for a given task has been
widely used as a tool to provide visual explanation about a
model. Class activation maps (CAM) [41] were proposed to
provide weighted feature maps for any networks with min-
imal modifications to the model. Gradient-weighted Class
Activation Mapping (GradCAM) [30] improves CAM by
directly using gradients to obtain weighted feature maps



without the need for model modifications or retraining;
The attention maps generated by these methods can be di-
rectly optimize to guide the model toward solutions that
are more consistent with human-based annotations. Our
proposed method is also based on GradCAM heatmaps.
However, we use GradCAM during training to guide the
generated heatmaps to achieve better consistency with
known region and phrases that describe them. Recently,
Pham et al [26] explored a similar idea by using segmen-
tation masks to guide attention maps to focus on signif-
icant image regions for an attribute prediction task. Sel-
varaju et al [31] use saliency maps generated using Deep-
USPS [24] at training time to guide attention maps in order
to improve self-supervised representation learning. Simi-
larly Pillai et al [27] rely on consistent explanations for
generic representation learning using contrastive objectives.
Our goal in using supervision on top of gradient-based
heatmaps is to directly leverage these heatmaps to evaluate
on visual grounding.

Visual Grounding Methods. Visual Grounding is a task
that requires a model to select the region of an image de-
scribed by a phrase. Several methods have been proposed
to ground phrases to regions of an image, typically a bound-
ing box [10, 11, 17, 23]. Visual grounding has also been
used to improve performance on downstream tasks such as
VQA [32]. These methods take advantage of object detec-
tors which can provide high quality locations. The recently
proposed GLIP model [19] incorporates an object detec-
tion model as part of its grounding objective, effectively
combining vision-language pretraining with bounding box
localization. Our work instead of outputting a box, opti-
mizes its own gradient-based model explanations. Since our
model does not output bounding boxes but heatmaps as an
output it can generate more general groundings for phrases
or objects that can not be mapped to a box such as stuff cat-
egories or references to multiple objects. Moreover, AMC
can be used to improve an existing vision-language model
such as ALBEF [17] without retraining from scratch. As
vision-language models become larger and more robust, our
proposed AMC objective can be readily applied.

3. Method

Vision-language pretraining consists of exploiting the
structure of each input modality as well as their interac-
tions. Our base model consists of three transformer en-
coders [8,36]: An image encoder ϕv , a text encoder ϕt, and
a multimodal fusion encoder ϕf . An input image V is en-
coded into a sequence of visual tokens {vcls,v1,v2, ...,vn}
and the text encoder encodes the input text T as a sequence
of tokens {tcls, t1, t2, ..., tm}, where vcls and tcls are the
embeddings of the [CLS] token for each transformer re-
spectively. For each image-text pair drawn from a dataset

(V, T ) ∼ D, a binary variable y represents whether the pair
correspond with each other, i.e, whether the text actually
describes the paired image. However, for some images a
triplet (V, T,M) ∼ D might be available, where M addi-
tionally contains a region annotation, in the form of a bi-
nary mask, indicating the part of input image V that text
T describes. In the following section we describe standard
objectives used to capture intra-modality and inter-modality
structure (Sec. 3.1), and then we describe our attention mask
consistency objective (Sec. 3.2).

3.1. Standard Model Training Objectives

Masking Language Modeling (MLM) Originally intro-
duced by BERT [8] in the context of language transformers,
this objective has been adapted to multiple vision-language
pretraining models such as [6, 18, 22] and is inspired by a
long history in NLP of exploiting distributional semantics.
The goal is to capture structure in the text by forcing the
model to infer missing words from the input text. Each to-
ken in the input text is masked randomly with a small prob-
ability (usually 15%) and the model is then optimized to
recover the masked tokens using information from both the
remaining input text and the input image. Assume an input
masked text is represented by T−m, and the masked token
is represented as a one-hot vector tm, the objective will be
expressed as:

Lmlm = E(V,T−m)∼D H
(
tm, ϕm

f

(
ϕv(V ), ϕt(T

−m)
))

,
(1)

where H(·, ·) is the cross-entropy between the missing to-
ken tm and a probability distribution over tokens output by
a function ϕm

f which augments ϕf with a linear projection
layer and softmax function over a corresponding output em-
bedding. This objective is optimized over a large sample of
choices for masked tokens and image-text pairs.

