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Abstract

This paper studies phase transitions for the exis-
tence of unregularized M-estimators under pro-
portional asymptotics where the sample size n
and feature dimension p grow proportionally with
n/p → δ ∈ (1,∞). We study the existence of
M-estimators in single-index models where the
response yi depends on covariates xi ∼ N(0, Ip)
through an unknown index w ∈ Rp and an un-
known link function. An explicit expression is
derived for the critical threshold δ∞ that deter-
mines the phase transition for the existence of the
M-estimator, generalizing the results of Candès &
Sur (2020) for binary logistic regression to other
single-index models. Furthermore, we investigate
the existence of a solution to the nonlinear system
of equations governing the asymptotic behavior
of the M-estimator when it exists. The existence
of solution to this system for δ > δ∞ remains
largely unproven outside the global null in binary
logistic regression. We address this gap with a
proof that the system admits a solution if and only
if δ > δ∞, providing a comprehensive theoreti-
cal foundation for proportional asymptotic results
that require as a prerequisite the existence of a
solution to the system.

1. Introduction
Let (xi, yi)i∈[n] be a sample of i.i.d. observations where
xi ∈ Rp and follows the normal distribution xi ∼ N(0, Ip).
We consider responses yi ∈ Y where Y ⊂ R and assume a
single-index model of the form

P(yi ≤ t | xi) = F (t,x⊤
i w), ∀t ∈ R
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where F : R × R → [0, 1] is an unknown deterministic
function and w ∈ Rp is an unknown index with ∥w∥ =
1. This includes generalized linear models, such as the
Poisson model (in which Y = {0, 1, 2, . . . }) or Binary
logistic model (in which Y = {−1, 1} for instance).

An unregularized M-estimator is fit to observed data
(yi,xi)i∈[n] by the minimization problem

inf
b∈Rp

n∑
i=1

ℓyi(x
⊤
i b) (1)

where ℓy(·) is convex for every y ∈ Y . If the infimum is
achieved, we say the M-estimator exists and denote it by b̂,
i.e.,

b̂ ∈ argminb∈Rp

n∑
i=1

ℓyi(x
⊤
i b).

In this paper we focus on a high dimensional regime where
the sample size and feature grow proportionally as

n

p
→ δ ∈ (1,+∞)

Here the constant δ quantifies sample size per dimensions.
In this proportional asymptotic regime, under logistic re-
gression model with binary response Y = {−1, 1} and with
ℓy(t) = log(1 + exp(−yt)) the logistic loss, the seminal
work of Candès & Sur (2020) establishes that the existence
of the M-estimator undergoes a sharp phase transition at a
critical threshold δ∞:

• if δ > δ∞ then the M-estimator exists with high-
probability (i.e., the infimum in (1) is attained), while

• if δ < δ∞ then the M-estimator does not exist (i.e., the
infimum is not attained) with high-probability.

If δ > δ∞, the behavior of the unregularized M-estimator
b̂, including the limit in probability of b̂⊤w and the limit
in probability of ∥(Ip −ww⊤)b̂∥2, is characterized (Sur &
Candès, 2019) by the nonlinear system with three unknowns
(γ, a, σ) ∈ R>0 × R× R>0:

γ−2δ−1σ2 = E[ℓ′Y (prox[γℓY ](aU + σG))2],

0 = E[Uℓ′Y (prox[γℓY ](aU + σG))],

σ(1− δ−1) = E[Gprox[γℓY ](aU + σG)],

(2)
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(a) Logistic loss (b) Binomial loss (c) Poisson

Figure 1. Three examples of loss functions.

where G ∼ N(0, 1) is independent of (U, Y ), and (U, Y )
has the same distribution as (x⊤

i w, yi). In particular
U ∼ N(0, 1). The phase transition result of Candès & Sur
(2020) for Gaussian design and binary logistic regression
has been extended by Tang & Ye (2020) to elliptic covariate
distributions and general binary response models. Han &
Ren (2022) extended the phase transition of the logistic re-
gression model with Gaussian covariates to the constrained
minimization setting where the infimum in (1) is restricted
to a closed convex cone. More broadly, the phase transition
phenomena studied in our paper are connected to earlier
works in statistical physics ((Cover, 1965; Gardner & Der-
rida, 1988; Krauth & Mézard, 1989)). Especially, (Cover,
1965) analyzed the geometry of linear inequalities and de-
rived δ∞ = 2 under the null, i.e., when xi is independent
of yi. More recently, similar phase transition behavior has
been investigated in (Mignacco et al., 2020) for Gaussian
mixtures models and in (Gerace et al., 2020) for random
feature models.

Results such as Sur & Candès (2019); Salehi et al. (2019)
studying the behavior of the M-estimator on the side of
the phase transition where it exists with high-probability
assume that the nonlinear system (2) admits a unique solu-
tion. Under the global null in binary logistic regression, Sur
et al. (2019) establishes that δ∞ = 2 and that the system
(2) admits a unique solution if and only if δ > 2. Beyond
the global null, it was observed (Sur & Candès, 2019) that
the system (2) can be solved numerically if δ > δ∞ (where
δ∞ is characterized in Candès & Sur (2020)), and that if the
solution exists, it is unique (see Remark 2 of the supplement
of Sur & Candès (2019)). However to our knowledge there
is no proof yet that the system admits a solution for δ > δ∞
except under the global null (see discussion after eq. (16) of
the supplement of Sur & Candès (2019)).

The goal of the present paper is twofold:

• To characterize the critical threshold δ∞ for Gaussian
covariates beyond binary response models, for instance
the Poisson model.

• To prove that the system (2) admits a unique solution
if and only if δ > δ∞.

2. Main Result
Let us introduce the three examples of interest that our
assumptions will cover.
Example 2.1 (Binary logistic regression). Here, labels in
Y = {−1, 1} and the loss function

ℓy(t) = log(1 + exp(−yt)).

Example 2.2 (Logistic regression with repeated measure-
ments). Let q ≥ 2. Here, Y = {0, 1, . . . , q} and the loss
function, corresponding to a binomial regression model with
q throws and a sigmoid link function for the probability, is

ℓy(t) = q log(1 + exp(t))− yt.

If q = 1, this is equivalent to binary logistic regression by
renaming {1, 0} to {1,−1}.
Example 2.3 (Poisson regression). If the labels are in Y =
{0, 1, 2, 3, . . . } = N, the non-negative likelihood of Poisson
generalized linear model leads to the loss function

ℓy(t) = exp(t)− yt.

The phenomenon of the phase transition for the existence
of the M-estimator comes from the lack of coercivity of
some of the loss functions ℓyi

appearing in the optimization
problem (1). For instance,

• In the binary logistic regression case (Example 2.1),
the loss ℓyi

is not coercive for all yi: it is increasing
for yi = −1 and decreasing for yi = 1.

• For binomial logistic regression with q ≥ 2 mea-
surements, (Example 2.2), the loss ℓyi

is coercive if
yi ∈ {1, ..., q − 1}, increasing for yi = 0 and decreas-
ing for yi = q.
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• For Poisson regression, (Example 2.3), the loss ℓyi
is

coercive for yi ≥ 1 and increasing for yi = 0.

The values of yi leading to a coercive, increasing or de-
creasing loss ℓyi

(·) and the distribution of (x⊤
i w, yi) will

determine the critical threshold δ∞. In order to study δ∞,
it will be thus useful to introduce the following notation:
For a random variable Y valued in Y , we define the events
Ω∨(Y ),Ω↗(Y ),Ω↘(Y ) by

Ω∨(Y ) = {ℓY (·) is coercive},
Ω↗(Y ) = {ℓY is strictly increasing},
Ω↘(Y ) = {ℓY is strictly decreasing}.

(3)

These events can be made explicit for the three examples
thanks to the discussion in the three bullet points above:

• In the binary logistic regression case (Example 2.1) we
have Ω↗(Y ) = {Y = −1} and Ω↘(Y ) = {Y = 1}.

• In Example 2.2, Ω↗(Y ) = {Y = 0} as well as
Ω↘(Y ) = {Y = q} and Ω∨(Y ) = {0 < Y < q}.

• For Poisson regression (Example 2.3) we have
Ω↗(Y ) = {Y = 0} and Ω∨(Y ) = {Y ≥ 1}.

We will assume that ℓY is strictly convex in our working
assumptions, so that if ℓY is not coercive it must be either
strictly increasing or strictly decreasing. We first state an
assumption that prevents the problem from being trivial.

Assumption 2.4. The loss ℓy is strictly convex for every
y ∈ Y , and the law of Y satisfies

E
[
U2

(
I{Ω∨}+ I{Ω↘, U > 0}+ I{Ω↗, U < 0}

)]
> 0,

E
[
U2

(
I{Ω∨}+ I{Ω↘, U < 0}+ I{Ω↗, U > 0}

)]
> 0

where we omit the argument Y in the three events
Ω∨(Y ),Ω↗(Y ) and Ω↘(Y ) for brevity.

This prevents the problem from being trivial in the following
sense. Consider p = 1, and write xi = Ui (which is now
scalar valued). Assume that the first line in Assumption 2.4
is 0. The minimization problem (5) becomes

inf
a∈R

n∑
i=1

ℓyi
(aUi).

Since P(U2 > 0) = 1 by U ∼ N(0, 1), this implies
P(Ω∨(Y )) = 0, so for each of the n terms, the loss ℓyi

(·) is
not coercive. In fact, each term is increasing in a, because
Ui > 0 ⇒ Ω↗(yi) and Ui < 0 ⇒ Ω↘(yi) by the first line
in Assumption 2.4, so in this case a 7→

∑n
i=1 ℓyi(aUi) is

increasing with probability one and the infimum is never

attained. Similarly, if the second line in Assumption 2.4
is zero, then a 7→

∑n
i=1 ℓyi(aUi) is decreasing and the

infimum is never attained.

