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Abstract

Uncertainty quantification, once a singular task, has evolved into a spectrum of
tasks, including abstained prediction, out-of-distribution detection, and aleatoric
uncertainty quantification. The latest goal is disentanglement: the construction
of multiple estimators that are each tailored to one and only one source of uncer-
tainty. This paper presents the first benchmark of uncertainty disentanglement. We
reimplement and evaluate a comprehensive range of uncertainty estimators, from
Bayesian over evidential to deterministic ones, across a diverse range of uncertainty
tasks on ImageNet. We find that, despite recent theoretical endeavors, no existing
approach provides pairs of disentangled uncertainty estimators in practice. We
further find that specialized uncertainty tasks are harder than predictive uncer-
tainty tasks, where we observe saturating performance. Our results provide both
practical advice for which uncertainty estimators to use for which specific task,
and reveal opportunities for future research toward task-centric and disentangled
uncertainties. All our reimplementations and Weights & Biases logs are available
at https://github.com/bmucsanyi/untangle.

1 Introduction

When uncertainty quantification methods were first pioneered for deep learning [12, 29], their task
was simple: giving one total uncertainty estimate. The recent demand for trustworthy machine
learning [36] created new requirements, mostly centering around disentangling the above predictive
uncertainty into aleatoric (data-inherent and irreducible) and epistemic (model-centric and reducible)
components [11, 52, 47]. Such disentangled estimators are needed for multiple modern applications:
Out-of-distribution detection needs to filter unseen samples with high epistemic uncertainty without
being confounded with seen samples with high aleatoric uncertainty [37], and active learning uses
individual aleatoric and epistemic estimates to select the most efficient samples to learn from [28, 35].

However, recent advances towards such disentangled uncertainties are primarily theoretical and
supported by only small-scale experiments [47, 53, 37]. Conversely, larger-scale benchmarks evaluate
methods w.r.t. only one uncertainty component and do not test for undesirable side effects on other
components [13, 40]. There is currently no study that evaluates which component(s) each method
captures in practice and which it does not – which is often contrary to their original intuition.

Our work provides a comprehensive benchmark of the vast recent landscape of uncertainty methods
and tasks. We reimplement nineteen uncertainty quantification methods in up to fourteen ways
and evaluate each on thirteen practically defined tasks on ImageNet-1k [10] and CIFAR-10 [27].
This includes recent information-theoretical and Bregman decomposition formulas that intend to
disentangle total uncertainties into aleatoric and epistemic components [57, 42, 11]. We reveal
that none of the existing approaches achieve disentanglement in practice. Most proposed pairs of
estimators are highly internally correlated (rank corr. ≥ 0.78) and fail to unmix aleatoric and epistemic
uncertainty (Section 3.1). We also find that specialized tasks (Sections 3.2 and 3.3) are harder to solve
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Figure 1: Decomposition formulas like in Eq. (1) decompose second-order distributions into individual
estimates for epistemic and aleatoric uncertainties. However, we find that the estimates are internally
highly correlated. The density plot on the right shows this for the epistemic and aleatoric uncertainty
estimates obtained from decomposing deep ensemble uncertainties on ImageNet-1k. This means that
they capture the same notion of uncertainty in practice as opposed to two disentangled ones.

than previous predictive uncertainty tasks, on which we observe saturating performance (Section 3.4).
Based on these insights, we uncover a promising path for future disentangled uncertainty estimates:
combining individual estimators that strongly reflect one type of uncertainty while being (almost)
unrelated to the other.

These findings emphasize the importance of clearly specifying the task one wants to solve with an
uncertainty estimator and tailoring the estimator to it. We anticipate that our quantitative insights will
drive the field toward developing more disentangled and specialized uncertainty estimators.

2 Benchmarked Methods

This section provides an overview of the benchmarked uncertainty estimators and disentanglement
formulas. We reimplement all nineteen methods and explain implementation details in Appendix A.

2.1 Uncertainty Quantification Methods

We consider a classification setting with a discrete label space of C classes. On top of the eight
supervised uncertainty quantification methods from Kirchhof et al. [25], we reimplement another
eleven methods to encourage diversity and general applicability of our findings. Below, we categorize
the benchmarked approaches into distributional and deterministic methods.

2.1.1 Distributional methods

Distributional methods model a second-order predictive distribution q(π | x) over class probability
vectors π ∈ ∆C−1 for an input x ∈ X . For example, q(π | x) can correspond to a Bayesian
posterior on the simplex, p(π | x,D), induced by a weight-space posterior p(θ | D) ∝ p(D | θ) p(θ)
when training on dataset D.

Spectral-Normalized Gaussian Processes (SNGP) [32] represent the q(π | x) distributions by
approximating a Gaussian process (GP) over the classifier output, aided by spectral normalization.
We also benchmark the last-layer GP without spectral normalization. The last-layer Laplace Approx-
imation [8] and Stochastic Weight Averaging – Gaussian (SWAG) [34] both model a Gaussian
parameter distribution in a post-hoc fashion that induces the q(π | x) distributions. The Laplace
approximation does so by fitting the parameter-space Gaussian w.r.t. the local curvature around
the MAP estimate, whereas SWAG samples model weights via checkpointing and fits an empirical
distribution. Similarly, Heteroscedastic Classifiers (HET) [5] and Latent Heteroscedastic Clas-
sifiers (HET-XL) [6] predict a heteroscedastic Gaussian distribution over the logits and pre-logit
embeddings, respectively. Evidential deep learning methods for classification [45, 4] directly learn a
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Dirichlet distribution over the output probability vectors. Following Ulmer et al. [50], we refer to the
method of Sensoy et al. [45] as Evidential Deep Learning (EDL) and that of Charpentier et al. [4]
as the Posterior Network (PostNet).

MC Dropout [12, 48] and Deep Ensemble [29] do not construct second-order predictive distri-
butions q(π | x) explicitly. Instead, they sample from them by M repeated forward passes with
randomly switched off activations or by training M models, respectively. The Heteroscedastic
Classification Neural Network (HetClassNN) [23] uses the uncertainties from MC Dropout for
epistemic uncertainty and models an input-conditional heteroscedastic logit variance for aleatoric
uncertainty. The Shallow Ensemble [31] is a lightweight approximation of the Deep Ensemble with
a shared backbone and M output heads.

Practical tasks like threshold-based rejection often need a scalar uncertainty value u(x) ∈ R instead
of a second-order predictive distribution q(π | x). To this end, uncertainty aggregators compile the
above distributions into scalar uncertainty estimates. Several methods exist for this aggregation, such
as calculating the Bayesian Model Average (BMA) π̄(x) := Eq(π|x) [π] and using its entropy as the
uncertainty estimate u(x) or quantifying the variance of q(π | x), as often seen in ensembles. While
many distributional methods are proposed with a specific aggregator, we show in Appendix D.5
that they do not always behave as expected and limit performance. To remove this confounder, we
consider fourteen aggregators (Appendix D) for distributional methods and use the best-performing
one.

2.1.2 Deterministic Methods

Deterministic methods [43] directly output scalar uncertainty estimates u(x) ∈ R instead of modeling
a second-order predictive distribution q(π | x) over class probability vectors.

Loss Prediction [59, 28, 25] employs an additional MLP head for u(x) that estimates the loss
of the network’s prediction π(x) ∈ ∆C−1, reflecting a notion of (in-)correctness. Correctness
Prediction is a special variant for classification where u(x) predicts how likely the predicted class
ŷ := argmaxc∈{1,...,C} πc(x) is to be the correct class y, i.e., p (ŷ = y | x).

Deterministic Uncertainty Quantification (DUQ) [53] learns a latent mixture-of-RBF density
on the training dataset and outputs as u(x) how close an input’s embedding is to the mixture
means. The Mahalanobis method [30] builds a similar latent mixture of Gaussians in a post-
hoc fashion. It also perturbs the inputs adversarially to separate in-distribution (ID) and out-of-
distribution (OOD) samples. The Deep Deterministic Uncertainty (DDU) method [37] combines
the spectral normalization of SNGPs with the latent density of the Mahalanobis method. Temperature
Scaling [18] post-hoc calibrates the predicted probability vectors with a temperature scalar.1 As a
Baseline, we use a deterministic single-point network trained with the cross-entropy loss.

2.2 Uncertainty Decomposition Formulas

So far, we only considered uncertainty estimators that (sometimes after aggregating) output a single
estimate u(x). A second strain of literature outputs not only one estimate but decomposes the
q(π | x) of distributional methods into multiple estimators that each intend to quantify one source
of uncertainty, such as epistemic and aleatoric uncertainty [22, 36]. We benchmark two prominent
approaches to obtain such pairs of estimators: the information-theoretical (IT) [11, 37, 57] and the
Bregman decomposition [42, 19, 17]. In the main paper, we focus on the IT decomposition due to its
widespread use. The definition and results of the Bregman decomposition are shown in Appendix B.

The IT decomposition decomposes the entropy of the predictive distribution p(y | x) =
∫
p(y |

π,x) dq(π | x) into an aleatoric and an epistemic component:

Hp(y|x) (y)︸ ︷︷ ︸
predictive

= Eq(π|x)
[
Hp(y|π,x) (y)

]︸ ︷︷ ︸
aleatoric

+ Ip(y,π|x) (y;π)︸ ︷︷ ︸
epistemic

, (1)

where p(y | π,x) = Cat(y;π) = πy , p(y,π | x) = p(y | π,x)q(π | x), Hp(y|x) (y) is the entropy,
and Ip(y,π|x) (y;π) is the mutual information. Intuitively, the aleatoric component represents the

1The DDU, temperature scaling, Laplace, and Mahalanobis methods are the only ones in our benchmark that
require a validation set for training their uncertainty modules.
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(a) ImageNet results. All twelve distributional meth-
ods exhibit a high rank corr. (≥ 0.78).
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(b) CIFAR-10 results. Eleven out of twelve distribu-
tional methods exhibit a strong rank corr. (≥ 0.88).

Figure 2: Rank correlation between the aleatoric and epistemic estimates obtained by the IT decom-
position on ImageNet (left) and CIFAR-10 (right). The two uncertainty components are strongly
correlated for most methods, violating a necessary condition of their disentanglement.

spread of the labels that the plausible predictions in the posterior have on average. In contrast, the
epistemic component only captures the disagreement of the predictions p(y | π,x) in the second-
order predictive distribution q(π | x). For evidential deep learning methods with Dirichlet q(π | x)
distributions, closed-form expressions exist for each term of Eq. (1), whereas other approaches require
Monte Carlo approximations [50].

The key goal behind these decompositions is uncertainty disentanglement: The aleatoric component
should capture aleatoric and only aleatoric uncertainty, and the epistemic estimator should reflect
epistemic and only epistemic uncertainty. In particular, this entails that both components need to be
sufficiently uncorrelated. See Appendix E for more details and a formal definition.

3 Experiments

We now investigate our main research question: Does any approach give disentangled uncertainty
estimators (Section 3.1)? Then, we go into each individual type of uncertainty and investigate
which estimator practically performs the best on epistemic (Section 3.2), aleatoric (Section 3.3), and
predictive uncertainty tasks (Section 3.4). Lastly, we draw conclusions across all tasks (Section 3.5)
and benchmark the robustness of current uncertainty estimators (Section 3.6).

To provide even grounds, we reimplement each method and provide it as an easy-to-use uncertainty
wrapper that can be added to arbitrary timm [56] models2. In this paper, we use pretrained ResNet-
50 backbones and train each approach for 50 ImageNet-1k [10] epochs with a training pipeline
following Tran et al. [49]. The CE baseline converges to an accuracy of 0.785 with this strategy.
Since the DUQ method has memory and stability issues on ImageNet, in Section 3.7, we repeat all
experiments on CIFAR-10 [27] with the WideResNet 28-10 architecture, following Liu et al. [32].
We only report the other 18 methods on ImageNet. We search for ideal hyperparameters and an early
stopping checkpoint for each method by tracking the validation performance. We then run the best
hyperparameters across five seeds and report mean, minimum, and maximum test performance. This
overall takes 1.5 GPU years on RTX 2080 Ti GPUs. We report the main results in the paper and go
into more detail for, e.g., different uncertainty aggregators in the appendix. We also publish all of
these metrics and their logs.3

3.1 Decomposition Formulas Fail to Disentangle Aleatoric and Epistemic Uncertainty

We first study if decomposition formulas, IT or Bregman, yield disentangled estimators. Since they
decompose second-order predictive distributions q(π | x), we analyze distributional methods and no
deterministic methods in this section.

Fig. 1 reveals a simple failure: The decomposed aleatoric and epistemic uncertainty estimates are
strongly correlated, being high or low iff the other component is high or low. These severe internal
correlations prohibit the estimators from capturing semantically different sources of uncertainty
and hinder applications that require unconfounded uncertainty estimates, such as active learning.

2https://github.com/bmucsanyi/untangle
3https://wandb.ai/bmucsanyi/untangle
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(a) OOD detection AUROC results. OOD samples are
perturbed by ImageNet-C corruptions of severity two.
Mahalanobis, the best method, is trained specifically
to distinguish OOD data of this severity.
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(b) Rank correlation of uncertainty estimators and the
GT aleatoric uncertainty on ImageNet. The entropy of
the ImageNet-ReaL label distributions is used as GT
aleatoric uncertainty.

Figure 3: Performance of uncertainty quantification methods on epistemic (left) and aleatoric (right)
uncertainty tasks on the ImageNet validation dataset.

The behavior of deep ensembles is just one example. Figure 2a shows that aleatoric and epistemic
estimates obtained via the IT decomposition are highly rank correlated (rank corr. ∈ [0.78, 0.99])
for all distributional methods that we benchmark. This holds similarly on CIFAR-10 (Figure 2b), as
well as for the Bregman decomposition (Appendix B) and also does not considerably lower when we
artificially add more epistemic uncertainty into the dataset, see Appendix C.2. Often, the components
are even linearly correlated; see the Pearson correlation results in Appendix C.4.

A part of these correlations is inevitable: On ImageNet, regions with aleatorically uncertain images
are undersampled compared to regions without aleatoric uncertainty and thus also more epistemically
uncertain (see Fig. J.3). This means that ImageNet has a level of inevitable correlation between
epistemic and aleatoric uncertainty estimates. We quantify this inevitable correlation via the rank
correlation between the GT aleatoric uncertainty (i.e., the entropy of the GT label distribution) and
the models’ epistemic uncertainty given by the Bregman decomposition in Appendix B.4. This gives
levels of inevitable correlation for the Bregman decomposition that are at most 0.45. Further, we
show in Section 3.3 that there are pairs of uncertainty estimators where one performs well on aleatoric
and the other on epistemic uncertainty, with a notably low rank correlation of 0.15± 0.01. Thus, the
severe correlations exceeding 0.78 are shortcomings of the decomposition formulas and not inherent
properties of the ImageNet dataset.

In conclusion, decomposition formulas of various forms applied to various second-order distributions
produce uncertainty estimators that are so highly correlated that they hardly capture the different
individual notions of aleatoric and epistemic uncertainty that they are intended to capture.