Image Text Matching (ITM) Another common objective
inspired by BERT’s next sentence prediction objective, con-
sists of image text matching. The purpose of this loss is to
push the model to learn if a text and an image are matched.
The output of the [CLS] token will be used to generate the
output for this objective by adding a linear layer and a soft-
max activation function. We denote this entire operation as
ϕcls
f . The objective is therefore defined as follows:

Litm = E(V,T )∼D H
(
y, ϕcls

f (ϕv (V ) , ϕt (T ))
)
, (2)

where y is a one-hot vector with two entries [y, 1− y] in-
dicating whether the drawn sample (V, T ) corresponds to a
matching image-text pair or not.

Image-Text Contrastive Loss (ITC) This objective has
been useful in weakly supervised grounding [11, 17]. We



follow ALBEF because it uses momentum distillation to
potentially leverage a larger amount of negative image-text
pairs. Assuming that each image-text pair is considered
within a sample batch of K image-text pairs, this loss is
defined as follows:

Litc = E(V,T )∼D
1

2

[
H

(
y, s(V, T )/

K∑
k=1

s(V, Tk)

)
+

H

(
y, s(T, V )/

K∑
k=1

s(T, Vk)

)]
,

(3)

where s(V, T ) = exp(ϕv(V ) · ϕt(T )/τ) computes a score
between the output [CLS] token representations for the en-
coder transformer of each modality and τ is a temperature
parameter, and s(T, V ) is defined similarly. The goal of this
loss is to push for matching image-text pairs to have a closer
representation than any non-matching image-text pair.

3.2. Attention Map Consistency (AMC)

In this section we explain in detail our proposed attention
map consistency loss. Our proposed loss relies on first pro-
ducing explanation heatmaps or “attention maps” using the
GradCAM method [30]. In the context of vision-language
transformers, this method can be used to highlight regions
in the image that contribute to an image matching to an arbi-
trary input text, e.g., given an input image such as the one in
Fig. 2, and an input text such as an empty street, we can gen-
erate a GradCAM visualization of areas in the input image
that contribute to their matching score using Litm.

We assume that for a subset of images in our dataset we
can obtain a triplet (V, T,M) where M ∈ {0, 1}2 is a bi-
nary mask such that Mi,j is 1 if the location i, j is inside
region or 0 otherwise, V is the input image, and T is an in-
put text describing region M . This assumption is generally
fair in comparison to previous works that instead leverage
images annotated with labels and bounding boxes to train
an object detector. In our case, we can easily support this
setup by turning a label annotation, e.g., dog into a region
textual caption by prompt engineering, e.g., an image of a
dog. However, our binary masks are not restricted to being
boxes.

In order to compute a GradCAM heatmap, we first ex-
tract an intermediate feature map Fz in the multimodal fu-
sion transformer ϕf and denote this function as ϕz:

Fz = ϕz (ϕv(V ), ϕt(T )) . (4)

Then, we calculate the gradient of Fz with respect to the
matching loss Litm of this individual sample:

Gz = ∇H
(
y, ϕcls

f (ϕv (V ) , ϕt (T ))
)
. (5)

Next, we calculate a GradCAM attention heatmap A using
Fz and Gz as follows:

A = ReLU(Fz ⊙Gz), (6)

where ⊙ is an element-wise multiplication. This heatmap
is resized to the resolution of input images, and identifies
which area in the image explains the model decision for its
matching score.

The next step is to leverage the region annotations M so
that the model focuses its heatmap scores in A inside the
region of interest indicated by M . We first propose Lmean

where we optimize a max margin loss so that the mean value
of the heatmap inside of the region of interest is larger than
the mean value of the heatmap outside as follows:

Lmean =

E(V,T,M)∼D

[
max(0,

1

N c

∑
i,j

(1−Mi,j)Ai,j

− 1

N

∑
i,j

Mi,jAi,j +∆1)

]
,

(7)

where ∆1 is a margin term, and N =
∑

i,j Mi,j is the num-
ber of locations inside the region of interest and N c is the
number of locations outside i.e.

∑
i,j(1 −Mi,j). This loss

aims to ensure that the attention map A contains most of the
scores inside the region M subject to this margin. We also
propose to jointly maximize the margin between the largest
score inside the region of interest M and the largest score
outside the region of interest by a margin ∆2 as follows:

Lmax = E(V,T,M)∼D

[
max(0, max

i,j
((1−Mi,j)Ai,j)

−max
i,j

(Mi,jAi,j) + ∆2)

]
.

