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The advancement of transformer neural networks has significantly enhanced the performance of 
sentence similarity models. However, these models often struggle with highly discriminative tasks 
and generate sub-optimal representations of complex documents such as peer-reviewed scientific 
literature. With the increased reliance on retrieval augmentation and search, representing structurally 
and thematically-varied research documents as concise and descriptive vectors is crucial. This study 
improves upon the vector embeddings of scientific text by assembling domain-specific datasets using 
co-citations as a similarity metric, focusing on biomedical domains. We introduce a novel Mixture 
of Experts (MoE) extension pipeline applied to pretrained BERT models, where every multi-layer 
perceptron section is copied into distinct experts. Our MoE variants are trained to classify whether 
two publications are cited together (co-cited) in a third paper based on their scientific abstracts across 
multiple biological domains. Notably, because of our unique routing scheme based on special tokens, 
the throughput of our extended MoE system is exactly the same as regular transformers. This holds 
promise for versatile and efficient One-Size-Fits-All transformer networks for encoding heterogeneous 
biomedical inputs. Our methodology marks advancements in representation learning and holds 
promise for enhancing vector database search and compilation.
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The remarkable success of transformer-based large language models (LLMs)1 has significantly increased our 
confidence in their abilities and outputs. Nowadays, LLMs are treated as de facto knowledge bases and have been 
adopted on a mass scale with the release of services like ChatGPT and open-source counterparts like Llama, 
Mistral, and DeepSeek-V32–4. However, despite their widespread use, challenges persist, particularly concerning 
the accuracy and reliability of these models. For example, common issues like LLM hallucinations5,6 highlight 
the ongoing need for improvement. The ability to generate reliable vector embeddings and perform precise 
classification is crucial, especially for technologies that rely on information retrieval and web search.

One approach to further curate transformer latent spaces is to utilize contrastive learning to create sentence 
similarity models, initially revolutionizing sentiment analysis with broader applications in vector search7–9. More 
recently, the E5 line of models has demonstrated strong performance by applying contrastive learning on mean-
pooled embeddings derived from the CCPairs dataset10. This resulted in a strong sentence similarity model that 
still has the top spot on the Massive Text Embedding Benchmark (MTEB) leaderboard at the time of writing10,11. 
However, as we showcase below, even strong sentence similarity models like E5 miss out-of-distribution 
domain-specific nuances12,13, resulting in sub-optimal representations of many important documents, including 
scientific literature.

Fortunately, several advancements have paved the way toward effective sentence similarity models over an 
arbitrary number of domains. Work from the metascience community has introduced co-citation networks as a 
practical way to gather many similar papers14–22. While this degree of similarity may not be perfect, co-citations 
have been shown to imply a high degree of similarity between papers21. Another promising advancement comes 
from the deep learning community with Mixture of Experts (MoE) models. Their learned input-dependent 
routing of information constitutes a promising multidomain / multitask learning architecture without significant 
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added overhead23. Taking advantage of these methods, we propose the following MoE extension framework to 
build discriminative vector representations of input documents across diverse domains: 

 1. Domain-specific fine-tuning Apply contrastive fine-tuning methods to pretrained BERT (Bidirectional En-
coder Representation Transformers) models using a predefined similarity heuristic, tailoring them to learn 
and understand domain-specific nuance.

 2. Universal applicability through mixture of experts (MoE) Introduce a scalable method of seeding MoE models 
from dense pretrained transformers, aiming for a versatile “One-Size-Fits-All” model.

In this study, we conduct a case analysis on biomedical scientific literature - building a strong sentence 
similarity model that leverages co-citations as a similarity heuristic to differentiate niche literature across diverse 
domains from their textual abstracts alone. Our results show that the MoE extension framework improves 
LLMs performance in identifying semantically similar or niche intradisciplinary texts, showcasing a scalable 
method to produce effective vector representations that generalize across a wide range of scientific literature. 
Our methods substantially outperform general pretrained models and fine-tuned sentence similarity models, 
including science-oriented BERT models and Llama3.

Methods
Data compilation
We used co-citations as a similarity heuristic to generate sufficiently large training datasets for contrastive 
learning over scientific domains. Co-citations represent instances where two papers are cited together in a third 
paper. Our strategy enabled the production of large training datasets from small amounts of data due to the 
nonlinear scaling of citation graphs, as a single paper citing N other papers produces 

(
N
2

)
 co-citation pairs. 

For context, a dataset of 10,000 individual papers can produce well over 125,000 co-citation pairs. While this 
measurement of similarity is not perfect, co-citations have generally been shown to imply a high degree of 
similarity between papers21. We assume for our modeling purposes that two co-cited papers are more similar 
than two random papers, even if they are from the same field.

To build our dataset, we randomly chose five biomedical subfields with little overlap. The domains of choice 
include papers related to cardiovascular disease (CVD), chronic obstructive pulmonary disease (COPD), 
parasitic diseases, autoimmune diseases, and skin cancers. PubMed Central was queried with Medical Subject 
Heading (MeSH) terms for each domain, requiring at least one citation and an abstract present between 2010 
and 2022. This means that within the time period, we kept the co-citation pairs of the possible 

(
N
2

)
 co-citations 

per paper that were returned from the same common MeSH terms. We sampled preferentially from samples co-
cited more times when constructing our final dataset.

