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Abstract

We introduce Latent-to-Explanation Likelihood (L2EL), a simple interface that
translates internal activations of a large language model (LLM) into a short natural-
language explanation without changing the underlying LLM. Given a single hidden
representation (e.g., a residual-stream activation at one token and layer), a tiny
mapper produces a continuous “‘soft prompt” that conditions a frozen LLM to
generate an explanation. We train the mapper with weak supervision from sparse
autoencoder (SAE) explanations: for each latent we sample one natural language
feature description among the active SAE features and optimize the soft prompt
such that the LLM emits that description when conditioned on it. At test time,
L2EL supports (i) generation of concise free-form explanations and (ii) probing by
scoring arbitrary hypotheses through their conditional likelihood. This reframes
interpretability as conditional language modeling over explanations, enabling an
open vocabulary and calibration through likelihoods. As a proof-of-concept, we
train L2EL on Gemma-2-2B using GemmaScope SAEs. Our results indicate
that L2EL generates reasonable explanations and can be used to probe hidden
activations using natural language. L2EL preserves the strengths of language
as an expressive medium while requiring only a small learned interface and no
modifications to the LLM.

1 Introduction

Large language models encode rich internal representations that often contain information they do
not directly state. Turning those hidden representations into legible explanations is one of the central
aims of mechanistic interpretability. Recent work has made progress in extracting information from
these hidden representations by using sparse autoencoders (SAEs), which decompose activations into
sparse, more interpretable features [[1H6]. This approach is often insightful, but it is fundamentally
closed-set: SAEs have a fixed learned dictionary of features, which means that the explanation
vocabulary is fixed and any nuance not captured by those features is invisible at inference time.

We take a different route: rather than forcing latents into a finite bank of features, we let the model
describe its own state in natural language. Concretely, we learn a tiny mapper that projects a single
model activation (e.g., a residual-stream activation at one token and layer) into a few continuous
“soft token” embeddings. These soft tokens condition the frozen LLM, which then generates a short
free-form explanation of what is represented in that latent, without any prompt text (see [Figure T.
This preserves the strengths of language as an expressive, open vocabulary while keeping the LLM
unchanged.

To train the mapper, we use SAE feature explanations as a source of weak, scalable supervision: for
each latent, we sample one human-readable description from among the active SAE features and
ask the LLM to produce that description when conditioned on the latent-derived soft prompt. This
simple objective encourages the LLM to learn a conditional distribution over all possible natural
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Figure 1: L2EL overview. A single residual-stream activation h is mapped into m soft token
embeddings. The frozen LLM, conditioned solely on this soft prompt, learns to generate short textual
explanations based on natural language explanations of SAE features. Only the mapper is trained.

language explanations, not over a fixed index set. At test time, the same mechanism supports two
complementary uses: (i) generation: produce a concise explanation of a latent; and (ii) probing:
score arbitrary natural-language hypotheses against a latent by reading off their conditional likelihood
under the LLM.

We formalize this as latent-to-explanation likelihood (L2EL): given a latent vector h, our method
learns a distribution p(e | h) over textual explanations e. L2EL turns interpretability into standard
language modeling conditioned on activations, enabling open-vocabulary explanations, probing with
natural language explanations, and calibration through likelihoods rather than ad hoc thresholds.

2 Method: Latent-to-Explanation Likelihood

Let h € R denote a residual-stream activation from the LLM at a particular token and layer. We
learn a mapper f : R? — R™*? that produces a continuous soft-prompt of m token embeddings
P = f4(h) in the LLM’s input-embedding space. Conditioning the frozen LLM on the soft prompt
P defines an autoregressive distribution over explanations. For an explanation token sequence
€= (el:T)9
T
ple|h) = ple| P=fs(h)) = [[ple:lecs, P),

t=1

which we call the latent-to-explanation likelihood (L2EL). Intuitively, f4 translates an internal
activation into a short soft prompt that steers the model to “speak” what that activation contains,
while the LLM generates tokens autoregressively under this conditioning.