3.2 Epistemic Uncertainty: Specialized Uncertainty Esimators Detect OOD Inputs the Best

If decomposition formulas cannot yield epistemic and aleatoric uncertainty estimates, which methods
can? For the rest of the paper, we widen the scope and include not only the aleatoric and epistemic
estimators defined by the decomposition formulas but also arbitrary aggregators of second-order
distributions, as well as deterministic methods. This section tests which of these estimators represents
epistemic uncertainty, measured by an out-of-distribution (OOD) detection task [17, 37]. We create a
50/50 dataset of in-distribution (ID) and OOD samples, with ID samples getting class 0 and OOD
samples getting class 1. We quantify via a binary classification AUROC if uncertainty estimates are
higher on OOD samples than on ID samples. We use ImageNet-C [21] with all of its corruptions of
severity level two as OOD data. The severity level two is far enough out-of-distribution to deteriorate
the ImageNet accuracy by 27% (Section 3.6).

Fig. 3a shows that the methods differ greatly in their ability to detect OOD samples and, thus, in their
alignment with epistemic uncertainty. The Mahalanobis method performs best. This is likely because
it is the only method trained specifically for OOD detection with ImageNet-C corruptions of severity
level two. We find its advantage already vanishes when changing the task to severity level three
(Appendix H.3). A method with a similar latent density intuition and distance-awareness induced by
spectral normalization, DDU, is the worst at telling ID and OOD samples apart (AUROC = 0.675).
Additionally, the best-performing aggregators for the second-order distributions, the performance of
which Fig. 3a shows, are often not the disagreement-based aggregators that decomposition formulas
propose for epistemic uncertainty tasks (Appendix D.5). These insights highlight that the practical
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(a) ID correctness prediction results measured by the
AUROC w.r.t. model correctness. The evidential deep
learning methods, EDL and PostNet, capture predic-
tive uncertainty remarkably well.
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(b) Abstained prediction results using the AUAC met-
ric. Most methods are within a 0.03 AUAC band. EDL
and PostNet lose their advantage as their accuracy is
lower.

Figure 4: ID predictive uncertainty evaluation on the ImageNet validation dataset. The Mahalanobis
method is a specialized OOD detector that cannot differentiate between ID samples.

tailoring of uncertainties to a specific uncertainty task of interest, as done by the Mahalanobis method,
weighs more than high-level intuitions, which, e.g., decomposition formulas are based on.

3.3 Aleatoric Uncertainty: No Method With Outstanding Performance

The previous experiment isolated the epistemic capabilities of uncertainty estimates. We now evaluate
how well the benchmarked models predict aleatoric uncertainty. We follow Tran et al. [49] and
Kirchhof et al. [24, 25] and use the disagreement of human annotators as ground truths for aleatoric
uncertainty. ImageNet-ReaL [2] (and CIFAR-10H [41]) queries multiple annotators for labels on each
image. We showcase some examples in Appendix J. We use the entropy of the soft-label distributions
per image as GT aleatoric uncertainties. We then calculate the rank correlation between the methods’
uncertainty estimates and the GT label entropies across all images. We do not use an AUROC here
because the GT values are continuous, but provide binarized AUROCs for direct comparability of
aleatoric and epistemic uncertainty performance results in Appendix H.4.

Fig. 3b shows that almost all methods lie within a correlation of [0, 37, 0.46]. Note that the best
achievable rank correlation is not one since the GT aleatoric data contains ties. While it is unknown
how high the best achievable rank correlation is, the fact that there are consistent improvements
across the methods hints at the fact that further performance gains are far from saturated. The method
that sticks out on the low end of the spectrum is Mahalanobis, which is uncorrelated with the GT
aleatoric uncertainty. This is, in fact, a strength: Mahalanobis estimates reflect epistemic uncertainty
while being non-informative of aleatoric uncertainty. Combining this with a second estimator for
aleatoric uncertainty can pave the way for a pair of disentangled uncertainty estimators. As a simple
start, combining it with the CE baseline achieves a low rank correlation of 0.15± 0.01 between the
two. We see this as a promising pathway to disentangled uncertainty estimators in the future.

With the aleatoric and epistemic tasks introduced, we can take a final look at the epistemic and
aleatoric estimators proposed by the IT decomposition. In Appendix C.3, using them instead of the
best ones reduces Shallow Ensemble’s performance, which was the best distributional method on
OOD detection, to the CE baseline level. It again shows that the theoretically intuitive estimators
underperform in practice.

3.4 Predictive Uncertainty: The Best Method Depends on the Precise Task

Let us now broaden the view beyond disentanglement to benchmark how well uncertainty estimators
solve other practically relevant tasks. We start with correctness prediction, where the AUROC
quantifies whether wrong predictions generally have higher uncertainties than correct predictions.

Fig. 4a shows that most uncertainty estimators perform within ±0.014 of the cross-entropy baseline
when predicting correctness. Modern methods like HET-XL do not outperform older methods like
the Deep Ensemble or MC Dropout. Evidential deep learning methods, like EDL and PostNet, are
an exception to this. They are considerably better at predicting correctness. This also holds when
mixing the datasets with OOD data in Appendix H.1. However, their better performance comes at a
cost. Evidential methods have a trade-off between the quality of their uncertainty estimates and the
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classification accuracy. When demanding similar classification accuracies, we find that they lose their
advantage.

A related task to correctness prediction is abstained prediction. It involves refusing to predict on the
x% most uncertain examples and calculating the model’s accuracy on the remaining samples. We use
the Accuracy-Coverage (AC) curve [15] that plots increasing fractions of abstained samples from 0%
to 100% on the x-axis against the accuracy on the non-abstained portion. Following the conventions
of Galil et al. [14], we denote this metric as the area under the accuracy coverage curve (AUAC). In
Appendix H.5, we also evaluate methods on the rAULC and E-AURC metrics that normalize the
AUAC by the accuracy of the underlying model [43, 14].

Fig. 4b shows that this predictive uncertainty task is saturated. All uncertainty methods apart from
Mahalanobis obtain an AUAC score greater than 0.91, and only a few outperform the CE baseline.
Since the AUAC depends on accuracy, EDL and PostNet perform worse in this metric, although
both AUROC and AUAC target predictive uncertainty. This demonstrates that practitioners need to
carefully specify an uncertainty estimator’s overall goal. Designing a system that can detect errors is
not the same as designing a system that reduces errors.

The same holds for calibration. While this is also a predictive uncertainty task, the goal is slightly
different. It is not to provide a good ranking of uncertain images but to give correctness probabilities
that are close to the true frequentist probabilities.
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Figure 5: Expected calibration error on ImageNet.

Fig. 5 shows that different methods excel at
this task than at the AUROC correctness task
(Fig. 4a). In particular, Laplace and tempera-
ture scaling, which were only as good as the
CE baseline in terms of AUROC, show drasti-
cally improved performance in terms of the ECE.
Note that these two use a validation dataset to
become better calibrated, similar to how Ma-
halanobis specialized and outperformed on the
epistemic uncertainty task.

In conclusion, the predictive uncertainty results show that the exact definition of the task one intends
to solve with uncertainty estimators matters because different estimators specialize in different notions
of uncertainty.

3.5 Different Tasks Require Different Methods
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Figure 6: The Pearson correlation of metric pairs
across methods and aggregators on the ImageNet
validation dataset is only medium. Most capture
different aspects of uncertainty methods.

The previous sections suggest that uncertainty
tasks are not all solved by the same best method.
In this section, we investigate how the perfor-
mance of methods on different tasks is corre-
lated. In particular, we use the previous practi-
cal tasks along with further popular metrics and
measure the between-task Pearson correlations
of the performance of all benchmarked methods.
The correlations of the rankings of the methods
are similar; see Appendix H.7.

Fig. 6 shows barely any recognizable clusters,
except that AUAC is confounded by accuracy.
While all other metrics, except OOD AUROC,
correlate to some extent, their correlation is not
perfect, once again demonstrating that the per-
formances of the uncertainty estimators depend
on the exact task. These findings further corrob-
orate that there is no one-fits-all uncertainty esti-
mator, but there are multiple tasks with nuanced
differences to which an uncertainty estimator
can be tailored.
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(a) ImageNet results. The uncertainty estimators’ per-
formance in terms of the AUROC degrades much
slower than the model’s accuracy.
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(b) CIFAR-10 results. Model accuracy and the per-
formance of the uncertainty method degrade together:
OOD, uncertainty estimates are not to be trusted.

Figure 7: Degradation of correctness prediction, abstained prediction, and accuracy metrics with
increasingly severe ImageNet-C (left) and CIFAR-10C (right) corruptions. The shown MC Dropout
results are typical for all methods (except Mahalanobis). Solid lines: metrics normalized to the [0, 1]
range w.r.t. corresponding random and oracle predictors. Dashed lines: unnormalized values.
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(a) ImageNet results. Methods are generally more
robust to OOD perturbations than on CIFAR-10. EDL
and Shallow Ensemble even become better calibrated
OOD.
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(b) CIFAR-10 results. Methods are much less robust
to OOD perturbations than on ImageNet: Shallow
Ensemble and CE Baseline degrade significantly.

Figure 8: ECE results on ImageNet (left) and CIFAR-10 (right). Methods display drastically different
behavior on ImageNet and CIFAR-10 regarding the robustness of their calibration. OOD samples are
perturbed with ImageNet-C (left) and CIFAR-10C (right) corruptions of severity level one.

3.6 Uncertainties are Robust to Distribution Shifts

As uncertainty estimates are often intended to increase the reliability of systems, one necessity is that
they remain robust when a system faces unforeseen inputs. We test this by checking if their previous
abstinence and correctness performances are preserved even when the model’s accuracy drops with
increasing ImageNet-C perturbation levels. Only then can we trust them and, e.g., base the abstinence
from prediction on these uncertainty estimates.

Fig. 7a shows the correctness prediction AUROC, AUAC, and model accuracy as we increasingly
perturb the ImageNet validation samples and go OOD. The correctness prediction performance in
terms of the AUROC remains almost constant, whereas the accuracy degrades to less than 25% at
severity level five. The AUAC performance degrades together with accuracy, which is a fundamental
property of the metric itself since the area under the accuracy is lower-bounded by the baseline
accuracy. The AUAC gain (i.e., AUAC−Accuracy) increases with the perturbation severity, showing
that the uncertainty estimators even become relatively better on the abstinence task as the severity
increases. The tendencies are maintained when we normalize the metrics (solid lines) according
to their random predictive performance (see Appendix H.2 for details). This observation holds for
all methods except Mahalanobis, see Appendix H.2. Figure 8a shows that the methods’ ECE also
remains robust to perturbations on ImageNet. These results underline the trustworthiness of existing
uncertainty quantification methods as we go OOD on ImageNet.
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3.7 CIFAR-10 Results Do Not Always Transfer to ImageNet

We conclude our experiments with a word of caution. Appendix G repeats all experiments on
CIFAR-10, which is widely used in the uncertainty quantification literature [53, 37, 17]. While some
conclusions from CIFAR-10 experiments replicate on ImageNet, like the correlated aleatoric and
epistemic estimators, the larger-scale ImageNet often shows different behavior.

Robustness. Uncertainty estimates are far less robust on CIFAR-10 than on the ImageNet scale,
even though the drop in classification accuracy is very similar. Unlike on ImageNet, where the
uncertainty estimators maintain a close to constant performance in predicting correctness as we go
OOD (Fig. 7a), on CIFAR-10, correctness estimators deteriorate together with the model’s accuracy
(Fig. 7b). The same holds for the ECE (Fig. 8a vs. Fig. 8b). So, while robustness appears to be a
striking problem on CIFAR-10, it gets resolved by scaling to a larger dataset.

Method rankings. Nine out of thirteen tasks exhibit substantially different rankings (rank corr.
< 0.5) between CIFAR-10 and ImageNet. See Table H.1 for details. This indicates that performance
on CIFAR-10 should not be taken as an estimate for ImageNet performance.

These experiments underline that methods might show substantially different behaviors on large-scale
datasets. As best practice, we encourage to first scale the approaches to the final deployment domain
(and define a precise task) instead of making fundamental design choices on toy datasets.

4 Connections Between Our Findings and Related Works

Uncertainty Disentanglement. The decomposition of aleatoric and epistemic uncertainties [42, 11]
has recently been shown to have failure cases. The disentanglement is usually analyzed theoretically
[57, 1, 16] or with qualitative plots (Kirchhof et al. [26], Fig. 6-9; Mukhoti et al. [37], Fig. 2;
Valdenegro-Toro and Mori [52], Fig. 8-10). Our results support this discussion with a practical and
quantitative perspective. To the best of our knowledge, we are the first to quantify the uncertainty
disentanglement. We find that no tested decomposition formula works for any tested second-order
distribution, neither on ImageNet-1k nor CIFAR-10. Our findings encourage combining separate
methods instead, such as the CE baseline’s predictive entropy and the Mahalanobis values, where
each method handles a specific type of uncertainty. This is similar to the recent work of Mukhoti
et al. [37]. We expect that our quantitative benchmarking methods help develop this field further.

Robustness. Recent benchmarks on OOD detection and robustness [38, 40, 43, 13] have first
highlighted robustness issues of uncertainty estimates. Our benchmark supports these findings on
CIFAR-10, especially in the region that is slightly OOD yet already causes degradation of both the
main task and the uncertainty estimator. The latter implies that uncertainty estimators either need to
become more robust to distribution shifts [25] or be better able to detect subtle epistemic uncertainties.
However, our experiments on ImageNet do not show robustness issues. It is possible that the vast
space of natural images that the ImageNet training dataset covers resolves this issue. We encourage
repeating our experiments and testing the uncertainty estimation not just on test data but also on
perturbed test data for future large-scale uncertainty estimators.

Aleatoric uncertainty. While epistemic uncertainty is widely evaluated on the OOD detection
proxy task [37, 49, 17], aleatoric uncertainty still lacks a standardized testing protocol. The current
approaches seem to converge to soft labels, but nuances in how they are collected still need discussion
(compare, for example, CIFAR-10H [41] to CIFAR-10S [7] and CIFAR-10N [55]). An increasing
number of uncertainty quantification approaches compare to such human GT notions of aleatoric
uncertainty [49, 24, 25, 26], indicating the interest in the field. Our benchmark shows that no method
can give highly accurate aleatoric uncertainty estimates yet, stressing the need for benchmarks,
methods, and training resources to develop along.

Predictive uncertainty and calibration. Contrary to aleatoric uncertainty alignment, calibration
and predictive uncertainty benchmarks are starting to become saturated and, according to our experi-
ments, the top performers are ready for deployment. This corroborates recent findings by Galil et al.
[14]. In comparison to this benchmark that compared model architectures, we compared nineteen
different approaches on the same backbone with a wide range of aggregator functions.
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5 Conclusions, Limitations, and Outlooks

We study how a diverse spectrum of uncertainty estimators and decomposition formulas perform on a
comprehensive set of uncertainty quantification tasks. Our quantitative findings bring an empirical
foundation to recent discussions in the field, namely that 1) the aleatoric and epistemic uncertainty
components of decomposition formulas are highly correlated and not disentangled, 2) epistemic and
aleatoric tasks are best solved by practically tailored methods, whereas methods relying on intuitions
often underperform, and 3) there is no one-fits-all uncertainty estimate. On a brighter side, our
experiments also reveal the important fact for practitioners that 4) predictive uncertainty estimation
achieve a high, saturating performance across almost all methods, and 5) uncertainty estimates,
when trained on large amounts of data, stay robust to perturbations longer than the classifiers whose
uncertainties they predict, hence enabling to safeguard the classifiers to some extent.

