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Abstract

We introduce Latent-to-Explanation Likelihood (L2EL), a simple interface that1

translates internal activations of a large language model (LLM) into a short natural-2

language explanation without changing the underlying LLM. Given a single hidden3

representation (e.g., a residual-stream activation at one token and layer), a tiny4

mapper produces a continuous “soft prompt” that conditions a frozen LLM to5

generate an explanation. We train the mapper with weak supervision from sparse6

autoencoder (SAE) explanations: for each latent we sample one natural language7

feature description among the active SAE features and optimize the soft prompt8

such that the LLM emits that description when conditioned on it. At test time,9

L2EL supports (i) generation of concise free-form explanations and (ii) probing by10

scoring arbitrary hypotheses through their conditional likelihood. This reframes11

interpretability as conditional language modeling over explanations, enabling an12

open vocabulary and calibration through likelihoods. As a proof-of-concept, we13

train L2EL on Gemma-2-2B using GemmaScope SAEs. Our results indicate14

that L2EL generates reasonable explanations and can be used to probe hidden15

activations using natural language. L2EL preserves the strengths of language16

as an expressive medium while requiring only a small learned interface and no17

modifications to the LLM.18

1 Introduction19

Large language models encode rich internal representations that often contain information they do20

not directly state. Turning those hidden representations into legible explanations is one of the central21

aims of mechanistic interpretability. Recent work has made progress in extracting information from22

these hidden representations by using sparse autoencoders (SAEs), which decompose activations into23

sparse, more interpretable features [1–6]. This approach is often insightful, but it is fundamentally24

closed-set: SAEs have a fixed learned dictionary of features, which means that the explanation25

vocabulary is fixed and any nuance not captured by those features is invisible at inference time.26

We take a different route: rather than forcing latents into a finite bank of features, we let the model27

describe its own state in natural language. Concretely, we learn a tiny mapper that projects a single28

model activation (e.g., a residual-stream activation at one token and layer) into a few continuous29

“soft token” embeddings. These soft tokens condition the frozen LLM, which then generates a short30

free-form explanation of what is represented in that latent, without any prompt text (see Figure 1).31

This preserves the strengths of language as an expressive, open vocabulary while keeping the LLM32

unchanged.33

To train the mapper, we use SAE feature explanations as a source of weak, scalable supervision: for34

each latent, we sample one human-readable description from among the active SAE features and35

ask the LLM to produce that description when conditioned on the latent-derived soft prompt. This36
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Figure 1: L2EL overview. A single residual-stream activation h is mapped into m soft token
embeddings. The frozen LLM, conditioned solely on this soft prompt, learns to generate short textual
explanations based on natural language explanations of SAE features. Only the mapper is trained.

simple objective encourages the LLM to learn a conditional distribution over all possible natural37

language explanations, not over a fixed index set. At test time, the same mechanism supports two38

complementary uses: (i) generation: produce a concise explanation of a latent; and (ii) probing:39

score arbitrary natural-language hypotheses against a latent by reading off their conditional likelihood40

under the LLM.41

We formalize this as latent-to-explanation likelihood (L2EL): given a latent vector h, our method42

learns a distribution p(e | h) over textual explanations e. L2EL turns interpretability into standard43

language modeling conditioned on activations, enabling open-vocabulary explanations, probing with44

natural language explanations, and calibration through likelihoods rather than ad hoc thresholds.45

2 Method: Latent-to-Explanation Likelihood46

Let h ∈ Rd denote a residual-stream activation from the LLM at a particular token and layer. We47

learn a mapper fϕ : Rd→Rm×d that produces a continuous soft-prompt of m token embeddings48

P = fϕ(h) in the LLM’s input-embedding space. Conditioning the frozen LLM on the soft prompt49

P defines an autoregressive distribution over explanations. For an explanation token sequence50

e = (e1:T ),51

p(e | h) ≡ p
(
e | P = fϕ(h)

)
=

T∏
t=1

p(et | e<t, P ) ,

which we call the latent-to-explanation likelihood (L2EL). Intuitively, fϕ translates an internal52

activation into a short soft prompt that steers the model to “speak” what that activation contains,53

while the LLM generates tokens autoregressively under this conditioning.54

We train the mapper with weak supervision from automatically generated SAE feature explanations55

and optimize a masked next-token language-modeling objective conditioned only on the soft prompt.56

