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Abstract

Temporal Knowledge Graph (TKG) reason-
ing, aiming to predict future unknown facts
based on historical information, has attracted
considerable attention due to its great practi-
cal value. Insight into history is the key to
predict the future. However, most existing
TKG reasoning models singly capture repet-
itive history, ignoring the entity’s multi-hop
neighbour history which can provide valuable
background knowledge for TKG reasoning. In
this paper, we propose Multi-Granularity His-
tory and Entity Similarity Learning (MGESL)
model for Temporal Knowledge Graph Reason-
ing, which models historical information from
both coarse-grained and fine-grained history.
Since similar entities tend to exhibit similar
behavioural patterns, we also design a hyper-
graph convolution aggregator to capture the
similarity between entities. Furthermore, we
introduce a more realistic setting for the TKG
reasoning, where candidate entities are already
known at the timestamp to be predicted. Exten-
sive experiments on three benchmark datasets
demonstrate the effectiveness of our proposed
model.

1 Introduction

Temporal Knowledge Graphs (TKGs), served as
a way to represent and store dynamic knowledge,
have shown great value in many applications, such
as event prediction (Deng et al., 2020), question
answering (Mavromatis et al., 2022) and recom-
mendation (Liu et al., 2023b). In TKGs, each fact
is represented as a quadruple, e.g., (Obama, sanc-
tion, Russia, 2016-12-29) in Figure 1(a).
Reasoning over TKGs can be performed under
two primary settings, i.e., interpolation and ex-
trapolation (Jin et al., 2020). Given a TKG with
timestamps from g to t¢,, interpolation mainly
aims at inferring missing facts that occur at time
t (tg < t < t,), while extrapolation attempts to
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(b) An example of history of different granularities of entity

Figure 1: Illustration of the two problems of TKG rea-
soning task.

predict facts that occur at time ¢ (¢ > t,,). In this pa-
per, we mainly focus on TKG extrapolation. Most
of existing extrapolation models (Jin et al., 2020;
Lietal., 2021b, 2022b; Liu et al., 2023a) assume
the candidate entities are unknown during the rea-
soning. However, there are cases that we already
know the candidate entities, e.g., suspects are often
identified beforehand in criminal investigations and
candidates are usually already determined before
the presidential election. In these cases, those ex-
trapolation models (Jin et al., 2020; Li et al., 2021b,
2022b; Liu et al., 2023a) cannot effectively utilize
the information of those candidate entities because
they treat all entities equally during the reasoning.
Therefore, we introduce a new setting called the
candidate entity known setting, where all the enti-
ties at ¢t are known in advance. In contrast, if the
candidate entities at ¢ are unknown during the rea-



soning, we call this the candidate entity unknown
setting. In this paper, both candidate entity known
and unknown settings will be discussed.

To predict what will happen in the future, we
found that (1) searching for similar entities, ob-
serving and understanding the evolutionary pat-
tern of the actions of similar entities, and (2) delv-
ing into the entity historical context from multi-
granularity are crucial. Figure 1(a) shows an ex-
ample of TKG similarity learning problem, where
Obama and Biden both sanction Russia. However,
since Obama and Biden are not connected in this
example, vanilla graph convolution is unable to
capture the interaction between them. To address
this issue, we realize that both Obama and Biden
share the same relation of sanction. Since hyper-
graph convolution can enable information interac-
tion among entities under the same relation, we
therefore design a hypergraph convolutional aggre-
gator to capture similarity information between
them. Additionally, existing models (Jin et al.,
2020; Li et al., 2021b) mainly focus on utilising
the available temporal and structural information
in the TKG for inference, ignoring the history in-
formation. Even though some recent studies (Zhu
et al., 2021; Li et al., 2022a; Xu et al., 2023) tried
to find the correct answer from long-term global
repeated history (i.e., fine-grained history), but they
ignore the more generalised history. For instance,
Figure 1(b) illustrates a temporal knowledge graph
with several timestamps, where the task is to pre-
dict the answer to the query (USA, sanction, ?, t).
Most models (Zhu et al., 2021; Xu et al., 2023)
prioritize repeated history, and return China as the
answer. However the correct answer to the question
is Russia which is a multi-hop neighbour of USA.
To overcome this limitations, we further consider
multi-hop neighbour entities (i.e., coarse-grained
history) in TKG reasoning.