For evaluation, we constructed “negative” examples of abstract pairs that were not co-cited. The training 
dataset was split randomly in a 99:1 ratio followed by deduplication. We built negative pairs by pairing abstracts 
that had not been co-cited and had both been cited at least 15 times. This criteria allowed us to construct a 
representative evaluation set for binary classification with balanced classes, with 1’s for co-cited pairs and 0 if not. 
The exact dataset counts are outlined in Table 1.

Transformer neural networks
The transformer architecture is adept at sequential processing and is state-of-the-art for various natural language 
processing (NLP) and vision tasks24–30. A transformer block comprised a self-attention layer and multi-layer 
perception (MLP) interleaved with skip connections. Full transformers were made of T transformer blocks 
stacked together1.

Prior to the transformer blocks is the token embedding process, where tokenization maps an input string into 
a list of L integers from a dictionary. These integers served as the indices for a matrix We, where each row is a 
learnable representative vector for that token, making We ∈ Rv×d where v is the total number of unique tokens 
in the vocabulary and d an arbitrarily chosen hidden dimension. The initial embedding is RL×d.

Each block in the transformer then transforms this embedding, i.e., the ith transformer block maps the 
embedding X(i−1) = [x(i−1)

1 , ..., x
(i−1)
L ]⊤ ∈ RL×d to X(i) = [x(i)

1 , ..., x
(i)
L ]⊤ ∈ RL×d1,31,32. X(T ) is the last 

hidden state of the network. The first part of this map is self-attention, which mixes information across the 
vectors, followed by the MLP which mixes information across d31,33.

Domain Abstracts

Sampled pairs

Training Evaluation

COPD 6,379 132,453 2,676

CVD 13,328 181,000 4,584

skin cancer 5,268 85,805 1,734

parasitic 26,251 1,048,575 27,750

autoimmune 23,159 499,852 10,066

Total 74,385 1,947,685 46,810

Table 1. Training and evaluation set sizes across the biomedical domains used.
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Including the MLP, the entire transformer block can be written as:

 X(i) = σ(Attention(X(i−1))W1 + b1)W2 + b2,

where b1 and b2 are biases associated with learned linear transformations W1 ∈ Rd×I  and W2 ∈ RI×d, where 
I > d. The activation function σ, e.g., ReLU or GeLU, introduces non-linearity1. More recently, biases are not 
included, which improves training stability, throughput, and final performance. Additionally, improvements like 
SwiGLU activation functions and rotary positional embeddings are also commonly utilized3,4,34,35.

GPT (Generative Pretrained Transformer) models, such as OpenAI’s GPT series (GPT-3, GPT-4, etc.), are 
designed for generative tasks and use transformer decoders36–38. They employ causal (unidirectional) attention, 
meaning each token attends only to previous tokens in the sequence, enabling autoregressive generation during 
inference. This allows them to predict the next word in a sequence without direct access to future words.

In contrast, BERT models utilize transformer encoders with bidirectional attention, meaning they can 
attend to all tokens within an input simultaneously. This structure enables them to capture additional contextual 
dependencies, making them well-suited for tasks like text classification and sentence similarity39. Unlike GPT 
models, BERT is trained using a masked language modeling (MLM) objective, where some tokens are randomly 
hidden, requiring the model to predict them based on the surrounding context.

Mixture of Experts
Mixture of Experts (MoE) models add a linear layer or router network to each transformer block, which outputs 
logits from H(i). These logits route H(i) to multiple equivalent copies of the MLP section with different weights 
called experts40. In many transformer variants, this routing is typically done on a per-token basis, allowing for 
experts to specify in language classes like punctuation, nouns, numbers, etc41. We chose sentence-wise routing 
of the entire H(i) so that we could purposely structure our experts for specific domains42.

Controlling the routing of H(i), allowed for a one-size-fits-all approach to text classification where one 
expert per transformer layer was an expert in a specific domain. For faster fine-tuning, we utilized pretrained 
models for our novel MoE extension approach (Fig. 1). As such, each MLP section was copied into five identical 
components to be differentiated during training. We also removed the learned router entirely and routed 
examples to a specific expert based on which domain the text comes from. The final MoE models had five 
experts each, where all COPD inputs were routed to a single expert and all CVD inputs to another, etc. To further 
enhance the nuance behind the representations built from our model, and to allow for the attention layers to 
distinguish which type of input was fed to the model, we added special tokens for each domain, e.g., [CVD], 
[COPD], etc. The token embedding for these new special tokens was seeded with the pretrained weight from the 
[CLS] token, and the [CLS] token was replaced with the correct domain token during tokenization. As such, the 
domain tokens were equivalent to the [CLS] token before further training.