In conclusion, Assumption 2.4 merely assumes that for
p = 1, the infimum is achieved, i.e., the M-estimator ex-
ists, with positive probability. If the M-estimator does not
exist for p = 1 then it will not exist for p > 1 either, so
Assumption 2.4 is required to avoid this trivial case that the
M-estimator does not exist for all p ≥ 1. The remaining of
our working assumptions are given below.

Assumption 2.5. The loss ℓY satisfies the following:

1. For all y ∈ Y , ℓy : R → R is C1, strictly convex, and
not constant.

2. E[| infu ℓY (u)|] < +∞ and E[|ℓY (G)|] < +∞ where
G ∼ N(0, 1) independent of Y .

3. P(Ω∨) < 1.

4. There exists a positive constant b and σ(Y )-measurable
positive random variable D(Y ) satisfying E[D(Y )] <
+∞ and E[D2(Y )Ω∨(Y )] < +∞ such that

∀u ∈ R, ℓY (u) ≥ −D(Y ) +
1

b
×


u under Ω↗

|u| under Ω∨

−u under Ω↘

Beyond Assumption 2.4, Assumption 2.5 requires differen-
tiability of the loss (item 1), mild integrability conditions
(item 2), that ℓyi

is not always coercive (item 3) and that
in the directions where ℓY diverges to +∞, it does so at
least as fast as an affine function with slope 1/b and squared
integrable intercept D(Y ) (item 4).

We define the critical threshold δ∞ ∈ (0,+∞] by

1

δ∞
:= inf

t∈R
φ(t), (4)

where φ : R → R≥0 is the convex function defined as

φ(t) := E
[(

G+ Ut
)2

I{Ω∨}
]

+ E
[(

G+ Ut
)2

+
I{Ω↗}

]
+ E

[(
G+ Ut

)2

−
I{Ω↘}

]
.

Here, the positive part of any real a is denoted a+ =
max(0, a) and the negative part a− = max(−a, 0) and
the square is always taken after the positive/negative parts,
i.e., a2+ = (a+)

2 and a2− = (a−)
2. If inft∈R φ(t) = 0 then

δ∞ is interpreted as δ∞ = +∞. Above, the infimum over
t ∈ R always admits a minimizer t∗ ∈ R under Assump-
tion 2.4 (see Lemma A.1).
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Figure 2. Count of instances where the minimizer in (1) exists for
varying p/n and signal strength. Simulation parameter: n = 1500,
20 repetitions, ℓy(u) = eu−yu is the Poisson loss, yi | xi satisfies
the Poisson model (8).

Our first result is that the threshold δ∞ characterizes the
phase transition regarding whether the M-estimator exists
or not with high-probability under the proportional regime
n/p → δ.

Theorem 2.6. As n, p → +∞ with n/p → δ, we have

P
(

The M-estimator exists,
i.e., the inf (1) is attained

)
→

{
1 if δ > δ∞,

0 if δ < δ∞.

Theorem 2.6 is numerically verified by Figure 2 for Pois-
son regression (see Section 4 for details). The proof of
Theorem 2.6 is based on a common argument based on
conic geometry and the Gaussian kinematic formula given
by Amelunxen et al. (2014). This use of the kinematic for-
mula of Amelunxen et al. (2014) is similar to the argument
in Candès & Sur (2020) for the binary logistic regression
model.

A more technical question, that requires an investigation be-
yond the application of the kinematic formula of Amelunxen
et al. (2014), is whether the critical threshold also character-
izes the phase transition regarding the existence of solution
to the nonlinear system (4). A formal proof of existence
of a unique solution to (4) is important, as it is required to
leverage the Convex Gaussian Minmax Theorem (CGMT)
of Thrampoulidis et al. (2018). For instance, the works
Salehi et al. (2019); Loureiro et al. (2021) which apply the
CGMT in generalized linear models to study b̂, assume in
their theorems that the system (2) admits a unique solution.

Theorem 2.7.

• If δ ≤ δ∞, the system (2) has no solution.

• If δ > δ∞, the system (2) has a unique solution.

To our knowledge, a proof of this relationship between the
critical threshold δ∞ and the existence of a solution to the
system (2) is new, even in the case of binary logistic regres-
sion. The global null case was handled in (Sur et al., 2019);
however, outside the global null case, this phenomenon
was observed numerically in (Sur & Candès, 2019) without
proof—see the discussion after eq. (16) of the supplement
of (Sur & Candès, 2019).

Montanari et al. (2023) generalized the threshold δ∞ of
Candès & Sur (2020) for linear separation in binary classi-
fication (or equivalently for the existence of (12) with the
logistic loss), allowing an arbitrary single-index model for
P(yi = 1 | xi). Montanari et al. (2023) further established
the existence of a unique solution to a system governing the
behavior of max-margin classifiers for any δ < δ∞, that
is, for any δ such that the data is linearly separable with
high-probability. We emphasize that the system studied
in Montanari et al. (2023) is different and complementary
from the system (2) of interest in the present paper: The
system of Montanari et al. (2023) governs the behavior of
max-margin classifiers for δ < δ∞ while the system (2)
studied here governs the behavior of the M-estimator (1) for
which Theorem 2.7 establishes existence of solutions if and
only if δ > δ∞.

The tools we use to obtain Theorem 2.7 are based on the
existence of a solution to a convex minimization problem in
an infinite-dimensional Hilbert space which is the focus of
the next section.

3. Infinite Dimensional Optimization Problem
In this section, we define the mathematical objects at the
heart of the proof of Theorem 2.7 and outline the proof strat-
egy. The key is the analysis of an infinite-dimensional con-
vex optimization problem that is in a dual relationship with
the nonlinear system. The use of such infinite-dimensional
optimization problems to prove the existence of solutions to
nonlinear systems of equations was pioneered in Montanari
et al. (2023) and later used in the context of boosting and L1
interpolation (Liang & Sur, 2022), to analyse the Lasso (Ce-
lentano et al., 2023), and for robust regularized regression
(Bellec & Koriyama, 2023).

The notation and setup of this infinite-dimensional convex
optimization problem is heavily inspired by Bellec & Ko-
riyama (2023), which studies the existence of solutions to
systems of a similar nature to (2) in robust regression. In the
robust regression setup of Bellec & Koriyama (2023) where
coercive and Lipschitz loss functions ℓyi

(·) are considered,
the corresponding system has always a unique solution and
the M-estimator always exists: there is no phase transition.
A novelty of the present paper is to explain how these tools,
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in particular the infinite-dimensional optimization below,
can be used to predict the phase transition for the existence
of a minimizer in (1) and the phase transition for the exis-
tence of solutions to the system (2).

To begin with, let us consider the almost sure equivalent
classes H of squared integrable measurable functions of
(G,U, Y )

H = {v : R3 → R : E[v(G,U, Y )2] < +∞},

where G ∼ N(0, 1) and independent of (U, Y ). Here
(U, Y ) is equal in distribution to (yi,x

⊤
i w). Almost sure

equivalence classes of H form a Hilbert space equipped with
the usual inner product ⟨u, v⟩ := E[u(G,U, Y )v(G,U, Y )]
and corresponding Hilbert norm ∥v∥ =

√
⟨v, v⟩. We will

sometimes refer to H itself as the Hilbert space, in this case
we implicitly identify random variables v(G,U, Y ) that are
equal almost surely. For brevity, inside an expectation and
probability signs with respect to the probability measure of
(G,U, Y ), we simply write v to denote the random variable
v(G,U, Y ). For instance, we write simply E[vG] instead of
E[v(G,U, Y )G].

Now we define two functions G and L as follows:

G : H → R, v 7→ ∥v∥ − E[vG]/
√
1− δ−1

and

L : R×H → R ∪ {+∞},

(a, v) 7→

{
E[ℓY (aU + v)] if E[|ℓY (aU + v)|] < +∞
+∞ otherwise

Here, L is a proper lower semicontinuous convex function,
while G is a Lipschitz, finite valued, and convex function
(See Lemma B.1 and Lemma B.2). With these functions
(L,G), we claim that the system of nonlinear equations (2)
admits a unique solution if and only if the following infinite-
dimensional convex optimization problem over R×H

min
(a,v)∈R×H

L(a, v) subject to G(v) ≤ 0 (5)

admits a unique minimizer (a∗, v∗) ∈ R×H. We will make
this point more precise in the next paragraph.

The key to such an equivalence between the nonlinear sys-
tem (2) and infinite-dimensional optimization problem (5)
is the existence of the Lagrange multiplier associated with
the constraint G(v) ≤ 0. By Proposition 27.31 of Bauschke
& Combettes (2017), an element (a∗, v∗) ∈ R×H solves
the constrained optimization problem min(a,v):G(v)≤0 L(v)
if and only if there exists a Lagrange multiplier µ∗ ≥ 0 such

that the KKT condition

−µ∗∂G(v∗) ∩ ∂vL(a∗, v∗) ̸= ∅
∂aL(a, v) ∋ 0

µ∗G(v∗) = 0

G(v∗) ≤ 0

(6)

is satisfied, where ∂G and ∂L are the subdifferentials of
the convex functions G,L. Furthermore, we will argue that
the Lagrange multiplier µ∗ is strictly positive. Combined
with µ∗G(v∗) = 0 in the KKT condition (6), this means
that G(v∗) = 0, i.e., the constraint G(v) ≤ 0 is binding.
Following Bellec & Koriyama (2023), equipped with this
positive Lagrange multiplier µ∗ > 0 and the binding con-
dition G(v∗) = 0, we establish the following equivalence
between the minimizer of the optimization problem (5) and
the solution to the nonlinear system of equations (2).

Theorem 3.1 (Equivalence).

• Suppose (a∗, v∗) ∈ R×H solves the constrained op-
timization problem (5) with ∥v∗∥ > 0. Let µ∗ be the
Lagrange multiplier satisfying the KKT condition. Let
(γ∗, σ∗) be the positive scalar defined by

σ∗ = ∥v∗∥/
√

1− δ−1 > 0, γ∗ = ∥v∗∥/µ∗ > 0.

Then the pair (a∗, σ∗, γ∗) solves the nonlinear system
of equation.