To this end, we consider history at two levels
of granularity (i.e., fine and coarse-grained his-
tory) and entity similarity learning simultaneously,
and propose the Multi-Granularity History and
Entity Similarity Learning (MGESL) model for
Temporal Knowledge Graph Reasoning. Specifi-
cally, MGESL consists of three modules, i.e., (1)
Entity Similarity Learning Module, which is used
to capture the similarity between entities that share
the same relation; (2) Temporal Evolution Mod-
ule, which is used to aggregate and transfer the KG
information from spatial and temporal views, re-
spectively; (3) Multi-Granularity History Module,

which is used to capture history from both coarse
and fine granularities. Our main contributions are
summarized as follows:

* We propose a TKG reasoning model MGESL,
which can simultaneously consider entity
similarity learning, coarse-grained and fine-
grained history. To the best of our knowledge,
we are the first to consider these features to-
gether.

* We design a novel hypergraph convolutional
aggregator to capture similarities between en-
tities, and utilize the coarse-grained history
to capture multi-hop historical contextual in-
formation and fine-grained history to guide
decoder for decoding to make full use of his-
torical information.

* Besides the candidate entity unknown setting,
we also propose another realistic TKG reason-
ing setting, i.e., the candidate entities are al-
ready known. Extensive experiments on three
benchmark datasets show that our proposed
MGESL model outperforms existing TKG rea-
soning methods under both settings.

2 Related Work

Since TKG interpolation is not the research object
of this paper, we mainly review the existing TKG
reasoning models under the extrapolation setting.
Many extrapolation models utilise the available
temporal and structural information in TKG for
inference. RE-Net (Jin et al., 2020) utilizes hetero-
geneous graph convolution (RGCN) (Schlichtkrull
et al., 2018) to capture the structural information
within the same timestamp and employs a recur-
rent neural network (RNN) to model the temporal
information between different timestamps. RE-
GCN (Li et al., 2021b) further constrains the evo-
lution of entities by incorporating additional static
attributes. However, they do not consider the his-
tory information. CyGNet (Zhu et al., 2021) and
CENET (Xu et al., 2023) propose a copy mecha-
nism to find the correct answer among long-term
global history, i.e., the fine-grained history. TIRGN
(Li et al., 2022a) considers the sequential, repeti-
tive and cyclical patterns of historical facts. How-
ever, they ignore the multi-hop neighbour history,
i.e., the coarse-grained history. XERTE (Han et al.,
2021) employs a subgraph sampling technique to
construct interpretable reasoning graphs. CluSTeR
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Figure 2: Illustration of the proposed MGESL model. Entity Similarity Learning Module captures the similarities
between entities that share the same relation. Temporal Evolution Module aggregates and transfers the KG
information from spatial and temporal views, respectively. Multi-Granularity History Module models history from

both coarse and fine granularity.

(Lietal., 2021a) and TITer (Sun et al., 2021) both
utilize reinforcement learning to search for a series
of historical facts for reasoning. HGLS (Zhang
et al., 2023) captures the long and short history of
an entity by constructing global graphs. However,
all the above models do not consider the importance
of entity similarity learning in TKG reasoning.

3 Preliminaries

A temporal knowledge graph can be defined as
G = {G1,G2,...,Gr}, and T is the number of
timestamps. The subgraph G, = (€, R, F;) at t
is a directed multi-relational graph, where & is the
set of entities, R is the set of relations, and F; is
the set of facts at £. A fact in F; can be formal-
ized as a quadruple (s, 7, 0,t), where s,0 € £ and
r € R. It describes that a fact of relation type r
occurs between subject entity s and object entity o
at time .

