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ABSTRACT

Knowledge Distillation (KD) aims at distilling the knowledge from the large
teacher model to a light-weight student model. Enhancing model efficiency effec-
tively, mainstream methods often rely on the assumption that the teacher model
is white-box (i.e., visible during distillation). However, this assumption does not
always hold due to commercial, privacy, or safety concerns, which hinders these
strong methods from being applied. Towards this dilemma, in this paper, we con-
sider black-box knowledge distillation, an interesting yet challenging problem
which aims at distilling teacher knowledge when merely the teacher predictions
are accessible (i.e., the teacher model is invisible). Some early KD methods can be
directly applied to black-box knowledge distillation, but the performance appears
to be unsatisfactory. In this paper, we propose a simple yet effective approach,
which makes better utilization of teacher predictions with prediction augmenta-
tion and multi-level prediction alignment. Through this framework, the student
model learns from more diverse teacher predictions. Meanwhile, the prediction
alignment is not only conducted at the instance level, but also at the batch and
class level, through which the student model learns instance prediction, input cor-
relation, and category correlation simultaneously. Extensive experiment results
validate that our method enjoys consistently higher performance than previous
black-box methods, and even reaches competitive performance with mainstream
white-box methods. We promise to release our code and models to ensure repro-
ducibility.

1 INTRODUCTION

The last few decades have witnessed the prosperity of deep learning in computer vision tasks, such
as image classification Krizhevsky et al. (2012); Simonyan & Zisserman (2015); He et al. (2016);
Dosovitskiy et al. (2021), object detection Ren et al. (2015), and segmentation Shelhamer et al.
(2016); Zhao et al. (2017). However, due to their overwhelming large model size, many deep mod-
els rely heavily on computation and storage resources, which makes it nearly impossible to deploy
them in some practical scenarios, such as mobile devices. Towards this dilemma, Knowledge Dis-
tillation Hinton et al. (2015) (KD) was introduced to reduce model capacity. Concretely, the KD
framework consists of one teacher model (large) and one student model (small). The main objective
of KD is to distill the knowledge in the teacher model to the light-weight student model, which is
ready to be deployed. Various KD methods Romero et al. (2015); Park et al. (2019); Tian et al.
(2020); Heo et al. (2019a); Chen et al. (2021) have been proposed and proved to be effective.

Among them, the earliest method Hinton et al. (2015) distills knowledge by reducing the divergence
of predictions between the teacher and student model, where distillation is implemented merely on
the logit level. Towards better utilization of teacher knowledge, recent researches Romero et al.
(2015); Chen et al. (2021) shed light on the intermediate layers in the teacher model, conducting
distillation by matching feature distributions among the teacher and student model. These feature-
level KD methods boast superior performance than the original logit-level method. Up till now, the
majority of mainstream KD methods are feature-level ones.

Though achieving great successes, these feature-level methods often assume that the teacher model
is in a white-box (i.e., visible during the whole process of knowledge distillation). Such an as-
sumption enables them to distill feature knowledge in the teacher model, but it is not always valid
in real-world applications. Due to commercial, privacy, and safety concerns, some big models are
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Figure 1: Problem Setup and Method Performance. (a) In black-box knowledge distillation,
the large teacher model (blue) is invisible, with only an API available. The user can query data
through the API to gain the corresponding model predictions, and then utilize them to distill the
teacher knowledge to the light-weight student model (purple). (b) Our proposed method surpasses
original method in black-box scenario. The performance is also competitive over previous white-
box methods that utilize intermediate features to distill knowledge.

provided in black-box, where users can only have access to the model predictions. The feature-level
KD methods become invalid in these scenarios since the features in the teacher model are invisible.