• If (a∗, γ∗, σ∗) ∈ R×R>0×R>0 satisfies the nonlinear
system, letting

v∗ = prox[γ∗ℓY ](a∗U + σ∗G)− a∗U

(a∗, v∗) solves the optimization problem (5) with
∥v∗∥ = σ∗

√
1− δ−1 > 0 and the KKT condition (6)

is satisfied for µ∗ = σ∗
√
1− δ−1/γ∗ > 0.

Theorem 3.1 implies that the nonlinear system of equations
(2) admits a unique solution (a∗, γ∗, σ∗) ∈ R×R>0×R>0

if and only if the optimization problem minG(v)≤0 L(a, v)
admits a unique solution (a∗, v∗) ∈ R×H with v∗ ̸= 0 and
a unique Lagrange multiplier µ∗ > 0 satisfying the KKT
condition (6). In order to apply Theorem 3.1, we need to
establish that the degenerate case v∗ = 0 cannot happen.

Lemma 3.2. (Non-degeneracy) If (a∗, v∗) solves the opti-
mization problem (5), then v∗ ̸= 0.

In the proof of Lemma 3.2, the differentiability of the loss ℓy
is crucial in preventing the degenerate case v∗ = 0. When
the loss is not differentiable, another different threshold,
δperfect, emerges to determine whether v∗ = 0 or v∗ ̸= 0
occurs (Bellec & Koriyama, 2023).
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Lemma 3.3. (Uniqueness) The minimizer of the optimiza-
tion problem (5) is unique if it exists. Furthermore, the
Lagrange multiplier satisfying the KKT condition (6) is also
unique.

Combining Theorem 3.1, Lemma 3.2, and Lemma 3.3, we
conclude that the system of nonlinear equations has a unique
solution if and only if the infinite-dimensional optimization
problem admits a minimizer. This equivalence is useful
because studying the existence of solutions to the system (2)
directly is a tenuous analysis problem that has been solved in
only a few cases: for the Lasso (Bayati & Montanari, 2011;
Miolane & Montanari, 2021), or for the global null case of
logistic regression (Sur et al., 2019). Instead of studying
the system (2) directly, this equivalence allows us to focus
on the existence of minimizer for the infinite-dimensional
convex minimization problem (5). Even though the prob-
lem is infinite-dimensional, there is a well-developed theory
for convex minimization in Hilbert spaces (Bauschke &
Combettes, 2017) which can be leveraged to study (5); in-
cluding the KKT condition or the fact that a coercive convex
objective function admits a minimizer.

It remains to establish that the existence of a minimizer for
the optimization problem is governed by the threshold δ∞
(which is the same as in Theorem 2.6), thus completing the
proof of Theorem 2.7.

Theorem 3.4. Let δ∞ be the threshold defined in (4). Then
we have the following:

• If δ ≤ δ∞, the problem (5) has no minimizer.

• If δ > δ∞, the problem (5) admits a minimizer.

Let us explain where this phase transition comes from, start-
ing from the case δ ≤ δ∞ where we claim that (5) admits
no minimizer. The first idea concerns L: a natural avenue
to show that there is no minimizer is to try to find a direc-
tion (a, v) such that t 7→ ℓY (s(aU + v)) is decreasing in
s > 0 for all realizations of (Y, U) (we are looking for such
a direction because if a convex function admits a ray along
which it is decreasing, then it admits no minimizer). By
considering the three events Ω∨(Y ),Ω↗(Y ),Ω↘(Y ), this
motivates the definition of the cone C ⊂ R×H defined as

(a, p) ∈ C ⇔ aU + p


≤ 0 under Ω↗(Y )

= 0 under Ω∨(Y )

≥ 0 under Ω↘(Y ).

(7)

Next, the direction we are looking for should also satisfy
the constraint G(v) ≤ 0. This motivates the consideration
of

(a∗, p∗) ∈ argmin(a,p)∈C E[(G− p)2]

because among all (a, p) ∈ C such that ∥p∥ = ∥p∗∥, the
p∗ defined above necessarily has larger correlation E[Gp∗]

with G, so p∗ has a better chance to satisfy the constraint
G(p∗) ≤ 0 than p. We show in Lemma A.1 that

∥p∗∥ =
√
1− δ−1

∞ , ∥p∗∥2 = E[Gp∗].

This immediately gives that if δ ≤ δ∞ then p∗ satisfies
the constraint G(p∗) ≤ 0 in (5) (this is serendipitous and
“barely” works out, since for any δ > δ∞ the constraint
would be violated). If δ ≤ δ∞, we have exhibited a direction
(a∗, p∗) such that L(sa∗, sp∗) is decreasing in s > 0 and
such that G(sp∗) = sG(p∗) ≤ 0. Since we have found a
direction along which the objective function is decreasing
and which satisfies the constraint, the minimization problem
admits no minimizer. All these arguments are made precise
and formally proved in the appendix.

For the other side of the phase transition, δ > δ∞, the
following idea is used, which exhibits a similarly serendip-
itous phenomenon. Here we must show that (5) admits a
minimizer. This is typically obtained by showing that the
objective function is coercive (i.e., has bounded level sets):
that any v, a satisfying the constraint such that L(a, v) ≤ ξ
for some ξ ∈ R must satisfy |a| + ∥v∥ ≤ C(ξ) for some
constant C(ξ). We break the problem by breaking v into
two parts, v = ṽ + (v − ṽ) where

ṽ = −aU +


(aU + v)− under Ω↗(Y )

(aU + v)+ under Ω↘(Y )

0 under Ω∨(Y )

so that (a, ṽ) ∈ C for all (a, v) ∈ R × H. Here, aU + ṽ
is the additive part of aU + v that satisfies the constraints
in the definition of C and carries a risk of generating a ray
along which the objective function is decreasing (as for p∗
in the previous paragraph). On the other hand, the other
additive part v − ṽ can be bounded using the one-sided
coercivity of ℓY in Ω↗(Y ) or Ω↘(Y ), and the two-sided
coercivity under Ω∨(Y ) (this is made precise and formally
proved in the appendix, see Lemma E.2). To bound ṽ (or
directly v) after having controlled v − ṽ, we establish using
the properties of p∗ the inequality

∥v∥(
√

1− δ−1 − ∥p∗∥) ≤ E[v(G− p∗)]

≤ E[(ṽ − v)(p∗ −G)],

see (27) in the appendix. The factor (
√
1− δ−1 − ∥p∗∥) in

the left-hand side is positive only on the side δ > δ∞ of the
phase transition, which serendipitously lets us prove that
∥v∥ is in turn bounded, that the objective function is (5) is
coercive, that (5) consequently admits a minimizer, and by
the equivalence in Theorem 3.1 that the system (5) admits a
solution. This strategy is made precise and formally proved
in Appendix E.
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Figure 3. Count of instances where the minimizer in (1) exists for varying p/n and signal strength κ. Simulation parameter: n = 1000,
20 repetitions, yi | xi ∼ satisfies the binomial model Binomial(q, pi) as in (9).

4. Numerical Simulation
We generate the covariates (xi)

n
i=1

iid∼N(0p, Ip) and re-
sponses yi | xi according to the Poisson model

∀k ∈ N, P
(
yi = k | xi

)
=

λk
i

k!
exp(−λi), (8)

where λi = exp(−κe⊤1 xi). Here, e1 is the first canoni-
cal basis vector, and κ ≥ 0 is the signal strength. We fix
n = 1000 and for varying values of (p/n, κ), we gener-
ate 20 datasets of (xi, yi)

n
i=1. For each dataset (xi, yi)

n
i=1,

we solve the optimization problem infb∈Rp

∑n
i=1 ℓyi(x

⊤
i b)

using the Poisson loss ℓyi(t) = exp(t) − yit and record
whether a minimizer exists using linear programming. In
Figure 2, we normalize the count of instances where a min-
imizer exists by dividing by 20, with the black points in-
dicating higher rates of existence. Additionally, we plot
the theoretical threshold 1/δ∞ defined in (4) and compare
it with the empirical result. The theoretical threshold ef-
fectively separates the two regions, delineating where the
M-estimator exists and where it does not.

Next, generate yi|xi according to the Binomial distribution

∀k ∈ [q], P(yi = k|xi) =

(
q

k

)
pki (1− pi)

q−k, (9)

where pi =
1

1+exp(−κe⊤
1 xi)

. Here, q ∈ {1, 2, . . . } = N is
the number of measurement, a hyperparameter to be spec-
ified. Given the data set (xi, yi)

n
i=1, we solve the opti-

mization problem infb∈Rp

∑n
i=1 ℓyi(x

⊤
i b) using the loss

ℓy(t) = q log(1+exp(t))−yt; in other words, we compute
the corresponding MLE. Similarly to Figure 2, Figure 3
plots the count of instances where a minimizer exists in (1)
along with the theoretical threshold 1/δ∞ for each hyper-
parameter q ∈ {1, 2, 4, 8, 16}. When q = 1, the simulation
setting is reduced to the Binary logistic regression, thereby
recovering the figure in (Candès & Sur, 2020). The result for
q ≥ 2 is new, and we observe that the generalized threshold
(4) predicts well the existence of the MLE.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Derivation of threshold from convex geometry
Define δ∞ ∈ (0,+∞] as

1/δ∞ := inf
t∈R

φ(t)

where φ : R → R is the convex function defined as

φ(t) := E
[
(G+ Ut)2I{Ω∨(Y )}

]
+ E

[
(G+ Ut)2+I{Ω↗(Y )}

]
+ E

[
(G+ Ut)2−I{Ω↘(Y )}

]
.

Here Ω∨,Ω↗,Ω↘ are σ(Y )-measurable events defined in (3). We denote by H the Hilbert space which consists of
measurable function of (G, Y, U) with finite second moments. Let C ⊂ R×H be the cone defined as

(t, p) ∈ C ⇔ tU + p


≤ 0 under Ω↗(Y )

= 0 under Ω∨(Y )

≥ 0 under Ω↘(Y )

(10)

Lemma A.1. The threshold δ∞ can be represented as

δ−1
∞ = inf

t∈R
φ(t) = inf

t∈R
E[(G− p(t))2] = inf

(t,p)∈C
E[(G− p)2]

where (t, p(t)) ∈ C for all t ∈ R and p(t) is given by

p(t) := −tU +


0 under Ω∨(Y )

(G+ Ut)− under Ω↗(Y )

(G+ Ut)+ under Ω↘(Y ).