The extrapolation reasoning task aims to predict
the missing object entity o or subject s via answer-
ing query like (s,r,?,t,) or (?,7,0,t,) based on
the historical facts {(s, r,0,t;)|t; < t,}. For each

quadruple (s, r, 0,t), an inverse relation quadruple
(0,771, s,t) is often added to the dataset (Vashishth
et al., 2020). Therefore, when predicting the miss-
ing subject of a query (?,r,0,1,), we can convert
it into predicting (o, r 1, ?,t,). Based on this, the
model in this paper only aims to predict the miss-
ing object entity. We use bold items to denote
vector embeddings. For example, H € RI€/*4 and
R € RI?RIX4 are used to represent the randomly
initial embedding of entities and relations respec-
tively, where d denotes the embedding dimension.

4 Methodology

4.1 Model Overview

The framework of MGESL is shown in Figure 2,
comprising three modules: (1) the Entity Similarity
Learning Module, (2) the Temporal Evolution Mod-
ule, and (3) the Multi-Granularity History Module.
First, the Entity Similarity Learning Module learns
the representation of entity with similarity infor-
mation. Next, the learned entity representation is
fed to the Temporal Evolution Module, where it
further learns about the structural and sequential



characteristics of recent facts. Then, it combines
with historical context information learnt from the
coarse-grained history in the Multi-Granularity His-
tory Module. Finally, the entity representation is
decoded under the guidance of the fine-grained his-
tory.

4.2 Entity Similarity Learning

4.2.1 Pre-Learning Graph

Inspired by the pre-training model (Devlin et al.,
2019), we first construct a pre-learning graph and
initially learn the representation of entities on
the pre-learning graph. Entity similarity infor-
mation is also learnt on this graph. For a TKG
g, we ignore the time factor to merge the sub-
graphs of the first L timestamps to form a pre-
learning graph Gy, i.e., G, = (£, R, FL), where
Fr=A{(s,r,0)|(s,r,0,t) € Ft,0<t < L}isa
set of facts.

4.2.2 Hypergraph Convolution

To effectively capture the similarity between enti-
ties in the pre-learning graph, we design a hyper-
graph convolutional network. First, we construct a
hypergraph neighbourhood matrix D € RI€I*2IRI
where D; ; = 1 means the i*" entity is the subject
entity of the 5" relation, otherwise it equals 0. As
stated in Section 3, for each relation, we only ag-
gregate messages from its subject entity through
employing an inverse relation.

First, messages from the subject entity are passed
into the relation:

1 1
X = 5W1D—1H + 5W2R (1)

where W1, Wy are the learnable weights. The
result X € RI?RIX? contains messages from the
subject entities and the relation itself. Next, the
relation message is passed into the subject entity:

H, = a(%wwx + %wm) @)
where W3, W, are the learnable weights and o is
the ReLu activation function. Through the above
steps, we can initially learn the representation of
entities Hy, which incorporates the similarity infor-
mation between entities.

4.2.3 Structural Encoder

Hypergraph convolution on the pre-learning graph
mainly captures the similarity information between
entities, but it cannot capture the inherent graph

structure information of the pre-learning graph.
Therefore, we utilize a heterogeneous graph convo-
lution network (Vashishth et al., 2020) as a struc-
tural encoder to aggregate information from multi-
ple relations and multi-hop neighbour entities on
the pre-learning graph, which is defined as follows:

Wt = o (Z(Smo)eﬂ Clswg(hf) +r1)+ Wllhls)
3)
where hl, h! denote the I*" layer embeddings of
entities s, o respectively, r denotes the embedding
of relation r, cs is a normalizing factor equal to
the number of neighbours of s, Wf) and W} denote
the learnable weights of the I** layer, and o is the
ReLu activation function. We denote the entity
embedding of the output of the last layer as Hy.
Given that the meaning of relation r remains
consistent over time, we do not update relation
embedding in this paper to maintain its semantic
stability. Finally, we combine H; and Hj to get the
entity representation HC,

H’ = oH; + (1 — a)H; 4)

HY denotes entity embedding obtained by learning
on the pre-learning graph, incorporating similarity
and structural information between entities.