In this paper, we consider this interesting yet challenging problem, black-box knowledge distilla-
tion. Figure 1(a) illustrates black-box knowledge distillation, where merely a model API is provided
to generate predictions. The user can query the API, gain corresponding predictions, and utilize
them to distill the knowledge to the student model. For clarity, we compare black-box knowledge
distillation with traditional white-box knowledge distillation in Table 1. In white-box knowledge
distillation, since the whole teacher model is accessible, the features in intermediate layers can be
extracted for distillation, which gives birth to previous feature-level methods. However, in black-box
knowledge distillation, the teacher model is unaccessible. Towards this setting, considering that the
features in teacher models are invisible, we state that attention should be paid to another side of the
coin, distilling knowledge with predictions (logits) alone. The previous logit-level KD methods can
be applied naturally, but the performance is unsatisfactory.

Table 1: Comparison of different settings. Compared with traditional white-box knowledge distil-
lation, the teacher model is invisible in black-box knowledge distillation.

Setting Student Model Teacher Model Teacher Prediction

White-box KD ! ! !

Black-box KD ! % !

To make better use of the teacher predictions, in this paper, we propose a simple yet effective ap-
proach to black-box knowledge distillation, which absorbs more information from teacher models
via prediction augmentation and multi-level alignment. Concretely, we apply augmentations
to model predictions and reduce the divergence of predictions between the teacher and student at
the instance, batch, and class level. Through the multi-level alignment, the student model absorbs
knowledge from the teacher model not only in instance-level prediction, but in batch-level input
correlation and class-level category correlation as well, boosting knowledge distillation from the
teacher model to the student model with merely teacher predictions.

Extensive experiment results on mainstream benchmarks validate that our method surpasses the
previous black-box KD methods. In addition, our method even reaches competitive performance
over previous white-box methods, in both homogenous and heterogeneous network knowledge dis-
tillation settings. For instance, as shown in Figure 1(b), our method outperforms the original KD
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method remarkably in black-box scenarios. Meanwhile, our method even performs slightly better
than previous while-box methods, proving that our method excels at utilizing teacher predictions.

2 RELATED WORK

Proposed in Hinton et al. (2015), Knowledge Distillation (KD) defines a new model compression
framework. It consists of one large teacher model and one light-weight student model and aims
at distilling (transferring) the knowledge in the teacher model to the student model. Concretely,
it forces the student model to mimic the teacher outputs by minimizing the divergence between
the predictions from the teacher and student model. Towards the over-confidence / miscalibration
phenomenon Guo et al. (2017) in neural networks, temperature rescaling is applied to alleviate the
influence. In our method, we also implement prediction augmentations by incorporating multiple
temperatures.

Upon proposal, various methods have been proposed for knowledge distillation. These methods fall
into two lines of work: 1) logit-level methods Cho & Hariharan (2019); Furlanello et al. (2018);
Mirzadeh et al. (2020); Yang et al. (2019); Zhang et al. (2018b) and 2) feature-level methods Heo
et al. (2019a;b); Huang & Wang (2017); Kim et al. (2018); Park et al. (2019); Peng et al. (2019);
Romero et al. (2015); Tian et al. (2020); Tung & Mori (2019); Yim et al. (2017); Zagoruyko &
Komodakis (2017).

Table 2: Comparison of different settings. Compared with previous logit-level and feature-level
KD methods, our method conducts prediction alignment in instance-level, batch-level and category-
level simultaneously.

Setting Instance-level Alignment Batch-level Alignment Category-level Alignment

Logit-level KD (Previous) ! % %

Feature-level KD ! ! %

Logit-level KD (Ours) ! ! !

Logit-Level KD Logit-level KD methods distill knowledge merely with output logits. For in-
stance, the earliest KD method is a logit-level method. Other logit-level methods boost knowledge
distillation by introducing a mutual-learning paradigm Zhang et al. (2018b) or additional teacher as-
sistant module Mirzadeh et al. (2020). The logit-level methods appear to be straightforward and are
ready to be applied to any scenario, no matter black-box or white-box. However, their performance
is often inferior to feature-level methods.