Models of choice
We chose the recent ModernBERT base model as the pretrained model of choice for our experiments35. This 
bidirectional model employs efficient implementations of masking and attention to speed up training and 
inference while reducing memory costs. Local attention was used in most layers, with global attention at every 
third layer. We trained ModernBERT directly without modification and with MoE extension. The ModernBERT 
models offer much higher NLP benchmark performance per parameter than the first generation of BERT models 
following the 2019 release and subsequent fine-tuning releases35.

Fig. 1. Visualization of our MoE extension pipeline, where the MLP of each transformer network is copied 
into equivalent experts to further differentiate during training. Additionally, domain-specific special tokens are 
seeded from the pretrained Token Embedding Matrix (TEM) using the [CLS] token, which is replaced with the 
correct domain token upon tokenization.
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To benchmark against our training scheme, we compiled several popular BERT-like models, BERT models 
fine-tuned on scientific literature, sentence similarity models, and a recent SOTA GPT-like transformer (Table 2). 
ModernBERT, BERT, and RoBERTa have all been solely pretrained with MLM objectives35,39,43. SciBERT, 
BioBERT, and PubmedBERT have all been trained further on a scientific corpus with additional MLM44–46. all-
MiniLM-L6-v2 (Mini), MPNet, and E5 have been fine-tuned using contrastive learning for sentence similarity 
and embedding-based tasks10,47–53. Llama-3.2 is a state-of-the-art “small” generative language model that has 
seen wide use and success in local and open-source use cases3. We also benchmarked against a basic term 
frequency-inverse document frequency (TF-IDF), acting as a baseline for expected performance54.

All transformer models were downloaded and used with the Huggingface [SPSVERBc1SPS] package, 
leveraging custom embedding classes for efficient resource management. The TF-IDF scheme was fit on each 
domain separately using Python’s scikit-learn implementation with 4,096 maximum features54,55. The wide 
diversity in representation learning models allowed for an effective comparison to our training scheme.

Training strategy
To minimize training and inference time, we chose to use abstracts rather than entire papers as the text input to 
the model. Abstracts represent a human-generated summarized version of a paper and, as a result, include much 
of the relevant textual information contained in a paper. We trained regular ModernBERTbase models (single 
expert or SE models) on one domain at a time, on every domain (SEall), and our MoE extended model (MoEall

) on every domain.
The training objective was to summarize two paired mini-batches of abstracts separately. The abstract of 

index i in each batch was a co-cited abstract pair. The last hidden state of the model H(L) was mean pooled to 
build fixed-length vector representations of each batch. Then, we compared these embeddings with the variant of 
the Multiple Negative Rankings (MNR) loss used to train cdsBERT56,57. MNR Loss is a loss function that has seen 
significant success with sentence embedding problems58 and was highly successful in our local experiments. Our 
variant used dot products as an inter-batch similarity heuristic and constructed the targets based on the average 
intra-batch dot products. The loss was formulated as follows:

 

L̃(A, B) =
b∑

i=1

H(argmaxj=1,...,b(A⊺
j,:Ai,: + B⊺

j,:Bi,:)

L(B1, B2) = L̃(B1, B2) + L̃(B2, B1),

where b is the batch size, Bi ∈ Rb×d is mini-batch i and H is the cross-entropy. Batches B1, B2 must be paired 
such that element i = i are “similar,” in our case co-cited, and assumed to be dissimilar for other indices i ̸= j 
of a paired batch. This can be easily achieved by passing two paired batches to the model in two forward passes 
and combining their gradients for one backward pass in a standard autograd library. We used PyTorch for our 
experiments59.

The advantage of MNR losses and their variants is precisely this property requiring only positive/similar text 
pairs, generating negative/dissimilar text pairs from the other indices i ̸= j of the mini-batch. As a result, MNR 
loss removed the need to generate dissimilar text pairs for our training dataset under the assumption that the 
random chance of finding a similar paper randomly that is co-cited, is sufficiently small. Indices i ̸= j during 
single-domain training would be randomly paired papers from the same field, while during multi-domain 
training, it could be two random papers from different fields or the same. In either case, this approach satisfied 
our modeling assumptions that two co-cited papers were more similar than two random papers.

Model Parameter count (millions) Huggingface path

Llama-3.2 1236 meta-llama/Llama-3.2-1B

ModernBERTlarge 395 answerdotai/ModernBERTlarge

BERTlarge 336 google-bert/bertlarge-uncased

E5large 335 intfloat/e5large-v2

RoBERTalarge 335 FacebookAI/robertalarge

MoEall  (ours) 150 active, 384 total GleghornLab/MoEall-sentence

ModernBERTbase 149 answerdotai/ModernBERTbase

Robertabase 125 FacebookAI/robertabase

SciBERT 110 allenai/scibert_scivocab_uncased

BERTbase 110 google-bert/bertbase-uncased

E5base 109 intfloat/e5base-v2

PubmedBERT 109 microsoft/BiomedNLP-BiomedBERTbase-uncased-abstract-fulltext

MPNet 109 sentence-transformers/all-mpnetbase-v2

BioBERT 108 dmis-lab/biobert-v1.1

Mini 23 sentence-transformers/all-MiniLM-L6-v2

Table 2. Summary of the models used in the study.
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During training, we randomly switched the order of the two input abstract pairs to prevent any bias in 
how they were fed to the loss function. A batch size b = 16 was chosen for computational throughput and 
minimizing the chance for multiple positive abstract pairs showing up in a mini-batch. We trained models with a 
cosine learning rate scheduler with warm up using a learning rate of 1e−4, and performed periodic validation to 
measure training progress. Training was halted when a patience of 5 was exceeded for the evaluation set F 1max.