(8)

Finally, we combine these two objectives:

Lamc = λ1 · Lmean + λ2 · Lmax, (9)

where λ1 and λ2 are empirically determined weighting co-
efficients. We demonstrate in our experimental section that
this objective effectively encourages model explanations
that provide better grounding support for tasks such as re-
ferring expression comprehension and visual grounding.

4. Experiments
In this section, we describe our training setup and exper-

imental evaluations. Our evaluations revolve around tasks
that require pointing to the location in an image that is re-
ferred by an input text.

4.1. Training Details

Our model follows the architecture and training objec-
tives of the ALBEF model [17] which uses the ALBEF-
14M dataset as source of pretraining. ALBEF-14M is



Method Detector Flickr30k
RefCOCO+

test A test B

Align2Ground [7] Faster-RCNN (VG) 71.00 - -

12-in-1 [23] Faster-RCNN (VG) 76.40 - -

InfoGround [11] Faster-RCNN (VG) 76.74 39.80 41.11

VMRM [10] Faster-RCNN (VG) 81.11 58.87 50.32

AMC∗ – 86.49 78.89 61.16

AMC (ours) – 86.59 80.34 64.55

Table 1. Visual Grounding results using pointing game accuracy
against the state-of-the-art for methods. For fairer comparisons,
AMC∗ indicates a version of our model restricted to using only
the box and label annotations from Visual Genome (VG) that were
used to train the Faster-RCNN network used in the other methods.

a large image-text data collection including the follow-
ing datasets: COCO [21], Visual Genome (VG) [16]
(excluding box annotations), SBU [25], CC3M [34] and
CC12M [4]. In this data collection, each image is paired
with one or several image descriptions so that we can
sample pairs (V, T ) ∼ D. Additionally, several vision-
language transformer models such as UNITER [6] or Vi-
sualBERT [18] further leverage box annotations from the
Visual Genome dataset. We use this dataset as an additional
source of triplets (V, T,M) ∼ D. We start with the ALBEF
model and further finetune it for 20 more epochs on Visual
Genome with boxes using our proposed AMC loss. Next,
we describe in detail how we leverage the Visual Genome
dataset to produce triplets (V, T,M) in more detail.

First, we provide a more detailed description of the Vi-
sual Genome dataset. This dataset consists of 108, 077 im-
ages and annotations in multiple formats such as boxes +
region descriptions, boxes + object labels, and boxes + ob-
ject attributes. At a first level, annotators of this dataset
were asked to provide text that describes a region of the
image and to provide a bounding box that covers the re-
gion. For instance, a brown dog playing with a ball. Then,
the region descriptions were shown to other annotators that
were asked to select objects from these regions and pro-
vide tight bounding boxes for selected objects and attributes
e.g. brown dog and ball. Region bounding boxes and ob-
ject+attribute bounding boxes are different for this dataset.
The object detector trained by Anderson et al [2] on the ob-
ject bounding boxes and object attributes of Visual Genome
has been used by several previous visual grounding models.
In order to compare fairly to these methods, we develop a
model using the same training split as [2] and conduct ex-
periments without the use of region descriptions. For com-
pleteness, we also conduct experiments using both boxes
with attributes and boxes with region descriptions.

We construct textual descriptions for object bounding
boxes using prompt engineering templates. For example,
if an image contains an object dog with an attribute brown,
we construct the description as a brown dog. We filter out
bounding boxes smaller than 8% of the whole image. To
further increase the localization capabilities of our method,
we generate prompts with spatial references. For images
with objects that correspond to more than one box, we select
the leftmost/rightmost, top/bottom boxes and assign more
detailed prompts such as [obj] on the left, [obj] on the right,
top [obj] and bottom [obj]. Moreover, if the box falls into
a corner of the image, we further assign them another level
of spatial information such as top left, top right, bottom left
and bottom right.

We conduct experiments on single node with 8 NVIDIA
A40 GPUs. All experiments use a batch size of 512 and
a learning rate of 1e-5 with an Adam optimizer [15]. We
determine empirically based on a small validation set two
margin losses: ∆1 = 0.1 and ∆2 = 0.5 and determine
our weighting coefficient for our losses as λ1 = 0.2 and
λ2 = 0.8, respectively. For data augmentation, we resize
images into a resolution of 256× 256 and apply horizontal
flips, color jittering and random grayscale conversions. Our
code and data are publicly available1.