A limitation of our disentanglement benchmark is that we tested on two datasets, which are both
classification tasks. This is because we require ground truths for aleatoric uncertainty. Currently,
the only larger-scale datasets with such ground truths, in the form of multiple annotations per input,
are the two classification datasets we base our analysis on [2, 41]. Further aleatoric uncertainty
ground truths are an ongoing effort [44, 7]. We encourage the expansion of the set of datasets, both
within classification and to fields like regression [51] or unsupervised learning [24], to expand our
uncertainty disentanglement investigations. A second limitation is that we focus on models that have
converged after training on the large-scale ImageNet dataset. A different interesting setup is models
trained on small amounts of data, where epistemic uncertainty may be further from convergence. For
example, there is a follow-up investigation of our work by de Jong et al. [9] that undersamples the
train data. We replicate parts of their main experiment results on CIFAR-10 in Appendix H.9. We
encourage future works to evaluate uncertainties on an as broad array of tasks as possible to refine
the understanding of which specific uncertainty tasks individual uncertainty estimators excel at.

This last suggestion is a corollary of how our findings changed our perspective on uncertainty
quantification. There is no general uncertainty; instead, uncertainty quantification covers a spectrum
of tasks where the definition of the exact task heavily influences the optimal method and performance.
Such a precise definition of tasks per estimator would help construct disentangled uncertainties
and could lead to the alignment of theoretical developments and intuitive descriptions about what
particular types of uncertainty methods aim to capture. This pragmatic reassessment of the field
could overcome the traditional one-fits-all view of uncertainty and even the more recent epistemic vs.
aleatoric dichotomy and uncover the full variety of uncertainty estimates that are tailored to nuanced,
practical tasks.
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A Details of Benchmarked Methods

We consider a classification setting with discrete label space {1, . . . , C} of C classes.

We evaluate two classes of methods: deterministic methods and distributional methods. Distributional
methods output a second-order predictive distribution q(π | x) for input x ∈ X . Deterministic
methods output a single probability vector π(x) ∈ ∆C−1 and additional uncertainty estimates
detailed below. The (pre-softmax) logits of the models are denoted by f(x) ∈ RC . Therefore,
it holds that π(x) = softmax(f(x)). The activations of layer ℓ ∈ {1, . . . , L} in the model is
denoted by f ℓ(x) ∈ RDℓ

with fL(x) = f(x), Dℓ = C. The one_hot function converts a label
y ∈ {1, . . . , C} into a vector with only zero entries except for the yth one, which is one.

A.1 Deterministic Methods

Deterministic methods output an uncertainty estimate u(x) for input x ∈ X , such as the estimated
probability of the model’s prediction to be correct.

A.1.1 Loss Prediction

Loss prediction [51, 28, 25] employs an additional output head ulp connected to the pre-logit layer
that predicts the loss of the network’s prediction on input x ∈ X . The loss predictor head is
trained in a supervised fashion by making ulp(x), the predicted loss, closer to the actual loss
ℓ(π(x), y) = − log πy(x). Precisely, we use the objective

Llp = − 1

n

n∑
i=1

log πy(i)

(
x(i)

)
+ λ

(
ulp
(
x(i)

)
+ log πy(i)

(
x(i)

))2
, (2)

where the risk predictor loss (squared Euclidean distance) is traded off with the label predictor loss
(cross-entropy) with a hyperparameter λ ∈ R+.

Note that Y | X = x is a random variable in the presence of aleatoric uncertainty. In expectation,
Eq. (2) encourages ulp(x) to approximate the true pointwise risk R(π,x) = Epdata(y|x) [ℓ(π(x), y)]
at each input x ∈ X .

A.1.2 Correctness Prediction

Correctness prediction is a variant of risk prediction that, instead of aiming to predict
the risk of the network on input x ∈ X , estimates the true probability of correctness
pdata

(
argmaxc∈{1,...,C} fc(x) = y

∣∣∣ x) on input x ∈ X . This is achieved by using a sigmoid
correctness predictor head h and using the objective

Lcp = − 1

n

n∑
i=1

log πy(i)

(
x(i)

)
− λ

(
li log h

(
x(i)

)
+ (1− li) log

(
1− h

(
x(i)

)))
, (3)

where l =
[
argmaxc∈{1,...,C} fc(x) = y

]
∀i ∈ {1, . . . , n}, and the correctness predictor loss

(binary cross-entropy) is traded off with the label predictor loss (cross-entropy) with a hyperparameter
λ ∈ R+. The uncertainty estimate is ucp(x) = 1− h(x) (i.e., the probability of making an error).

A.1.3 Deterministic Uncertainty Quantification

The deterministic uncertainty quantification (DUQ) method of Van Amersfoort et al. [53] learns a
latent mixture-of-RBF density on the training set with a strictly proper scoring rule to capture the
uncertainty in the prediction based on the Euclidean distance of the input’s embedding to the mixture
means. The training objective is

Lduq = − 1

n

n∑
i=1

C∑
c=1

one_hot
(
y(i)
)
c
logKc

(
x(i)

)
+
(
1− one_hot

(
y(i)
)
c

)
log
(
1−Kc

(
x(i)

))
,

(4)

17



where Kc(x) = exp
(
− 1

2γ ∥f(x)−mc∥
)

is the RBF value corresponding to class c ∈ {1, . . . , C}
identified by its mean vector mc in the latent space. To facilitate minibatch training, Van Amersfoort
et al. [53] employ an exponential moving average (EMA) to learn the mean vector using the following
update rules:

nc ← γ · nc + (1− γ)|Bc| (5)

M c ← γ ·M c + (1− γ)
∑

(x,y)∈Bc

W cf(x) (6)

mc ← M c

nc
, (7)

where B is a minibatch of samples and Bc = {(x, y) ∈ B | y = c} ∀c ∈ {1, . . . , C}. γ is the EMA
parameter, and W c characterizes a linear mapping of the logits for each class.

To regularize the latent density and prevent feature collapse, Van Amersfoort et al. [53] use the
following gradient penalty added to∇θL:

λ ·

∥∥∥∥∥∇x

C∑
c=1

Kc(x)

∥∥∥∥∥
2

2

− 1

2

(8)

Each RBF component in the latent space corresponds to one class. The confidence output of the
method is the maximal RBF value of the input over all classes. Therefore, the uncertainty estimate
can be calculated as uduq(x) = 1−maxc∈{1,...,C} Kc(x).

The predicted class of the trained network is argmaxc∈{1,...,C} K
c(x).

A.1.4 Mahalanobis

The Mahalanobis method [30] builds a post-hoc latent density for the training set in the latent space
by calculating per-class means and covariances, and using the induced mixture-of-Gaussians as the
latent density estimate. Such latent densities are estimated in multiple layers of the network. One
layer’s confidence estimate is the maximal Mahalanobis score (Gaussian log-likelihood) Kℓ(x) over
all classes:

Kℓ,c(x) = −
(
f ℓ(x)− µℓ,c

)⊤
Σ−1

ℓ

(
f ℓ(x)− µℓ,c

)
(9)

Kℓ(x) = max
c∈{1,...,C}

Kℓ,c(x). (10)

The centroid of the Gaussian for class c ∈ {1, . . . , C} in layer ℓ ∈ {1, . . . , L} is

µℓ,c =
1

nc

n∑
i=1

[
y(i) = c

]
f ℓ
(
x(i)

)
, (11)

where nc is the number of samples with label c, and

Σℓ =
1

n

C∑
c=1

n∑
i=1

[
y(i) = c

] (
f ℓ(x)− µℓ,c

) (
f ℓ(x)− µℓ,c

)⊤
(12)

is the tied covariance matrix used for all classes in layer ℓ ∈ {1, . . . , L}.
To make the differences of latent embeddings of ID and OOD samples more pronounced, all samples
are adversarially perturbed w.r.t. the maximal Mahalanobis score for each layer’s confidence score:

x̂ℓ = x+ ϵ sgn
(
∇xK

ℓ(x)
)
. (13)

This perturbed sample is used to compute Kℓ
(
x̂ℓ
)
. Finally, a logistic regression OOD detector is

learned on a held-out validation set of a balanced mix of ID and OOD samples to learn weights wℓ

for each layer ℓ ∈ {1, . . . , L} using the L-dimensional inputs
[
K1

(
x̂1
)
, . . . ,KL

(
x̂L
)]⊤

. The final
uncertainty estimate becomes uMah(x) =

∑L
ℓ=1 wℓK

ℓ
(
x̂ℓ
)
.

This is the only method in our benchmark that requires a mixed ID-OOD validation set for training
the logistic regression OOD detector.
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A.1.5 Temperature Scaling

Temperature scaling [18] post-hoc calibrates the predictive softmax distribution π(x) by learning
a temperature parameter τ ∈ R+ on a held-out ID validation set after training and setting π(x) :=
softmax (f(x)/τ). Guo et al. [18] show that temperature scaling leads to improvements on both the
ECE score and strictly proper scoring rules. To determine the optimal τ , we perform a grid search
over τ ∈ {0.1, 0.2, 0.3, . . . , 10.1} and choose the one that leads to the lowest NLL loss, following
[37].

A.1.6 Deep Deterministic Uncertainty

The Deep Deterministic Uncertainty (DDU) method [37] applies the spectral normalization of SNGPs
(Appendix A.2.1) to the hidden weights to establish a distance-aware latent space. It then fits a
mixture of Gaussians to this latent space based on (ID) training set statistics. Unlike the Mahalanobis
method, it

1. does not use adversarial perturbations;
2. only builds a latent density in the pre-logit layer;
3. does not tie the covariance matrix across classes:

πc =
nc

n
; (14)

µc =
1

nc

n∑
i=1

[
y(i) = c

]
fL−1

(
x(i)

)
; (15)

Σc =
1

nc − 1

n∑
i=1

[
y(i) = c

] (
fL−1

(
x(i)

)
− µc

)(
fL−1

(
x(i)

)
− µc

)⊤
(16)

for c ∈ {1, . . . , C} where fL−1(x) denotes the output of the pre-logit layer on input x ∈ X . Finally,
it uses a held-out ID validation set to apply temperature scaling to the logits.

Unlike the other methods we evaluate, the DDU method uses two uncertainty estimators, one for
epistemic uncertainty and one for aleatoric uncertainty. The epistemic estimator is the negative log
probability of the pre-logit on sample x ∈ X under the MoG:

uddu
eu (x) = − log p

(
fL−1(x)

∣∣∣{πc}Cc=1 , {µ
c}Cc=1 , {Σ

c}Cc=1

)
.

The aleatoric estimator is the entropy of the softmax predictive distribution:

uddu
au (x) = H (π(x)) .

Mukhoti et al. [37] do not provide a predictive uncertainty estimator, and the sum of the aleatoric and
epistemic estimator is not a performant choice for this task, as the magnitude of the epistemic part is
usually much larger than that of the aleatoric part in practice.

During training, we employ the cross-entropy loss to match the network’s predicted probabilities to
the (one-hot) ground-truth labels.

For a fair comparison of DDU with the other methods, we use the epistemic estimator for the OOD
detection task following Mukhoti et al. [37] and the best-performing one from Appendix D otherwise.

A.1.7 Cross-Entropy Baseline

As a baseline, we also benchmark a deterministic single-point network trained with the cross-entropy
loss. While this is a deterministic method, one can also equate it to a degenerate Dirac delta
distribution in parameter space: q(θ′) = δ(θ − θ′), making it the simplest possible distributional
method.

A.2 Distributional Methods

Distributional methods output a second-order input-conditional probability distribution over probabil-
ity vectors q(π | x).
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A.2.1 Spectral Normalized Gaussian Process

Spectral normalized Gaussian processes (SNGP) [32] give an approximate Bayesian treatment to
obtain uncertainty estimates using spectral normalization of the parameter tensors and a last-layer
Gaussian process approximated by Fourier features. For an input x ∈ X , it predicts a multivariate
Gaussian distribution

N
(
Bϕ(x),ϕ(x)⊤

(
Φ⊤Φ+ I

)−1
ϕ(x)I

)
, (17)

where B is a learned parameter matrix that maps from the pre-logits to the logits, and ϕ(x) =
cos
(
WfL−1(x) + b

)
is a random feature embedding of the input x ∈ X with fL−1(x) being a

pre-logit embedding, W a fixed semi-orthogonal random matrix, and b a fixed random vector sampled
from Uniform(0, 2π). Φ⊤Φ is the (unnormalized) empirical covariance matrix of the pre-logits of
the training set. This is calculated during the last epoch. The multivariate Gaussian presented above
can be Monte-Carlo sampled to obtain M logit vectors. We use M = 1000 Monte-Carlo samples
and did not notice differences between using M ∈ {10, 100, 1000, 10000} samples. Unless noted
otherwise, we use M = 1000 for all other method that require Monte-Carlo sampling aswell. During
training, we calculate the BMA from the set of logits and use the cross-entropy loss to fit the BMA to
the (one-hot) labels.

The method also applies spectral normalization to the hidden weights in each layer to satisfy input
distance awareness. We treat whether to apply spectral normalization to the batch normalization
modules and whether to use layer normalization in the GP layer as hyperparameters. We benchmark
both SNGPs and their non-spectral-normalized variants (denoted by GP).

A.2.2 Latent Heteroscedastic Classifier

Latent heteroscedastic classifiers (HET-XL) [6] construct a heteroscedastic Gaussian distribution
in the pre-logit layer to model per-input uncertainties: N (ϕ(x),Σ(x)), where ϕ(x) is the learned
input-conditional pre-logit mean and

Σ(x) = V (x)⊤V (x) + diag(d(x)) (18)
is an input-conditional full-rank covariance matrix. Both the low-rank term’s V (x) and the diagonal
term’s d(x) are calculated as a linear function of the layer’s output before the pre-logit layer.

One can Monte-Carlo sample the pre-logits from the above Gaussian distribution and obtain a set of
logits by transforming each using the last linear layer of the network. During training, this set is used
to calculate the Bayesian Model Average (BMA), the argmax of which is the final prediction.

HET-XL uses a temperature parameter to scale the logits before calculating the BMA. This is chosen
using a validation set. During training, we sample a set of logits, calculate the BMA, and use the
cross-entropy loss to fit the BMA to the (one-hot) labels.

A.2.3 Laplace Approximation

The Laplace approximation [8] approximates a Gaussian posterior q(θ | D) over the network
parameters for a Gaussian prior p(θ) and likelihood defined by the network architecture. It uses the
maximum a posteriori (MAP) estimate as the mean and the inverse Hessian of the loss evaluated at
the MAP as the covariance matrix:

N

θMAP,

(
∂2L(D;θ)
∂θi∂θj

∣∣∣∣
θMAP

)−1
 . (19)

This is a post-hoc method applied to a point estimate network. Following the recommendation
of Daxberger et al. [8], we employ a last-layer KFAC Laplace approximation and find the prior
variance using cross-validation. We draw network outputs using the GLM predictive on CIFAR-10,
and the NN predictive on ImageNet because of the infeasibility of calculating the network Jacobian
for the GLM due to extreme memory requirements (≈ 450 GB VRAM).

A.2.4 SWAG

The Stochastic Weight Averaging–Dropout [34] method takes a model that has either converged or
is close to converging and fine-tunes it for a certain number of epochs while taking checkpoints
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of it at evenly spaced points. It keeps track of the averaged checkpoint weights and their low-rank
covariance matrix. Once the fine-tuning is over, the method fits a Gaussian over the parameter space
with mean and covariance matrix from the collected checkpoints. During inference, it samples the
parameter-space posterior and uses these samples to make multiple predictions per input. Following
[34], we sample M = 30 parameters from the Gaussian posterior before evaluation and re-calculate
the batch normalization statistics for each of them on a 0.1 fraction of the training dataset.