Suppose that the law of (U, Y ) satisfies

E
[
U2

(
I{Ω∨(Y )}+ I{Ω↘(Y ), U > 0}+ I{Ω↗(Y ), U < 0}

)]
> 0,

E
[
U2

(
I{Ω∨(Y )}+ I{Ω↘(Y ), U < 0}+ I{Ω↗(Y ), U > 0}

)]
> 0.

(11)

Then the map φ is coercive, i.e., lim|t|→+∞ φ(t) = +∞ and inft∈R φ(t) admits a minimizer t∗ ∈ R. Furthermore, the
optimal p∗ = p(t∗) ∈ H satisfies

E[p2∗] = E[p∗G], ∥p∗∥ =
√
1− δ−1

∞ .

Proof. Fix t ∈ R. By the definition of the cone C and φ, it easily follows that

inf
p∈H:(t,p)∈C

E[(G− p)2] = E[(G− p(t))2] = φ(t)

This proves the representation inft∈R φ(t) = inf(t,p)∈C E[(G− p)2] = inft∈R E[(G− p(t))2].

Next, let us show that the map φ : R → R

φ(t) = E
[
(G+ Ut)2I{Ω∨(Y )}

]
+ E

[
(G+ Ut)2+I{Ω↗(Y )}

]
+ E

[
(G+ Ut)2−I{Ω↘(Y )}

]
is coercive. Since t 7→ φ(t) is convex, it suffices to show the coercivity, i.e., lim|t|→+∞ φ(t) = +∞. For the first term,
expanding the square of (G+ Ut)2, it immediately follows that

E[(G+ Ut)2I{Ω∨(Y )}] = t2 E[U2I{Ω∨(Y )}] +O(t)

For the second term E[(G+ Ut)2+I{Ω↗(Y )}],

E[(G+ Ut)2+I{Ω↗(Y )}] = E[(G+ Ut)2I{Ω↗(Y ), G+ Ut > 0}]
= t2 E[U2I{Ω↗(Y )}I{G+ Ut > 0}] +O(|t|)

9
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as |t| → +∞. By E[U2] = 1 < +∞, the dominated convergence theorem implies

E[U2I{Ω↗(Y )}I{G+ Ut > 0}] = E[U2I{Ω↗(Y )}I{G+ Ut > 0, U > 0}]
+ E[U2I{Ω↗(Y )}I{G+ Ut > 0, U < 0}]

→

{
E[U2I{Ω↗(Y ), U > 0}] t → +∞
E[U2I{Ω↗(Y ), U < 0}] t → −∞

Thus,

1

t2
E[(G+ Ut)2+I{Ω↗(Y )} →

{
E[U2I{Ω↗(Y ), U > 0}] t → +∞
E[U2I{Ω↗(Y ), U < 0}] t → −∞

By the same argument, we have

1

t2
E[(G+ Ut)2−I{Ω↘(Y )}] →

{
E[U2I{Ω↘(Y ), U < 0}] t → +∞
E[U2I{Ω↘(Y ), U > 0}] t → −∞

Putting them together, we obtain

φ(t)

t2
→

{
E[U2I{Ω∨(Y )}] + E[U2I{Ω↗(Y ), U > 0}] + E[U2I{Ω↘(Y ), U < 0}] t → +∞
E[U2I{Ω∨(Y )}] + E[U2I{Ω↗(Y ), U < 0}] + E[U2I{Ω↘(Y ), U > 0}] t → −∞

.

Since the limit is strictly positive by the condition (11), the map t 7→ φ(t) is coercive, and hence inft∈R φ(t) is attained at
some t = t∗ ∈ R.

Finally, we prove E[p2∗] = E[p∗G] and ∥p∗∥ =
√
1− δ−1

∞ . The stationary condition of φ′(t∗) = 0 gives

0 = 2E[(G+ Ut∗)UI{Ω∨(Y )}] + 2E[(G+ Ut∗)+UI{Ω↗(Y )}] + 2E[(G+ Ut∗)−UI{Ω↘(Y )}]
= 2E[(G− p∗)U ]

where
p∗ := p(t∗) = −t∗U + (G+ Ut∗)−I{Ω↗(Y )}+ (G+ Ut∗)+I{Ω↘(Y )}

Here, E[GU ] = 0 since G and U are independent standard normal. Thus, the last equation gives E[p∗U ] = 0. Then, we
have

E[p2∗] = −t2∗ + t2∗ + E[p2∗] + 2t∗ E[p∗U ] E[p∗U ] = 0

= −t2∗ + E[(p∗ + Ut∗)
2]

= −t2∗ + E
[
I{Ω↗(Y )}(G+ Ut∗)

2
−

]
+ E

[
I{Ω↘(Y )}(G+ Ut∗)

2
+

]
,

E[p∗G] = E[(p∗ + Ut∗)G] E[UG] = 0

= E[(t∗U +G)−GI{Ω↗(Y )}] + E[(t∗U +G)+GI{Ω↘(Y )}]

By (G+ t∗U)2± = (G+ t∗U)±(G+ t∗U) and the definition of p∗, we get

E[p2∗]− E[p∗G]

= −t2∗ + E[(t∗U +G)−t∗UI{Ω↗(Y )}] + E[(t∗U +G)+t∗UI{Ω↘(Y )}]

= −t2∗ + t∗ E
[
U
(
(G+ Ut∗)−I{Ω↗(Y )}+ (G+ Ut∗)+I{Ω↘(Y )}

)]
= −t2∗ + t∗ E[U(t∗U + p∗)] by the definition of p∗
= −t2∗ + t2∗ + 0 E[U2] = 1, E[Up∗] = 0

= 0.

The equation ∥p∗∥ =
√

1− δ−1
∞ follows from ∥p∗∥2 = E[p∗G] and δ−1

∞ = E[(G− p∗)
2].
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A.1. Proof of Theorem 2.6

Lemma A.2. Suppose that ℓyi is strictly convex, C1, and infu ℓyi(u) is finite. Then the M-estimator does not exist if and
only if

∃b∗ ∈ Rp \ {0} such that

∀i ∈ [n], x⊤
i b∗


≥ 0 under Ω↘(yi)

= 0 under Ω∨(yi)

≤ 0 under Ω↗(yi)

 (12)

Proof. (12) holds ⇒ M-estimator does not exist:. Let L(b) :=
∑n

i=1 ℓyi
(x⊤

i b) be the objective function. Suppose there
exists b∗ ∈ Rp \ {0p} such that (12) is satisfied. Then, the map R≥0 ∋ t 7→ L(tb∗) is uniformly bounded by

∑n
i=1 ℓyi

(0).
For all b ∈ Rp, let bν be the convex combination

bν = (1− 1/ν)b+ (1/ν)(νb∗), ν > 1.

Note bν → b+ b∗ as ν → +∞. By the convexity of L(b) and uniform bound supt≥0 L(tb∗) ≤
∑

i=1 ℓyi
(0), we have

L(bν) ≤ (1− 1/ν)L(b∗) + (1/ν)L(νb∗) ≤ (1− 1/ν)L(b∗) + (1/ν)
n∑

i=1

ℓyi
(0)

Taking ν → +∞, the RHS converges to L(b∗), while the LHS converges to L(b + b∗) by the continuity of L(·) and
bν → b+ b∗, so we are left with

L(b+ b∗) ≤ L(b), ∀b ∈ Rp.

Now we suppose that the M-estimator b̂ ∈ argminb∈Rp L(b) exists. Setting b = b̂ in the above display, since b∗ ̸= 0p, we
know that b̃ := b∗ + b̂ is also a minimizer with b̃ ̸= b̂. For all t ∈ (0, 1), by the convexity of L(·), we have

L(tb̂+ (1− t)b̃) ≤ tL(b̂) + (1− t)L(b̂)

Since b̂ and b̃ minimize L, this holds in equality. With L(b) =
∑

i ℓyi
(x⊤

i b) and by the convexity of ℓyi
, the equality

condition reads to
∀i ∈ [n], ℓyi

(tx⊤
i b̂+ (1− t)x⊤

i b̃) = tℓyi
(x⊤

i b̂) + (1− t)ℓyi
(x⊤

i b̃)

for all t ∈ (0, 1). By the strict convexity of ℓyi , we must have x⊤
i b̂ = x⊤

i b̃ for all i ∈ [n], i.e., b̂− b̃ ∈ Ker(X). However,
since X ∈ Rn×p has iid N(0, 1) entry, X is an n× p matrix with rank(X) = p < n. This implies Ker(X) = {0p} and
b̂− b̃ = 0p, which is a contradiction with b̂ ̸= b̃. Thus, if (12) holds then the M-estimator does not exist.

M-estimator does not exist ⇒ (12) holds: Suppose that the M-estimator does not exist. Then, there exists a sequence
(bk)

∞
k=1 such that as k → +∞, we have L(bk) → infb∈Rp L(b) and ∥bk∥ → +∞. By the compactness of the unit sphere in

Rp, we can extract a subsequence (b′k)
∞
k=1 of (bk)∞k=1 such that b′k/∥b′k∥ → v for a unit sphere vector v ∈ Rp. Therefore,

we can assume without loss of generality that bk/∥bk∥ converges to a unit sphere vector v.

We proceed by contradiction; suppose (12) is not satisfied. Then we can find an index i = i(v) ∈ [n] associated with the
unit sphere vector v such that

x⊤
i v


< 0 under Ω↘(yi)

̸= 0 under Ω∨(yi)

> 0 under Ω↗(yi)

If Ω↘(yi), or Ω↗(yi), then the derivative of t 7→ ℓyi
(tx⊤

i v) is positive for all t ≥ 1. If Ω∨, it is not necessarily positive
right away at t = 1, but eventually positive for t large enough, say some t∗: for any t > t∗, the derivative of t 7→ ℓi(tx

⊤
i v)

is positive. Call this derivative at t∗, say A = x⊤
i vℓ

′
yi
(t∗x

⊤
i v) and A > 0.