Feature-Level KD To further boost knowledge distillation, another line of works, feature-level
KD, are proposed to conduct distillation on intermediate features. Concretely, some of them Heo
et al. (2019a;b); Romero et al. (2015) mitigate the divergence between features in the teacher and
student model, which enforces the student model to imitate the teacher model at feature level. Other
methods Park et al. (2019); Tian et al. (2020); Tung & Mori (2019) also convey teacher knowledge
by distilling the input correlation. We note that feature-level KD methods are unable to tackle black-
box scenarios and compare them with our method in Table 2. Different from these feature-level
methods that transfer input correlation via intermediate features, our black-box distillation method
learns input correlation by logit outputs. Our method also absorbs class correlation, which previous
works rarely pay attention to.

3 METHODOLOGY

To smooth the presentation, we start from preliminaries. Then we introduce our approach to black-
box knowledge distillation.
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Figure 2: Method Overview. In black-box knowledge distillation, the teacher model is invisible,
with merely a model API available. After obtaining the teacher and student predictions, we conduct
prediction augmentation, converting them to multiple outputs with different temperatures respec-
tively. The augmented predictions are matched respectively through multi-level alignment, which
consists of instance-level, batch-level, and class-level alignment. We take batch size B = 2 and
class number C = 5 as an example to demostrate our multi-level alignment. (Best viewed in color)

3.1 PRELIMINARIES

Knowledge Distillation We start from the original Knowledge Distillation (KD) method, which
was proposed in Hinton et al. (2015). To illustrate the procedure of KD, we consider C-way clas-
sification task and denote the logit output of a single input as z ∈ RC , then the class probability is

pj =
ezj/T∑C
c=1 e

zc/T
, (1)

where pj and zj is the probability value on the j-th class. We compute the Softmax value and T is the
temperature scaling hyper-parameter Guo et al. (2017). In knowledge distillation, T is often larger
than 1.0, which alleviates the over-confidence phenomenon in neural network Guo et al. (2017).
When T = 1.0, the output will shrink to vanilla Softmax output.

The objective of KD is to distill the knowledge from the large teacher model to the light-weight stu-
dent model. With rescaled outputs, the original KD method implements distillation by minimizing
the KL divergence between the outputs from the teacher and student model,

LKD = KL(ptea||pstu) =
C∑

j=1

pteaj log(
pteaj

pstuj

), (2)

where LKD is the knowledge distillation loss, pteaj and pstuj indicates the probability value on the
j-th category of the teacher and student output, respectively.

The original KD method, minimizing the divergence on logit outputs, serves as the most fundamental
baseline in KD research. Meanwhile, when confronting black-box scenarios, this method can be
applied directly, but the performance is unsatisfactory. In this paper, we strive to seek a stronger
method for black-box KD.

3.2 BLACK-BOX KNOWLEDGE DISTILLATION

In this section, we will introduce our approach to black-box knowledge distillation. Here, we con-
sider the output of a batch of data instead of a single data. We denote the logit output as z ∈ RB×C ,
where B is the batch size and C means C-way classification. Our method has two core components:
1) prediction augmentation and 2) multi-level alignment.
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3.2.1 PREDICTION AUGMENTATION

To gain richer knowledge from predictions, we propose a prediction augmentation mechanism,
through which we can expand a single output to multiple ones. Concretely, we conduct prediction
augmentation through temperature rescaling,

pi,j,k =
ezi,j/Tk∑K
c=1 e

zi,c/Tk

, (3)

where pi,j,k is the probability value of the i-th input on the j-th category, with temperature hyper-
parameter Tk. In our mechanism, T0, T1, ..., TK forms a pool with K temperatures, which enables
us to augment one prediction to K diverse outputs.

As shown in Figure 2, take K = 2 as an instance, outputs from the teacher and student model are
augmented respectively. Through the prediction augmentation mechanism, we convert one predic-
tion to K outputs that are diverse in probability sharpness.

3.2.2 MULTI-LEVEL ALIGNMENT

With augmented predictions, as shown in Figure 2, we propose to align the teacher output and the
corresponding student output (according to the temperature) one by one. Instead of the original
logit alignment through KL divergence, we propose a novel multi-level alignment, which includes
1) instance-level, 2) batch-level, and 3) class-level alignment.