4.2. Visual Grounding

Visual grounding consists in automatically associating
an area of an image with an arbitrary piece of input text.
A popular benchmark for this task is Flickr30k [28]. We
only use the validation and testing splits for this dataset and
do not use it for training. Each split includes a thousand
images and is used for all of our model selections and eval-
uations. In Flickr30k Entities, each object phrase may pair
with multiple ground truth boxes in the image. Our model
will take the phrase and whole image as inputs, and find the
most related regions corresponding to the phrase.

We report experimental results for Flickr30k Enti-
ties [28] with both detector-based and detector-free meth-
ods. Pointing game accuracy is a widely used metric in pre-
vious works for this task [1, 3, 11, 37], and we follow the
same setting as in [1] to calculate this measure: After ob-
taining a heatmap given an input phrase and an image, we
extract the position of the maximal point of this heatmap,
and if this point falls in the target box, we count this result
as positive. For detector-based methods, we follow [11] to
calculate the pointing game accuracy by first ranking pro-
posals generated by an object detector and then retaining
one box proposal with highest score as the result. If the
center point of the selected box proposal falls within the
target box, this result is counted as positive.

For Align2Ground [7] and 12-in-1 [23], we directly
show the results reported in [3]. For InfoGround [11] we use

1https://github.com/uvavision/AMC-grounding



Method VG-Boxes Backbone Flickr30k

gALBEF [17] no ALBEF 79.14

GbS [3] no PNASNet 73.39
MG [1] no ELMo + PNASNet 67.60
GAE [5] no CLIP 72.47
WWbL [33] no CLIP + VGG 75.63

GbS+IG [3] yes PNASNet 83.40
GbS+12-in-1 [3] yes PNASNet 85.90
AMC (ours) yes ALBEF 86.59

Table 2. Visual Grounding results using pointing game accuracy
against methods that do not use object detectors or Visual Genome
box supervision, showing that box supervision still makes a signif-
icant difference on this benchmark despite the fact that CLIP uses
hundreds of millions of extra images for training compared to the
ALBEF backbone.

their provided trained models. For VMRM [10], since they
do not provide their trained model, we re-train it using the
official code and their used features and boxes from MMF
[35] and MAF [38]. Align2Ground, 12-in-1 and VMRM
all use image features generated by object detectors trained
on VG boxes and attributes [2]. InfoGround uses image fea-
tures extracted from an object detector trained on VG boxes.
We also compare to methods that do not use any form of box
supervision including our backbone ALBEF as a baseline.
We refer as gALBEF to our baseline which only uses Grad-
CAM in combination with ALBEF as described in [17]. We
additionally compare to MG [1], GbS [3] which report re-
sults on Flickr30k. Results for GAE [5] as well as WWbL
are taken directly from [33]. In addition to fairly compare
with GbS, we additionally report their results when ensem-
bled with detector-based methods InfoGround and 12-in-1.

Our main comparison results for methods relying on Vi-
sual Genome boxes are summarized in Table 1 and results
comparing against methods that are weakly supervised and
hence do not use box information are shown in Table 2.

4.3. Referring Expression Resolution

Referring expressions are textual descriptions that refer
unambiguously to an object or region of an image. Users
are explicitly prompted to write a textual description to re-
fer to a specific object. However the setup is similar to the
visual grounding setup and as such, many previous meth-
ods compare their results across both benchmarks. We
adopt the same pointing game accuracy metric and com-
pare our results against previous methods in two bench-
mark datasets: RefCOCO+ [14, 40] and ReferIt [14]. We
compare against the same set of methods as in the visual
grounding task except for Align2Ground [7] and 12-in-

1 [23] which do not provide results for RefCOCO+. Ad-
ditionally, InfoGround [11] does not report results for Ref-
COCO+, therefore, we use their provided bounding boxes
for COCO images [21] to perform this evaluation.