In particular, for each training context we extract a residual activation h ∈ Rd, obtain the SAE57

feature activations for this vector, and sample one feature description y from the set of active features58

(for our sampling procedure, see Appendix A). Let y1:T be the tokenization of y. The mapper fϕ59

produces an m-token soft prefix P = fϕ(h) ∈ Rm×d that is prepended to the input of a frozen LLM60

with parameters θ. We then minimize the negative log-likelihood of the target tokens under teacher61

forcing:62

min
ϕ

L(ϕ) = E(h,y)

[
−

T∑
t=1

log pθ
(
yt

∣∣ y<t, P = fϕ(h)
)]

.
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Only the weights of fϕ are trained, the LLM parameters θ remain fixed. This trains the mapper to63

translate activations into a soft prompt that makes the base model likely to emit the sampled SAE64

description, thereby learning an open-vocabulary conditional distribution p(e | h).65

At test time, we take any context of interest, extract h at the chosen layer and token, form the soft66

prompt P = fϕ(h), and sample an explanation from p(· | P ). The same mechanism enables probing:67

given an arbitrary hypothesis e, we compute (e | h) and compare scores across model activations68

from different dataset examples to test what LLM inputs make the explanation most likely.69

3 Experiments70

We train L2EL on Gemma-2-2B [7], which provides both the activation h and the generation71

capability; only a small mapper sits between them. We focus on residual-stream activations from layer72

10 and use the open-source GemmaScope SAE with a 65k-feature dictionary for weak supervision73

[8]. We obtain the natural language explanation for the SAE features from Neuronpedia [9], which74

are automatically generated with the method from [10]. We train the mapper on 200000 sequences of75

256 tokens sampled from the Pile-uncopyrighted [11], totaling 51.2M training tokens.76

For each token position we read the corresponding residual vector, compute SAE activations, sample77

one human-written feature description among the active labeled features, and treat this text as the78

language modeling target. For our mapper, we use a linear model that emits m = 16 soft prompt79

embeddings by applying a learned scalar gain and bias to the model activations h for each prefix slot,80

i.e., for i = 1 . . .m, pi = γih+ bi with γi ∈ R and bi ∈ Rd.81

3.1 Experiment 1: Generating Explanations82

As a first experiment, we test whether the L2EL is able to generate reasonable explanations of latents.83

We feed the LLM the following prompt: "My favorite player is LeBron". We then extract the hidden84

activation and construct the soft prompt with our mapper. During generation, we prepend the resulting85

soft tokens and sample a diverse set of explanations (for more details see B). The prompt text is not86

provided, so the explanation is conditioned entirely through the soft prefix derived from h.87

Table 1 shows that L2EL is able to generate diverse and coherent explanations, even when the top88

SAE explanations are not very informative, as there is no “LeBron James" feature in the SAE. We89

provide more generated explanations and details on our sampling procedure in Appendix B.90

We can also use L2EL to calculate the likelihood of all of the pre-existing SAE feature explanations91

provided conditional on the latent. In Appendix B we show that the scoring of L2EL on these92

explanations sometimes seems to produce better results than the ordering by the SAE itself.93

Table 1: Top activating SAE features and top generated explanations by L2EL on the following
prompt: My favorite player is LeBron
Top explanations by SAE activation Top generated explanations (L2EL)

specific tokens or markers that indicate impor-
tant elements or categories within the text

references to the name "LeBron."

technical terms related to web applications and
debugging processes

names of notable individuals or brands

references to notable individuals or perfor-
mances in sports

names associated with the sports industry

technical terms and code-related elements in
programming contexts

mentions of sports superstars and their impact
on popular culture

specific technical terms and concepts related to
database management and programming

names or terms related to celebrity culture or
sports figures
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Table 2: The dataset examples that make the following explanation most likely:
references to the wizard from Harry Potter
Snippet Average log-prob