Evaluation strategy
All models were evaluated on the evaluation sets separately for each domain, as well as averaged together. We 
used cosine similarity between two vectors extracted from an abstract pair to classify the abstracts as co-cited 
(similar) or not, given a threshold, shown in Fig. 2. Cosine similarity is a common vector similarity measure 
ranging from -1 to 1, where -1 is exactly the opposite and 1 occurs for a pair of the same vector. We thresholded 
the cosine similarly to create a decision boundary and measured the F 1max to evaluate performance60,61. 
F 1max is the maximum F1 score calculated for all possible thresholds for a reported metric, calculated using a 
precision-recall curve. While typically used for imbalanced multilabel classification, randomly choosing a binary 
threshold for the reported F1 would not be a fair comparison of different models. For example, one model may 
perform much better with a cosine similarity threshold at 0.5 for abstract text similarity compared to 0.4, or 
vice versa. We also reported average precision and recall at the optimal threshold found for F 1max, the ROC-
AUC, as well as the average cosine similarity ratio between positive examples and negative examples. This ratio 
showcases the average discriminative power of a model, where a higher ratio implies that positive and negative 
examples are more separable.

Results
The results for all domains averaged together are shown in Table 3. On average, our full approach with MoE 
extension and contrastive learning (MoEall), showcased the highest performance with an F 1max of 0.8875 
across all domains. For single domain evaluation, we expected single expert (SE) models that were fine-tuned for 
only that domain, for example, SEcancer  for the parasitic diseases, to perform the best. For skin cancer (Table 5), 
COPD (Table 6), CVD (Table 7), and parasitic (Table 8) literature this was the case. This trend did not hold in 
the autoimmune domain (Table 4), with MoEall narrowly outperforming SEautoimmune. Of note, MoEall and 
SEall failed to perform better than base sentence similarity models on the CVD abstracts, where only SEcvd 
outperformed MPnet, E5, and Mini. Statistical analysis of all pairwise model performance can be found in the 
supplemental materials (Supplemental Fig. 1–6).

Discussion
Our work advances the use of transformer language models with a focus on improving their domain-specific 
understanding and document-wide comprehension from summaries (abstracts). We have shown that popular 
pretrained models cannot distinguish the differences in highly discriminative scientific literature despite further 
fine-tuning for sentence similarity tasks with contrastive learning or additional MLM on scientific papers. 
For example, when examining the COPD domain results (Table 6), all evaluated pretrained models showcase 
random or near random performance, with no model achieving even a 0.7 F 1max. We assume this phenotype 
is even worse in prompting scenarios when considering common prompt construction and formatting. If a 
user were to ask ChatGPT if multiple scientific documents were similar or potentially co-cited, they would 
have to paste the documents together in the same input. When considering the self-attention mechanism, the 

Fig. 2. Method for determination of abstract pair similarity for model evaluation.
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semantic similarity of related tokens across the multiple documents may prevent effective distinction between 
the documents, as portions of each document will attend highly to each other even if they are “different” as 
defined by a desired discrimination. Therefore, a document-wise embedding approach is much more tractable, 
enforcing that multiple documents are input separately and embedded in a close vector space if similar enough.

As vector databases become more prevalent for search and retrieval tasks, the quality of these numerical 
representations becomes increasingly important. Our innovative framework, which incorporates contrastive 
learning through a custom MNR variant, novel special tokens, and MoE seeding, extension, and forced routing 
techniques, significantly enhances vector-based classification compared to pretrained transformers. We leveraged 
co-citation networks to construct large datasets of similar abstracts and applied our framework to scientific 
literature. This created nuanced representations with a specific focus on discriminative biomedical domains.

Specifically, MoEall and SEall performed the best on average, with 0.8875 and 0.8770 F 1max, respectively. 
Whereas SE models trained on a single domain were the best performers for that domain. This was the case 
for all domains except for autoimmune, where MoEall narrowly outperformed SEautoimmunewith a F 1max 
of 0.8908 vs. 0.8904. MoEall routinely outperformed SE versions of the models with respect to the vector ratio 
metrics, often 1.7 vs. 1.5 between MoEall and SEall, highlighting that the MoE extensions increased average 
separation of co-cited papers against others in the same field. Interestingly, the TF-IDF scheme often had the 
highest vector ratio, implying the highest average separation. Due to its subpar F 1max and low threshold for 
binary classification, we can conclude that TF-IDF may be “over-confident” in general, placing small text motifs 
in a unique vector-space, perhaps missing the nuance that trained language models can capture.