4.3 Temporal Evolution

Future facts are usually closely related to recent
facts, and our temporal evolution module aims to
model recent facts. KGs naturally have graph struc-
ture information, while TKGs have the additional
dimension of time compared to KGs. Therefore,
we aggregate and transfer the TKG information
from both spatial and temporal views. To capture
the structural information between entities, we also
utilize the heterogeneous graph convolutional net-
work in Equation (3) for each timestamp,

H! , = GCN(H",R) 5)

gen

where H' denotes the entity embedding at time ¢,
whose initial value is the output of the similarity
learning module H°. chn denotes the entity em-
bedding after aggregation by GCN Encoder. In
order to include the sequential dependencies of
subgraphs at the previous timestamps, we utilize
GRU to update the representations of entities,
H'*! = GRU(H!,,, H'). (©6)

genos

We denote the output of the last timestamp as H/.



4.4 Multi-Granularity History Learning
4.4.1 Background Graph

In order to more accurately model the representa-
tion of entities and the connections between them,
we construct a background graph G¢ based on
the most recent C' timestamps, similar to HGLS
(Zhang et al., 2023). Specifically, when the can-
didate entities are known, the steps to construct
the background graph are as follows: (1) identify
the position where each candidate entity appears in
the recent C' timestamps. (2) conduct breadth-first
search from each candidate entity to extract their n-
hop neighbours. (3) merge the common neighbours
of candidate entities and add temporal edge ry (a
randomly initial vector) between identical entities
across different timestamps. With the steps above,
we have established a background graph for more
accurate entity representation learning. When the
candidate entities are unknown, we take all entities
in TKG as candidates and then execute the above
three steps to construct the background graph.

4.4.2 Muti-head Attention GCN (MAGCN)

We employ a heterogeneous graph convolution
network that incorporates the muti-head attention
mechanism to effectively capture entity represen-
tation in the background graphs. First, all entities
in the background graph are initialised by H for
their initial embedding. Next, we combine the em-
beddings of the subject entity, the relation, and the
object entity to calculate their attention scores,

Bsro = LeakyRelu(Wsh®* &rah°])  (7)

where h®, h? and r denote the embeddings of en-
tities s, o and relation r, respectively, W5 denotes
learnable weight, and & is the concatenation oper-
ation. After that, we further calculate their coeffi-
cients based on the scores of each triple,

Qs ro = eajp(lBsmO) (8)
Z(S,ri7oi)eNs exp(ﬁs,ri,oi)

where N; denotes the set of all triples with s as
subject entity. After that, we can attentively ag-
gregate message from all neighbours of entity s in
the background graph. The utilization of the multi-
head attention mechanism can enhance the stability
of the convolution. Formally, the aggregator is
defned as follows:

l M 1 (M.l
W = [0 (2, ey, @raWhHL 1

+W’7h’5) 9)

where M denotes the number of attention heads,
|| represents concatenation, h!, and h? denote the
embedding of entity s and o after the I*" layer ag-
gregation, r denotes the embedding of relation r,
W} and W, are learnable weights, and o is the
ReLu activation function. We denote the entity
embedding of the last layer as HY.

Finally, we use a gate mechanism to fuse the en-
tity embedding learnt from the temporal evolution
module with the entity embedding learnt from the
background graph,

H =o(U)0oH +(1-0(U)oH! (10)
where U € RI€I*4 denotes the gate vector, © de-
notes element-wise dot option, o denotes stgmoid
function to map values to the range of O to 1. Fi-
nally, we obtain a representation of the entity H?,
which incorporates the similarity information be-
tween entities, the entity’s recent temporal informa-
tion and contextual information.