Instance-level Alignment We inherit the original mechanism in KD to implement instance-level
alignment in our method. Concretely, as shown below, we minimize the KL divergence between
augmented predictions from the teacher and student model one by one,

Lins =

N∑
i=1

K∑
k=1

KL(pteai,k ||pstui,k ) =

N∑
i=1

K∑
k=1

C∑
j=1

pteai,j,klog(
pteai,j,k

pstui,j,k

), (4)

where Lins means the instance-level alignment loss, pteai,j,k and pstui,j,k indicate the teacher and student
outputs on the i-th instance, j-th category, that are augmented by Tk. The instance-level alignment
forces the student model to mimic the teacher predictions on each instance, which plays the most
fundamental role in knowledge distillation. When compared with the vanilla KD Hinton et al. (2015)
method, the core difference of our alignment is that we adopt prediction augmentation by tempera-
ture rescaling, which transfers more diverse knowledge from the teacher model to the student model.

Batch-level Alignment Instead of aligning predictions at merely instance level, we propose to
conduct batch-level alignment by input correlation, the relation between two inputs, which is mod-
eled via features in previous work. In our method, we take logit predictions to quantify it. Specifi-
cally, we compute the Gram Matrix on the model predictions as follows,

Gk = pkp
T
k , G

k
ab =

C∑
j=1

pa,j,k · pb,j,k, (5)

where Gk is a B × B matrix, and pk indicates the predictions obtained via Tk. We can derive that
Gk

ab models the probability that the a-th and the b-th input are classified in the same category, which
indicates the relationship between them.

Then we compute the input correlation matrix Gk according to different Tk, with the teacher and
student predictions respectively. Our objective is to mitigate the divergence between them, thus

Lbatch =
1

B

K∑
k=1

||Gk
tea −Gk

stu||22, (6)

where Lbatch serves as the batch-level alignment loss, Gk
tea and Gk

stu are the input correlation matrix
computed by teacher and student predictions with temperature Tk, respectively. Similarly, with
instance-level alignment, we take all augmented predictions and conduct alignment accordingly.
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Algorithm 1: Pseudo code of DKD in a PyTorch-like style.

# z_stu, z_tea: student, teacher logit outputs, B x C
# T = [T_1, T_2, ..., T_K]: one set of K different temperatures
# l_ins, l_batch, l_class: three parts of alignment loss
# l_total: total loss
l_total = 0
for t in T do

p_stu = F.softmax(z_stu / t) # B x C
p_tea = F.softmax(z_tea / t) # B x C
l_ins = F.kl_div(p_tea, p_stu)
G_stu = torch.mm(p_stu, p_stu.t()) # B x B
G_tea = torch.mm(p_tea, p_tea.t()) # B x B
l_batch = ((G_stu - G_tea) ** 2).sum() / B
M_stu = torch.mm(p_stu.t(), p_stu) # C x C
M_tea = torch.mm(p_tea.t(), p_tea) # C x C
l_class = ((M_stu - M_tea) ** 2).sum() / C
l_total += (l_ins + l_batch + l_class)

end

Class-level Alignment The last part of our method lies in class-level alignment. We state that the
model predictions can depict the relationship between categories, i.e., if one class is very similar to
the ground-truth class, the model is prone to be reluctant between them, forming two high peaks in
predictions. Such a category correlation can be modeled by predictions of a batch of data as follows,

Mk = pTk pk,M
k
ab =

N∑
i=1

pi,a,k · pi,b,k, (7)

where Mk is a C × C matrix, pk indicates the predictions obtained via Tk, and Mk
ab presents the

probability that the inputs in this batch are classified to the a-th category and the b-th category
simultaneously, which quantifies the relationship between the two classes.