Let vk = bk/∥bk∥ so that x⊤
i vk → x⊤

i v . Since ℓyi is C1, for k large enough we have that the derivative of t 7→ ℓyi(tx
⊤
i vk)

at t∗ is larger than A/2. Call this derivative Ak = x⊤
i vkℓ

′
yi
(t∗x

⊤
i vk) so that Ak > A/2 > 0.

11
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By the convexity of t 7→ ℓyi
(tx⊤

i vk), we have

ℓyi
(x⊤

i bk) = ℓyi
(∥bk∥2x⊤

i vk) ≥ ℓyi
(t∗x

⊤
i vk) + (∥b∥k − t∗)Ak ≥ ℓyi

(t∗x
⊤
i vk) + (∥bk∥ − t∗)A/2.

This gives

L(bk) =

n∑
j=1

ℓyj
(x⊤

j bk) ≥
∑
j ̸=i

inf
u

ℓyj
(u) + ℓyi

(t∗x
⊤
i vk) + (∥bk∥ − t∗)A,

where the RHS goes to ∞ since ∥bk∥ → +∞ and A > 0. This is a contradiction with L(bk) → infb L(b) < +∞. Thus, if
the M-estimator does not exist then (12) holds.

Proof of Theorem 2.6. By the rotational invariance of xi ∼ N(0p, Ip), we can assume without loss of generality that yi
depend on xi = (xi1, xi2, . . . , xip) ∈ Rp through its first coordinate xi1, i.e.,

(yi, xi1) ⊥⊥ (xi2, · · ·xip). (13)

By Lemma A.2 the M-estimator does not exist if and only if

Span
(
Xe2, . . . , Xep

)
∩ C

(
Xe1,y

)
̸= {0n},

where ei(i = 1, 2, . . . , p) are canonical basis vector in Rp and C
(
Xe1,y

)
is the cone in Rn defined as follows:

∀u,y ∈ Rn, p ∈ C(u,y) ⇔ ∃t ∈ R such that

∀i ∈ [n], tui + pi =


≥ 0 under Ω↘(yi)

= 0 under Ω∨(yi)

≤ 0 under Ω↗(yi)

 .

Here, Span
(
Xe2, . . . , Xep

)
is the linear space spanned by the (p− 1) vectors (Xei)

p
i=2, which is a rotationally invariant

random subspace in Rn with dimension p− 1 since Xei are independent standard normal. Furthermore, (13) implies that
Span

(
Xe2, . . . , Xep

)
is independent of the cone C(Xe1,y). Below, we write Xe1 = u for simplicity. Then, by Theorem

I of Amelunxen et al. (2014) we have that for η ∈ (0, 1/2), conditionally on u,y,

p− 1 + stat.dim(C(u,y)) ≥ n+ n1/2+η ⇒ P(M-estimator exists | u,y) → 0,

p− 1 + stat.dim(C(u,y)) ≤ n− n1/2+η ⇒ P(M-estimator exists | u,y) → 1
(14)

almost everywhere. Here stat.dim(C(u,y)) is the statistical dimension of the cone given by

stat.dim(C(u,y)) = n− E[dist(g, C(u,y))2 | Xe1,y] with g ∼ N(0n, In),

where the expectation is taken with respect to g, which is independent of (u,y). Substituting this to (14) with η set to 1/4,
we get

p− 1 ≥ E[dist(g, C(u,y))2 | u,y] + n3/4 ⇒ P(M-estimator exists | u,y) → 0

p− 1 ≤ E[dist(g, C(u,y))2 | u,y]− n3/4 ⇒ P(M-estimator exists | u,y) → 1

With p/n → δ−1, if we prove the convergence

n−1 E[dist(g, C(u,y))2 | u,y] →p δ−1
∞

then we complete the proof. Below we prove this. Recall u = Xe1 so that (u,y) = (ui, yi)
n
i=1

iid∼(U, Y ). By the explicit
gradient identities (B.7)-(B.9) in (Amelunxen et al., 2014), the Euclidean norm of the gradient of g 7→ dist(g, C)2 is bounded
by 2∥g∥2. Thus, conditionally on u,y, the Gaussian Poincaré inequality (cf. Theorem 3.20(Boucheron et al., 2013)) yields

E[dist(g, C(u,y))2|u,y] = dist(g, C(u,y))2 +OP (
√
n).

12
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Here dist(g, C(u,y))2 = infp∈C(u,y) ∥g − p∥2 is equal to the optimal value of

inf
(t,p)∈R×Rn

n∑
i=1

(gi − pi)
2 subject to

∀i ∈ [n], tui + pi =


≥ 0 under Ω↘(yi)

= 0 under Ω∨(yi)

≤ 0 under Ω↗(yi)


For each t, we can solve the minimization with respect to p ∈ Rn. The optimal p = p(t) is given by

pi(t) = −tui +


(gi + uit)+ under Ω↘(yi)

0 under Ω∨(yi)

(gi + uit)− under Ω↗(yi).

Therefore, 1
n dist(g, C(u,y))2 can be written as

1

n
dist(g, C(u,y))2 =

1

n
inf
t∈R

n∑
i=1

(tui + gi)
2
−I{Ω↘(yi)}+ (tui + gi)

2I{Ω∨(yi)}+ (tui + gi)
2
+I{Ω↗(yi)}

= inf
t∈R

φn(t),

where

φn(t) :=
1

n

n∑
i=1

(tui + gi)
2
−I{Ω↘(yi)}+ (tui + gi)

2I{Ω∨(yi)}+ (tui + gi)
2
+I{Ω↗(yi)}.

Notice that φn(t) is a random and convex function, and by the law of large number,

φn(t) →p φ(t) = E[(tU +G)2−I{Ω↘(Y )}] + E[(tU +G)2I{Ω∨(Y )}] + E[(tU +G)2+I{Ω↗(Y )}]

for each t ∈ R. By Lemma A.1, we have
δ−1
∞ = inf

t∈R
φ(t),

and φ(t) is coercive, i.e., lim|t|→+∞ φ(t) = +∞. Then, inft∈R φ(t) can be reduced to mint∈K φ(t) for a compact set
K ⊂ R, and if a convex function converges point-wisely then it converges uniformly over any compact set. This provides
inf∈R φn(t) →P inft∈R φ(t) = δ−1

∞ and completes the proof.

B. Set up for infinite-dimensional optimization problem
Lemma B.1. Suppose that ℓY : R → R is a proper lower semicontinuous convex function. Then the map

L : R×H → R ∪ {+∞}, (a, v) 7→

{
E[ℓY (aU + v)] if E[|ℓY (aU + v)|] < +∞
+∞ otherwise

is again a proper lower semicontinuous convex function. Furthermore, for all (a, v) ∈ domL, the subderivative at (a, v) is
given by

∂aL =
{
E[Uh] : h ∈ ∂ℓY (aU + v)

}
∩ R,

∂vL = ∂ℓY (aU + v) ∩H.

Proof. Proposition 16.63 in Bauschke & Combettes (2017).

Lemma B.2 (Lemma A.1 of Bellec & Koriyama (2023)). Define G : H → R as

G : H → R, v 7→ ∥v∥ − E[vG]√
1− δ−1

.

Then G is convex, Lipschitz, and finite valued. Furthermore, G is Fréchet differentiable at H \ {0} in the sense that
G(v + h) = G(v) + E[∇G(v)h] + o(∥h∥) for all ∥v∥ > 0, where the gradient ∇G(v) is given by

∇G(v) = v

∥v∥
− G√

1− δ−1
.

13
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Lemma B.3 (Existence of Lagrange multiplier). Assume E[|ℓY (G)|] < +∞. Then (a∗, v∗) ∈ domL solves the constrained
optimization problem:

min
(a,v)∈R×H

L(a, v) subject to G(v) ≤ 0

if and only if there exists an associated Lagrange multiplier µ∗ ≥ 0 such that the KKT condition below is satisfied:

−µ∗∂G(v∗) ∩ ∂vL(a∗, v∗) ̸= ∅, 0 ∈ ∂aL(a∗, v∗), µ∗G(v∗) = 0, G(v∗) ≤ 0. (15)

Now we further assume that

• E[| infu ℓY (u)|] < +∞.

• ℓY is strictly convex.

• P(Ω↘) + P(Ω↗) > 0 and ℓY (·) is not constant with probability 1.

• There exists a positive constant b and a positive random variable D(Y ) such that under Ω∨,

ℓY (u) ≥ b−1|u| −D(Y ), ∀u ∈ R

with E[D(Y )2I{Ω∨}] < +∞.

Then, the Lagrange multiplier is always strictly positive µ∗ > 0 and the constraint is binding, i.e., G(v∗) = 0.

Proof. First we verify Slater’s condition:

lev≤0 G ⊆ int domG, domL ∩ lev<0 G ̸= ∅.

Since G(v) = ∥v∥ −E[vG]/
√
1− δ−1 is finite valued the first condition lev≤0 G ⊆ int domG immediately follows. As for

the second condition, (a, v) = (0, G) satisfies G(G) = 1−(1−δ−1)−1/2 < 0 and |L(a, v)| = |E[ℓY (G)]| ≤ E[|ℓY (G)|] <
+∞ by the assumption. Therefore, the objective function and the constraint (L,G) satisfy Slater’s condition. With Slater’
condition, the “if and only if ” part follows from Proposition 27.21 of Bauschke & Combettes (2017).