4.4.3 Fine-grained History

Based on human experience in predicting future
facts, the answer to a query is often an entity that
is closely related to the current entity. Therefore,
we extract two types of fine-grained histories, i.e.,
one-hop history neighbours and repeated history
answers (Li et al., 2022a). Specifically, for a query
(s,7,7,t) the set of one-hop history neighbours for
the entity s at ¢ can be defined as follows:

P =poUpiUpsU...Up; (11)

where p; denotes a vector where each element rep-
resents an entity. If the corresponding element of
an entity is 1, it means that the entity is a one-hop
neighbour of s at ¢, otherwise it is 0. The symbol
U means union option. Py is the union vector of
all vectors before ¢. Similarly, we can calculate the
repeated history answer vector P;"".

4.5 Fine-grained History Guided Decoder
4.5.1 Scoring Function

We utilize Conv'TransE (Shang et al., 2019) as de-
coder to fuse the semantic information of s and r in
query (s,r,?,t). Since H* already incorporates in-
formation of the coarse-grained history, the scores
caculated based on coarse-grained history can be
defined as follows:

pY¢ = softmax(ConvTransE(h{, r)H?)
(12)



where hy and r denote the embedding of subject
entity s and relation r, respectively. For the fine-
grained history (i.e., one-hop neighbour history
and repeated history), we use these two vectors (P}
and P;"") generated in section 4.4.3 to guide the
decoder in scoring, i.e.,

pc = softmax(ConvTransE(h{, r)H*P)
(13)
p"istory = 5o ftmax(ConvTransE(h, r)HP]")
(14)
where p'c® and p/***"¥ denote the scores guided
by one-hop neighbour history and repeated history
respectively. The final score is calculated as fol-
lows:

local

+ 2P + 13p

coarse history

p = 1p 15)
where pu1, p2, (13 are hyperparameters and i1 + o+

ps = 1.
4.5.2 Training Objective

Predicting the object entity based on a given query
(s,r,7,t) can be viewed as a multi-class classi-
fication task (Jin et al., 2020), where each class
corresponds to one entity. The learning objective
is to minimize the following cross-entropy loss £
during training:

E - Z(S,T,o,t)eg yt log p(O | s, T, t) (16)

where p(o| s, r,t) is the final probability score of
entity, yf € RI€l is the label vector, of which the
element is 1 if the fact occurs, otherwise is 0.

5 Experiments

5.1 Setup

5.1.1 Datasets

We use three typical TKG datasets in our experi-
ments: ICEWS14 (Riloff et al., 2018), ICEWS18
(Jin et al., 2020), and ICEWS05-15 (Riloff et al.,
2018). We divide them into training, validation,
and test sets with a proportion of 80%, 10%, and
10% by timestamps following RE-GCN (Li et al.,
2021b, 2022a; Xu et al., 2023).

5.1.2 Baselines

Under the candidate entity unknown setting, we
compare our proposed MGESL model with three
kinds of baselines, i.e., (1) Static KG reasoning
models, i.e., DistMult (Yang et al., 2015), ConvE

(Dettmers et al., 2018), ComplEx (Trouillon et al.,
2016), Conv-TransE (Shang et al., 2019), RotatE
(Sun et al., 2019) and R-GCN (Schlichtkrull et al.,
2018). (2) Interpolated TKG reasoning models, i.e.,
TTransE (Jiang et al., 2016), HyTE (Dasgupta et al.,
2018), and TA-DistMult (Riloff et al., 2018). (3)
Current state-of-the-art extrapolated TKG reason-
ing models, i.e., RE-NET (Jin et al., 2020), CyGNet
(Zhu et al., 2021), xERTE (Han et al., 2021), RE-
GCN (Li et al., 2021b), TITER (Sun et al., 2021),
TLogic (Liu et al., 2022), CEN (Li et al., 2022b),
TiRGN (Li et al., 2022a), CENET (Xu et al., 2023),
RETIA (Liu et al., 2023a) and DaeMon (Dong
et al., 2023).