We train the mapper with weak supervision from automatically generated SAE feature explanations
and optimize a masked next-token language-modeling objective conditioned only on the soft prompt.
In particular, for each training context we extract a residual activation h € R4, obtain the SAE
feature activations for this vector, and sample one feature description y from the set of active features
(for our sampling procedure, see Appendix E[) Let y;.7 be the tokenization of y. The mapper fy
produces an m-token soft prefix P = f4(h) € R™* that is prepended to the input of a frozen LLM
with parameters 6. We then minimize the negative log-likelihood of the target tokens under teacher
forcing:

T
mgn L(¢) = Epy|— Z log po(y: ‘ y<t, P = fy(h)) | -
t=1



Only the weights of f4 are trained, the LLM parameters 6 remain fixed. This trains the mapper to
translate activations into a soft prompt that makes the base model likely to emit the sampled SAE
description, thereby learning an open-vocabulary conditional distribution p(e | h).

At test time, we take any context of interest, extract h at the chosen layer and token, form the soft
prompt P = f,(h), and sample an explanation from p(- | P). The same mechanism enables probing:
given an arbitrary hypothesis e, we compute (e | h) and compare scores across model activations
from different dataset examples to test what LLM inputs make the explanation most likely.

3 Experiments

We train L2EL on Gemma-2-2B [7]], which provides both the activation h and the generation
capability; only a small mapper sits between them. We focus on residual-stream activations from layer
10 and use the open-source GemmaScope SAE with a 65k-feature dictionary for weak supervision
[8]. We obtain the natural language explanation for the SAE features from Neuronpedia [9], which
are automatically generated with the method from [[10]. We train the mapper on 200000 sequences of
256 tokens sampled from the Pile-uncopyrighted [11]], totaling 51.2M training tokens.

For each token position we read the corresponding residual vector, compute SAE activations, sample
one human-written feature description among the active labeled features, and treat this text as the
language modeling target. For our mapper, we use a linear model that emits m = 16 soft prompt
embeddings by applying a learned scalar gain and bias to the model activations h for each prefix slot,
ie,fori=1...m,p; =v;h+b; with~; € Rand b; € R?,

3.1 Experiment 1: Generating Explanations

As a first experiment, we test whether the L2EL is able to generate reasonable explanations of latents.
We feed the LLM the following prompt: "My favorite player is LeBron". We then extract the hidden
activation and construct the soft prompt with our mapper. During generation, we prepend the resulting
soft tokens and sample a diverse set of explanations (for more details see[B]). The prompt text is not
provided, so the explanation is conditioned entirely through the soft prefix derived from h.

Table [T] shows that L2EL is able to generate diverse and coherent explanations, even when the top
SAE explanations are not very informative, as there is no “LeBron James" feature in the SAE. We
provide more generated explanations and details on our sampling procedure in Appendix [B]

We can also use L2EL to calculate the likelihood of all of the pre-existing SAE feature explanations
provided conditional on the latent. In Appendix [B| we show that the scoring of L2EL on these
explanations sometimes seems to produce better results than the ordering by the SAE itself.

Table 1: Top activating SAE features and top generated explanations by L2EL on the following
prompt: My favorite player is LeBron

Top explanations by SAE activation

Top generated explanations (L2EL)

specific tokens or markers that indicate impor-
tant elements or categories within the text
technical terms related to web applications and
debugging processes

references to notable individuals or perfor-
mances in sports

technical terms and code-related elements in
programming contexts

specific technical terms and concepts related to
database management and programming

references to the name "LeBron."

names of notable individuals or brands

names associated with the sports industry
mentions of sports superstars and their impact

on popular culture

names or terms related to celebrity culture or
sports figures




Table 2: The dataset examples that make the following explanation most likely:
references to the wizard from Harry Potter

Snippet Average log-prob
.. in Los Angeles, it was the battle of the bespectacled boy wizard -1.905
.. for the first time plotting the start of Dumbledore -1.982
.. Among these friends we call it Harry Potter -1.988
.. that he is then speaking to Aberforth in Halfblood -2.072
.. in Deathly Hallows once the trio arrive in Hogsme -2.159
.. In Order of the Phoenix while the trio were in the Hog -2.158