Importantly, the SEall model with no MoE extension also performed exceedingly well, almost performing 
on par with MoEall in F 1max and ratio. In our previous experiments and preprint, we used SciBERT for the 
classification of co-cited scientific documents62. With a SciBERT base model, the SE models trained on each 
domain outperformed the MoE version by a large margin, whereas the MoE version outperformed SEall by an 
even larger margin. We attribute this difference in performance to ModernBERT, a new optimized language 
model with excellent representations, as being a stronger base model for experimentation. As a result, the MoE 
extension had less of an effect than previous experiments using SciBERT.

Compellingly, when looking at the SE performance for models trained on one domain but evaluated on all 
domains (Table  3), they outperform many of the base models. For example, SEcancer  outperforms even the 
sentence similarity models, which is not surprising considering that the parasitic data comprises a large portion 
of the overall dataset size. More interestingly, the SEautoimmune outperforms Llama-3.2, and SEcvd, SEcopd, and 
SEcancer  outperform all of the MLM-trained BERT models. This implies that when training on one scientific 
domain, performance is not significantly hampered across other unrelated domains. This is observed especially 

Model F1 Precision Recall Threshold Ratio ROC-AUC

MoEall 0.8875 0.8610 0.9166 0.7083 1.7189 0.9426

SEall 0.8770 0.8510 0.9067 0.7475 1.5535 0.9338

SE 0.8311 0.7809 0.9055 0.6552 1.7491 0.8606

MPNet 0.8038 0.7535 0.8611 0.4364 1.7541 0.8762

Mini 0.7940 0.7351 0.8631 0.3822 1.7706 0.8641

E5base 0.7910 0.7322 0.8601 0.8082 1.0676 0.8664

E5large 0.7908 0.7323 0.8594 0.8020 1.0664 0.8671

SEautoimmune 0.7702 0.7042 0.8626 0.7258 1.3705 0.8151

TF-IDF 0.7523 0.7024 0.8097 0.0744 2.2966 0.8209

Llama-3.2-1B 0.7489 0.6894 0.8197 0.8403 1.0769 0.8174

SEcvd 0.7458 0.6596 0.8637 0.6669 1.3775 0.7947

SEcopd 0.7347 0.6441 0.8689 0.7264 1.1872 0.7715

SE 0.7132 0.6200 0.8526 0.5719 1.2614 0.7416

BioBERT 0.7123 0.6314 0.8168 0.9384 1.0154 0.7646

PubmedBERT 0.7111 0.6488 0.7867 0.9853 1.0039 0.7614

RoBERTalarge 0.6999 0.5815 0.8789 0.9949 1.0011 0.7395

SciBERT 0.6992 0.6010 0.8360 0.8648 1.0311 0.7400

ModernBERTlarge 0.6991 0.6014 0.8347 0.9350 1.0146 0.7378

BERTlarge 0.6987 0.6069 0.8232 0.8857 1.0302 0.7370

BERTbase 0.6956 0.5816 0.8652 0.8417 1.0411 0.7296

ModernBERTbase 0.6919 0.5749 0.8687 0.9427 1.0120 0.7236

RoBERTabase 0.6800 0.5487 0.8940 0.9834 1.0031 0.6998

Table 3. Metrics for binary prediction of co-citation between two input abstracts via cosine similarity averaged 
across all evaluation sets, sorted by F 1max. Threshold refers to the optimal decision cutoff using the cosine 
similarities of that dataset. SE models use their domain token for all domains. Models trained in this work are 
highlighted in bold.
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Model F1 Precision Recall Threshold Ratio ROC-AUC

SE 0.8509 0.8308 0.8720 0.6680 1.4538 0.9203

MoEall 0.7687 0.7130 0.8339 0.8505 1.1447 0.8226

SEall 0.7301 0.6070 0.9158 0.7867 1.1066 0.7724

Llama-3.2-1B 0.6856 0.5891 0.8201 0.8249 1.0442 0.6863

SciBERT 0.6793 0.5289 0.9493 0.8387 1.0176 0.6392

E5large 0.6769 0.5455 0.8916 0.7891 1.0272 0.6890

E5base 0.6759 0.5404 0.9020 0.7970 1.0270 0.6838

SEcopd 0.6756 0.5291 0.9343 0.6925 1.0549 0.6214

TF-IDF 0.6747 0.5284 0.9331 0.0437 1.5295 0.6752

RoBERTalarge 0.6747 0.5165 0.9723 0.9938 1.0006 0.6518

ModernBERTlarge 0.6735 0.5130 0.9804 0.9086 1.0076 0.6162

BioBERT 0.6733 0.5245 0.9400 0.9268 1.0077 0.6399

BERTlarge 0.6723 0.5291 0.9216 0.8729 1.0155 0.6300

PubmedBERT 0.6716 0.5189 0.9516 0.9799 1.0026 0.6289

MPNet 0.6711 0.5086 0.9862 0.2200 1.1740 0.6545

SEcvd 0.6701 0.5129 0.9666 0.6468 1.0530 0.6317

BERTbase 0.6693 0.5122 0.9654 0.8139 1.0190 0.6223

Mini 0.6680 0.5147 0.9516 0.2560 1.1917 0.6682

RoBERTabase 0.6680 0.5032 0.9931 0.9759 1.0012 0.5989

SE 0.6677 0.5014 0.9988 0.4490 1.0502 0.6236

ModernBERTbase 0.6677 0.5143 0.9516 0.9273 1.0062 0.6150

SEautoimmune 0.6669 0.5003 1.0000 0.4453 1.0659 0.6545

Table 5. Metrics for binary prediction of co-citation between two input abstracts via cosine similarity for the 
skin cancer evaluation set, sorted by F 1max. Threshold refers to the optimal decision cutoff using the cosine 
similarities of that dataset. Models trained in this work are highlighted in bold.