.. in Los Angeles, it was the battle of the bespectacled boy wizard -1.905

.. for the first time plotting the start of Dumbledore -1.982

.. Among these friends we call it Harry Potter -1.988

.. that he is then speaking to Aberforth in Halfblood -2.072

.. in Deathly Hallows once the trio arrive in Hogsme -2.159

.. In Order of the Phoenix while the trio were in the Hog -2.158

3.2 Experiment 2: Open-Vocabulary Probing94

The second experiment tests the open-vocabulary probing capabilities of L2EL. Instead of restricting95

ourselves to SAE labels, we can formulate free-form explanations such as “references to the wizard96

from Harry Potter" and evaluate their scores across a held-out corpus. For each token position we97

compute log p(e | h) for the chosen explanation and then rank positions by their scores. Inspecting98

the top-ranked contexts reveals whether the explanation is genuinely capturing a coherent concept that99

the model recognizes in its internal states. Because this explanation is not tied to the SAE dictionary,100

success here indicates that L2EL can be used as a general-purpose probe over natural-language101

descriptions, even for concepts that an SAE did not learn explicitly. Table 2 shows that indeed all102

retrieved examples are related to Harry Potter.103

4 Related Work104

Our approach is most closely related to prompt/patch–based readouts of hidden states that elicit free-105

form text, such as Patchscopes [12], SelfIE [13], self-explaining SAE features [14], and LatentQA106

[15], as well as to “lens” methods that decode intermediate states into vocabulary distributions,107

including the logit lens and tuned lens [16, 17]. However, unlike these methods, we do not provide108

a fixed target inspection prompt at inference time (such as "What does X mean?"). Instead, we109

train a lightweight mapper that learns soft prompts such that the LLM itself outputs SAE feature110

explanations, without needing finetuning.111

Furthermore, our work is related to other prompt-tuning methods learn continuous “soft prompts” that112

steer frozen language models for downstream tasks, including prefix-tuning [18] and prompt tuning113

[19]. Subsequent work improves robustness and scalability, e.g., P-Tuning v2 [20] and cross-task114

soft-prompt transfer (SPoT) [21].115

5 Discussion and Limitations116

We have presented L2EL as a proof-of-concept that translates model activations into short explana-117

tions. Although our results are promising, this work is intended as an initial demonstration of the idea118

rather than a mature method, and we emphasize that our experimental evidence is limited in scale119

and scope, with no direct comparisons to baselines, benchmarks, or ablations.120

Furthermore, this approach comes with important limitations. First of all, the approach depends on121

automatically generated SAE feature descriptions that are noisy and inconsistently phrased, which122

constrains supervision quality. Secondly, it is currently unclear to what degree L2EL is generalizing123

to out-of-distribution hidden activations and explanations, and to what degree it is memorizing the124

SAE feature explanations.125

Moreover, probing with natural language is sensitive to wording, with small variations in explanation126

giving different results. Finally, compared to SAEs, L2EL only provides natural language explanations127

of latents and no decomposition into feature vectors. This makes L2EL less suitable for causal128

interventions such as steering.129
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A Sampling of SAE feature explanations192

We want supervision to focus on features that are informative and input-specific. Very high–frequency193

SAE features behave like quasi-constants across contexts; if we trained on them, the mapper would194

learn to make those generic explanations likely for nearly every input, biasing p(e | h). Likewise,195

raw magnitudes are not always comparable across features (different offsets/scales), so selecting by196

size alone favors “loud” features rather than those that are unusually strong for the current input. We197

therefore (i) filter out very frequent features and (ii) rank candidates by a robust z-score that measures198

atypicality relative to each feature’s own variability.199

Let the SAE produce post-ReLU activations xpost∈RD
≥0 and pre-activations xpre∈RD. We estimate200

per-feature firing rates on a large activation stream and retain only features with empirical frequency201

≤ 1% (computed over 100,000 tokens). Then, for all features, we also compute the median and202

interquartile range (IQR) over the pre-activations and define σj = max(IQRj/1.349, ε) with ε =203

10−6.204

During training, for each input we calculate the feature activations, and select the active features205