After quantifying the category correlation, we can enforce the student model to absorb this part of
knowledge from the teacher model by the following loss,

Lclass =
1

C

K∑
k=1

||Mk
tea −Mk

stu||22 (8)

where Lclass serves as the class-level alignment loss, Mk
tea and Mk

stu are the category correlation
matrix computed by teacher and student predictions with temperature hyper-parameter Tk. Aug-
mented predictions with multiple temperatures alleviate the over-confidence phenomenon in neural
networks, which is crucial in modeling the category correlation.

Multi-level Alignemt Now we have designed the mechanism for instance-level, batch-level, and
class-level alignment and can formulate our multi-level alignment loss as follows,

Ltotal = Lins + Lbatch + Lclass. (9)

By integrating three parts of loss together, our method enforces the student model to imitate the
teacher model not only in instance-level predicitons, but in batch-level input correlation and class-
level category correlation as well. We provide the pseudo code in Algorithm 1.

4 EXPERIMENTS

4.1 DATASETS AND SETTINGS

In our experiments, we evaluate the performance of our method on image classification and objection
detection respectively.

6



Datasets We take three widely researched datasets, CIFAR-100 Krizhevsky et al. (2009), and
ImageNet Russakovsky et al. (2015) for image classification, and MS-COCO Lin et al. (2014) for
object detection. More detailed descriptions are included in supplementary materials.

Settings We focus on black-box knowledge distillation with two different settings in our experi-
ment section. 1) Homogenous architecture where the teacher and student model are in the same type
of architecture (e.g. ResNet56 and ResNet20), and 2) Heterogeneous architecture where the two
models are different in architecture (e.g. ResNet32x4 and ShuffleNet-V1). We include various neural
network architectures in our experiment, including ResNet He et al. (2016), WRN Zagoruyko & Ko-
modakis (2016), VGG Simonyan & Zisserman (2015), ShuffleNet-V1 Zhang et al. (2018a)/V2 Ma
et al. (2018) and MobileNetV2 Sandler et al. (2018).

4.2 EXPERIMENTAL RESULTS

In our experiments, we evaluate the performance of our method in the black-box knowledge dis-
tillation scenario, where the features in teacher models are all inaccessible. We also report the
performance of other white-box methods Romero et al. (2015); Park et al. (2019); Tian et al. (2020);
Heo et al. (2019a); Chen et al. (2021). We note that such a comparison is unfair since for these
methods, all the intermediate layers and features in the teacher model are available.

Table 3: Results on CIFAR-100, Homogenous Architecture. Top-1 accuracy is adopted as the
evaluation metric. The teacher model and student model are in homogenous architecture and their
original performance is reported respectively.

Method
Teacher ResNet56 ResNet110 ResNet32×4 WRN-40-2 WRN-40-2 VGG13

Avg72.34 74.31 79.42 75.61 75.61 74.64

Student ResNet20 ResNet32 ResNet8×4 WRN-16-2 WRN-40-1 VGG8
69.06 71.14 72.50 73.26 71.98 70.36

White-box

FitNet Romero et al. (2015) 69.21 71.06 73.50 73.58 72.24 71.02 71.77
RKD Park et al. (2019) 69.61 71.82 71.90 73.35 72.22 71.48 71.73
CRD Tian et al. (2020) 71.16 73.48 75.51 75.48 74.14 73.94 73.95
OFD Heo et al. (2019a) 70.98 73.23 74.95 75.24 74.33 73.95 73.78

ReviewKD Chen et al. (2021) 71.89 73.89 75.63 76.12 75.09 74.84 74.58

Black-box

KD Hinton et al. (2015) 70.66 73.08 73.33 74.92 73.54 72.98 73.09
DML Zhang et al. (2018b) 69.52 72.03 72.12 73.58 72.68 71.79 71.95

TAKD Mirzadeh et al. (2020) 70.83 73.37 73.81 75.12 73.78 73.23 73.36
Ours 72.19 74.11 77.08 76.63 75.35 75.18 75.09

Table 4: Results on CIFAR-100, Heterogeneous Architecture. Top-1 accuracy is adopted as the
evaluation metric. The teacher model and student model are in heterogeneous architecture and their
original performance is reported respectively.