Let us show µ∗ > 0. Suppose µ∗ = 0. Then, (a∗, v∗) solves min(a,v) E[ℓY (aU + v)]. Now, for any n ∈ N, define vn ∈ H
as

vn =


uminI{ℓY (umin) ≤ n} under Ω∨

−n under Ω↗

n under Ω↘

where umin ∈ argminu∈R ℓY (u)

Note that vn is in H since the coercivity assumption implies that under the event Ω∨,

|umin|I{ℓY (umin) ≤ n} ≤ b(n+D(Y ))I{ℓY (umin) ≤ n}

and the RHS has a finite second moment under Ω∨ by the moment assumption on D(Y ). Evaluating the objective function
L at (a, v) = (0, vn), by the optimality of (a∗, v∗), we are left with

E[ℓY (a∗U + v∗)] ≤ E[ℓY (0 · U + vn)]

= E[ℓY (umin)I{ℓY (umin) ≤ n}I{Ω∨}]
+ E[ℓY (0)I{ℓY (umin) > n}I{Ω∨}]
+ E[ℓY (−n)I{Ω↗}]
+ E[ℓY (n)I{Ω↘}].

Note that each integrand on RHS is uniformly bounded by | infu ℓY (u)|+ |ℓY (0)|, where | infu ℓY (u)| and |ℓY (0)| have
finite moments by the assumption and Lemma B.4. Thus, by the dominated convergence theorem, taking the limit n → +∞,
we obtain

E[ℓY (a∗U + v∗)] ≤ E[min
u

ℓY (u)I{Ω∨}] + 0 + E[inf
u

ℓY (u)I{Ω↗}] + E[inf
u

ℓY (u)I{Ω↘}]

= E[inf
u

ℓY (u)]

14
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and E[ℓY (a∗U + v∗)− infu ℓY (u)] ≤ 0. Since the integrand ℓY (a∗U + v∗)− infu ℓY (u) is non-negative, we get

ℓY (a∗U + v∗) = inf
u

ℓY (u)

with probability 1. Let us consider the event Ω↗. By the strict convexity of ℓY (·), under the event Ω↗, we have always
ℓY (x) > limt→+∞ ℓY (−t) = infu ℓY (u) for all x. This means that ℓY (a∗U + v∗) = infu ℓY (u) cannot occur under Ω↗,
and hence P(Ω↗) = 0. By the same argument, we get P(Ω↘) = 0. This is a contradiction with P(Ω↗) + P(Ω↘) > 0, so
we must have µ∗ > 0.

Lemma B.4. Suppose E[ℓY (G)+] < +∞ and E[infu ℓY (u)−] > −∞ where G ∼ N(0, 1) independent of Y . Then,
E[|ℓY (0)|] < +∞.

Proof. Note
|ℓY (0)| ≤ max(−(inf

u
ℓY (u))−, ℓY (0)+) ≤ −(inf

u
ℓY (u))− + ℓY (0)+

and the RHS has a finite moment by the assumption and Jensen’s inequality E[ℓY (0)+] = E[ℓY (E[G])+] ≤ E[ℓY (G)+] <
+∞. Here we have used the fact that u 7→ (ℓY (u))+ is convex and G ∼ N(0, 1) is independent of Y .

C. Equivalence between nonlinear system and infinite-dimensional optimization problem:
Theorem 3.1

Lemma C.1. Suppose E[| infu ℓY (u)|] < +∞ and E[|ℓY (G)] < +∞. Then for any a, σ, γ ∈ R × R>0 × R>0,
prox[γℓY ](aU + σG) ∈ H.

Proof. Denote prox[γℓY ](aU + σG) by p∗. Since p∗ minimizes u 7→ 1
2γ (aU + σG − u)2 + ℓY (u), we have the upper

estimate
1

2γ
(aU + σG− p∗)

2 + ℓY (p∗) ≤
1

2γ
(aU + σG)2 + ℓY (0).

With ℓY (p) ≥ infu ℓY (u), this implies

(aU + σG− p∗)
2 ≤ (aU + σG)2 + 2γ(ℓY (0)− inf

u
ℓY (u)),

where the RHS has a finite moment. This means aU + σG− p∗ ∈ H and p∗ ∈ H.

Lemma C.2. Suppose (a∗, v∗) ∈ R×H solves the optimization problem with ∥v∗∥ > 0. Let us take a Lagrange multiplier
µ∗ > 0 satisfying the KKT condition (15). Define the positive scalar (γ∗, σ∗) ∈ R2

>0 by

σ∗ =
∥v∗∥√
1− δ−1

, γ∗ =
σ∗

√
1− δ−1

µ∗
.

Then v∗ takes the form of
v∗ = prox[γ∗ℓY ](a∗U + σ∗G)− a∗U

and (a∗, σ∗, γ∗) solves the nonlinear system of equations:

γ−2δ−1σ2 = E[ℓ′Y (prox[γℓY ](aU + σG))2] (16)
0 = E[Uℓ′Y (prox[γℓY ](aU + σG))] (17)

σ(1− δ−1) = E[Gprox[γℓY ](aU + σG)] (18)

Proof. The map v 7→ G(v) is Fréchet differentiable at v = v∗ ̸= 0 with ∇G(v∗) = v∗
∥v∗∥ − G√

1−δ−1
(Lemma B.2), while the

constraint is binding G(v∗) = 0 (Lemma B.3). Thus, we have

−µ∗∇G(v∗) = −µ∗

( v∗
∥v∗∥

− G√
1− δ−1

)
∈ ∂vL(a∗, v∗), 0 ∈ ∂aL(a∗, v∗), G(v∗) = 0,

15
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By the definition of (σ∗, γ∗), the condition −µ∗∇G(v∗) ∈ ∂vL(a∗, v∗) yields

∂vL(a∗, v∗) ∋ −(v∗ − σ∗G)/γ∗

This means that v∗ also minimizes the map

H ∋ v 7→ L(v) + E
[ (σ∗G− v)2

2γ∗

]
= E

[
ℓY (a∗U + v) +

(σ∗G− v)2

2γ∗

]
.

Since prox[γ∗ℓY ](a∗U + σ∗G)− a∗U minimizes the integrand and belongs to H by Lemma C.1, we have

v∗ = prox[γ∗ℓY ](a∗U + σ∗G)− a∗U ∈ H.

With σG− v∗ = γℓ′Y (v∗ + a∗U), this also gives ℓ′Y (v∗ + a∗U) ∈ H. This in particular means E[Uℓ′Y (a∗U + v∗)] ∈ R.
With ∂aL(a, v) = {E[Uℓ′Y (aU + v)]} ∩ R, the condition 0 ∈ ∂aL(a∗, v∗) provides

0 = E[Uℓ′Y (a∗U + v∗)].

With v∗ = prox[γ∗ℓY ](a∗U + σ∗G) − a∗U , we get (17). As for (16) and (18), rearranging σ∗ = ∥v∗∥/
√
1− δ−1 and

G(v∗) = ∥v∗∥ − E[v∗G]/
√
1− δ−1 = 0 yields

∥σ∗G− v∗∥2 = σ2
∗ − 2σ∗ E[v∗G] + ∥v∗∥2

= σ2
∗ − 2σ2

∗(1− δ−1) + σ2
∗(1− δ−1)

= δ−1σ2
∗,

E[G(v∗ + a∗U)] = σ∗(1− δ−1) + 0.

Substituting v∗ = prox[γ∗ℓY ](a∗U + σ∗G) − a∗U to these two equations, we obtain (16) and (18). This completes the
proof.

Lemma C.3. Suppose (a∗, σ∗, γ∗) ∈ R× R2
>0 solves the nonlinear system (16)-(18). Then, (a∗, v∗) ∈ R×H with

v∗ = prox[γ∗ℓY ](a∗U + σ∗G)− a∗U ∈ H

solves the infinite dimensional optimization problem with ∥v∗∥ = σ∗
√
1− δ−1 > 0, and the KKT condition (15) is satisfied

by the Lagrange multiplier µ∗ = σ∗
√
1− δ−1/γ∗ > 0

Proof. We know from Lemma C.1 that v∗ ∈ H and σG− v∗ = γℓ′Y (v∗ + a∗U) ∈ H. In this case the subderivaitve of L at
(a∗, v∗) is

∂aL(a∗, v∗) = {E[Uℓ′Y (a∗ + v∗)]}, ∂vL(a∗, v∗) = {ℓ′Y (a∗ + v∗)}.
Noting E[UG] = 0, the nonlinear system can be written as

δ−1σ2
∗ = E[(σG− v∗)

2]

0 = E[Uℓ′Y (a∗U + v∗)]

σ∗(1− δ−1) = E[Gv∗].

Here, the second equation gives
0 ∈ ∂aL(a∗, v∗).

Rearranging the first and the third equations, we have

∥v∗∥2 = (1− δ−1)σ2
∗, E[v∗G] = σ∗(1− δ−1).

This implies ∥v∗∥ > 0 and G(v∗) = 0. Since ∥v∗∥ > 0, G is differentiable at v∗. The derivative formula gives

−∥v∗∥
γ∗

· ∇G(v∗) = −∥v∗∥
γ∗

( v∗
∥v∗∥

− G√
1− δ−1

)
=

σ∗G− v∗
γ∗

= ℓ′Y (a∗U + σ∗G) ∈ ∂vL(a∗, v∗)

Therefore, (a∗, v∗) satisfies the KKT condition (15) with the Lagrange multiplier µ∗ = ∥v∗∥
γ > 0, and (a∗, v∗) solves the

constrained optimization problem.
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D. Non-degeneracy and uniqueness
D.1. Proof of Lemma 3.2

The argument in this proof is inspired by the proof of Lemma 2.6] in (Bellec & Koriyama, 2023). Suppose v∗ = 0. Let
µ∗ > 0 be the associated Lagrange multiplier satisfying the KKT condition (15) so that v∗ = 0 solves the unconstrained
optimization problem minv∈H L(a∗, v) + µ∗G(v). With G(0) = 0, this gives

E[ℓY (a∗U)] ≤ E[ℓY (a∗U + v)] + µ∗
(
∥v∥ − E[vG]/

√
1− δ−1

)
for all v ∈ H. Multiplying the both sides by λ :=

√
1− δ−1/µ∗ > 0 and denoting f(·) = λ(ℓY (a∗U + ·)− ℓY (a∗U)), we

have
0 ≤ A(v) := E[f(v)] + E[v2]1/2

√
1− δ−1 − E[vG] for all v ∈ H. (19)

We parametrize v ∈ H as vt = prox[tf ](tG) ∈ H for all t > 0 and show A(vt) < 0 for sufficiently small t > 0. Note that
t−1(tG− vt) ∈ ∂f(vt) implies

−f(vt) = f(0)− f(vt) ≥ t−1(tG− vt)(0− vt) = −Gvt + t−1v2t .