We describe in more detail each benchmark. Ref-
COCO+ [40] is a widely used referring expression dataset
including 20K images from the COCO dataset [21]. The ex-
pressions in RefCOCO+ were collected so that they do not
allow words such as left or right, making it slightly more
challenging. From this dataset, we only use its validation
and testing splits. The testing split of this dataset is further
divided into two subsets: test A and test B, in which
the former only includes people as the target objects and
the latter includes all objects. The total number of testing
images is 1.5K. Results for referring expression compre-
hension on RefCOCO+ are included in Table 1.

4.4. Box Recall Evaluation

Pointing game accuracy has been previously used for
both detector-based [11] and detector-free [1, 3] methods.
However, another metric that can be considered is Recall@k
from detector-based methods [10, 11]. For Recall@k, a
model will rank all the box proposals generated by an ob-
ject detector, and select the top-k boxes as results. If a
selected box and the ground truth box have an intersec-
tion over union (IoU) ≥ 0.5, then the selected box will be
counted as positive. Table 3 shows results when we eval-
uate our method by using it to choose boxes from differ-
ent bounding box proposals methods by selecting the boxes
with high attention heatmap scores. We use boxes gener-
ated by the FasterRCNN [29] from Gupta et al [11] and the
MaskRCNN [12] from Yu et al [39]. Using the MaskRCNN
proposals, our method obtains consistently better results
than VMRM, which is the current stats-of-the-art. How-
ever, we find this metric is influenced by the quality of
boxes. For example, using the MaskRCNN proposals will
get much better results than using the FasterRCNN propos-
als for VMRM [10].

Method Boxes
RefCOCO+

test A test B

VMRM [10] FasterRCNN 30.04 30.78

VMRM [10] MaskRCNN 46.63 40.52

gALBEF [17] MaskRCNN 61.70 42.83

AMC MaskRCNN 68.04 46.55

Table 3. We show recall@1 results on the RefCOCO+ validation
and testing sets to complement our results using pointing game
accuracy.



Method Overall People Animals Vehicles Instrum. Bodyparts Clothing Scene Other

MG [1] 69.2 75.6 87.6 83.8 57.5 44.9 58.3 68.2 59.8
GbS [3] 74.5 83.6 89.3 92.1 83.3 53.2 50.1 71.3 66.7
gALBEF [17] 79.1 80.1 89.8 89.8 83.3 63.3 85.5 83.8 70.2

Align2Ground [7] 71.0 - - - - - - - -
12-in-1 [23] 76.4 85.7 82.7 95.5 77.4 33.3 54.6 80.7 70.6
InfoGround [11] 76.7 83.2 89.7 87.0 69.7 45.1 74.5 80.6 67.3
VMRM [10] 81.1 88.0 92.3 94.3 66.7 55.1 79.8 85.1 69.9

AMC 86.6 89.7 95.2 93.8 86.4 69.8 89.0 91.4 77.7

Table 4. Breakdown of results by category for pointing game accuracy on Flickr30K entities visual grounding.

4.5. Discussion of Results

Table 1 contains the main results of our paper when
compared to several other methods that rely on vision-
language models coupled with box-level supervision from
Visual Genome through an object detector – FasterRCNN
trained on Visual Genome. Our results show a large advan-
tage on all benchmarks but especially on RefCOCO+. We
report more fine-grained results in Table 4 for Flickr30K
Entities. There are eight categories in this dataset. We eval-
uate on each category and report the pointing game accu-
racy for them separately. For MG and Gbs, we report results
when trained on COCO because their models achieved their
best performances on Flickr30k Entities under this setting.
In general, our method obtains better results for almost all
the categories. For the category vehicle our method ob-
tains 93.8%, which is only 1.7% lower than the best result
from the best method (12-in-1).

In Table 2 we observe that methods that use box super-
vision still exhibit considerable better performance on vi-
sual grounding on Flickr30k Entities. Our method obtains
86.59%, which is 10.6% higher than WWbL, which is the
best method that does not use box supervision from Visual
Genome – however in terms of number of training images
it relies on CLIP which was trained on 400M images with
text compared to our method which uses 14M images with
text plus 100k images with boxes. In addition we compare
to GbS [3] when ensembled with detector-based methods
InfoGround and 12-in-1. Our method is still superior when
compared to these two strong baselines.