 

Model F1 Precision Recall Threshold Ratio ROC-AUC

MoEall 0.8908 0.8692 0.9136 0.7055 1.7709 0.9552

SEautoimmune 0.8904 0.8659 0.9164 0.6205 2.1502 0.9541

SEall 0.8845 0.8586 0.9120 0.7512 1.5411 0.9474

MPNet 0.8198 0.7927 0.8488 0.3851 1.9632 0.8928

Mini 0.8182 0.8114 0.8252 0.3509 2.0583 0.8898

E5large 0.8099 0.7817 0.8403 0.8005 1.0734 0.8859

E5base 0.7999 0.7899 0.8103 0.8123 1.0710 0.8739

TF-IDF 0.7774 0.7440 0.8140 0.0709 2.6626 0.8454

SEcvd 0.7502 0.6577 0.8728 0.5747 1.4545 0.8131

Llama-3.2-1B 0.7442 0.7068 0.7858 0.8337 1.0813 0.8136

SEcopd 0.7329 0.6543 0.8329 0.6757 1.2351 0.7825

BioBERT 0.7155 0.6282 0.8309 0.9347 1.0167 0.7645

PubmedBERT 0.7128 0.6429 0.7997 0.9842 1.0036 0.7618

SciBERT 0.7060 0.5996 0.8585 0.8511 1.0357 0.7484

RoBERTalarge 0.7034 0.5929 0.8645 0.9947 1.0013 0.7401

ModernBERTlarge 0.6993 0.5868 0.8651 0.9310 1.0154 0.7361

SE 0.6920 0.5639 0.8955 0.4233 1.2759 0.7218

BERTbase 0.6917 0.5920 0.8319 0.8563 1.0385 0.7198

BERTlarge 0.6914 0.5833 0.8486 0.8816 1.0292 0.7242

ModernBERTbase 0.6904 0.5894 0.8331 0.9428 1.0122 0.7165

SE 0.6890 0.5866 0.8347 0.7283 1.1047 0.7137

RoBERTabase 0.6872 0.5582 0.8937 0.9830 1.0036 0.7089

Table 4. Metrics for binary prediction of co-citation between two input abstracts via cosine similarity for the 
autoimmune evaluation set, sorted by F 1max. Threshold refers to the optimal decision cutoff using the cosine 
similarities of that dataset. Models trained in this work are highlighted in bold.
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Model F1 Precision Recall Threshold Ratio ROC-AUC

SEcvd 0.9527 0.9353 0.9708 0.7217 2.4054 0.9876

MPNet 0.9297 0.9241 0.9354 0.4246 2.7391 0.9754

E5base 0.9257 0.9410 0.9110 0.8225 1.1112 0.9695

E5large 0.9199 0.9284 0.9114 0.8157 1.1074 0.9671

Mini 0.9151 0.9084 0.9219 0.3782 2.8264 0.9697

MoEall 0.9060 0.8858 0.9271 0.8022 1.5423 0.9668

SEall 0.8995 0.8916 0.9075 0.8253 1.4460 0.9640

SEcopd 0.8937 0.9093 0.8787 0.8286 1.4004 0.9538

SEautoimmune 0.8794 0.8840 0.8748 0.8162 1.4353 0.9453

TF-IDF 0.8778 0.8799 0.8757 0.1003 3.7699 0.9333

Llama-3.2-1B 0.8679 0.8365 0.9018 0.8477 1.1316 0.9385

SE 0.8446 0.8302 0.8595 0.8330 1.2317 0.9115

SE 0.8258 0.8435 0.8089 0.7378 1.5186 0.8980

SciBERT 0.7954 0.7529 0.8429 0.8670 1.0569 0.8626

PubmedBERT 0.7943 0.7811 0.8080 0.9854 1.0068 0.8561

BioBERT 0.7865 0.7649 0.8093 0.9389 1.0246 0.8599

RoBERTalarge 0.7844 0.7466 0.8264 0.9955 1.0020 0.8598

ModernBERTlarge 0.7800 0.7287 0.8390 0.9410 1.0228 0.8422

ModernBERTbase 0.7641 0.7113 0.8255 0.9484 1.0211 0.8362

BERTlarge 0.7526 0.6870 0.8320 0.8904 1.0454 0.8187

BERTbase 0.7428 0.6805 0.8176 0.8659 1.0592 0.8108

RoBERTabase 0.7320 0.6805 0.7919 0.9870 1.0052 0.7970

Table 7. Metrics for binary prediction of co-citation between two input abstracts via cosine similarity for 
the CVD evaluation set, sorted by F 1max. Threshold refers to the optimal decision cutoff using the cosine 
similarities of that dataset. Models trained in this work are highlighted in bold.