3.2 Experiment 2: Open-Vocabulary Probing

The second experiment tests the open-vocabulary probing capabilities of L2EL. Instead of restricting
ourselves to SAE labels, we can formulate free-form explanations such as “references to the wizard
from Harry Potter" and evaluate their scores across a held-out corpus. For each token position we
compute log p(e | h) for the chosen explanation and then rank positions by their scores. Inspecting
the top-ranked contexts reveals whether the explanation is genuinely capturing a coherent concept that
the model recognizes in its internal states. Because this explanation is not tied to the SAE dictionary,
success here indicates that L2EL can be used as a general-purpose probe over natural-language
descriptions, even for concepts that an SAE did not learn explicitly. Table 2] shows that indeed all
retrieved examples are related to Harry Potter.

4 Related Work

Our approach is most closely related to prompt/patch—based readouts of hidden states that elicit free-
form text, such as Patchscopes [[12], SelfIE [13]], self-explaining SAE features [14]], and LatentQA
[LS]], as well as to “lens” methods that decode intermediate states into vocabulary distributions,
including the logit lens and tuned lens [[16}[17]. However, unlike these methods, we do not provide
a fixed target inspection prompt at inference time (such as "What does X mean?"). Instead, we
train a lightweight mapper that learns soft prompts such that the LLM itself outputs SAE feature
explanations, without needing finetuning.

Furthermore, our work is related to other prompt-tuning methods learn continuous “soft prompts” that
steer frozen language models for downstream tasks, including prefix-tuning [18]] and prompt tuning
[19]]. Subsequent work improves robustness and scalability, e.g., P-Tuning v2 [20] and cross-task
soft-prompt transfer (SPoT) [21]].

5 Discussion and Limitations

We have presented L2EL as a proof-of-concept that translates model activations into short explana-
tions. Although our results are promising, this work is intended as an initial demonstration of the idea
rather than a mature method, and we emphasize that our experimental evidence is limited in scale
and scope, with no direct comparisons to baselines, benchmarks, or ablations.

Furthermore, this approach comes with important limitations. First of all, the approach depends on
automatically generated SAE feature descriptions that are noisy and inconsistently phrased, which
constrains supervision quality. Secondly, it is currently unclear to what degree L2EL is generalizing
to out-of-distribution hidden activations and explanations, and to what degree it is memorizing the
SAE feature explanations.

Moreover, probing with natural language is sensitive to wording, with small variations in explanation
giving different results. Finally, compared to SAEs, L2EL only provides natural language explanations
of latents and no decomposition into feature vectors. This makes L2EL less suitable for causal
interventions such as steering.
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A Sampling of SAE feature explanations

We want supervision to focus on features that are informative and input-specific. Very high—frequency
SAE features behave like quasi-constants across contexts; if we trained on them, the mapper would
learn to make those generic explanations likely for nearly every input, biasing p(e | h). Likewise,
raw magnitudes are not always comparable across features (different offsets/scales), so selecting by
size alone favors “loud” features rather than those that are unusually strong for the current input. We
therefore (i) filter out very frequent features and (ii) rank candidates by a robust z-score that measures
atypicality relative to each feature’s own variability.

Let the SAE produce post-ReLU activations zP*' € RD, and pre-activations 2P € R”. We estimate
per-feature firing rates on a large activation stream and retain only features with empirical frequency
< 1% (computed over 100,000 tokens). Then, for all features, we also compute the median and
interquartile range (IQR) over the pre-activations and define o; = max(IQR;/1.349,¢) with e =
1076,

During training, for each input we calculate the feature activations, and select the active features

(91:5-0St > 0) that pass the frequency filter, rank them by

pre . )
z; median;

A
keep the top-k (k = 5), and uniformly sample one index. The automatically generated feature
description of this index is then used as the target text.

B Generating Explanations

B.1 Sampling Generations

Given a hidden activation h, we form a soft prefix P = f,(h) and decode explanations autoregres-
sively from pg(e: | e<¢, P) using temperature and nucleus sampling. Concretely, at each step we
divide logits by a temperature 7 and sample from the smallest probability mass whose cumulative
probability exceeds a threshold p (top-p). We use 7 = 1.0, p = 0.9, stop on EOS or at a maximum
length of 32 tokens, and provide no textual prompt, the decoder is conditioned solely on the soft
prompt P.