In Figure 3 we show and compare visual explana-
tions obtained by our model against those obtained by
VMRM [10] and GradCAM heatmaps generated by gAL-
BEF. The text input for VMRM is the whole caption and
a phrase and it produces a bounding box prediction. The
model locates the positions of the phrase in the caption and
selects boxes corresponding to the phrase with context in-
formation. For gALBEF and our method, the text input is
only a phrase. We found our method can get more accu-
rate and more complete objects from phrases. For exam-

Data Flickr30k ReferIt
RefCOCO+

test A test B

object boxes 86.49 62.65 78.89 61.16
region boxes 85.14 59.16 77.89 61.26

both 86.59 64.27 80.34 64.55

Table 5. We conduct an ablation study to evaluate the effect of
using ”box” annotations corresponding to box + object labels +
object attributes from Visual Genome, and ”region” annotations
corresponding to region boxes + region descriptions from Visual
Genome.

Loss Flickr30k ReferIt
RefCOCO+

test A test B

Lcosine 84.85 61.21 76.41 60.81
Lmean 82.83 57.63 75.34 56.90
Lmax 86.56 62.79 80.34 64.47

Lamc 86.59 64.27 80.34 64.55

Table 6. We conduct an ablation study to evaluate the contribution
of Lmax and Lmean to our final accuracy and an alternative loss
based on cosine similarities Lcosine.

ple, in the last row, our method can provide a more precise
heatmap for the referred object for traditional asian cloth-
ing than gALBEF, and in this case, VMRM is confused by
the clothing from the woman instead of the boy. Addition-
ally, in the second row, when the model is asked to find
“the guitar”, our method can accurately cover the guitar,
but gALBEF covers several unrelated regions that probably
contribute to the detection of guitar but do not provide an
explanation that aligns with what a human would annotate
for this image. We provide more qualitative results in our
supplementary material.



A small child wearing a green long-sleeved top lays with her head on a pillow.

The bearded man keeps his blue bic pen in hand while he plays the guitar.

A small asian boy is walking down the street in traditional asian clothing looking back at 
a lady dressed in high heels and a beige skirt.

VMRM gALBEF AMC VMRM gALBEF AMC VMRM gALBEF AMC

VMRM gALBEF AMC VMRM gALBEF AMC VMRM gALBEF AMC

VMRM gALBEF AMC VMRM gALBEF AMC VMRM gALBEF AMC

Figure 3. Qualitative comparison of the generated explanations for various images and input phrases. First column: original images from
Flickr30k Entities; in each colored area from left to right: bounding boxes selected by VMRM; heatmaps generated by gALBEF; heatmaps
generated by our method. On the top of each group of images, we show the caption and target phrases.

4.6. Ablation Studies

In this section, we present ablations against several
choices in our model and contributing factors. Particularly
we investigate how large is the effect from box supervision
from Visual Genome both from object boxes, and region
boxes.

Box Supervision. As described in section 4.1, VG [16]
includes regions with descriptions and objects with at-
tributes. We evaluate our method on each separately. For
Flickr30k Entities and the ReferIt dataset, boxes with gener-
ated descriptions using attributes lead to better results than
regions with descriptions. We believe this is caused by ac-
curate localization information provided by boxes and spa-
tial information from box descriptions. For RefCOCO+ test
B, regions with descriptions perform slightly better than
boxes with attributes. By combining boxes, regions and
two kinds of descriptions, we obtain better alignment be-
tween phrases and image subareas. Our full set of results
from this experiment are in Table 5.

Loss Choices. Instead of calculating our margin loss as
in Eq. 9, we calculate and minimize the cosine distance be-
tween M and A. Therefore, the generated heatmap will
be closer to the box mask. Results for all of our choices
that we considered in our objective function are presented
in Table 6. For all datasets, our method outperforms this

cosine distance loss Lcosine, proving our method is a better
way to use box information than a perhaps more straightfor-
ward dot product optimization. Furthermore, we evaluate
two components in Eq. 9: Lmean and Lmax. We find Lmax

is very significant in AMC, but Lmean also provides com-
plementary information, especially for the ReferIt dataset.
In general, combining two terms leads to a more compre-
hensive grounding ability but using Lmax alone is also very
competitive.

5. Conclusion

In this paper, we proposed Attention Map Consistency
(AMC). From the intuition that a model should focus on
meaningful regions guided by location information, we de-
sign an objective function that optimizes gradient-based ex-
planation maps. Our approach achieves superior results on
visual grounding compared to other methods with a simi-
lar level of supervision. It particularly surpasses methods
relying on an object detector pretrained on Visual Genome.
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