Under the candidate entity known setting, we
mainly focus on comparing to the extrapolated
TKG reasoning models, including RE-GCN (Li
et al., 2021b), TiIRGN (Li et al., 2022a) and HGLS
(Zhang et al., 2023). As all previous TKG extrapo-
lation models were conducted under the candidate
entity unknown setting, we intentionally revealed
all candidate entities of the timestamp to be pre-
dicted. This means that these models only need to
score and find the correct answer from the revealed
candidate entities, not from all entities in the TKG.

5.1.3 Training Settings and Evaluation
Metrics

We report a widely used time-aware filtered version
(Sun et al., 2021; Li et al., 2022a,b) of Mean Recip-
rocal Ranks (MRR) and Hits@1/3/10. As to model
configurations, we set the embedding dimension
(d) to 200, L is 50, « is 0.2, C' is 20 for the can-
didate unknown setting and 10 for the candidate
known setting, n is 2, the layer of structural en-
coder and muti-head attention GCN are both 2. p1,
wo and ps are 0.3, 0.5 and 0.2, respectively. Adam
is used for parameter learning, and the learning rate
is set to 0.001.

5.2 Results

Table 1 presents the MRR and Hits@1/3/10 results
of entity prediction on three TKGs under the can-
didate entity unknown setting. Specifically, our
proposed MGESL significantly outperforms all the
static models (i.e., the first block in Table 1) be-
cause they ignore the time dimension of the facts in
TKGs. MGESL also performs much better than the
temporal models for the interpolation setting (i.e.,
the second block in Table 1) because MGESL ad-
ditionally captures temporally sequential patterns
by temporal evolution module. In comparison



Model ICEWS14 ICEWS18 ICEWS05-15
MRR Hit@l Hit@3 Hit@l0 MRR Hit@l Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10
DistMult 20.32 6.13  27.59 46.61 13.86 561 1522 31.26 19.91 5.63 27.22 47.33
ConvE 3030 21.30 3442 4789 2281 13.63 25.83 41.43 31.40 21.56 35.70 50.96
ComplEx  22.61 9.88 2893 47.57 1545 8.04 17.19 30.73 20.26 6.66 26.43 47.31
Conv-TransE  31.50 2246 3498 50.03 2322 1426 26.13 41.34 30.28 20.79 33.80 49.95
RotatE 2571 1641  29.01 45.16 14.53 6.47 1578 31.86 19.01 10.42 21.35 36.92
R-GCN 28.03 19.42 3195 4483 15.05 8.13 1649 29.00 27.13 18.83 30.41 43.16
TTransE 12.86 3.14 1572 33.65 844 1.85 8.95 22.38 16.53 5.51 20.77 39.26
HyTE 16.78 213 2484 4394 741 3.10 7.33 16.01 16.05 6.53 20.20 34.72
TA-DistMult 2622  16.83  29.72 4523 1642 8.60 18.13 32.51 27.51 17.57 31.46 47.32
RE-NET 39.86 30.11 44.02 5821 29.78 19.73 3255 48.46 43.67 33.55 48.83 62.72
GyGNet 37.65 2743  42.63 5790 27.12 1721 3097 46.85 40.42 29.44 46.06 61.60
XxERTE 40.79 3270 45.67 5730 2931 21.03 3351 46.48 46.62 37.84 52.31 63.92
RE-GCN 3942 30.13  43.80 57.08 27.51 17.82 31.17 46.55 38.27 27.43 43.06 59.93
TITER 4173 3274 — 5844 2998  22.05 — 44.83 47.60 38.29 — 64.86
TLogic 4090 32.10 45.50 57.60 30.00 22.10 33.50 44.80 47.70 38.00 52.90 65.80
CEN 4220 32.08 47.46 61.31 3150 21.70 3544 50.59 45.27 34.18 — 66.46
TiRGN 41.52  32.04 46.20 59.62 3170 21.82 35.90 51.15 48.52 37.55 53.54 68.74
CENET 4130  32.58 — 5822 29.65 19.98 — 48.23 47.13 37.25 — 67.61
DaeMon — — — — 31.85 22.67 3592 49.80 — — — —
RETIA 41.61 31.66 46.36 60.61 31.23 21.55 35.07 50.17 >20Days >20Days >20Days >20Days
MGESL 45.65 3528 51.12 6548 34.18 23.66 38.64 54.89 53.78 42.52 60.40 75.04