A.2.5 MC Dropout

MC Dropout [48] has been shown to be a variational approximation to a deep Gaussian process [12].
During training, only one logit vector per input is sampled, and the cross-entropy loss is used. MC
Dropout in the realm of uncertainty quantification remains active during inference and is used to
sample M logits by performing M forward passes. Therefore, it directly samples from q(π | x)
without characterizing it.

A.2.6 HetClassNN

The Heteroscedastic Classification Neural Network (HetClassNN) [23] employs an output head that
predicts input-conditional heteroscedastic logit variance vectors. During training, the method MC
approximates the integral of the softmax probabilities with respect to the logit-space Gaussian and
trains this Bayesian Model Average (BMA) with the cross-entropy loss. We call the logit samples
from the Gaussian ‘internal logits.’ During inference, there is another meta MC sampling step of
M = 30 samples w.r.t. random dropout masks. This results in M outputs from the method, each of
which is a Bayesian Model average of the logit-space Gaussian w.r.t a different dropout mask. We
refer to the logarithms of these outputs as the ‘external logits’ or just ‘logits.’

A.2.7 Deep Ensemble

Deep ensembles [29] are approximate model distributions that give rise to a mixture of Dirac
deltas in parameter space: q(θ) = 1

M

∑M
i=1 δ(θ − θ(i)). Predominantly used to reduce the

variance in the predictions and improve model accuracy, deep ensembles can also be used as
approximators to the true distribution p(θ) induced by the randomness over datasets D :={(

x(i), y(i)
) ∣∣ i ∈ {1, . . . , n},x(i) ∈ X , y(i) ∈ {1, . . . , C}

}
in the generative process pdata(x, y).

We obtain a set of logits by performing a forward pass over all models. Similarly to MC Dropout,
deep ensembles do not explicitly parameterize the distribution over the predictions – they only sample
from it. We ensemble five independently trained cross-entropy models.

A.2.8 Shallow Ensemble

Shallow ensembles [31] are lightweight approximations of deep ensembles. They use a shared
backbone and M output heads (often referred to as “experts”). With a single forward pass, one
obtains M logit vectors per input. During training, the BMA of the M predictions is calculated and
matched to the ground-truth labels.

A.2.9 Evidential Deep Learning

The seminal evidential deep learning method of Sensoy et al. [46] (denoted by EDL following Ulmer
et al. [50]) directly learns a second-order predictive distribution q(π | x) using closed-form Bayesian
inference. In particular, it learns an input-conditional Dirichlet posterior q(π | x) = Dir(π;β(x))
with a fixed Dirichlet (conjugate) prior Dir(1) representing a total lack of information and a categorical
distribution over the classes as the likelihood. The logits of the network, f(x), are turned into pseudo-
counts α(x) ∈ RC

+ using either the exp or the softplus activation function. The posterior distribution
is obtained in closed form by setting β(x) = α(x) + 1. The components of the IT decomposition
can also be derived in closed form; see Ulmer et al. [50] for details.
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The loss of the EDL method has three components:

Ledl =
1

n

n∑
i=1

∥∥∥∥∥one_hot
(
y(i)
)
−

β
(
x(i)

)
S
(
x(i)

)∥∥∥∥∥
2

+

C∑
c=1

β
(
x(i)

)
c

(
S
(
x(i)

)
− β

(
x(i)

)
c

)
S2
(
x(i)

)
(S
(
x(i)

)
+ 1)

+ λtDKL

(
Dir
(
β̄
(
x(i), y(i)

)) ∥∥∥ Dir(1)
)
, (20)

where S(x) =
∑C

c=1 β
(
x(i)

)
c

and β̄(x, y) = one_hot(y)+(1−one_hot(y))⊙β is the Dirichlet
parameter vector after removing the prediction corresponding to the label’s index. The first term
matches the mean of the Dirichlet posterior to the (one-hot) GT labels. The second term reduces the
summed variance of each index c ∈ {1, . . . , C} of the random variable distributed as the Dirichlet
posterior. These two terms concentrate the Dirichlet density onto the one-hot label. The third term is
a regularizer that drives all dimensions of the Dirichlet parameter vector toward a complete lack of
knowledge except the one corresponding to the GT label. λt is the scheduled trade-off factor at step
t. We use a linear up-scaling of λt from 0 to λmax ≤ 1. On CIFAR-10, λmax = 1 is used following
Sensoy et al. [46]. Om ImageNet, this led to an overly strong regularizer that prohibited learning
(as the regularizer’s magnitude depends on the number of classes). We found λmax = 0.001 to be a
performant maximum trade-off factor for ImageNet.

A.2.10 PostNet

The PostNet method of Charpentier et al. [4] builds upon the EDL method. PostNet also keeps the
prior parameters fixed to 1, but instead of directly predicting pseudo-counts α(x), they are calculated
as α(x)c = nc · pϕ(z(x) | c) where z(x) is the latent embedding of input x ∈ X , nc is the number
of training samples of class c ∈ {1, . . . , C} and pϕ(z(x) | c) is a class-conditional normalizing flow
with parameters ϕ. Intuitively, the class-conditional normalizing flows give soft class membership
indicators to each input, and their indicators are weighted by the class size.

The PostNet method is trained with a regularized Uncertain Cross-Entropy (UCE) loss:

Lpostnet =
1

n

n∑
i=1

EDir(π;β(x(i)))

[
CE
(
π,one_hot

(
y(i)
))]
− λH

(
Dir
(
β
(
x(i)

)))
. (21)

While the first term drives Dir(β(x)) toward a Dirac distribution concentrated at the one-hot label,
the second term maximizes the entropy of the Dirichlet posterior. The effect of each is determined by
the trade-off factor λ.

B Definition and Further Results of the Bregman Decomposition

Bregman decompositions [42, 19, 28, 17] use not only the second-order predictive distribution
q(π | x) but also take the ground-truth (GT) generative process pdata(x, y) into account. Bregman
decompositions break up the expected loss of a model over all possible training datasets. This
variability is approximated by q(π | x):

Eq(π|x),pdata(y|x) [DF [one_hot(y) ∥ π]]︸ ︷︷ ︸
predictive

= Epdata(y|x) [DF [one_hot(y) ∥ π∗(x)]]︸ ︷︷ ︸
aleatoric

+ Eq(π|x) [DF [π̃(x) ∥ π]]︸ ︷︷ ︸
epistemic

(22)

+DF [π∗(x) ∥ π̃(x)]︸ ︷︷ ︸
bias

The loss DF is a Bregman divergence induced by the strictly convex function F , like the Euclidean
distance or the KL divergence. Since π∗(x) = Epdata(y|x) [one_hot(y)] is the Bayes predictor, the
aleatoric uncertainty is the Bayes risk of the generative process, which is irreducible and independent
of the q(π | x) distribution. As this process is unknown in practice, we estimate the aleatoric term by
Eq(π|x) [H (π)] to create estimators – but not for evaluation. Similarly to the IT decomposition, the
epistemic uncertainty is the average distance of predictions π ∼ q(π | x) from their centroid, the
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dual BMA π̃(x) = argminz∈∆C−1 Eq(π|x) [DF [z ∥ π]]. This average is calculated in a dual space,
but in certain cases, it is equal to the BMA [19]. The Bregman decomposition has an additional term,
the bias – an uncertainty source that subsumes the uncertainty about the function class [54].

B.1 Special Form of the Bregman Decomposition for the Kullback-Leibler Divergence

When choosing F (·) = −H(·), we obtain DF [· ∥ ·] = DKL (· ∥ ·). Consider the predictive un-
certainty term. A one-hot vector’s entropy is zero; therefore, the predictive uncertainty becomes
Eq(π|x),pdata(y|x) [CE(one_hot(y),π)]. The aleatoric term takes a convenient form:

Epdata(y|x) [DKL (one_hot(y) ∥ π∗(x))] = Epdata(y|x)

[
C∑

c=1

one_hot(y)c log
yc

π∗
c (x)

]

= −
C∑

c=1

π∗
c (x) log π

∗
c (x) = H (π∗(x)) . (23)

On datasets with multiple labels per input, this quantity is precisely the entropy of the (normalized)
label distribution corresponding to the labeler votes.

To calculate π̃(x), we can proceed as follows.
π̃(x) = argmin

z∈∆C−1

Eq(π|x) [DKL (z ∥ π(x))] (24)

= argmin
z∈∆C−1

C∑
c=1

zc log zc −
C∑

c=1

zc log
(
exp

(
Eq(π|x) [log πc]

))
(25)

= argmin
z∈∆C−1

C∑
c=1

zc log zc −
C∑

c=1

zc log
(
exp

(
Eq(π|x) [log πc]

))
+

C∑
c=1

zc log

(
C∑

c′=1

exp
(
Eq(π|x) [log πc′ ]

))
(26)

= argmin
z∈∆C−1

C∑
c=1

zc log zc −
C∑

c=1

zc log
exp

(
Eq(π|x) [log πc]

)∑C
c′=1 exp

(
Eq(π|x) [log πc′ ]

)︸ ︷︷ ︸
pc:=

(27)

= argmin
z∈∆C−1

DKL(z ∥ p) (28)

= p. (29)

Therefore, π̃(x) = softmax
(
Eq(π|x) [logπ]

)
, where log is applied elementwise.

B.2 DEUP is a Special Case of Bregman

As mentioned in Appendix B, a closely related formula to Bregman is the risk decomposition of
Lahlou et al. [28] where the predictive uncertainty is directly equated to the risk of a deterministic
predictor π : X → ∆C−1, not an expectation of risks over datasets or hypothesis distributions:

R(π,x)︸ ︷︷ ︸
predictive

= R(π∗,x)︸ ︷︷ ︸
aleatoric

+R(π,x)−R(π∗,x)︸ ︷︷ ︸
bias

(30)

whereR(π,x) = Ep(y|x) [L(π(x), y)] is the pointwise risk of π at x ∈ X . When choosing L to be
the squared Euclidean distance or the Kullback-Leibler divergence, Equation 30 becomes a special
case of Equation 22 for a Dirac distribution q(π′ | x) = δ(π′−π(x)) at the deterministic prediction
π(x). This formulation is desired when one wants the predictive uncertainty to be aligned with the
risk of one particular predictor and not the expected risk over a hypothesis distribution.

B.3 Correlation of Components and Limitations

Let us carry out the same experiments for Bregman as we did for the IT decomposition in Section 3.1
of the main paper. As the Bregman and DEUP decompositions (Equations 22 and 30) consider the
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Figure B.1: Left. On ImageNet-ReaL, the rank correlation of the Bregman aleatoric and bias terms
is between 0.45 and 0.52 for all distributional methods we benchmark. Note that the maximal
rank correlation is less than one due to ties in the GT aleatoric uncertainties. Right. The Bregman
decomposition shows similar rank correlation results to the IT decomposition between the estimated
aleatoric uncertainty and the epistemic component on the ImageNet validation dataset (Fig. 2a).
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Figure B.2: Left. The rank correlation of the Bregman aleatoric and bias GT terms is above 0.59 for
all methods we benchmark on CIFAR-10. Note that the maximal rank correlation is less than one due
to ties in the GT aleatoric uncertainties. Right. On CIFAR-10, the Bregman decomposition shows
similarly strong rank correlation results between the estimated aleatoric uncertainty and the epistemic
component as the IT decomposition does in Fig. 2b.

ground-truth label distribution as the aleatoric component, we use the IT aleatoric uncertainty as an
estimator of it. The Bregman decomposition includes a bias component, whose correlations we also
investigate.

B.3.1 ImageNet

On the right of Fig. B.1, we can see that the correlation between the aleatoric and epistemic com-
ponents of the Bregman decomposition is similarly high as for the IT decomposition in the main
paper. The Bregman decomposition also has a bias term. On the left of Fig. B.1, we show that there
is a considerable rank correlation between the Bregman ground-truth aleatoric and bias components.
However, this is not severe enough to prevent the theoretical possibility of disentangling them via
estimators.

B.3.2 CIFAR-10

We see in Fig. B.2 (right) that the results using Bregman are virtually the same as those of the IT
decomposition: most distributional methods exhibit very high rank correlations. As for the aleatoric
and bias components, Fig. B.2 (left) shows that they have a high correlation on CIFAR-10 even when
we use the GT values. Hence, there seems to be a fundamental limitation in disentangling them, no
matter which estimators are used to approximate the GT values.

B.4 Disentangling Epistemic and Aleatoric Uncertainty via Decomposition Formulas Is
Feasible

In this section, we present the rank correlation between the ground-truth aleatoric uncertainty and the
models’ epistemic uncertainties. This serves to capture an inevitable level of correlation between
these uncertainty sources, as measured (and defined) by the Bregman decomposition.
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(a) ID results.
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(b) Mixed ID and OOD severity level one.
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(c) OOD severity level one.
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(d) Mixed ID and OOD severity level two.
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(e) OOD severity level two.

Figure B.3: On ImageNet, we find a positive rank correlation between the (ground-truth) aleatoric
and epistemic components of the Bregman decomposition, implying that some level of correlation is
inevitable when using this decomposition formula. However, this correlation is considerably lower
than that between the aleatoric and epistemic estimates in Fig. 2a. This holds even if we increase the
epistemic uncertainty in the dataset via ImageNet-C corruptions. We only show severity levels one
and two here, as the GT aleatoric uncertainty values from the soft ImageNet-ReaL labels are only
valid for these corruption levels – higher corruption would possibly change the soft label votes.

B.4.1 ImageNet

ImageNet results on the correlation of the ground-truth aleatoric uncertainty and epistemic uncer-
tainties of methods are shown in Fig. B.3. There is a positive rank correlation of up to 0.45 between
these quantities, implying that some level of correlation is inevitable (but not such extreme values
displayed in Fig. 2a). The shallow ensemble, which already had the lowest actual correlation, also
has the lowest feasible decorrelation. Since in the feasible decorrelation experiment, we replace the
estimated AU with the GT AU and keep the epistemic component, this indicates that the epistemic
estimate of the shallow ensemble is already quite disentangled. It is also high-performing, as seen in
Fig. 3a. One way to improve this further was discussed in Section 3.3 of the main paper. We find
that the Mahalanobis epistemic estimates and the CE baseline aleatoric estimates lead to reasonably
well-performing yet decorrelated uncertainties. We hypothesize that the main reason is the explicit
measurement of aleatoric and epistemic uncertainty at different parts of the computation graph. This,
e.g., is lacking for the BMA decomposition: the aleatoric and epistemic estimates are generated from
the same set of logits, which limits diverse behaviors across estimators.

B.4.2 CIFAR-10

CIFAR-10 results on the correlation of the ground-truth aleatoric uncertainty and epistemic uncer-
tainties of methods are shown in Fig. B.4a. Similar to ImageNet, there is a positive rank correlation
between these quantities, implying a (low) inevitable level of correlation between the uncertainty
sources. However, even for the most correlated second-order distribution of SWAG, with 0.39 this
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(a) ID results.
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(b) OOD severity level one.
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(c) OOD severity level two.

Figure B.4: On CIFAR-10, we find a positive rank correlation between the (ground-truth) aleatoric
and epistemic components of the Bregman decomposition, implying that some level of correlation is
inevitable when using this decomposition formula. However, this correlation is considerably lower
than that between the aleatoric and epistemic estimates in Fig. 2b. This holds even if we increase
the epistemic uncertainty in the dataset via CIFAR-10C corruptions. We only show severity levels
one and two here, as the GT aleatoric uncertainty values from the soft CIFAR-10H labels are only
valid for these corruption levels – higher corruption would possibly change the human annotators’
CIFAR-10H soft label votes.

stays far below the rank correlations of the estimated components in Fig. 2b, which is above 0.99 for
SWAG.