Substituting this to (19), noting that E[vtG] is cancelled out, we have

A(vt) ≤ E[Gvt − t−1v2t ] + E[v2t ]1/2
√
1− δ−1 − E[vtG] ≤ −t · ∥t−1vt∥

(
∥t−1vt∥ −

√
1− δ−1

)
. (20)

Now we identify the limit of ∥vt/t∥ as t → 0+. The Moreau envelope constructed function t 7→ envf (tG, t) =
1
2t (tG− vt)

2 + f(vt) has the derivative

− 1

2t2
(tG− vt)

2 +
1

t
G(tG− vt) =

1

2

[
G2 −

(vt
t

)2]
,

which is increasing in t because the Moreau envelope envf (x, y) is jointly convex in (x, y) ∈ R× R>0 (cf. Lemma D.1 of
Thrampoulidis et al. (2018)). This means that v2t /t

2 is non-increasing in t and has a non-negative limit as t → 0+. By the
monotone convergence theorem, we get

lim
t→0+

∥vt/t∥2 = E[ lim
t→0+

(vt/t)
2] ∈ [0,+∞] (21)

Let us compute the limit vt/t. First, we claim vt → 0. By the optimality of vt = prox[tf ](tG) with f(·) = λ(ℓY (a∗U +
·)− ℓY (a∗U)), we have

1

2t
(tG− vt)

2 + tf(vt) ≤
(tG)2

2t
+ f(0) = tG2 + 0.

This gives
1

2
(tG− vt)

2 ≤ t2G2 − t inf
x

f(x) = t2G2 − t(inf
u

ℓY (u)− ℓY (a∗U))

Since (G, infu ℓY (u), ℓY (a∗U)) are all bounded in ℓ1, they are all finite with probability 1. This provides limt→0+ vt = 0.
Combined with G− vt/t = f ′(vt) = λℓ′Y (a∗U + vt), since ℓY (·) is C1, we get vt/t → G− λℓ′Y (a∗U). Substituting this
limit to (21), we obtain

∥vt/t∥2 → E[(G− λℓ′Y (a∗U))2] ∈ [0,+∞].

Recall that (19) and (20) imply

0 ≤ A(vt)/t ≤ −∥vt/t∥(∥vt/t∥ −
√

1− δ−1), ∀t > 0.

This excludes the case E[(G− λℓ′Y (a∗U))2] = +∞ otherwise the RHS converges to −∞ as t → 0. Thus, we must have
E[(G− λℓ′Y (a∗U))2] < +∞ and ℓ′Y (a∗U) ∈ H. Expanding the square, since G and ℓ′Y (a∗U) is independent, we get

lim
t→+∞

∥vt/t∥2 = 1 + λ2 E[ℓ′Y (a∗U)2].

Substituting this to the upper bound of A(vt)/t,

lim
t→0

−∥vt/t∥(∥vt/t∥ −
√

1− δ−1) = −
√
(1 + λ2 E[ℓ′Y (a∗U)2])(

√
1 + λ2 E[ℓ′Y (a∗U)2]−

√
1− δ−1)

≤ −(1−
√

1− δ−1) < 0,

which implies that there exists a sufficiently small t′ such that A(vt′)/t
′ < 0. This is a contradiction with A(vt)/t ≥ 0 for

all t > 0. Therefore, we must have v∗ ̸= 0.
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D.2. Proof of Lemma 3.3

Suppose that there exists two minimizer (a, v), (a′, v′) ∈ R×H. Let (at, vt) = t(a, v) + (1− t)(a′, v′) for all t ∈ [0, 1].
Then, by the convexity of objective function and constraint, (at, vt) solves the constrained optimization problem. This
implies L(at, vt) = tL(a, v) + (1− t)L(a′, v′) for all t ∈ [0, 1]. With L(a, v) = E[ℓY (aU + v)], we must have

E
[
ℓY (t(aU + v) + (1− t)(a′U + v′))− tℓY (aU + v)− (1− t)ℓY (a

′U + v′)
]
= 0.

By the convexity of ℓY ,

ℓY (t(aU + v) + (1− t)(a′U + v′)) = tℓY (aU + v) + (1− t)ℓY (a
′U + v′)

for all t ∈ [0, 1]. By the strict convexity of ℓY , we must have aU + v = a′U + v′. If a = a′ holds then we have v = v′,
completing the proof of uniqueness. We now show that a = a′. The condition aU + v = a′U + v′ gives

vt = tv + (1− t)v′ = t{v + U(a− a′)}+ (1− t)v′ = v′ + tU(a− a′),

so that E[vtG] = E[v′G] by independence of G and U . Meanwhile, since (at, vt) solves the constrained optimization
problem for all t ∈ [0, 1], the constraint is satisfied in equality ∥vt∥ − E[vtG]/

√
1− δ−1 = 0 for all t ∈ [0, 1] (see

Lemma B.3). Then, t 7→ ∥vt∥ must be constant as well. The polynomial ∥vt∥2 is given

∥vt∥2 = ∥v′ + tU(a− a′)∥2 = ∥v′∥2 + tE[v′U(a− a′)] + t2(a− a′)2.

Since it is constant in t, the quadratic term must be 0, hence (a− a′)2 = 0.

Finally, let us show the uniqueness of Lagrange multiplier. Suppose that there exists two distinct Lagrange multipliers µ∗ ̸=
µ∗∗ ∈ R>0 associated with the minimizer (a∗, v∗). Since the subderivative ∂vL(a∗, v∗) is the singleton {ℓ′Y (a∗U + v∗)} at
the minimizer (a∗, v∗), the KKT conditions

−µ∗∇G(v∗),−µ∗∗∇G(v∗) ∈ ∂vL(a∗, v∗)

lead to
−µ∗∇G(v∗) = −µ∗∗∇G(v∗) = ℓ′Y (a∗U + v∗).

Combined with µ∗ ̸= µ∗∗, this gives ∇G(v∗) = 0 and ℓ′Y (a∗U + v∗) = 0. Here 0 = ∇G(v∗) = v∗/∥v∗∥ −G/
√
1− δ−1

implies v∗ = ∥v∗∥√
1−δ−1

G. Letting σ∗ = ∥v∗∥/
√
1− δ−1 > 0, substituting this to ℓ′Y (a∗U + v∗) = 0, we get

ℓ′Y (a∗U + σ∗G) = 0

Since ℓY is strictly convex, this means P(Ω∨) = 1, which is a contradiction with P(Ω∨) < 1. This completes the proof of
uniqueness of Lagrange multiplier.

E. Proof of the phase transition: Theorem 3.4
Lemma E.1. If δ ≤ δ∞, the optimization problem (5) does not admit any minimizer.

Proof. Let us take (t∗, p∗) ∈ C ⊂ R×H as in Lemma A.1 so that

∥p∗∥ =
√
1− δ−1

∞ , E[p2∗] = E[p∗G].

Substituting this to G(p∗) = ∥p∗∥ − E[p∗G]/
√
1− δ−1, using the condition δ ≤ δ∞, we have

G(p∗) = ∥p∗∥
(
1−

√
1− δ−1

∞√
1− δ−1

)
≤ 0,

i.e., p∗ satisfies the constraint G ≤ 0 under the assumption δ ≤ δ∞.
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Let us fix (a, v) ∈ domL ∩ lev≤0 G so that E[|ℓY (aU + v)|] < +∞ and G(v) ≤ 0. For any ν ≥ 1, consider the convex
combination with coefficients (1− 1/ν) and 1/ν given by

(aν , vν) := (a, v)(1− 1/ν) + (1/ν)(νt∗, νp∗).

Note that (aν , vν) → (a, v) + (t∗, p∗) almost surely as ν → +∞. By the convexity of G, the convex combination (aν , vν)
also satisfies the constraint G(vν) ≤ 0. On the other hand, the convexity of ℓY implies

ℓY (aνU + vν) ≤ (1− 1/ν)ℓY (aU + v) + (1/ν) · ℓY (νt∗U + νp∗).

Here, by the definition of v∗,

ℓY (νt∗U + νp∗) =


ℓY (ν(G+ Ut∗)−) under Ω↗

ℓY (ν(G+ Ut∗)+) under Ω↘

ℓY (0) under Ω∨

and hence ℓY (νt∗U + νt∗) is uniformly upper bounded by ℓY (0) for all ν ≥ 1. We have

ℓY (aνU + vν) ≤ (1− 1/ν)ℓY (aU + v) + (1/ν)ℓY (0). (22)

Taking expectation, we get
L(aν , vν) ≤ (1− 1/ν)L(a, v) + (1/ν)E[ℓY (0)].

Now we consider the limit ν → +∞. The RHS converges to L(a, v) as ν → +∞ since we took (a, ν) ∈ domL and
E[|ℓY (0)|] < +∞ by Lemma B.4. As for the LHS L(aν , vν) = E[ℓY (aνU + vν)], from (22), the integrand is uniformly
bounded as

|ℓY (aνU + vν)| ≤ | inf
u

ℓY (u)|+ |ℓY (aU + v)|+ |ℓY (0)|

where the RHS has a finite expectation. Therefore, by the dominated convergence theorem, we get

lim
ν→+∞

L(aν , vν) = lim
ν→+∞

E[ℓY (aνU + vν)]

= E[ lim
ν→+∞

ℓY (aνU + vν)]

= E[ℓY ((a+ t∗)U + v + p∗)] by (aν , vν) → (a+ t∗, v + p∗) and the continuity of ℓY (·)
= L(a+ t∗, v + p∗).