Method
Teacher ResNet32×4 WRN-40-2 VGG13 ResNet50 ResNet32×4

Avg79.42 75.61 74.64 79.34 79.42

Student ShuffleNet-V1 ShuffleNet-V1 MobileNet-V2 MobileNet-V2 ShuffleNet-V2
70.50 70.50 64.60 64.60 71.82

White-box

FitNet Romero et al. (2015) 73.59 73.73 64.14 63.16 73.54 69.63
RKD Park et al. (2019) 72.28 72.21 64.52 64.43 73.21 69.33
CRD Tian et al. (2020) 75.11 76.05 69.73 69.11 75.65 73.13
OFD Heo et al. (2019a) 75.98 75.85 69.48 69.04 76.82 73.43

ReviewKD Chen et al. (2021) 77.45 77.14 70.37 69.89 77.78 74.53

Black-box

KD Hinton et al. (2015) 74.07 74.83 67.37 67.35 74.45 71.60
DML Zhang et al. (2018b) 72.89 72.76 65.63 65.71 73.45 70.09

TAKD Mirzadeh et al. (2020) 74.53 75.34 67.91 68.02 74.82 72.12
Ours 77.18 77.44 70.57 71.04 78.44 74.93

CIFAR-100 We evaluate our method on CIFAR-100 and compare it with previous methods. For
knowledge distillation where the teacher and student model are in homogenous architecture, as
shown in Table 3, our method performs best among black-box methods, showing obvious improve-
ments over the original student model and the vanilla KD Hinton et al. (2015) method. Moreover,
our accuracy is slightly better than the white-box knowledge distillation methods. We note that it
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validates the strong effectiveness of our method, since it only takes output predictions to surpass all
the methods that absorb abundant knowledge from intermediate features.

When it comes to the situation where the teacher and student model are heterogeneous in archi-
tecture, the results in Table 4 demonstrate that our method shows a remarkable advantage over the
previous black-box KD methods, enhancing the lightweight student model effectively. In addition,
our method also shows competitive performance over the white-box methods.

Table 5: Results on ImageNet. Top-1 and Top-5 accuracy is adopted as the evaluation metric. The
original accuracies of the teacher and student model are also reported.

Top-1 Top-5 Top-1 Top-5

Method
Teacher ResNet34 ResNet50

73.31 91.42 76.16 92.86

Student ResNet18 MobileNet-V2
69.75 89.07 68.87 88.76

White-box

AT Zagoruyko & Komodakis (2017) 70.69 90.01 69.56 89.33
OFD Heo et al. (2019a) 70.81 89.98 71.25 90.34
CRD Tian et al. (2020) 71.17 90.13 71.37 90.41

ReviewKD Chen et al. (2021) 71.61 90.51 72.56 91.00

Black-box

KD Hinton et al. (2015) 70.66 89.88 68.58 88.98
DML Zhang et al. (2018b) 70.82 90.02 71.35 90.31

TAKD Mirzadeh et al. (2020) 70.78 90.16 70.82 90.01
Ours 71.62 90.55 73.01 91.42

ImageNet We plug our method into black-box knowledge distillation on ImageNet, with teacher
and student models in homogenous or heterogeneous architecture. We compare our method with
previous methods that can tackle black-box scenarios, as well as present the performance of previous
white-box methods. We report both Top-1 and Top-5 accuracy in Table 5.

The results demonstrate that no matter the teacher and student models are homogenous (ResNet34
and ResNet18) or heterogeneous (ResNet50 and MobileNet-V2), our method consistently outper-
forms previous KD methods in black-box scenarios. In addition, our method still shows competitive
performance over white-box methods on such a large-scale and complicated dataset.