B.5 Alignment of Methods with the Bregman Bias

B.5.1 ImageNet

The rank correlation of benchmarked methods with the bias component of the Bregman decomposition
is shown in Fig. B.5 for ID and OOD with severity two. Most methods exhibit a high rank correlation
(≥ 0.8). This suggests that uncertainty estimators, to some extent, capture the model bias in terms of
the Bregman formulation. All methods become less correlated with bias with increasing severity.

B.5.2 CIFAR-10

The rank correlation of benchmarked methods with the bias component of the Bregman decomposition
is shown in Fig. B.6. EDL is strongly correlated with the Bregman bias component, indicating that its
uncertainty captures a notion of model bias. All methods become more highly correlated with bias
with increasing OOD perturbation severity.

C Further Results of the Information-Theoretical Decomposition

C.1 Special Form on the Information-Theoretical Decomposition for Discrete Posteriors

Below, we show that the information-theoretical (IT) decomposition [11] separates the entropy of
the BMA into an expected entropy term and a Jensen-Shannon divergence term when considering
discrete uniform distributions q(π | x) = 1

M

∑M
m=1 δ(π − π(m)) with π(m) ∼ q(π | x). Note that

our formulation uses sampling M probability vectors from q(π | x) for each input x ∈ X , but the
results also hold in the case of having a set of M predictors {π(m)(·)}Mm=1.
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(a) ID rank correlation of methods with the Bregman
decomposition’s bias component.
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(b) Mixed ID and OOD rank correlation of methods
with the Bregman bias using severity-one perturba-
tions.
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(c) OOD rank correlation of methods with the Breg-
man bias using severity-one perturbations.
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(d) Mixed ID and OOD rank correlation of methods
with the Bregman bias using severity-two perturba-
tions.
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(e) OOD rank correlation of methods with the Breg-
man bias using severity-two perturbations.

Figure B.5: Rank correlation with the Bregman bias component on the ImageNet validation dataset.
Most methods exhibit a high rank correlation (≥ 0.8). When going more OOD, all methods become
less correlated with bias. Only severity levels one and two are shown, as the GT bias values from
the soft ImageNet-ReaL labels are only valid for these corruption levels – higher corruption would
possibly lead to a shift in labeler votes.

The IT decomposition treats the entropy of the predictive distribution p(y | x) =
∫
p(y | π,x) dq(π |

x) as the predictive uncertainty metric and decomposes it into

Hp(y|x) (y)︸ ︷︷ ︸
predictive

= Eq(π|x)
[
Hp(y|π,x) (y)

]︸ ︷︷ ︸
aleatoric

+ Ip(y,π|x) (y;π)︸ ︷︷ ︸
epistemic

, (31)

where H is the entropy and I is the mutual information.

Under a discrete uniform approximate distribution q(π | x), the predictive uncertainty is still the
entropy of the BMA, and the aleatoric uncertainty also stays the expected entropy of the probability
vectors of non-zero measure. We only have to show that the mutual information takes the convenient
form of the Jensen-Shannon divergence under such an approximate posterior. Using p(y,π | x) =

27



0.0

0.2

0.4

0.6

0.8

1.0

R
an

k
C

or
r.
↑

E
D

L
Te

m
pe

ra
tu

re
G

P
SN

G
P

L
os

s
Pr

ed
.

D
D

U
D

ee
p

E
ns

.
SW

A
G

H
E

T
Sh

al
lo

w
E

ns
.

D
U

Q
C

or
r.

Pr
ed

.
H

et
C

la
ss

N
N

C
E

B
as

el
in

e
L

ap
la

ce
Po

st
N

et
M

C
D

ro
po

ut
H

E
T-

X
L

M
ah

al
an

ob
is

Distributional Deterministic

(a) ID rank correlation of methods with the Bregman
decomposition’s bias component.

0.0

0.2

0.4

0.6

0.8

1.0

R
an

k
C

or
r.
↑

E
D

L
Te

m
pe

ra
tu

re
D

D
U

D
U

Q
G

P
SN

G
P

Sh
al

lo
w

E
ns

.
D

ee
p

E
ns

.
Po

st
N

et
C

E
B

as
el

in
e

L
ap

la
ce

L
os

s
Pr

ed
.

H
E

T
H

et
C

la
ss

N
N

SW
A

G
H

E
T-

X
L

M
C

D
ro

po
ut

C
or

r.
Pr

ed
.

M
ah

al
an

ob
is

Distributional Deterministic

(b) Mixed ID and OOD rank correlation of methods
with the Bregman bias using severity-one perturba-
tions.
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(c) OOD rank correlation of methods with the Breg-
man bias using severity-one perturbations.
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(d) Mixed ID and OOD rank correlation of methods
with the Bregman bias using severity-two perturba-
tions.
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(e) OOD rank correlation of methods with the Breg-
man bias using severity-two perturbations.

Figure B.6: Rank correlations of the methods with the GT Bregman bias on CIFAR-10. EDL has a
strong correlation, indicating that it estimates something close to the bias. When going more OOD,
all methods become more highly correlated with the bias. Only severity levels one and two are shown,
as the GT bias values from the soft CIFAR-10H labels are only valid for these corruption levels –
higher corruption would possibly lead to a shift in labeler votes.

p(y | π,x)q(π | x), we have

Ip(y,π|x) (y;π) =
C∑

y=1

∫
log

p(y,π | x)
p(y | x)q(π | x)

dp(y,π | x) (32)

=
1

M

M∑
m=1

C∑
y=1

p
(
y | π(m)

)
log

p
(
y | π(m)

)
p(y | x)

(33)

= − 1

M

M∑
m=1

H
(
π(m)

)
−

C∑
y=1

1

M

M∑
m=1

p
(
y | π(m)

)
log p(y | x) (34)

= H

(
1

M

M∑
m=1

π(m)

)
− 1

M

M∑
m=1

H
(
π(m)

)
(35)

which is the Jensen-shannon divergence of the distributions p
(
y | π(m)

)
, π(m) ∼ q(π | x), m ∈

{1, . . . ,M}.
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(a) Mixed ID and OOD with severity level one.
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(b) OOD severity level one.
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(c) Mixed ID and OOD with severity level two.
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(d) OOD severity level two.

Figure C.1: Rank correlation of the aleatoric and epistemic components of the IT decomposition when
increasing the epistemic uncertainty by going OOD on ImageNet-ReaL. Increasing the epistemic
uncertainty of the datasets only slightly decreases the internal correlation of the estimates.

C.2 Entanglement on Datasets with Increased Epistemic Uncertainty

The main paper showed in Section 3.1 that the IT decomposition’s aleatoric and epistemic components
are highly correlated across all distributional methods. In this section, we introduce epistemic
uncertainty by going OOD via ImageNet-C distribution to find if this decorrelates the components.

C.2.1 ImageNet

Fig. C.1 shows the results at severity levels one and two. The estimates generally become slightly
less correlated as we go more OOD, but the correlations do not lower considerably.

C.2.2 CIFAR-10

Results for severity levels one and two are shown in Fig. C.2. The increased epistemic uncertainty
does not help decorrelate the components. Quite the opposite; the previously most uncorrelated
estimates on the Shallow Ensemble become more highly correlated.

C.3 Performance of Decorrelated Methods using the Information-Theoretical Components

In Sections 3.2 and 3.3, we use the best-performing aggregator for predicting aleatoric and epistemic
uncertainty to ensure each second-order method has the best possible chances. In this section, we
solely use the aggregators dictated by the IT decomposition.

C.3.1 ImageNet

In Fig. C.3, we replace the aggregators of the previously best-performing distributional method, Shal-
low Ensemble, with the aggregators dictated by the IT decomposition. This reduces its performance
to the CE baseline level. This shows that the choice of the aggregator counts and that it is not always
the intuitively expected aggregator that performs best.

C.3.2 CIFAR-10

As on ImageNet, replacing the aggregators of Shallow Ensemble with the IT decomposed ones on
CIFAR-10 also lowers its performance on both the aleatoric and epistemic task to or below the CE
baseline level in Fig. C.4.
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(a) Mixed ID and OOD with severity level one.
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(b) OOD severity level one.
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(c) Mixed ID and OOD with severity level two.
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(d) OOD severity level two.

Figure C.2: Rank correlation of the aleatoric and epistemic components of the IT decomposition
when increasing the epistemic uncertainty by going OOD on CIFAR-10H. The increased epistemic
uncertainty does not decorrelate the components. Quite the opposite, it leads to even more highly
correlated components.
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(a) AUROC of the OOD detection task using severity
level two.
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(b) Rank correlation with the ground-truth human un-
certainties.

Figure C.3: On ImageNet, replacing the aggregators of the least-correlated distributional method,
Shallow Ensemble, with the ones that the IT decomposition proposes drastically lowers its perfor-
mance. All other methods are equipped with their best-performing estimator for the respective tasks,
showing that specialized estimators work better.

C.4 Pearson Correlation Results on ImageNet

Fig. C.5 shows Pearson correlation results between the IT decomposition’s AU and EU term. In
addition to the estimates having a strong monotonic relationship, they are also often linearly correlated.

C.5 Cross-Evaluation of the IT Decomposition’s Components on ImageNet

In Appendix C.5, we cross-evaluate the epistemic and aleatoric terms of the information-theoretical
decomposition on the opposite task, which leads to two conclusions. (i) The epistemic estimates
perform notably well on aleatoric uncertainty evaluation, which contradicts the common claim that
epistemic estimates are not useful ID. (ii) The aleatoric estimates are almost always better than the
epistemic ones on OOD detection, going against the wide belief that aleatoric estimates are not to be
trusted OOD. This is another consequence of the entanglement that we uncover in our paper.
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(a) AUROC of OOD detection performance of meth-
ods using perturbations of severity level two.
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(b) Rank correlation between methods and the Breg-
man aleatoric component.

Figure C.4: Shallow ensemble underperforms the cross-entropy baseline on CIFAR-10 when using
the estimators of the IT decomposition for the OOD detection and human uncertainty alignment tasks.
All other methods are equipped with their best-performing estimator for the respective tasks, showing
that the IT decomposition is not practically beneficial.
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Figure C.5: Pearson correlation results of the IT decomposition’s aleatoric and epistemic terms on
ImageNet. The relationship is often not only monotonic but also linear, with PostNets being a notable
exception.

D Definitions and Results of the Benchmarked Aggregators

In practical applications, distributional methods output a discrete set of probability vectors
{π(m)}Mm=1 ∼ q(π | x) per input x ∈ X .4 This set can be aggregated in several ways to con-
struct an uncertainty estimate u(x). Commonly used aggregators are the Bayesian Model Average
(BMA):

π̄(x) =
1

M

M∑
m=1

π(m), (36)

and the Bregman decomposition’s central prediction term (Appendix B):

π̃(x) = softmax

(
1

M

M∑
m=1

logπ(m)

)
, (37)

followed by taking their maximum probability, entropy, mutual information, or expected diver-
gence [37, 11, 57, 19, 17]. Similarly, one can take the expected maximum probability and expected
entropy over the set of probability vectors [37]. These possible choices are detailed below with
pointers to their use in the literature.

D.1 Entropy-Based Aggregators

According to the Source Coding Theorem, the entropy of the code is a fundamental and tight lower
bound on the expected code word length for prefix-free symbol codes [58]. The entropy is an
expectation over the length of per-symbol codewords. For general distributions p(x), it intuitively
measures the spread or the “amount of surprise” in p(x): a higher entropy indicates more stochasticity
in the distribution. We consider three entropy-based aggregators of {π(m)}Mm=1 ∼ q(π | x) per input

4Note that our formulation uses sampling M probability vectors from q(π | x) for each input x ∈ X , but
the results also hold in the case of having a set of M predictors {π(m)(·)}Mm=1.
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Figure C.6: Cross-evaluation of the IT decomposition’s terms on ImageNet.

x ∈ X :

u(x) = H (π̄(x)) (38)
u(x) = H (π̃(x)) (39)

u(x) =
1

M

M∑
m=1

H
(
π(m)

)
(40)

The entropy appears both in the IT and Bregman decompositions (Eq. (1), Eq. (22)). Eq. (38) is
often cited to capture predictive (or total) uncertainty, whereas Eq. (40) is known to capture aleatoric
uncertainty [37, 11, 57]. As π̃(x) is a central predictor similar to π̄(x), its entropy aligns well with a
notion of predictive uncertainty.

D.2 Maximum-Probability-Based Aggregators

Maximum-probability-based aggregators are similar to entropy-based ones: a small maximum
probability value in the prediction vector necessarily means that all entries are small, leading to a
high spread and entropy. As uncertainty estimates are higher when the model is more uncertain by
convention, one usually takes one minus the maximum probability as a notion of uncertainty. We
consider three maximum-probability-based aggregators of {π(m)}Mm=1 q(π | x) per input x ∈ X :

u(x) = 1− max
c∈{1,...,C}

π̄c(x) (41)

u(x) = 1− max
c∈{1,...,C}

π̃c(x) (42)

u(x) = 1− 1

M

M∑
m=1

max
c∈{1,...,C}

π(m)
c (43)

The maximum-probability-based aggregators are restricted to the [0, 1] range. This is particularly
important for (strictly) proper scoring rules for the correctness of prediction [36] and the notion
of calibration, including the ECE and the reliability diagram [39]. Similarly to the entropy-based
aggregators, Eq. (41) and Eq. (42) align with a notion of predictive uncertainty, whereas Eq. (43) is
more aligned with a notion of aleatoric uncertainty.

D.3 Disagreement-Based Aggregators

One can directly use the epistemic components of the Bregman and IT decompositions as they do not
require a ground truth. In particular, one can use

u(x) = H (π̄(x))− 1

M

M∑
m=1

H
(
π(m)

)
, π(m) ∼ q(π | x) ∀m ∈ {1, . . . ,M}, (44)
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the (discretized) epistemic part of the IT decomposition, which is the Jensen-Shannon Divergence
(see Appendix C.1), or

u(x) =
1

M

M∑
m=1

[
DKL

(
π̃(x)

∥∥∥ π(m)
)]

, π(m) ∼ q(π | x) ∀m ∈ {1, . . . ,M}, (45)

the (discretized) epistemic part of the Bregman decomposition, which is the expected divergence
from the central predictor (see Appendix B.1). As both aggregators are divergences, they capture
disagreement among a set of models. Thus, they are usually cited to be aligned with epistemic
uncertainty [37, 11, 57, 19, 17].

Kendall and Gal [23] propose the expected variance of the logit or probability vectors as a measure
of epistemic uncertainty:

u(x) =
1

C

C∑
c=1

 1

M

M∑
m=1

f (m)
c (x)2 −

(
1

M

M∑
m=1

f (m)
c (x)

)2
 , (46)

u(x) =
1

C

C∑
c=1

 1

M

M∑
m=1

π(m)
c (x)2 −

(
1

M

M∑
m=1

π(m)
c (x)

)2
 . (47)

For the HetClassNN method, we also calculate these estimates using the internal logits.

Unless stated otherwise, we use the best-performing alternative for each distributional method in
the benchmarks. For these methods, the model’s prediction is always the most confident class of
the BMA. For deterministic methods, we use their “canonical” uncertainty estimator introduced in
Appendix A.1.