(xpost
j > 0) that pass the frequency filter, rank them by206

zj =
xpre
j −medianj

σj
,

keep the top-k (k = 5), and uniformly sample one index. The automatically generated feature207

description of this index is then used as the target text.208

B Generating Explanations209

B.1 Sampling Generations210

Given a hidden activation h, we form a soft prefix P = fϕ(h) and decode explanations autoregres-211

sively from pθ(et | e<t, P ) using temperature and nucleus sampling. Concretely, at each step we212

divide logits by a temperature τ and sample from the smallest probability mass whose cumulative213

probability exceeds a threshold p (top-p). We use τ = 1.0, p = 0.9, stop on EOS or at a maximum214

length of 32 tokens, and provide no textual prompt, the decoder is conditioned solely on the soft215

prompt P .216

We draw N = 50 candidates, deduplicate strings, and score each with the average per-token log-217

likelihood 1
T

∑T
t=1 log pθ(et | e<t, P ) to reduce length bias. We select a diverse top-k set via greedy218

Maximal Marginal Relevance (MMR) on bigram Jaccard similarity: at each step we add the candidate219

e that maximizes220

β ℓ̃(e) − (1− β)max
e′∈S

Jaccardbi(e, e
′),

where ℓ̃ is the min–max normalized average log-likelihood over the pool, S is the already selected221

set. We use β = 0.2.222

B.2 Scoring Existing Feature Explanations223

L2EL can turn hidden states into an open-vocabulary distribution over explanations, complementing224

the closed dictionary of an SAE. However, we can also use it score existing explanations for a prompt.225

To see how SAE activations relate to the log-probabilities under L2EL we calculate both values on226

the prompt: "The city that owns my heart is Kyoto"227

The results are shown in Figure 2 and Table 3. Note that the explanations sorted by L2EL log-228

prob seem to be more relevant than the top explanations by SAE activation. For most of the top229

explanations by L2EL log-prob, the corresponding SAE activation is zero.230
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Table 3: Top SAE feature explanations scored by SAE activation and L2EL log-probability on the
following prompt: The city that owns my heart is Kyoto
Top explanations by SAE activation Top explanations by L2EL log-prob

specific tokens or markers that indicate impor-
tant elements or categories within the text

locations and geographical references

technical terms and code-related elements in
programming contexts

geographical names and locations

terms related to institutions and organizations references to universities and academic institu-
tions

proper nouns related to specific geographic
locations

references to locations and places

content related to legal issues and historical
contexts involving immigration or citizenship

references to academic journals

Figure 2: Pareto of SAE activation vs. L2EL likelihood for one prompt. For a single prompt, we
place each labeled SAE feature as a point whose horizontal position reflects how much the feature
fires on that prompt, and whose vertical position reflects the log-probability of this label under L2EL.
The highlighted Pareto frontier contains features that are jointly strong on both axes.

8



B.3 More Examples of Generated Explanations231

Table 4: Top activating SAE features and top generated explanations by L2EL on the following
prompt: This bug smells like an off-by-one error
Top explanations by SAE activation Top generated explanations (L2EL)

references to errors and error correction in a
technical context

the word "error" in various contexts

specific tokens or markers that indicate impor-
tant elements or categories within the text

terms related to errors or mistakes

technical terms related to web applications and
debugging processes

references to error handling and debugging
techniques

terms related to institutions and organizations mentions of errors and their impact
references to social or cultural dynamics within
communities

instances of error or errors in the code

Table 5: Top activating SAE features and top generated explanations by L2EL on the following
prompt: The most iconic villain is Darth Vader
Top explanations by SAE activation Top generated explanations (L2EL)

references to the "Star Wars" franchise, particu-
larly relating to Jedi and Sith characters

references to the character "Vader"

specific technical terms and concepts related to
database management and programming

instances of the word "Vader" in different con-
texts

technical terms related to web applications and
debugging processes

phrases related to invisibility and hiding

specific tokens or markers that indicate impor-
tant elements or categories within the text

mentions of the fictional character Darth Vader

technical terms and code-related elements in
programming contexts

references to characters or concepts from the
Star Wars franchise

Table 6: Top activating SAE features and top generated explanations by L2EL on the following
prompt: The festival I want to attend is Oktoberfest
Top explanations by SAE activation Top generated explanations (L2EL)

specific tokens or markers that indicate impor-
tant elements or categories within the text

references to festivals or events

technical terms related to web applications and
debugging processes

terms related to celebrations and events

specific technical terms and concepts related to
database management and programming

mentions of "festival" and its variations

technical terms and code-related elements in
programming contexts

the word "festival" indicating a large-scale
event

terms related to institutions and organizations events and festivals associated with Oktober-
fest
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