 

Model F1 Precision Recall Threshold Ratio ROC-AUC

SEcopd 0.8270 0.8215 0.8326 0.6844 1.4667 0.9043

MoEall 0.7861 0.7039 0.8901 0.7461 1.2528 0.8548

SEall 0.7661 0.7207 0.8176 0.8515 1.1422 0.8293

Llama-3.2-1B 0.6940 0.5965 0.8296 0.8434 1.0463 0.7272

SEcvd 0.6897 0.5828 0.8445 0.6226 1.1619 0.6922

SciBERT 0.6870 0.5591 0.8909 0.8502 1.0264 0.6968

BioBERT 0.6868 0.5397 0.9439 0.9249 1.0112 0.7023

BERTbase 0.6856 0.5705 0.8587 0.8503 1.0306 0.7004

PubmedBERT 0.6854 0.5750 0.8483 0.9838 1.0029 0.7042

RoBERTalarge 0.6851 0.5816 0.8333 0.9949 1.0009 0.7044

BERTlarge 0.6849 0.5676 0.8632 0.8822 1.0224 0.6970

ModernBERTbase 0.6810 0.5358 0.9342 0.9344 1.0100 0.6937

ModernBERTlarge 0.6798 0.5289 0.9514 0.9226 1.0104 0.6850

E5base 0.6796 0.5601 0.8640 0.8210 1.0273 0.7031

RoBERTabase 0.6784 0.5412 0.9088 0.9830 1.0027 0.6749

E5large 0.6771 0.5595 0.8572 0.8146 1.0275 0.7027

SEautoimmune 0.6742 0.5201 0.9581 0.6473 1.0717 0.6641

MPNet 0.6728 0.5601 0.8423 0.4736 1.1831 0.7003

SE 0.6716 0.5122 0.9753 0.6528 1.0415 0.6148

TF-IDF 0.6696 0.5288 0.9126 0.0737 1.4375 0.6832

SE 0.6696 0.5166 0.9514 0.5194 1.0755 0.6155

Mini 0.6678 0.5023 0.9963 0.1744 1.1585 0.6733

Table 6. Metrics for binary prediction of co-citation between two input abstracts via cosine similarity for 
the COPD evaluation set, sorted by F 1max. Threshold refers to the optimal decision cutoff using the cosine 
similarities of that dataset. Models trained in this work are highlighted in bold.
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between the SE models and the weights they were seeded from, ModernBERTbase, with a 0.02 - 0.08 higher 
F 1max and 0.2 - 0.4 increase in vector ratio.

Of course, our training scheme has limitations as well. For datasets that are already easily discriminated, 
such extensive fine-tuning may harm the overall performance. We support this notion when looking at the 
CVD domain results. The pretrained models had much higher natural scores, implying that these documents 
are already fairly separable, with a strong 2.7 ratio from MPnet, 2.8 ratio from Mini, and 3.8 ratio for TF-IDF. 
This led to MPnet, E5, and Mini outperforming MoEall and SEall. It is also unclear if our scheme is resilient 
to datasets with vector ratios that the pretrained models disagree with. For example, even though we see low 
F 1max across the base pretrained models, they all result in a ratio above 1.0 for every dataset. This means, based 
on MLM (or contrastive learning for the sentence similarity models), that the model already “agreed” that the 
co-cited papers were more semantically similar than other pairs that are not co-cited. This is the evidence behind 
co-citations as a measurement for similarity, but it also opens the door for future work. We believe it would be 
fruitful to explore our scheme on a paired dataset where the “natural” semantic similarity after MLM was less 
than 1.0 but is paired by some similarity heuristic. Many molecular sequences, like proteins, share this property, 
where pretrained transformers often lack true semantic embeddings after MLM alone63,64.

Of note, routing each example to a single expert based on the domain of the input means that the active 
parameters for the model are exactly equivalent to the model before MoE extension. In other words, the forward 
pass FLOPs are exactly equivalent to the original pretrained model. For homogeneous (all examples from one 
domain) inference batches, the throughput of the MoE extended version of the model vs. the original will be 
exactly the same as long as there is enough VRAM to store the additional inactive weights. Even without the 
necessary VRAM, portions of the model could be stored in the CPU memory when doing inference for a certain 
task, and then they could be switched for another subsequent task. Unfortunately, with heterogeneous batches 
during inference or training, the forward and backward pass will be slower based on how many experts need 
to be called. While requiring the same amount of FLOPs, they are not perfectly parallelized in the forward 
pass using naive implementations of switch versions for MoE. Issues like this may be alleviated in the future by 
efficient MoE parallelization efforts like DeepSeek’s DeepEP project4,65. For the backward pass, it is necessarily 
slower as more weights and gradients are involved. Even with naive implementations, we conclude from the 
strong performance across all five diverse evaluated domains that compute may be better spent on an N expert-
wide MoE network than fine-tuning N equivalent networks, especially when considering domain overlap and 
the possibility of merging and LoRA methodologies.