D.4 Dempster-Shafer Value

The Dempster-Shafer (D-S) value Sensoy et al. [46] is an outlier: it does not fit into any of the
aforementioned aggregator categories. In the framework of Evidential Deep Learning (see Ap-
pendix A.2.9), the D-S value is inversely proportional to the Dirichlet strength S(x) =

∑C
c=1 β (x)c

for input x ∈ X :

u(x) =
C

S(x)
. (48)

Informally, the more evidence the predictor has, the less uncertain it is about the input x ∈ X .

The D-S value can be extended to non-evidential methods by treating the exponentiated logits as
pseudo-counts for the individual classes and setting

β(x) = exp (f(x)) + 1. (49)

where the exponentiation is applied elementwise, and the + operator denotes vector addition.

D.5 The Behavior of the Aggregators Does Not Align With What the Literature Suggests

In this section, we collect per-aggregator results of specific methods to highlight that the best-
performing aggregator often goes against what these aggregators intuitively aim to capture as de-
scribed in Appendix D. Below, we provide a list of abbreviations used in the figures and connect
them to the formulas in Appendix D. The “it” and “b” superscripts refer to the IT and Bregman
decompositions, respectively. “AU”, “PU”, “EU”, and “B” are shorthands for aleatoric, predictive,
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epistemic uncertainty, and bias, respectively.

PUit ≡ H (π̄(x)) (50)

AUit ≡ 1

M

M∑
m=1

H
(
π(m)

)
(51)

EUit ≡ H (π̄(x))− 1

M

M∑
m=1

H
(
π(m)

)
(52)

PUb ≡ 1

M

M∑
m=1

[
CE
(
π∗(x),π(m)

)]
(53)

AUb ≡ H (π∗(x)) (54)

EUb ≡ 1

M

M∑
m=1

[
DKL

[
π̃(x) ∥ π(m)

]]
(55)

Bb ≡ DKL [π
∗(x) ∥ π̃(x)] (56)

H (π̃) ≡ H (π̃(x)) (57)

1− E [maxπ] ≡ 1− 1

M

M∑
m=1

max
c∈{1,...,C}

π(m)
c (58)

1−max π̄ ≡ 1− max
c∈{1,...,C}

π̄c(x) (59)

1−max π̃ ≡ 1− max
c∈{1,...,C}

π̃c(x) (60)

D-S ≡ C

S(x)
(61)

E [var f ] ≡ 1

C

C∑
c=1

 1

M

M∑
m=1

f (m)
c (x)2 −

(
1

M

M∑
m=1

f (m)
c (x)

)2
 (62)

E [var π] ≡ 1

C

C∑
c=1

 1

M

M∑
m=1

π(m)
c (x)2 −

(
1

M

M∑
m=1

π(m)
c (x)

)2
 (63)

where π(m) ∼ q(π | x),π(m) = softmax(f) ∀m ∈ {1, . . . ,M}.

D.5.1 Aleatoric and predictive aggregators are often best for OOD detection

Let us consider the binary prediction task of distinguishing ID and OOD samples. Fig. D.1 and
Fig. D.2 show the per-aggregator results on the OOD detection task for the GP and MC Dropout
methods, respectively. These figures highlight two important observations:

1. the best aggregator for the task varies among different methods and

2. the disagreement-based epistemic uncertainty aggregators are often not the best for detecting
OOD samples, against their original intuition.

Both results show that the choice of the estimator should be treated pragmatically based on per-
formance because there are no intuitions that would consistently give the best estimator in each
scenario.

D.5.2 Methods are not equally sensitive to the choice of aggregator on correctness prediction

Let us turn to the binary correctness prediction task. Fig. D.3 and Fig. D.4 show the per-aggregator
results on the correctness prediction detection task for the HET-XL and Deep Ensemble methods,
respectively. These figures show that HET-XL is considerably less sensitive to the choice of the
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(a) GP OOD detection AUROC with severity level
one.
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(b) GP OOD detection AUROC with severity level
two.
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(c) GP OOD detection AUROC with severity level
three.
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(d) GP OOD detection AUROC with severity level
four.
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(e) GP OOD detection AUROC with severity level
five.

Figure D.1: OOD detection results of the GP method on the ImageNet validation dataset measured
by the AUROC metric. The OOD detection performance of all aggregators increases steadily as we
increase the severity of the perturbed half of the mixed dataset. However, the disagreement-based
epistemic aggregators, EUit and EUb, notably underperform the AUit aggregator, even though the
epistemic aggregators are deemed more suitable for OOD detection in the literature.

aggregator, and the ranking of the aggregators is inconsistent between the two methods. The epistemic
aggregators are among the worst-performing estimates for deep ensembles. One might say that this
is in line with their intuitions, as they are being used ID, but on HET-XL, they perform as strongly
as predictive estimators. This reinforces that intuitions should not be used to guide the aggregator
choice and to rather treat it as a hyperparameter for optimal performance.

E Goals of Disentanglement

What does it mean to have disentangled uncertainty estimators? Consider two estimators
u(a) (x) , u(e) (x) and ground-truth aleatoric and epistemic uncertainties U (a) (x) , U (e) (x) for
each input xi. The estimators u(a) and u(e) are decorrelated if

1. u(a) has low rank correlation with U (e) and

2. u(e) has low rank correlation with U (a).

Importantly, u(a) and u(e) having a severely high rank correlation prohibits disentanglement. Further,
they are well-performing if

3. u(a) has high rank correlation with U (a) and

4. u(e) has high rank correlation with U (e).
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(a) MC Dropout OOD detection AUROC with severity
level one.
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(b) MC Dropout OOD detection AUROC with severity
level two.
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(c) MC Dropout OOD detection AUROC with severity
level three.
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(d) MC Dropout OOD detection AUROC with severity
level four.
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(e) MC Dropout OOD detection AUROC with severity
level five.

Figure D.2: OOD detection results of the MC Dropout method on the ImageNet validation dataset
measured by the AUROC metric. Contrarily to the GP method in Fig. D.1, the disagreement-based
epistemic aggregators are on par with the predictive and aleatoric aggregators but lose their edge as
the severity level increases.

We call uncertainty estimators disentangled when they are simultaneously decorrelated and well-
performing.

Inspired by generalized bias-variance decompositions [42, 17], one may treat the training dataset D
as a random variable sampled from the generative process p(x, y) and record the variability of the
trained predictor under dataset change. Following the Bregman decomposition, one may then define

U (e)(x) := Ep(D) [DF [π̃(x) ∥ πD(x)]] (64)

with the corresponding central predictor π̃(x) = argminz∈∆C−1 Ep(D) [DF [z ∥ πD(x)]]. As this
is impossible to obtain in practical setups (or is too noisy to MC-approximate), we instead consider
the proxy task of OOD detection for evaluating the disentanglement of aleatoric and epistemic
uncertainties.

The above definition generalizes to any pair of different uncertainty sources, e.g., the Bregman bias
and aleatoric uncertainties. The workaround of choosing a proxy task is not needed to evaluate the
Bregman bias and aleatoric components’ disentanglement.

F Design Choices

In this section, we provide the rationale behind which metrics we report for each section.
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F.1 Disentanglement Experiments

In Appendix E, we motivate that disentangled uncertainty estimators for epistemic and aleatoric
uncertainty should be decorrelated. To quantify this, we measure the Spearman rank correlation. The
Spearman rank correlation can detect any monotonic dependency between two continuous variables.
Hence, in this case it will allow us to detect whether the aleatoric uncertainties are always high
when the epistemic uncertainties are high. We choose this over the Pearson correlation, as the
Pearson correlation can only detect linear dependencies. Although we have seen in Fig. 1 that the
dependencies are, in fact, often linear, we chose the Spearman correlation because it still works even
if two estimators are beyond linear correlation.

F.2 Epistemic Uncertainty Experiments

We use OOD detection as a prominent proxy task for epistemic uncertainty. In OOD detection, some
samples are from the ID dataset, and some are OOD. In other words, the true uncertainty here surfaces
in two classes, and we want the estimated uncertainty to be higher for OOD samples than for ID
samples. Such cases of a binary outcome variable predicted with a continuous estimator in a given
direction can be handled by the AUROC. It measures the probability that an OOD sample will have a
higher estimated uncertainty than an ID sample.

F.3 Aleatoric Uncertainty Experiments

In the aleatoric uncertainty experiments, we check whether the estimated uncertainty is predictive
of the true aleatoric uncertainty. The estimated uncertainty is a continuous variable, as are the true
aleatoric uncertainty values. Hence, we again need a correlation metric. We again decide on the
Spearman rank correlation because it can detect non-linear, monotonic relationships, and there is
no prior reason to believe that, e.g., the disagreement aggregator of ensembles as an uncertainty
estimator should behave linearly the same as the aleatoric uncertainty ground-truths.

The aleatoric ground truths are, however, often equal to zero (when all annotators agree), and one can
argue that the exact amount of disagreement between humans when it is non-zero is quite noisy. This
is why we also report a binarized version of the aleatoric GT uncertainty in Appendix H.4. Now, the
estimated uncertainty is continuous while the GT is binary (with a direction, i.e., that GT uncertain
samples should have higher predicted uncertainties). So, like above, we measure the AUROC.

G Main CIFAR-10 Experiments

This section mirrors Section 3 of the main paper on the CIFAR-10 dataset whenever they were not
already studied in the main paper.

G.1 Epistemic Uncertainty: Specialized Uncertainty Esimators detect OOD Inputs the Best

We use balanced mixtures of ID and OOD datasets to evaluate OOD detection performance as a
proxy for epistemic uncertainty. OOD samples are perturbed ID samples with severity level two.
The uncertainty estimators are tasked to predict which sample is OOD, i.e., OOD inputs should have
higher uncertainty estimates. As for ImageNet in Section 3.2, the Mahalanobis method is by far the
most performant in telling apart clean CIFAR-10 samples from perturbed ones. However, the ranking
of the remaining methods is different from that of ImageNet.

G.2 Aleatoric Uncertainty: No Method With Outstanding Performance

Let us now benchmark how much the estimators predict aleatoric uncertainties on CIFAR-10. Since
we use the entropy of human annotator label distributions as ground truths, this could also be
considered the alignment with human uncertainties. Fig. G.2 shows drastically different results
from the ImageNet results in Section 3.3. Correctness prediction is most aligned on average with
a notably small min-max error bar. This is reasonable since ID, the aleatoric uncertainty of the
sample determines the network’s correctness the most.5 SWAG and Loss Prediction, methods that

5Note that we train with only one label per input.
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performed worse than the CE baseline on ImageNet, now perform among the best. This again shows
that rankings from CIFAR-10 are not very informative of ImageNet rankings, especially because
the ground-truth soft-label distributions on CIFAR-10H and ImageNet-ReaL-H were collected with
slightly different protocols.

G.3 Predictive Uncertainty: Close to Saturation on CIFAR-10

Fig. G.3 shows that most uncertainty estimators perform within ±0.02 of the cross-entropy baseline
when predicting correctness ID, and modern methods like HET-XL do not outperform older methods
like deep ensembles. The best methods are saturated at very high AUROCs of 0.95. The methods
are also close to the CE baseline (but with a different ranking) when slightly altering the correctness
metric to account for soft labels in Appendix H.1.

The saturation is even more pronounced on the abstained prediction task. All uncertainty methods
apart from Mahalanobis obtain an AUC score greater than 0.99 in Fig. G.4. Practically, this means
that one can obtain a close-to-perfect classification accuracy by abstaining from prediction on a tiny
set of samples. This is largely because the classification accuracy on CIFAR-10 is very high, so the
AUAC, even of methods with worse ID uncertainty estimation like Mahalanobis, is close to perfect.

G.4 Different Tasks Require Different Estimators

In the previous sections, we have hinted at the fact that the performance across methods is very
similar on some tasks and dissimilar on others. In this section, we investigate the correlation among
the previous practical tasks using a correlation matrix. To construct the matrix, we consider all
benchmarked methods with all uncertainty aggregators (see Appendix D) and calculate the Pearson
(Fig. G.5) and Spearman correlations (Fig. G.6) of performances on different metrics. Similar to
ImageNet, we find consistent clusters between the Pearson and Spearman correlations. One similarity
to ImageNet is also that the OOD cluster repels the other clusters. However, the aleatoric cluster on
CIFAR-10H forms a unique cluster, whereas it was correlated with the Accuracy cluster on ImageNet.
We believe this is due to the different ways the soft labels were obtained on ImageNet-ReaL and
CIFAR-10H.

H Further Practical Results

H.1 Correctness Prediction

H.1.1 ImageNet

We show the correctness prediction performance of methods on OOD and mixed ID + OOD datasets
in Fig. H.1. Like in the main paper, evidential deep learning methods, EDL and PostNet, dominate
on the correctness prediction task across all severity levels and mixtures. The performance of
Mahalanobis increases on mixed datasets as it can detect OOD samples well, which happen to also
be incorrect more often.

H.1.2 CIFAR-10

We show the correctness prediction performance of methods on OOD and mixed ID + OOD datasets
in Fig. H.2. We observe a consistent degradation of performance across methods on both dataset
types.

H.2 Performance Tendency for Increasing Severity

In Section 3.6 of the main paper, we show the performance of MC Dropout when going OOD,
claiming that it is prototypical for other methods. Figs. H.3 and H.4 show for CIFAR-10 and
ImageNet, respectively, that MC Dropout is not an outlier and other methods show very similar
generalization capabilities. The only outlier is Mahalanobis, which has a bad correctness AUROC
regardless of whether it is ID or OOD. In Figs. 7a, H.3 and H.4, we normalize the metrics using
the formula (metric−rnd)/(1−rnd) for direct comparability, where rnd is the base value that a random
predictor achieves on that metric (0.5 for AUROC, 1/C for classification accuracy).
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H.3 OOD Detection

H.3.1 ImageNet

In Appendix G.1, we hint at the fact that nearly all methods show a steady increase in OOD detection
performance as we increase the severity of the perturbed half of the dataset. Fig. H.5 shows how
the performance of each method changes as we increase the severity level. We can see a steady
increase in OOD detection performance for all methods. However, the specialized OOD detector,
Mahalanobis, benefits less than the other methods. In particular, at severity level three, shallow and
deep ensembles overtake Mahalanobis and remain the best estimators from then on. At severity
levels four and five, Mahalanobis falls below the CE baseline. This may be because Mahalanobis was
trained to detect samples at severity level two and cannot generalize as well to higher severity levels
as the other methods.

H.3.2 CIFAR-10

Fig. H.6 shows the OOD detection performance of the benchmarked methods as we increase the
severity level. We can see a steady increase in the performance for all methods. However, the relative
distance of the specialized OOD detector, Mahalanobis, to the other methods shrinks. This could,
however, be because it is the first to arrive at a higher, possibly saturated, performance.

H.4 Ambiguous Input Detection

In this section, we consider an alternative task to evaluate the alignment of methods with aleatoric
uncertainty. It is a binary prediction problem where the positive samples are ones with a non-
deterministic GT soft label distribution, i.e., where annotators do not unanimously agree on the class
of the sample. We evaluate the AUROC of uncertainty estimators on this binary task.

H.4.1 ImageNet

ImageNet ambiguous input detection results are shown in Fig. H.7. Method rankings are different
from the continuous rankings in Fig. 3b. This indicates that, on ImageNet, the uncertainty estimators
also differ in their performance on ranking within the ambiguous images.

H.4.2 CIFAR-10

Ambiguous input detection results on CIFAR-10 are shown in Fig. H.8. Interestingly, the ranking of
methods is the same as when using rank correlations in Fig. G.2, except for MC Dropout. This could
indicate that, on CIFAR-10H, most of the rankings in the rank correlations come from the methods
telling apart samples with and without uncertainty, and that the ranking within the uncertain images
does not make too much of a difference, or that none of the benchmarked methods (except possibly
MC Dropout) is much better than the others in this.