Table 1: Performance on three datasets in terms of MRR (%), Hit@1 (%), Hit@3 (%) and Hit@ 10 (%) under the
candidate entity unknown setting. The best is highlighted in boldface, and the second is underlined.

Model ICEWS14 ICEWSI18 ICEWSO05-15
MRR Hit@l Hit@3 Hit@l0 MRR Hit@l Hit@3 Hit@l0 MRR Hit@l Hit@3 Hit@10
RE-GCN 46.19 3497 51.79 67.97 3390 2320 38.06 55.11 5498 4350 61.52 76.49
TIRGN 4746 36.50 52.68 68.65 34.88 2396 39.33 5648 55.87 4444 6231 77.45
HGLS 47.00 35.06 — 7041 2932 19.21 — 49.83 46.21 3532 — 67.12
MGESL 51.86 40.49 58.26 7341 3757 2610 42.63 60.16 58.06 46.84 64.47 79.63

Table 2: Performance on three datasets in terms of MRR (%), Hit@1 (%), Hit@3 (%) and Hit@ 10 (%) under the
candidate entity known setting. The best is highlighted in boldface, and the second is underlined.

to the current sate-of-the-art temporal models un-
der the extrapolation setting (i.e., the third block
in Table 1), our model also achieves notable im-
provements. Specifically, MGESL improves ap-
proximately 8.48%, 7.76%, 7.71%, and 8.79% on
ICEWS14 for MRR, Hit@1, Hit@3, and Hit@10,
respectively. This is because our model can effec-
tively capture the similarity information between
entities by hypergraph convolution and model the
representation of entities more accurately from mul-
tiple granularities.

Table 2 shows that MGESL also significantly
outperforms other TKG extrapolation models under
the candidate known setting. Specifically, MGESL
improves approximately 9.27%, 10.93%, 10.59%,
and 4.26% on ICEWS14 for MRR, Hit@1, Hit@3,
and Hit@ 10, respectively. These improvements
arises from the background graph constructed by
the candidate entities. This graph allows us to com-

prehensively understand and analyze the connec-
tions between these entities and effectively find the
correct answer.

5.3 Ablation Study

The ablation studies are performed on ICEWS14
with all four evaluation metrics. Five sub-
models are compared, including (1) MGESL
without similarity learning module (MGESL w/o
SLM), (2) MGESL without temporal evolution
module (MGESL w/o TEM), (3) MGESL with-
out fine-grained history (MGESL w/o Fine), (4)
MGESL without coarse-grained history (MGESL
w/o Coarse), (5) the original MGESL model
(MGESL).

Table 3 shows the ablation results under the can-
didate entity unknown setting. When the similarity
learning module (SLM) and temporal evolution
module (TEM) are removed, the performance of



ICEWS14

Model
MRR Hit@l Hit@3 Hit@10
MGESL w/o SLM 44,10 33.89  49.37 63.35
MGESL w/o TEM  43.71 33.14  49.17 64.32
MGESL w/o Fine 4220 32.14 46.78 61.93
MGESL w/o Coarse 4294  33.07 48.08 61.59
MGESL 45.65 3528 51.12 65.48

Table 3: Ablation results under the candidate unknown
setting. The best performance is highlighted in boldface.