MS-COCO We extend our experiments to objection detection, another fundamental computer
vision task. We take Faster-RCNN Ren et al. (2015)-FPN Lin et al. (2017) as the backbone, and
AP, AP50, and AP75 as the evaluation metric. The results in Table 6 validate that our method is
steadily superior to mainstream KD methods and enjoys strong performance over previous white-
box methods.

Table 6: Results on MS-COCO. We take Faster-RCNNRen et al. (2015)-FPNLin et al. (2017) as
the backbone, and AP, AP50, and AP75 as the evaluation metric. The original accuracies of the
teacher and student model are also reported.

AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

Method
Teacher ResNet101 ResNet101 ResNet50

42.04 62.48 45.88 42.04 62.48 45.88 40.22 61.02 43.81

Student ResNet18 ResNet50 MobileNetV2
33.26 53.61 35.26 37.93 58.84 41.05 29.47 48.87 30.90

White-box
FitNet Romero et al. (2015) 34.13 54.16 36.71 38.76 59.62 41.80 30.20 49.80 31.69

FGFI Wang et al. (2019) 35.44 55.51 38.17 39.44 60.27 43.04 31.16 50.68 32.92
ReviewKD Chen et al. (2021) 36.75 56.72 34.00 40.36 60.97 44.08 33.71 53.15 36.13

Black-box

KD Hinton et al. (2015) 33.97 54.66 36.62 38.35 59.41 41.71 30.13 50.28 31.35
TAKD Mirzadeh et al. (2020) 34.59 55.35 37.12 39.01 60.32 43.10 31.26 51.03 33.46

DKD ? 35.05 56.60 37.54 39.25 60.90 42.73 32.34 53.77 34.01
Ours 37.03 57.68 40.01 40.15 61.67 44.57 34.83 55.01 36.82
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Figure 3: Training Time and Hyperparameter Sensitivity. (a) Training time for each batch of data
of different KD methods. Our method takes the shortest training time among them. (b) Our method
performs steadily over different T hyperparameter. Both experiments are conducted on CIFAR-100,
with teacher and student models in homogenous architecture.

4.3 ANALYSES

Ablation study We investigate the contributions of each component in our method, instance-level
alignment, batch-level alignment, class-level alignment, and prediction augmentation. In Table 7,
when merely instance-level alignment is adopted, the method shrinks to the original KD Hinton
et al. (2015) method, while with all the four components, our method performs better than all the
other variants, proving that each part of our method is indispensable.

Table 7: Ablation Study. The experients are conducted on CIFAR-100, with ResNet32x4 as the
teacher model, ResNet8x4 as the student model, and Top-1 accuracy as the evaluation metric.

Instance-level Alignment Batch-level Alignment Class-level Alignment Prediction Augmentation Acc

! % % % 73.33
! ! % % 74.58
! ! ! % 76.26
! ! ! ! 77.08

Training Speed We compare the training speed of various KD methods by assessing the training
time of each batch of data, on CIFAR-100, with teacher and student models in homogenous archi-
tecture. We can observe from Figure 3(a) that our method takes the shortest training time among
previous methods. We conjecture that the reason is that our method takes merely the logit outputs to
conduct knowledge distillation, while previous methods need more time and computational costs to
distill the feature knowledge in intermediate layers.

Hyperparameter Sensitivity In our experiments, we set the median of temperatures as T = 4.0.
Here, we conduct hyperparameter sensitivity on T . Following the our experiment settings, we take
K = 5 temperatures with median T = [3.0, 4.0, 5.0, 6.0, 7.0] and evaluate the model on CIFAR-100
with teacher and student models in homogeneous architecture respectively. The results are shown in
Figure 3(b). Our method performs stably under different T hyperparameters.

5 CONCLUSION

In this paper, we consider black-box knowledge distillation, an interesting yet challenging problem
where the teacher model is in black-box, leaving merely the logit outputs accessible. Towards this
problem, we propose a novel approach to make better utilization of teacher outputs via prediction
augmentations and multi-level alignment that consists of instance-level, batch-level, and class-level
alignment. Extensive experiment results prove the effectiveness of our method.
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