H.5 Abstained Prediction Results on the rAULC and E-AURC Metrics

In this section, we evaluate the benchmarked methods on the rAULC and E-AURC abstained
prediction metrics that normalize the AUAC by the accuracy of the underlying model [43, 14].

H.5.1 ImageNet

ImageNet rAULC and E-AURC results are shown in Fig. H.9. Even though both metrics are
normalized by the underlying model’s accuracy, this normalization is done in different ways, and the
rankings of methods are quite different.

H.5.2 CIFAR-10

Fig. H.10 shows CIFAR-10 rAULC and E-AURC results for abstained prediction. The ranking is
similar to that of AUROC and non-normalized AUAC, as foreshadowed by the correlation matrix in
Fig. G.5.
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H.6 Log Probability Proper Scoring Rule for Correctness Prediction

H.6.1 ImageNet

Results on the log probability proper scoring rule are shown in Fig. H.11. The EDL method
consistently outperforms all other methods across all severity levels. The performance of all methods
stays roughly constant as we increase the severity.

H.6.2 CIFAR-10

In Fig. H.12, we present the methods’ results on the log probability proper scoring rule considering
the CIFAR-10 dataset. We find that the Deep Ensemble consistently outperforms the others ID and
on OOD in all but one scenario.

H.7 Correlation Matrices of Metrics on ImageNet

All correlation matrices in this paper are constructed using the following procedure. First, the
results of all methods on all metrics are collected. We consider three aggregators for all methods:
max π̄, max π̃, and E [maxπ], using the notation introduced in Appendix D.5. These are the only
aggregators that are restricted to the [0, 1] interval, which is needed for the ECE metric and the proper
scoring rules for correctness prediction. On a particular metric, each (method, aggregator) pair gives
rise to one score. For each metric pair, we calculate the Pearson and Spearman correlations between
the corresponding rankings of (method, aggregator) pairs.

Fig. 6 of the main paper shows Pearson correlation results on ImageNet among eight metrics,
showcasing two clusters of metrics. Fig. H.13 shows the Spearman correlation results. The results
are stable across these different metrics.

To give a more comprehensive overview of metric correlations, Fig. H.14 shows an extended correla-
tion matrix. This matrix contains further abstinence and aleatoric uncertainty metrics, coupled with
proper scoring rules for the models’ predictions. Most of the added metrics fall into the bottom-right
cluster. Interestingly, even though the rAULC and E-AURC metrics both evaluate abstained prediction
performance, only the latter is highly correlated with the AUAC metric. The rAULC metric is more
aligned with correctness prediction (corr. = 0.98) and the top-left cluster. The rank correlation results
are, again, similar but more pronounced; see Fig. H.15.

H.8 Correlations of Rankings Between Datasets

Table H.1 shows the correlation of rankings on CIFAR-10 and ImageNet. Nine of thirteen metrics
have substantially different rankings (rank. corr < 0.5). On nine of the thirteen metrics, the best-
performing method also differs between the two datasets, indicating that performance on CIFAR-10
should not be taken as an estimate for ImageNet performance.

H.9 Training on Different Training Dataset Fractions of CIFAR-10

This subsection shows how the uncertainties reported by different distributional methods change as
we vary the training dataset size. In particular, we train on {10%, 50%, 100%} of CIFAR-10 from
scratch and evaluate the trained models on the CIFAR-10 test set.

Table H.2 shows that for the majority of the benchmarked methods, both the mean epistemic and
aleatoric uncertainties of the IT decomposition decrease monotonically with an increasing training
dataset size. Table H.3 shows the results using the estimators of Kendall and Gal [23], and Table H.4
shows the results of the Bregman decomposition. Fig. H.16 visualizes this tendency for the EDL
method but also highlights the extreme correlation (0.9993) between the aleatoric and epistemic
estimates.

Fig. H.17 shows that the severe rank correlations between the aleatoric and epistemic estimates
remain when using the formulation of Kendall and Gal [23].
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Table H.1: Rank correlations of method rankings on different metrics for all combinations of methods
and aggregators between CIFAR-10 and ImageNet. The rankings of approaches are considerably
different between these two datasets.

Metric Rank Corr. CIFAR-10 vs. ImageNet

Correctness AUROC 0.503
ECE 0.659
Correctness Brier 0.193
Correctness Log Prob. 0.445
rAULC 0.554
E-AURC 0.482
AUAC 0.581
Accuracy 0.263
Aleatoric Log Prob. 0.484
Aleatoric Brier 0.426
Aleatoric Rank Corr. 0.013
Aleatoric AUROC 0.290
OOD AUROC 0.368

Table H.2: Aleatoric and epistemic uncertainty estimates of the IT decomposition for different
methods and reduced training dataset fractions of CIFAR-10. We report the mean estimates over the
test dataset.

Aleatoric Epistemic

Deep EDL GP HET HETClassNN HET-XL Laplace MC Dropout PostNet Shallow SNGP SWAG Deep EDL GP HET HETClassNN HET-XL Laplace MC Dropout PostNet Shallow SNGP SWAG

10% 0.235 1.701 0.208 0.200 0.184 0.214 0.272 0.209 0.480 0.228 0.201 0.418 0.161 0.296 0.015 0.004 0.109 0.014 0.181 0.103 0.008 0.001 0.016 0.285
50% 0.103 0.869 0.082 0.108 0.082 0.104 0.142 0.104 0.109 0.093 0.082 0.408 0.062 0.106 0.001 0.001 0.047 0.007 0.114 0.046 0.001 0.000 0.001 0.348
100% 0.084 0.716 0.066 0.088 0.080 0.079 0.107 0.055 0.118 0.076 0.058 0.056 0.037 0.083 0.000 0.001 0.034 0.004 0.070 0.037 0.001 0.000 0.000 0.033

I Training and Implementation Details

For both datasets, we train and evaluate on an NVIDIA GeForce RTX 2080 Ti GPU. We only use an
NVIDIA A100 Tensor Core GPU for the construction of the Laplace approximation on ImageNet,
owing to the VRAM requirements of this method. Our code is based on the timm library [56],
extended with a wide range of uncertainty quantification methods, evaluation metrics, ImageNet-C
and CIFAR-10C corruptions, and general soft label support. The exact hyperparameter settings for
each method are available in the README.md file of our published GitHub repository.

I.1 CIFAR-10

For CIFAR-10, we follow the augmentations and training schedules of the uncertainty_baselines
GitHub repository [38]. In particular, for non-post-hoc methods, we train a Wide ResNet 28-10 [61]
for 200 epochs with a step decay schedule at [60, 120, 160] epochs with decay rate 0.2 and one
learning rate warmup epoch. The only exceptions are the SNGP-variants and the DDU method (250
epochs with a step decay schedule at [75, 150, 200] epochs) [32, 37]. We use stochastic gradient
descent with momentum 0.9 and a batch size of 128. Our training augmentation comprises a random
crop using padding 2 and a random flip on the vertical axis with probability 0.5. We use 2/5th of
the CIFAR-10 test dataset as the validation split and the rest as the test split. The learning rate and
weight decay hyperparameters are chosen by ten iterations of the Bayesian optimization scheme of
Weights & Biases [3] based on the correctness prediction AUROC metric on the validation split. The
additional hyperparameters of benchmarked methods are determined by either using values suggested
by the original authors or including these in the hyperparameter sweep.

I.2 ImageNet

On ImageNet, we fine-tune a pretrained ResNet 50 [20] using the resnet50.a1_in1k parameters
from the timm library as initialization. We fine-tune for 50 epochs following a cosine learning rate
schedule [33] using the LAMB optimizer [60] and a learning rate warmup period of 5 epochs. We
use a batch size of 128 with 16 accumulation steps, resulting in an effective batch size of 2048,
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Table H.3: Aleatoric and epistemic uncertainty estimates of the formulation of Kendall and Gal
for different methods and reduced training dataset fractions of CIFAR-10. This formulation uses
the expected variance of the probability vectors as epistemic and the expected entropy as aleatoric
uncertainty. We report the mean estimates over the test dataset.

Aleatoric Epistemic

Deep EDL GP HET HetClassNN HET-XL Laplace MC Dropout PostNet Shallow SNGP SWAG Deep EDL GP HET HetClassNN HET-XL Laplace MC Dropout PostNet Shallow SNGP SWAG

10% 0.235 1.701 0.208 0.200 0.184 0.214 0.272 0.209 0.480 0.228 0.201 0.418 1.064e-2 6.156e-3 8.322e-4 1.635e-4 6.030e-3 6.538e-4 7.133e-3 5.594e-3 8.382e-5 3.636e-5 8.725e-4 1.342e-2
50% 0.103 0.869 0.082 0.108 0.082 0.104 0.142 0.104 0.109 0.093 0.082 0.408 4.234e-3 1.569e-3 6.243e-5 6.146e-5 2.606e-3 3.501e-4 4.185e-3 2.519e-3 1.033e-5 1.300e-7 6.033e-5 1.492e-2
100% 0.084 0.716 0.066 0.088 0.080 0.079 0.107 0.055 0.118 0.076 0.058 0.056 2.484e-3 1.139e-3 2.261e-5 5.595e-5 1.855e-3 2.139e-4 2.885e-3 2.097e-3 7.470e-6 1.000e-7 2.020e-5 1.743e-3

Table H.4: Aleatoric and epistemic uncertainty estimates of the Bregman decomposition for different
methods and reduced training dataset fractions of CIFAR-10. We report the mean estimates over the
test dataset.

Aleatoric Epistemic

Deep EDL GP HET HetClassNN HET-XL Laplace MC Dropout PostNet Shallow SNGP SWAG Deep EDL GP HET HetClassNN HET-XL Laplace MC Dropout PostNet Shallow SNGP SWAG

10% 0.258 0.403 1.589e-2 4.016e-3 0.146 1.408e-2 0.211 0.131 8.497e-3 7.965e-4 1.642e-2 0.379 0.235 1.701 0.208 0.200 0.184 0.214 0.272 0.209 0.480 0.228 0.201 0.418
50% 0.093 0.129 1.130e-3 1.283e-3 0.061 6.921e-3 0.123 0.057 1.537e-3 1.970e-6 1.086e-3 0.496 0.103 0.869 0.082 0.108 0.082 0.104 0.142 0.104 0.109 0.093 0.082 0.408
100% 0.050 0.101 4.152e-4 1.071e-3 0.041 4.318e-3 0.077 0.050 1.476e-3 1.590e-6 3.735e-4 0.039 0.084 0.716 0.066 0.088 0.080 0.079 0.107 0.055 0.118 0.076 0.058 0.056

following Tran et al. [49]. The hyperparameters are chosen identically to those on CIFAR-10 (see
Appendix I.1).

I.3 Runtime

Table I.1 and Table I.2 show statistics of the per-epoch runtime for each method on ImageNet and
CIFAR-10, respectively. As Laplace, Mahalanobis, temperature scaling, and deep ensemble are
post-hoc methods, their reported time comprises the construction of the method and its evaluation on
various ID and OOD test datasets.

J Visualization of Images and Label Distributions

This section displays both easy (low human uncertainty) ImageNet samples in Fig. J.1 and hard (high
human uncertainty) ones in Fig. J.2 using the ImageNet-ReaL labels and ImageNet-C perturbations.

Figs. J.3 and J.4 give summary statistics of the label distributions of ImageNet-ReaL and CIFAR-10H,
respectively.
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Table I.1: Summary of average per-batch forward times for the benchmarked methods on CIFAR-10.
Note that the rankings for methods with similar forward times are subject to many external factors,
such as the cluster node’s state or the uptime of the allocated GPU. However, computationally costly
methods consistently require more time. Methods are sorted by increasing mean per-batch forward
time.

Method Mean (s) Min (s) Max (s)
Temperature 0.0614 0.0605 0.0629
EDL 0.0626 0.0616 0.0634
DUQ 0.0627 0.0619 0.0635
CE Baseline 0.0628 0.0622 0.0635
Corr. Pred. 0.0631 0.0625 0.0639
HET 0.0635 0.0625 0.0640
Shallow Ens. 0.0636 0.0620 0.0668
Loss Pred. 0.0673 0.0619 0.0800
Laplace 0.0668 0.0664 0.0677
SNGP 0.0703 0.0665 0.0842
GP 0.0698 0.0625 0.0870
HET-XL 0.0728 0.0727 0.0730
PostNet 0.0838 0.0812 0.0882
Mahalanobis 0.7524 0.7215 0.8132
DDU 0.2038 0.1543 0.2685
Deep Ens. 0.3426 0.3426 0.3426
HetClassNN 1.9995 1.9938 2.0077
MC Dropout 2.0342 1.9832 2.1176
SWAG 3.2236 2.8773 4.3338

Table I.2: Summary of average per-batch forward times for the benchmarked methods on ImageNet.
Note that the rankings for methods with similar forward times are subject to many external factors,
such as the cluster node’s state or the uptime of the allocated GPU. However, computationally costly
methods consistently require more time. Methods are sorted by increasing mean per-batch forward
time.

Method Mean (s) Min (s) Max (s)
HET 0.0485 0.0464 0.0538
HET-XL 0.0576 0.0564 0.0596
Loss Pred. 0.0597 0.0585 0.0622
Corr. Pred. 0.0598 0.0591 0.0606
CE Baseline 0.0610 0.0592 0.0637
Shallow Ens. 0.0651 0.0590 0.0882
EDL 0.0764 0.0739 0.0790
Temperature 0.0765 0.0671 0.1039
GP 0.0818 0.0795 0.0836
PostNet 0.0846 0.0816 0.0942
SNGP 0.0924 0.0861 0.1168
Laplace 0.3933 0.3837 0.4005
Deep Ens. 0.4822 0.4822 0.4822
Mahalanobis 1.5409 1.4934 1.6099
DDU 2.3874 2.2113 2.5266
MC Dropout 2.1183 2.0455 2.3026
HetClassNN 2.2859 2.0830 2.4543
SWAG 2.9623 2.8433 3.1278
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(a) HET-XL correctness AUROC on ID data.
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(b) HET-XL correctness AUROC on mixed ID and
OOD data of severity level one.
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(c) HET-XL correctness AUROC on OOD data of
severity level one.
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(d) HET-XL correctness AUROC on mixed ID and
OOD data of severity level two.
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(e) HET-XL correctness AUROC on OOD data of
severity level two.
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(f) HET-XL correctness AUROC on mixed ID and
OOD data of severity level three.
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(g) HET-XL correctness AUROC on OOD data of
severity level three.
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(h) HET-XL correctness AUROC on mixed ID and
OOD data of severity level four.
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(i) HET-XL correctness AUROC on OOD data of
severity level four.
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(j) HET-XL correctness AUROC on mixed ID and
OOD data of severity level five.

0.5

0.6

0.7

0.8

0.9

1.0

A
U

R
O

C
↑

B
b

PU
b

A
U

b
+

B
b

A
U

it
+

E
U

b

PU
it

1
−

m
a
x
π̄

E
U

it

1
−
E

[m
a
x
π

]

H
(π̃

)

A
U

it

1
−

m
a
x
π̃

D
-S

E
U

b

E
[v

ar
π

]

A
U

b

E
[v

ar
f

]

Estimate Ground Truth

(k) HET-XL correctness AUROC on OOD data of
severity level five.