We have proved that for any (a, v) ∈ domL, the inequality L(a+ t∗, v + p∗) ≤ L(a, v) holds.

Now we suppose that a minimizer (amin, vmin) exists. Then it must be unique by Lemma 3.3. Applying the inequality
L(a+ t∗, v + p∗) ≤ L(a, v) we have established with (a, v) = (amin, vmin), we must have t∗ = p∗ = 0. Substituting this
to the definition of p∗, we are left with

(G)−I{Ω↗(Y )}+ (G)+I{Ω↘(Y )} = 0.

Taking the expectation of this, since G and Y are independent and E[(G)+] = E[(G)−] =
√
2/π > 0, we obtain

P(Ω↗(Y )) + P(Ω↘) = 0, which contradicts the assumption P(Ω∨) = 1 − P(Ω↗(Y )) − P(Ω↘) < 1. Therefore, the
minimizer does not exist.

Lemma E.2. Assume that there exists a positive constant b and positive random variable D(Y ) with E[D(Y )] < +∞ such
that

ℓY (u) ≥ −D(Y ) +
1

b
×


u under Ω↗

−u under Ω↘

|u| under Ω∨

Suppose δ > δ∞. Then for any deterministic ξ > 0, if (a, v) satisfies G(v) ≤ 0 and L(a, v) ≤ ξ, then a+ ∥v∥ ≤ C(ξ) for
some constant depending on ξ. Consequently, the objective function of the minimization problem is coercive and admits a
minimizer (a∗, v∗) by Proposition 11.15 in (Bauschke & Combettes, 2017).
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Proof. By Lemma A.1, δ∞ can be represented as δ−1
∞ = min(t,p)∈C E[(G− p)2], where C ⊂ R×H is the cone defined as

(a, v) ∈ C ⇔ (v + aU)


≤ 0 under Ω↗

≥ 0 under Ω↘

= 0 under Ω∨

and the optimal (t∗, p∗) ∈ argmin(t,p)∈C E[(G− p)2] satisfies

∥p∗∥ =
√

1− δ−1
∞ <

√
1− δ−1, E[p2∗] = E[p∗G] (23)

where we have used δ > δ∞. Now for all (a, v) ∈ R×H, define ṽ ∈ H as

ṽ = −aU +


(aU + v)− under Ω↗

(aU + v)+ under Ω↘

0 under Ω∨

so that (a, ṽ) ∈ C for all (a, v) ∈ R×H. Furthermore,

v − ṽ =


(v + aU)+ under Ω↗

(v + aU)− under Ω↘

v + aU under Ω∨

and consequently ∥v − ṽ∥ ≤ ∥v∥+ |a|

By the condition L(a, v) = E[ℓY (aU + v)] ≤ ξ and the using the variable D(Y ) in Assumption 2.5, we know

|v − ṽ| ≤ D(Y ) + b


ℓY ((v + aU)+) under Ω↗

ℓY ((v + aU)−) under Ω↘

ℓY (v + aU) under Ω∨

= D(Y ) + bℓY (aU + v) + b


ℓY (0)− ℓY (v + aU) if Ω↗ and aU + v ≤ 0

ℓY (0)− ℓY (v + aU) if Ω↘ and aU + v ≥ 0

0 otherwise

≤ D(Y ) + bℓY (aU + v) + b|ℓY (0)− inf
u

ℓY (u)|

so that
E[|v − ṽ|] ≤ bξ + E[D(Y )] + b(E[|ℓY (0)|] + E[| inf

u
ℓY (u)|]) = C(1)(ξ).

By Assumption 2.4, we can take a sufficiently small u0 > 0 such that

Ω+ :=
{
{U > u0} ∩ Ω↗

}
∪
{
{U < −u0} ∩ Ω↘

}
∪
{
{|U | > u0} ∩ Ω∨

}
Ω− :=

{
{U < −u0} ∩ Ω↗

}
∪
{
{U > u0} ∩ Ω↘

}
∪
{
{|U | > u0} ∩ Ω∨

}
have positive probabilities. Let p0 = min(P(Ω−),P(Ω+)) > 0.

Suppose a > 0. Under {U > u0} ∩ Ω↗, it holds that aU + v ≤ bℓY (aU + v) +D(Y ) and hence

au0 ≤ aU ≤ bℓY (aU + v) +D(Y )− v.

Under {U < −u0} ∩ Ω↘, we have −(aU + v) ≤ bℓY (aU + v) +D(Y ) and hence

au0 ≤ a(−U) ≤ bℓY (aU + v) +D(Y ) + v

Finally, under {|U | > u0} ∩ Ω∨, we have |aU + v| ≤ bℓY (aU + v) +D(Y ) + v so that

au0 ≤ a|U | ≤ |aU + v|+ |v| ≤ bℓY (aU + v) +D(Y ) + |v|.
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Phase transitions for the existence of unregularized M-estimators in single index models

Combining them all together,

au0 P(Ω+) ≤ E[I{Ω+}au0]

≤ bE[(ℓY (aU + v) +D(Y ) + |v|)I{Ω+}]
= bE[(ℓY (aU + v)− inf

u
ℓY (u)︸ ︷︷ ︸

≥0

+ inf
u

ℓY (u) +D(Y ) + |v|︸ ︷︷ ︸
≥0

)I{Ω+}]

≤ bE[ℓY (aU + v)− inf
u

ℓY (u)] + E[inf
u

ℓY (u)I{Ω+}] + E[D(Y )] + E[|v|]

= bE[ℓY (aU + v)]− E[inf
u

ℓY (u)I{Ωc
+}] + E[D(Y )] + E[|v|]

≤ bξ + E[| inf
u

ℓY (u)|] + E[D(Y )] + ∥v∥2.

By the same argument, if a < 0, considering the event Ω−, we have

(−a)u0 P(Ω−) ≤ bξ + E[| inf
u

ℓY (u)|] + E[D(Y )] + ∥v∥2.

Combined with min(P(Ω+),P(Ω−)) = p0 > 0, we have that

|a| ≤ (u0p0)
−1

(
ξ + E[| inf

u
ℓY (u)|] + E[D] + ∥v∥2

)
≤ C1(ξ)(1 + ∥v∥2)

With ∥v − ṽ∥ ≤ |a|+ ∥v∥, we obtain

∥v − ṽ∥ ≤ C(2)(ξ)(1 + ∥v∥2). (24)

Now we claim that the Pythagorean inequality

E[(G− p∗)
2] + E[(p∗ − ṽ)2] ≤ E[(G− ṽ)2] (25)

holds. A proof of (25) is as follows. Define for s ∈ [0, 1] the convex combination vs = p∗(1− s) + sṽ and consider the
function

φ(s) = E[(G− vs)
2]− E[(G− p∗)

2]− E[(vs − p∗)
2].

By the definition of vs, it follows that φ(0) = 0. Furthermore, φ(s) is linear in s, as the quadratic term E[v2s ] cancels
out. On the other hand, the optimality of (t∗, p∗) ∈ argmin(t,p)∈C E[(G− p)2] implies that E[(G− p∗)

2] ≤ E[(G− vs)
2].

Combining this with the definition of φ(s), we have φ(s) ≥ −E[(vs − p∗)
2] = −s2 E[(p∗ − ṽ)2]. Since φ(s) is linear in s

and satisfies φ(s) ≥ −O(s2) as s → 0, the slope φ′(0) must be non-negative. This implies 0 = φ(0) ≤ φ(1), which is
exactly inequality (25).

In both sides of (25), E[ṽ2] cancel out, E[G2] = 1 and E[(G− p∗)
2] = 1− ∥p∗∥2 by (23), so that (25) can be rewritten as

−2E[p∗ṽ] ≤ −2E[ṽG], i.e., E[ṽ(p∗ −G)] ≥ 0. (26)

From this, for all v satisfying the constraint G(v) = ∥v∥ − E[vG]/
√
1− δ−1 ≤ 0,(√

1− δ−1 − ∥p∗∥
)
∥v∥ ≤ E[vG]− ∥p∗∥∥v∥ by G(v) = ∥v∥ − E[vG]/

√
1− δ−1 ≤ 0

≤ E[v(G− p∗)] by the Cauchy-Schwarz inequality E[p∗v] ≤ ∥p∗∥∥v∥
≤ E[(ṽ − v)(p∗ −G)] by E[ṽ(p∗ −G)] ≥ 0 in (26). (27)

The parenthesis
√
1− δ−1 − ∥p∗∥ on the left is positive thanks to (23). On the right-hand side, considering the event

I{|p∗ −G| > C} for some constant C > 0 to be specified later, the Cauchy-Schwarz inequality gives

E[(ṽ − v)(p∗ −G)] ≤ C E[|ṽ − v|] + E[I{|p∗ −G| > C}|p∗ −G||ṽ − v|]

≤ C E[|ṽ − v|] +
√
E[I{p∗ −G| ≥ C}|p∗ −G|2] · ∥ṽ − v∥.
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Since p∗ − G is bounded in L2, we can take a sufficiently large C(3)(ϵ) for all ϵ > 0 such that E[I{|p∗ − G| >
C(3)(ϵ)}|p∗ −G|2] ≤ ϵ2. Thus, we have that for all ϵ > 0,(√

1− δ−1 − ∥p∗∥
)
∥v∥ ≤ C(3)(ϵ)E |ṽ − v|+ ϵ∥v − ṽ∥2. (28)

Recall the bound ∥v − ṽ∥ ≤ C(2)(ξ)(1 + ∥v∥) in (24), so if we take a sufficiently small ϵ = ϵ0 such that ϵ0C(2)(ξ) ≤
(
√
1− δ−1 − ∥p∗∥)/2, we obtain

1

2

(√
1− δ−1 − ∥p∗∥

)
∥v∥ ≤ C(ϵ0)E |ṽ − v|+ ϵ0C

(2)(ξ) (29)

Since E |ṽ − v| ≤ C(1)(ξ) was established at the beginning, this completes the proof.
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