We believe that there are many potential applications of the MoE extension framework coupled with 
contrastive and/or other fine-tuning methods. One compelling avenue is named entity recognition66. Because 
experts are only routed examples from a specific user-defined domain, an expert may produce informative hidden 
states surrounding niche and nuanced terms. We suspect the token-wise embeddings from intermediate experts 
or from the last hidden state may present strong correlations with downstream NER tasks due to specific domain 

Model F1 Precision Recall Threshold Ratio ROC-AUC

SE 0.9060 0.8866 0.9262 0.6125 2.1802 0.9668

MoEall 0.9004 0.8783 0.9237 0.6812 1.8100 0.9634

SEall 0.8905 0.8694 0.9127 0.7208 1.6434 0.9567

MPNet 0.8105 0.7698 0.8556 0.4600 1.7108 0.8829

Mini 0.8011 0.7480 0.8624 0.4044 1.7149 0.8722

E5base 0.7933 0.7437 0.8499 0.8082 1.0659 0.8709

E5large 0.7904 0.7381 0.8507 0.8021 1.0637 0.8691

Llama-3.2-1B 0.7460 0.6829 0.8218 0.8425 1.0717 0.8143

TF-IDF 0.7442 0.7048 0.7882 0.0744 2.1749 0.8158

SEautoimmune 0.7242 0.6464 0.8233 0.7742 1.1249 0.7769

SEcvd 0.7202 0.6314 0.8381 0.6968 1.2209 0.7689

BioBERT 0.7108 0.6159 0.8403 0.9384 1.0143 0.7648

PubmedBERT 0.7103 0.6362 0.8040 0.9855 1.0037 0.7606

SEcopd 0.7039 0.5867 0.8797 0.7341 1.1159 0.7376

BERTlarge 0.6987 0.6117 0.8146 0.8858 1.0298 0.7393

SE 0.6979 0.6002 0.8335 0.5975 1.2195 0.7297

BERTbase 0.6964 0.5916 0.8462 0.8417 1.0415 0.7337

ModernBERTlarge 0.6964 0.5974 0.8346 0.9350 1.0138 0.7328

RoBERTalarge 0.6929 0.5900 0.8395 0.9953 1.0010 0.7287

SciBERT 0.6922 0.5871 0.8430 0.8690 1.0267 0.7326

ModernBERTbase 0.6880 0.5724 0.8622 0.9446 1.0110 0.7167

RoBERTabase 0.6742 0.5418 0.8924 0.9834 1.0028 0.6885

Table 8. Metrics for binary prediction of co-citation between two input abstracts via cosine similarity for the 
parasitic evaluation set, sorted by F 1max. Threshold refers to the optimal decision cutoff using the cosine 
similarities of that dataset. Models trained in this work are highlighted in bold.
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embedding structures. Once pooled, the fixed-length vector embeddings may offer a useful platform for retrieval 
tasks, including Retrieval Augmented Generation (RAG). Pre-embedded datasets will be much more separable 
for intra-domain searches from prompted LLM systems, capable of returning closely related content based on 
domain-specific context. Even inter-domain searches may be ideally separable if the system was trained like 
MoEall, with an MNR-like loss on multiple domains at once. One application that could benefit from separable 
inter-domain embeddings would be clinical or medical notes, where token-wise or pooled embeddings are fed 
to experts trained on other notes from a particular medical specialty or practice.

Another exciting application lies in mechanistic interpretability. We chose sentence-wise routing over other 
reasonable MoE routing schemas to keep expert weights completely separate for distinct domains. We believe this 
type of scheme is an ideal playground for mechanistic interpretability, examining nuanced and niche concepts 
learned for specific domains. There are many relevant questions here: How are the expert weights structured? 
Do sparse autoencoders reveal distinct neuron activations for niche concepts consistent across domains and 
experts67? Do the expert MLPs act like specified Hopfield networks68,69? It may also be possible to conduct 
weight merging or ensembling to increase performance and reduce VRAM costs70. Such research may also want 
to augment the attention layers in a domain-specific way. To accommodate this, we have included code to apply 
Low Rank Adaptation (LoRA) to attention layers, allowing for researchers to train domain-specific adapters 
alongside the MoE extended MLPs71.

Overall, our use of co-citation networks enables rapid and efficient dataset compilation for training 
transformers on niche scientific domains. The fine-tuning of base BERT models through contrastive learning with 
an MNR-inspired loss significantly improves sentence similarity capabilities. The MoE approach further expands 
these capabilities, suggesting the feasibility of a universal model for text classification and vector embeddings 
across various domains through MoE seeding and enforced routing. Given efficient inference considerations, 
one could embed large datasets such as the entire Semantic Scholar database without any additional overhead 
for using a MoE model. Using the building blocks of our approach, effective BERT models with specialized 
knowledge across multiple fields, vocabularies, or tasks can be developed.

Data availability
Links to all training data, model weights, and code can be found at Github [Gleghorn Lab, Mixture of Experts 
Sentence Similarity].
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