Figure D.3: For the HET-XL method, the correctness prediction performance is saturated across
aggregators on the ImageNet validation dataset. The disagreement-based epistemic aggregators,
EUit and EUb, are saturated among the other estimators, challenging the common assumption that
epistemic aggregators perform poorly ID.
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(a) Deep Ensemble correctness AUROC on ID data.
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(b) Deep Ensemble correctness AUROC on mixed ID
and OOD data of severity level one.
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(c) Deep Ensemble correctness AUROC on OOD data
of severity level one.

0.5

0.6

0.7

0.8

0.9

1.0

A
U

R
O

C
↑

PU
b

A
U

b
+

B
b

B
b

1
−

m
a
x
π̄

1
−

m
a
x
π̃

H
(π̃

)

1
−
E

[m
a
x
π

]

A
U

it
+

E
U

b

PU
it

A
U

it

E
U

it

E
U

b

E
[v

ar
π

]

D
-S

A
U

b

E
[v

ar
f

]
Estimate Ground Truth

(d) Deep Ensemble correctness AUROC on mixed ID
and OOD data of severity level two.
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(e) Deep Ensemble correctness AUROC on OOD data
of severity level two.
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(f) Deep Ensemble correctness AUROC on mixed ID
and OOD data of severity level three.
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(g) Deep Ensemble correctness AUROC on OOD data
of severity level three.

0.5

0.6

0.7

0.8

0.9

1.0

A
U

R
O

C
↑

PU
b

B
b

A
U

b
+

B
b

1
−

m
a
x
π̄

H
(π̃

)

1
−

m
a
x
π̃

A
U

it
+

E
U

b

PU
it

1
−
E

[m
a
x
π

]

A
U

it

E
U

it

E
U

b

D
-S E
[v

ar
π

]

A
U

b

E
[v

ar
f

]

Estimate Ground Truth

(h) Deep Ensemble correctness AUROC on mixed ID
and OOD data of severity level four.
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(i) Deep Ensemble correctness AUROC on OOD data
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(j) Deep Ensemble correctness AUROC on mixed ID
and OOD data of severity level five.
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(k) Deep Ensemble correctness AUROC on OOD data
of severity level five.

Figure D.4: For the Deep Ensemble method, the disagreement-based epistemic aggregators underper-
form the other aggregators on the correctness prediction task on the ImageNet validation set, which
aligns with expectations.
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Figure G.1: OOD detection results on the CIFAR-10 test set, measured by the AUROC metric. OOD
samples are perturbed by CIFAR-10C corruptions of severity level two. Mahalanobis, a method
specially trained for this task, has an edge over the remaining methods.
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Figure G.2: Rank correlation with the soft input-conditional label distributions of CIFAR-10H
corresponding to labeler votes.
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Figure G.3: On ID CIFAR-10 samples, the performance of methods on predicting correctness is
close to saturated, although the more expensive distributional methods tend to perform better than the
cheaper deterministic methods.
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Figure G.4: ID abstained prediction results using the AUAC metric on the CIFAR-10 test dataset. On
ID CIFAR-10 samples, most methods solve the abstinence task almost perfectly. This even holds for
Mahalanobis. This is largely because the accuracy on CIFAR-10 is very high, and AUAC depends on
it.
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Figure G.5: Pearson correlation of metric pairs calculated over all (method, aggregator) pairs on
CIFAR-10.
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Figure G.6: Spearman rank correlation of metric pairs calculated over all (method, aggregator) pairs
on CIFAR-10. The clusters are similar to those of the linear correlation in Fig. G.5, although there
are more cases of higher correlations between the clusters. This discrepancy can be attributed to the
saturation of methods on various metrics on CIFAR-10.
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(a) ID results.
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(b) Mixed ID and OOD severity level one.
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(c) OOD severity level one.
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(d) Mixed ID and OOD severity level two.
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(e) OOD severity level two.
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(f) Mixed ID and OOD severity level three.
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(g) OOD severity level three.
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(h) Mixed ID and OOD severity level four.
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(i) OOD severity level four.
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(j) Mixed ID and OOD severity level five.
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(k) OOD severity level five.

Figure H.1: On ImageNet, the evidential deep learning methods, EDL and PostNet, dominate on the
correctness prediction task. The performance of Mahalanobis stably increases on mixed datasets, as
models perform worse on OOD images than on ID ones, and it can detect OOD samples well.
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(a) ID results.

0.5

0.6

0.7

0.8

0.9

1.0

A
U

R
O

C
↑

D
ee

p
E

ns
.

M
C

D
ro

po
ut

SW
A

G
SN

G
P

H
et

C
la

ss
N

N
G

P
L

ap
la

ce
E

D
L

C
E

B
as

el
in

e
Te

m
pe

ra
tu

re
Sh

al
lo

w
E

ns
.

H
E

T
H

E
T-

X
L

Po
st

N
et

D
D

U
C

or
r.

Pr
ed

.
D

U
Q

L
os

s
Pr

ed
.

M
ah

al
an

ob
is

Distributional Deterministic

(b) Mixed ID and OOD severity level one.
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(c) OOD severity level one.
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(d) Mixed ID and OOD severity level two.
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(e) OOD severity level two.
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(f) Mixed ID and OOD severity level three.
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(g) OOD severity level three.
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(h) Mixed ID and OOD severity level four.
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(i) OOD severity level four.
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(j) Mixed ID and OOD severity level five.
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(k) OOD severity level five.

Figure H.2: On CIFAR-10, the performance of the methods consistently drops on the correctness
prediction task, both on completely OOD datasets (right column) and on balanced mixtures of ID and
OOD datasets (left column).
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(a) CE Baseline.
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(b) SNGP.
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(c) Correctness Prediction.
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(d) Deep Ensemble.
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(e) MC Dropout.
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(f) Shallow Ensemble.

0 1 2 3 4 5

Severity Level

0.00

0.25

0.50

0.75

1.00

M
et

ri
c

V
al

ue
s
↑

AUROC Correctness
AUAC
Accuracy

(g) GP.
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(h) HET-XL.
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(i) Laplace.
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(j) Mahalanobis.

0 1 2 3 4 5

Severity Level

0.00

0.25

0.50

0.75

1.00

M
et

ri
c

V
al

ue
s
↑

AUROC Correctness
AUAC
Accuracy

(k) Loss Prediction.
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(m) PostNet.
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(n) DDU.
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(o) Temperature.
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(r) SWAG.
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(s) HetClassNN

Figure H.3: On CIFAR-10, all methods’ performance deteriorates at the same rate as the model’s
accuracy on the correctness and abstinence tasks. The only exception is Mahalanobis, which is a
specialized OOD detector.
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(a) CE Baseline.
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(b) SNGP.
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(c) Correctness Prediction.
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(d) Deep Ensemble.

0 1 2 3 4 5

Severity Level

0.00

0.25

0.50

0.75

1.00

M
et

ri
c

V
al

ue
s
↑

AUROC Correctness
AUAC
Accuracy

(e) MC Dropout.
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(f) Shallow Ensemble.
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(h) HET-XL.
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(j) Mahalanobis.
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(k) Loss Prediction.
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(l) EDL.
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(m) PostNet.
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(n) DDU.
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(o) Temperature.

0 1 2 3 4 5

Severity Level

0.00

0.25

0.50

0.75

1.00

M
et

ri
c

V
al

ue
s
↑

AUROC Correctness
AUAC
Accuracy

(p) HET.
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(q) SWAG.
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(r) HetClassNN.

Figure H.4: On ImageNet, the estimate for predictive correctness is much more robust to OOD
perturbations than the model’s accuracy for all methods except Mahalanobis (a specialized OOD
detector). The AUC abstinence score deteriorates at the same rate as the model’s accuracy, which is
an inherent property of the metric as the accuracy lower bounds the abstinence AUC metric.

51



0.5

0.6

0.7

0.8

0.9

1.0

A
U

R
O

C
↑

M
ah

al
an

ob
is

Sh
al

lo
w

E
ns

.
D

ee
p

E
ns

.
M

C
D

ro
po

ut
H

et
C

la
ss

N
N

SW
A

G
E

D
L

C
or

r.
Pr

ed
.

L
os

s
Pr

ed
.

D
D

U
SN

G
P

L
ap

la
ce

Te
m

pe
ra

tu
re

Po
st

N
et

H
E

T-
X

L
C

E
B

as
el

in
e

H
E

T
G

P

Distributional Deterministic

(a) OOD detection AUROC with severity level one.
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(b) OOD detection AUROC with severity level two.
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(c) OOD detection AUROC with severity level three.
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(d) OOD detection AUROC with severity level four.
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(e) OOD detection AUROC with severity level five.

Figure H.5: The OOD detection performance of all methods increases steadily as we increase the
severity of the perturbed half of the mixed dataset on the ImageNet validation dataset. However, the
specialized OOD detector, Mahalanobis, generalizes worse than the other methods.
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(a) OOD detection AUROC with severity level one.
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(b) OOD detection AUROC with severity level two.
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(c) OOD detection AUROC with severity level three.
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(d) OOD detection AUROC with severity level four.
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(e) OOD detection AUROC with severity level five.

Figure H.6: On CIFAR-10, the OOD detection performance of all methods increases steadily as
we increase the severity of the perturbed half of the mixed dataset. The relative distance between
Mahalanobis and the other methods decreases with increasing severity level.

0.5

0.6

0.7

0.8

0.9

1.0

A
U

R
O

C
↑

H
et

C
la

ss
N

N
M

C
D

ro
po

ut
D

ee
p

E
ns

.
E

D
L

H
E

T
H

E
T-

X
L

Po
st

N
et

C
E

B
as

el
in

e
G

P
C

or
r.

Pr
ed

.
SN

G
P

L
ap

la
ce

Te
m

pe
ra

tu
re

D
D

U
L

os
s

Pr
ed

.
Sh

al
lo

w
E

ns
.

SW
A

G
M

ah
al

an
ob

is

Distributional Deterministic

Figure H.7: ImageNet ambiguous input detection results. The ranking is considerably different from
the ranking with the continuous ground truths in Fig. 3b.
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Figure H.8: CIFAR-10 ambiguous input detection results. The Correctness Prediction method is
most aligned with human uncertainties. The methods are ranked the same as when using the rank
correlation in Fig. G.2, except for MC Dropout.
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(a) E-AURC results.
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(b) rAULC results.

Figure H.9: ImageNet abstained prediction evaluation on the E-AURC (left) and the rAULC (right)
metric. Even though both metrics are normalized by the underlying model’s accuracy, this normaliza-
tion is done in different ways, and the rankings of methods are quite different, e.g., for PostNet and
SNGP.
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(a) E-AURC results.
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(b) rAULC results.

Figure H.10: CIFAR-10 abstained prediction evaluation on the E-AURC (left) and the rAULC (right)
metric. While deep ensembles are best according to both metrics, the rankings of methods are quite
different.
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(a) ID results.
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(b) Mixed ID and OOD severity level one.
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(c) OOD severity level one.
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(d) Mixed ID and OOD severity level two.
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(e) OOD severity level two.
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(f) Mixed ID and OOD severity level three.
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(g) OOD severity level three.
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(h) Mixed ID and OOD severity level four.

−2

−1

0

L
og

Pr
ob

.↑

E
D

L
Po

st
N

et
L

ap
la

ce
H

et
C

la
ss

N
N

D
ee

p
E

ns
.

M
C

D
ro

po
ut

Te
m

pe
ra

tu
re

SW
A

G
D

D
U

Sh
al

lo
w

E
ns

.
H

E
T-

X
L

H
E

T
C

E
B

as
el

in
e

M
ah

al
an

ob
is

G
P

SN
G

P
L

os
s

Pr
ed

.
C

or
r.

Pr
ed

.

Distributional Deterministic

(i) OOD severity level four.

−2

−1

0

L
og

Pr
ob

.↑

E
D

L
Po

st
N

et
H

et
C

la
ss

N
N

L
ap

la
ce

D
ee

p
E

ns
.

M
C

D
ro

po
ut

D
D

U
Te

m
pe

ra
tu

re
SW

A
G

Sh
al

lo
w

E
ns

.
H

E
T-

X
L

H
E

T
SN

G
P

G
P

M
ah

al
an

ob
is

C
E

B
as

el
in

e
C

or
r.

Pr
ed

.
L

os
s

Pr
ed

.

Distributional Deterministic

(j) Mixed ID and OOD severity level five.
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(k) OOD severity level five.

Figure H.11: On ImageNet, most methods consistently outperform the cross-entropy baseline on
average, both ID and OOD for all severity levels when evaluating on the log probability proper
scoring rule for correctness prediction. The EDL method performs best across all settings.
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(a) ID results.
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(b) Mixed ID and OOD severity level one.
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(c) OOD severity level one.
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(d) Mixed ID and OOD severity level two.
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(e) OOD severity level two.
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(f) Mixed ID and OOD severity level three.
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(g) OOD severity level three.
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(h) Mixed ID and OOD severity level four.
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(i) OOD severity level four.
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(j) Mixed ID and OOD severity level five.
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(k) OOD severity level five.

Figure H.12: On CIFAR-10, the deep ensemble is a consistently robust method both ID and OOD for
all but one severity level when evaluating on the log probability proper scoring rule for correctness
prediction.
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Figure H.13: Spearman correlation of metric pairs across all methods and aggregators on the ImageNet
validation set. The correlations are similar to those of the linear correlation in Fig. 6. Only some of
the considered metrics have a very high rank correlation among methods on the ImageNet validation
dataset: most capture different aspects of uncertainty methods.
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Figure H.14: Pearson correlation of metric pairs across all methods and aggregators on the ImageNet
validation set. Extended version of Fig. 6.
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Figure H.15: Spearman correlation variant of Fig. H.14.
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Figure H.16: Gaussian kernel density estimates of the EDL method’s aleatoric and epistemic uncer-
tainties of the IT decomposition when trained on different CIFAR-10 portions.
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Figure H.17: Kendall and Gal Rank Correlation scores for different methods on ImageNet. This
formulation uses the expected variance of the probability vectors as epistemic and the expected
entropy as aleatoric uncertainty. We report the mean rank correlation across five seeds.
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Original Samples Perturbed Samples

Figure J.1: Easy ImageNet-ReaL cases with no human disagreement on the labels. OOD samples are
of severity two.
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Original Samples Label Distributions Perturbed Samples
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Figure J.2: Hard ImageNet-ReaL cases with high human uncertainty (i.e., high disagreement among
annotators on the correct label). OOD samples are of severity two.
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Figure J.3: Histograms of the label distributions of the ImageNet-ReaL validation set.
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Figure J.4: Histograms of the label distributions of the CIFAR-10H validation set.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Each section title summarizes the findings and we clearly highlight which
methods we test on which datasets.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [N/A]

62



Justification: We present experimental results, without theoretical findings.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide open-source code, all weights and biases logs, and decribe each
method in detail in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: See above.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The main training and implementation details are discussed in Appendix I and
exact hyperparameters are available on the published code repository.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We run each experiment on five different seeds and report the min, mean, and
max metric values.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Section 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We fulfill all requirements.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [N/A]

Justification: Our paper conducts no societally harmful research.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [N/A]
Justification: There is no risk in abusing ImageNet or CIFAR-10 classifiers.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the ImageNet, ImageNet-ReaL, CIFAR-10, and CIFAR-10H datasets
and the timm library for the code and the pretrained ResNet-50s.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [N/A]
Justification: We do not release new assets, we only record metrics.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [N/A]
Justification: We do not use crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [N/A]
Justification: We do not conduct experiments with humans.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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