We draw N = 50 candidates, deduplicate strings, and score each with the average per-token log-
likelihood Zthl log po(et | e<t, P) to reduce length bias. We select a diverse top-k set via greedy
Maximal Marginal Relevance (MMR) on bigram Jaccard similarity: at each step we add the candidate

e that maximizes ~
Blle) — (1—7) ma?g(Jaccardbi(e, e,
e'e

where / is the min-max normalized average log-likelihood over the pool, S is the already selected
set. We use 8 = 0.2.

B.2 Scoring Existing Feature Explanations

L2EL can turn hidden states into an open-vocabulary distribution over explanations, complementing
the closed dictionary of an SAE. However, we can also use it score existing explanations for a prompt.
To see how SAE activations relate to the log-probabilities under L2EL we calculate both values on
the prompt: "The city that owns my heart is Kyoto"

The results are shown in Figure [2] and Table 3] Note that the explanations sorted by L2EL log-
prob seem to be more relevant than the top explanations by SAE activation. For most of the top
explanations by L2EL log-prob, the corresponding SAE activation is zero.



Table 3: Top SAE feature explanations scored by SAE activation and L2EL log-probability on the
following prompt: The city that owns my heart is Kyoto

Top explanations by SAE activation Top explanations by L2EL log-prob

specific tokens or markers that indicate impor- locations and geographical references

tant elements or categories within the text

technical terms and code-related elements in geographical names and locations

programming contexts

terms related to institutions and organizations references to universities and academic institu-
tions

proper nouns related to specific geographic references to locations and places

locations

content related to legal issues and historical references to academic journals

contexts involving immigration or citizenship

Pareto of SAE activation vs. L2EL log-prob
Prompt: 'The city that owns my heart is Kyoto'
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Figure 2: Pareto of SAE activation vs. L2EL likelihood for one prompt. For a single prompt, we
place each labeled SAE feature as a point whose horizontal position reflects how much the feature
fires on that prompt, and whose vertical position reflects the log-probability of this label under L2EL.
The highlighted Pareto frontier contains features that are jointly strong on both axes.



B.3 More Examples of Generated Explanations

Table 4: Top activating SAE features and top generated explanations by L2EL on the following

prompt: This bug smells like an off-by-one error

Top explanations by SAE activation

Top generated explanations (L2EL)

references to errors and error correction in a
technical context

specific tokens or markers that indicate impor-
tant elements or categories within the text

technical terms related to web applications and
debugging processes

terms related to institutions and organizations

references to social or cultural dynamics within
communities

the word "error" in various contexts
terms related to errors or mistakes

references to error handling and debugging
techniques

mentions of errors and their impact
instances of error or errors in the code

Table 5: Top activating SAE features and top generated explanations by L2EL on the following

prompt: The most iconic villain is Darth Vader

Top explanations by SAE activation

Top generated explanations (L2EL)

references to the "Star Wars" franchise, particu-
larly relating to Jedi and Sith characters

specific technical terms and concepts related to
database management and programming
technical terms related to web applications and
debugging processes

specific tokens or markers that indicate impor-
tant elements or categories within the text
technical terms and code-related elements in
programming contexts

references to the character "Vader"

instances of the word "Vader" in different con-
texts

phrases related to invisibility and hiding

mentions of the fictional character Darth Vader

references to characters or concepts from the
Star Wars franchise

Table 6: Top activating SAE features and top generated explanations by L2EL on the following
prompt: The festival I want to attend is Oktoberfest

Top explanations by SAE activation

Top generated explanations (L2EL)

specific tokens or markers that indicate impor-
tant elements or categories within the text

technical terms related to web applications and
debugging processes

specific technical terms and concepts related to
database management and programming

technical terms and code-related elements in
programming contexts
terms related to institutions and organizations

references to festivals or events

terms related to celebrations and events
mentions of "festival" and its variations
the word "festival" indicating a large-scale

event

events and festivals associated with Oktober-
fest
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