Model ICEWS14
MRR Hit@l Hit@3 Hit@10
MGESL w/o SLM  50.21  39.05 56.38 71.30
MGESL w/o TEM  49.69 3857 55091 70.58
MGESL w/o Fine  46.61 3537 52.50 68.51
MGESL w/o Coarse  42.75  32.26  47.82 61.59
MGESL 51.86 40.49 58.26 73.41

Table 4: Ablation results under the candidate known
setting. The best performance is highlighted in boldface.

the model decreased by 3.41% and 4.35% for MRR
respectively, which indicates the effectiveness of
these two module. We can notice that removing
the fine-grained history module (Fine) degrades
the performance of the model more severely com-
pared to removing the coarse-grained history mod-
ule (Coarse), which causes a 7.56% performance
degradation for MRR compared with MGESL. This
is because coarse-grained history may contain more
noisy information compared to fine-grained history
under candidate unknown setting.

Table 4 shows the ablation results under the can-
didate entity known setting. Performance declined
when either the entity similarity module (SLM)
or the temporal evolution module (TEM) is re-
moved. In contrast to the candidate unknown set-
ting, the candidate known setting demonstrates that
removing coarse-grained history has a more sig-
nificant impact on model performance compared
to removing fine-grained history, causing a 17.2%
performance degradation for MRR compared with
MGESL. This is because when we have knowledge
of the candidate entities, the background graph that
we build using these entities can serve as an effec-
tive means to understand and learn the relationships
between them.

5.4 Convergence Analysis

Figure 3 presents the convergence analysis results
of our study on ICEWS14 dataset. Obviously, after
the initial training epoch, "MGESL w/o Fine" falls

—e— MGESL

MGESL w/o SLM
—— MGESL w/o TEM 035
—o— MGESL w/o Coarse
—o— MGESL w/o Fine

—s— MGESL

MGESL w/o SLM
—— MGESL w/o TEM
—o— MGESL w/o Coarse
—o— MGESL wjo Fine

0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

Epochs Epochs

(a) candidate unknown setting  (b) candidate known setting

Figure 3: Convergence analysis results on ICEWS14 in
MRR.

noticeably behind the other models in terms of
MRR metrics, and requires more epochs to attain
the optimal performance compared to the other
models as shown in Figure 3(a). This demonstrates
that fine-grained history can serve as a good guide
for the model to learn during the training process.

Similarly, as shown in Figure 3(b), we notice
that after the initial epoch of training, the results of
"MGESL w/o Fine" are still the lowest. Besides,
the results of "MGESL w/o Coarse" no longer
remain almost the same with other models as in
Figure 3(a). This observation indicates that both
coarse-grained and fine-grained histories are cru-
cial in facilitating the model’s convergence during
training, particularly when the candidate entities
are known. The fine-grained history can make the
model converges faster, while the coarse-grained
history can improve the accuracy of the model to a
great extent. These findings further validate the ef-
fectiveness of our capturing historical information
from various granularities.

6 Conclusion

In this paper, we propose a new model named
MGESL for temporal knowledge graph reason-
ing. This model considers entity similarity learning,
coarse-grained history and fine-grained history si-
multaneously. To capture the similarities between
entities, we design a hypergraph convolutional ag-
gregator. We also construct a background graph to
effectively capture the coarse-grained history and
utilize the fine-grained history to guide the decoder
during the decoding process. Moreover, we intro-
duce a more realistic setting for TKG extrapolation,
i.e., candidate entities are known in advance. Exten-
sive experiments on three real datasets demonstrate
the effectiveness of MGESL compared to the base-
line models.



Limitations

In this section, we discuss the limitations of our
proposed model. Specifically, under the candidate
entity known setting, the candidate entities are de-
liberately leaked out in our experiments. Neverthe-
less, there are instances in which we lack knowl-
edge about the candidate entities, making it neces-
sary to make predictions under the candidate entity
unknown setting. Unfortunately, this often leads
to a significant decrease in the prediction accuracy
as our experiments show. As part of our future
research, we will focus on exploring methods to
improve the accuracy of predicting candidate enti-
ties.
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